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Abstract: The catecholamines norepinephrine and epinephrine are important regulators of
vertebrate physiology. Insects such as honeybees do not synthesize these neuroactive substances.
Instead, they use the phenolamines tyramine and octopamine for similar physiological functions.
These biogenic amines activate specific members of the large protein family of G protein-coupled
receptors (GPCRs). Based on molecular and pharmacological data, insect octopamine receptors
were classified as either «- or 3-adrenergic-like octopamine receptors. Currently, one - and four
[3-receptors have been molecularly and pharmacologically characterized in the honeybee. Recently,
an xp-adrenergic-like octopamine receptor was identified in Drosophila melanogaster (DmOcta2R).
This receptor is activated by octopamine and other biogenic amines and causes a decrease in
intracellular cAMP ([cAMP];). Here, we show that the orthologous receptor of the honeybee
(AmOcta2R), phylogenetically groups in a clade closely related to human «;-adrenergic receptors.
When heterologously expressed in an eukaryotic cell line, AmOcta2R causes a decrease in [CAMP];.
The receptor displays a pronounced preference for octopamine over tyramine. In contrast to
DmOcta2R, the honeybee receptor is not activated by serotonin. Its activity can be blocked efficiently
by 5-carboxamidotryptamine and phentolamine. The functional characterization of AmOcta2R now
adds a sixth member to this subfamily of monoaminergic receptors in the honeybee and is an important
step towards understanding the actions of octopamine in honeybee behavior and physiology.
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1. Introduction

The phenolamines tyramine and octopamine act as neurotransmitters, neuromodulators,
and/or neurohormones in insects as well as other protostomes and play a significant role in the
regulation of physiology and behavior of these animals (for recent reviews, see [1-6]). During the last
decades, the honeybee (Apis mellifera (A. mellifera)) has become established as an important model
organism for investigating the roles of biogenic amines on behavioral plasticity [7-12] and social
behavior [13-15]. Physiologically, octopamine and tyramine are often considered to act similarly
in the honeybee [16-18]. However, there is growing evidence for distinct effects of these two
closely related amines on behavior in the bee [13,19,20] and the vinegar fly Drosophila melanogaster
(D. melanogaster) [21-26]. Whether and how these effects can be traced back to the repertoire and the
signaling capabilities of individual receptors is a challenging question.

Like other biogenic amines, tyramine and octopamine exert their actions by binding to the members
of the superfamily of G protein-coupled receptors (GPCRs). For each phenolamine, there are multiple
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receptor subtypes that couple to various intracellular signaling pathways in a receptor subtype specific
manner. In the honeybee, two tyramine receptors have been examined functionally so far. The AmTAR1
receptor (previously named AmTYR1) inhibits adenylyl cyclase activity and thus leads to a reduction
in [cCAMPY]; [27-29]. More recently, a second tyramine receptor, AmMTAR?2, has been characterized
that specifically induces cAMP production upon activation [30]. The family of octopamine receptors
in the honeybee is more complex [31,32]. At the cellular level, these receptors evoke Ca?* release
from intracellular stores (AmOctaR, previously named AmOAT1 [31]) or activate adenylyl cyclases,
thereby increasing [cAMP]; (AmOctBR1-4 [32]). Recently, a novel octopamine receptor subtype
was characterized in the rice stem borer, Chilo suppressalis (C. suppressalis; CsOcta2R = CsOA3 [33])
and D. melanogaster (DmOctx2R; CG18208 [34]). Interestingly, the activation of DmOcto2R resulted
in inhibition of forskolin-stimulated cAMP synthesis [34]. Thus, a signaling pathway is activated
that was formerly not known to be used by octopamine. In addition, DmOcta2R displays an
unusual pharmacological profile and is also activated by tyramine and the indoleamine serotonin in a
dose-dependent manner [34].

A gene potentially encoding an x;-adrenergic-like octopamine receptor was also identified in the
honeybee genome [33-35]. The aim of the current study was to molecularly and pharmacologically
characterize this AmOcta2R receptor. Therefore, upon cloning the complete coding sequence from
honeybee brain cDNA, we constitutively expressed AmOctx2R in a cell line and examined its coupling
to intracellular second messengers and its pharmacological properties. Intriguingly, receptor activation
with octopamine led to a decrease in [cAMP];. We showed that AmOcta2R had a clear preference
for octopamine over tyramine (~30-fold difference in half-maximal reduction of cAMP levels (ECs)).
In contrast to DmOctx2R, however, AmOctx2R was not activated by serotonin. We concluded
that in vivo effects of octopamine on second messenger signaling depended on the tissue- and
cell-type-specific expression patterns of the various receptor subtypes and, additionally, on potential
cross-activation of tyramine receptors.

2. Results

2.1. Molecular and Structural Properties of AmOcta2R

The amino acid sequence of a potential x;-adrenergic-like octopamine receptor from the honeybee
has been annotated in previous studies [33-35]. Here, we have cloned the complete cDNA-encoding
AmOcta2R by PCR on single-stranded cDNA synthesized on mRNA of adult worker bee brains.
The cDNA contained an open reading frame (ORF) of 2223 bp. The corresponding gene was located on
chromosome LG15 (see NCBI: NC_007084.3) and consisted of three exons (Supplementary Figure S1
and Table S1).

The deduced amino acid sequence consisted of 741 residues with a calculated molecular weight
of 80.7 kDa. The hydrophobicity profile according to Kyte and Dolittle [36] and the prediction of
transmembrane (TM) helices using TMHMM Server v.2.0 [37] suggested seven TM domains (Figure 1a,b),
which is a characteristic feature of GPCRs. The TM segments were flanked by an extracellular
N-terminus of 263 residues and a short intracellular C-terminus of 14 residues. We submitted the
AmOcta?2 sequence to Phyre2 [38] and obtained a three-dimensional model of the receptor. In this
model, the N-terminus was almost unstructured and loosely attached to the TM domains eventually
crossing the membrane as an eighth TM segment. We, therefore, omitted the first 217 residues of the
primary structure and recalculated the model from residue 218 to 741. This was revealed in the typical
membrane arrangement of a GPCR (Figure 1c).

The sequence of AmOcta2R contained several putative sites for posttranslational modification
(Supplementary Figure S2). Four potential N-glycosylation sites (N-X-(5/T)) were present in the
extracellular N-terminus: NpyMT, N1g4NT, N23gGS, and Ny43ET. Conserved cysteine residues (Cazg and
Cy14) in the first and second extracellular loops might form a disulfide bridge as found in other biogenic
amine receptors [39]. Five consensus sites for phosphorylation by protein kinase C and one consensus
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site for phosphorylation by protein kinase A were found in the cytoplasmic domains of the receptor
protein (Supplementary Figure S2).
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Figure 1.  Structural characteristics of the amino acid sequence deduced for AmOctx2R.
(a) Hydrophobicity profile of AmOctx2R. The profile was calculated according to the algorithm
of Kyte and Doolittle [36] using a window size of 19 amino acids. Peaks with scores greater than
1.6 (dashed line) indicate possible transmembrane (TM) regions; (b) prediction of TM domains with
TMHMM server v. 2.0 [37]. Putative TM domains are indicated in red. Extracellular regions are shown
with a purple line, and intracellular regions are shown with a blue line; (c) color-coded (rainbow)
three-dimensional (3D) model of the receptor as predicted by Phyre2 [38]. The extracellular N-terminus
(N) and the intracellular C-terminus (C) are labeled. Note that the first 216 amino acid residues of
AmOcta2R were omitted in this simulation.

In addition to these sites, several cognate sequence motifs of GPCRs were identified in the primary
structure of AmOcta2R. The D3gRY motif (D34°R3-20Y351; Jabeled according to [40] was located at the
cytoplasmic end of TM3. In TM7, the residues Ny PFIY (N749P750F75117:52Y7:53) constituted part of
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the hydrophobic interaction site with the phenyl moiety of the biogenic amine. Furthermore, residues
that most likely bound to the ligand (e.g., D343 (D332) and S426/430 (S°42/546)) were highly conserved
within the family of biogenic amine receptors [41].

The phylogenetic relationship of the AmOcta2R receptor was examined using MEGA7 software
(Figure 3). Not all receptors binding to a certain biogenic amine were composed of uniform clusters,
but the appropriate receptor subgroups did. AmOcta2R assembled in a clade that contained an
ap-adrenergic-like octopamine receptor from D. melanogaster [34] and o, adrenergic receptors from
Platynereis dumerilii (Pd«?2 [42]), Saccoglossus kowalevskii (Skoa2 [42]), and Priapulus caudatus (Pco2 [42]).
This clade was closely related to human oy-adrenergic receptors. In contrast, «;-adrenergic-like
octopamine receptors including AmOctx1R [31] were clearly set apart and formed a sister group with
«p-adrenergic receptors (Figure 3). Both «;-adrenergic-like octopamine receptors and o;-adrenergic
receptors were also closely related to the invertebrate-type dopamine receptors from A. mellifera
(AmDOP2 [43]), Periplaneta americana (P. americana; PaDOP2 [44]), and D. melanogaster (DmDOP2 [45]).

The complete primary structures of the AmOctx1R [31] and AmOcta2R receptors were only
22.1% identical and 33.5% similar. Notably, AmOcta2R was more closely related to «;-adrenergic-like
octopamine receptors from the striped rice stemborer C. suppressalis (47.8%/55.1%), the red flour beetle
Tribolium castaneum (46.3%/53.3%), and D. melanogaster (43.3%/50.8%).
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Figure 2. Expression of AmOctx2R-hemagglutinin A (HA) in flpTM cells. (a) Western blot of membrane
proteins (30 pg) from flpTM cells expressing AmOcta2R-HA receptors were not treated (lane 1) or
treated with PNGaseF (lane 2). As a control, 30 ug of membrane proteins from nontransfected
flpTM cells (lane 3) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and blotted to a polyvinylidene difluoride (PVDF) membrane. The blot was probed
with a rat anti-(hemagglutinin A) HA antibody. (b) The same blot as shown in (a) was subsequently
probed with an antibody directed against the C-terminus of the cyclic nucleotide-gated (CNG) channel.
The sizes of marker proteins in kDa are given on the left margin.

2.2. Expression of AmOcta2R-HA in flpTM Cells

To unravel the intracellular signaling pathway activated by AmOctx2R-HA and determine
its pharmacological properties, flpTM cells were stably transfected with the expression construct.
Independent cell lines were obtained and examined by immuno-fluorescence staining for homogeneity
(Supplementary Figure S3). Additionally, AmOcta2R-HA was examined by Western blotting (Figure 2).
The anti-(hemagglutinin A) HA antibody labeled a band of ~117 kDa (Figure 2a, lanes 1 and 2),
which was absent in flpTM cells (Figure 2a, lane 3). Thus, the apparent molecular weight of the
receptor was significantly greater than the calculated molecular weight of AmOctx2R-HA (81.8 kDa).
Whether this difference was due to glycosylation was assessed by treating samples with and without
PNGaseF separately. The mobility of the protein was not altered by PNGaseF treatment (Figure 2a,
lanes 1 and 2), suggesting that AmOctx2R-HA was not glycosylated in these cells. As an internal
control, the blot was developed with an antibody directed against the cyclic nucleotide-gated (CNG)
channel (Figure 2b). In this case, the treatment with PNGaseF resulted in a reduction of the apparent
molecular weight of the channel protein (Figure 2b, lane 2). Therefore, the difference between the
apparent and calculated molecular weights of AmOcto2R-HA is possibly due to receptor dimerization
and other post-translational modifications, e.g., phosphorylation or unusual electrophoretic mobility
under denaturing conditions.
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Figure 3. Phylogenetic relationships of monoaminergic receptors. Alignments were performed
using Clustal W [46] by using the core amino-acid sequences of TM 1-4, TM 5, TM 6, and TM 7.
The evolutionary history was inferred using the neighbor-joining method. The percentage of replicate
trees, in which the associated taxa clustered together in the bootstrap test (10,000 replicates), are shown
next to the branches. The tree was drawn to scale, with branch lengths in the same units as those
of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were
computed using the Poisson correction method and are in the units of the number of amino acid
substitutions per site. The analysis involved 76 amino acid sequences. Human rhodopsin (HsRHOD)
was used to root the tree. Receptor subclasses are given on the right. The abbreviations of species
are shown in alphabetical order: Am, Apis mellifera; Dm, Drosophila melanogaster; Hs, Homo sapiens;
Pa, Periplaneta americana; Pc, Priapulus caudatus; Pd, Platynereis dumerilii; Sk, Saccoglossus kowalevskii.
Protostomian species names are highlighted in red, whereas deuterostomian species names are given
in blue. The accession numbers and annotations of all sequences used in the phylogenetic analysis can
be found in Supplementary Table S2.
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2.3. Ligand Specificity of the AmOcta2R-HA Receptor

The xy-adrenergic octopamine receptors from C. suppressalis [33] and D. melanogaster [34] have
been shown to attenuate [cAMP]; upon activation. We examined whether AmOcta2R-HA might
also couple to Gj-type G proteins, thereby causing inhibition of cell-endogenous adenylyl cyclases.
To examine AmOctax2R-HA'’s coupling properties, cells were treated with a water-soluble forskolin
analog, NKH 477, which stimulated membrane-bound adenylyl cyclases. NKH 477 led to cAMP
production in both nontransfected and AmOcta2R-HA-expressing flpTM cells. Next, we assessed the
effects of the biogenic amines octopamine, tyramine, dopamine, and serotonin (107 M each) on NKH
477-stimulated cAMP production. The application of octopamine and tyramine led to a decrease in the
Ca®*-dependent fluorescence signal, whereas the other amines had no effect on such signals. Cells that
did not express the receptor (flpTM) showed no Ca®*-dependent responses after the application of
biogenic amines.
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Figure 4. Concentration-dependent effects of octopamine on intracellular cAMP in AmOcta2R-HA-
expressing flpTM cells. Relative fluorescence (corresponding to the amount of cAMP) is given as
the percentage of the value obtained with 10 uM NKH 477 (=100%), a water-soluble forskolin
analog. All measurements were performed in the presence of 100 pM isobutylmethylxanthine
(IBMX). In the range from 10~ M to 107® M, the octopamine activation of AmOcta2R-HA led
to a concentration-dependent decrease in the fluorescence signal. Conversely, an increase in the
fluorescence signal was observed with octopamine concentrations of 3 x 107® M and higher. Data
points represent the mean =+ SD of four-fold determinations.

To further investigate AmOcta2R-HA'’s properties, the concentration-response curves for
octopamine and tyramine were established. Octopamine was applied in concentrations ranging
from 10~ M to 10~* M. Unexpectedly the concentration-response curve was U-shaped (Figure 4).
A decrease in fluorescence was observed with octopamine concentrations ranging from 10~ M to
10~ M. Considering octopamine concentrations from 10™ M to 3 x 107® M, ECs was observed with
117 x 1077 M octopamine (logECsj + SD = —6.932 + 0.1395; for the mean values of all experiments,
see Table 1). The maximal reduction of cAMP synthesis was ~25% at 10~ M octopamine. Octopamine
concentrations higher than 107® M led to an increase in Ca?*-dependent fluorescence signals (Figure 4),
suggesting that the parental flpTM cell line expresses receptors that could be activated by octopamine
and cause either a cAMP response and/or direct Ca®" responses [47]. To test this hypothesis,
nontransfected flpTM cells were incubated with increasing octopamine concentrations (Figure 5).
In the presence of NKH 477, octopamine concentrations of > 3 x 1077 M led to an increase in Fluo-4
fluorescence, which argued for the presence of such endogenous receptors. Although we did not
address the molecular identity of these receptors, they most likely belong to the family of the adrenergic
GPCRs that have been previously found in these cells [48].
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Table 1. Mean values for the half-maximal stimulation (ECsy [M] and logECs( + SD) for octopamine and
tyramine on AmOcta2R-HA. Values were obtained from the nonlinear fitting of the data (1 = the number
of experiments) from concentration-response curves (GraphPad Prism 5.04).

Octopamine (n =7) Tyramine (n = 11)

ECs0 [M] 5.87 x 1078 1.85 x 107°
logECs —7.43 +0.24 —-5.78 +0.17
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Figure 5. Concentration-dependent effects of octopamine on relative fluorescence in nontransfected
(control) flpTM cells. The concentration-response curves for octopamine were established in the
absence (open circles) or presence (filled circles) of 10 uM NKH 477. Relative fluorescence is given as the
percentage of the value obtained with 10 uM NKH 477 (=100%). All measurements were performed in
the presence of 100 uM IBMX. In both conditions, higher octopamine concentrations led to an increase
in fluorescence. Data points represent the mean =+ SD of four values.
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Figure 6. Concentration-response curves for agonists on intracellular cAMP level in
AmOctx2R-HA-expressing flpTM cells. Relative fluorescence (corresponding to the amount of cAMP)
is given as the percentage of the value obtained with 10 uM NKH 477 (=100%). All measurements were

performed in the presence of 100 pM IBMX. Data points represent the mean =+ SD of four values from a
typical experiment.

The concentration-response curve for tyramine was sigmoid and saturated at a tyramine
concentration of >3 X 107> M (~17% reduction; Figure 6). The ligand concentration leading
to the half-maximal activation of AmOcto2R-HA (ECs)) was 1.628 x 107® M tyramine
(logECs0 + SD = —5.788 + 0.092; for the mean values of all experiments, see Table 1). In nontransfected
flpTM cells, no change in the fluorescence signal was observed upon application of tyramine.
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Accordingly, all subsequent measurements with antagonists (see below) were first carried out against a
tyramine background. In conclusion, the results indicated that AmOcta2R-HA has a clear (~30-fold)
specificity for octopamine over tyramine and can be considered a functional a;-adrenergic-like

octopamine receptor.
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Figure 7. Effects of putative antagonists on tyramine-activated AmOcto2R-HA. The concentration series
of the substances were applied in the presence of 10 uM NKH 477, 10 pM tyramine, and 100 uM IBMX.
Ligands used were (a) phnetolamine, (b) epinastine, (c) mainserin, and (d) yohimbine. Data represent
the mean + SD of four values from a typical experiment. All determinations were independently

repeated at least three times.

2.4. Pharmacological Properties of the AmOcta2R-HA Receptor

The ability of various potential antagonists for impairing AmOcta2R-HA activity was assessed in
a similar way. Measurements were performed with increasing concentrations of antagonists AS-19,
5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MT), 8-Hydroxy-2-(dipropylamino)tetralin
(8-OH-DPAT), epinastine, ketanserin, mianserin, phentolamine, and yohimbine on a nonsaturating
tyramine background (10 pM). In NKH 477-treated and tyramine-stimulated AmOcta2R-HA expressing
cells, the application of antagonists led to an increase in the fluorescence signal, because adenylyl
cyclases were no longer inhibited by Gj-proteins. In Figure 7, the antagonistic effects of phentolamine,
epinastine, mianserin, and yohimbine are displayed. Ligand concentrations that led to the half-maximal
inhibition of AmOcta2R-HA (ICs() were determined from the concentration-response curves and are
summarized in Table 2. Effective antagonists of tyramine-stimulated AmOcta2R-HA were, for example,
5-CT and phentolamine with ICsj values of 4.16 X 107 M and 5.6 x 1072 M. The order of antagonist
potency of tyramine-stimulated AmOctx2R-HA was 5-CT > phentolamine > epinastine > 5-MT >
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mianserin > yohimbine > ketanserin > 8-OH-DPAT (for mean values of ICs, see Table 2). AS-19 did
not show any effect.

Table 2. Mean values for the half-maximal inhibition (ICsy [M] and logICs( + SD) for substances with
antagonistic activity on tyramine-activated AmOcto2R. Values were obtained from the nonlinear fitting
of the data (n = number of experiments) from concentration-response curves (GraphPad Prism 5.04).

Maximal
e 1
Substance Specificity in Humans ICsp [M] logICsp Inhibition [%] n
5CT agonist at 5-HT1, 5-HTyp, S-HTyp, 5-HTs, and ) 10 -0 ~8.48 +0.20 10.8 3
5-HT7 receptors
phentolamine nonselective o-adrenergic antagonist 5.63 x 1079 —8.30 +£0.20 16.1 3
epinastine nonsedating histamine H; receptor antagonist 1.98 x 1078 -7.75£0.29 17.31 6
5-MT agonist at 5-HTy, 5-HT,, 5-HTy, 5-HTg, and 206 x 10-8 772 4020 203 4

5-HTy; receptors
antagonist at the histamine Hy, 5-HTp, 5-HTp4,
mianserin 5-HTyc, 5-HT3, 5-HTy, 5-HTy, «q-adrenergic and 2.95x 1078 -7.71 £0.31 215 5
ap-adrenergic receptors

high affinity for the a;-adrenergic receptor,

moderate affinity for the «;-adrenergic, 5-HT1,,
5—HT13, 5—HT]D, 5-HT]F, 5'HT2Br and Dz

receptors, and weak affinity for the 5-HTg,

5-HTyp, 5-HT54, 5-HT7, and D3 receptors;

behaves as an antagonist at «;-adrenergic,
sz—adrenergic, 5—HT13, 5—HT1D, 5-HT2A, 5'HT2B

and Dy, and as a partial agonist at 5-HTq 5
affinity for multiple GPCR; antagonist at 5-HT,a

and 5-HT¢ receptors; high affinity for
aq-adrenergic receptors and very high affinity
for histamine Hj receptors; moderate affinity for
«p-adrenergic and 5-HTjg receptors as well as

weak affinity for dopamine D; and D, receptors

standard selective 5-HT o agonist; also has

moderate affinity for 5-HT7 receptors

AS-19 agonist at the 5-HT7 receptor no effect 6

yohimbine 8.14 x 1078 -7.12 £0.32 14.3 4

ketanserin 5.14 x 1077 -6.29 +0.29 17.11 3

8-OH-DPAT 1.09 x 10°° —-6.15 + 0.36 7.21 3

1 These data have been obtained from the websites of Tocris (https://www.tocris.com/) and/or Sigma-Aldrich
(https://www.sigmaaldrich.com).

Substances, which showed antagonistic activity at AmOcta2R-HA against a tyramine background,
were also tested against an octopamine background (3 x 1077 M). The rank order of potency was
similar to measurements performed with tyramine. The mean values for half-maximal inhibition
(IC50 [M] and loglICsg + SD) are summarized in Table S3.

3. Discussion

There is ongoing interest in precisely understanding the physiological and behavioral roles of
octopaminergic signaling in insects [2,6,26,49-51]. An important step to meet this challenge is to
determine the molecular and functional pharmacological properties of octopamine receptor subtypes.
Here, we described the functional characterization of AmOcta2R, the sixth octopamine receptor subtype
of the honeybee. The primary structure of AmOcta2R phylogenetically clustered with protostomian
ap-adrenergic-like octopamine receptors. Activation of AmOcta2R by the phenolamines octopamine
and tyramine led to a substantial decrease of NKH 477-induced cAMP synthesis. In contrast to
DmOcta2R from D. melanogaster [34], we did not observe any changes in [CAMP]; in response to the
indoleamine serotonin.

3.1. Gene Structure, Structural Properties of the Protein, and Phylogenetic Classification

The coding region of the AmOcta2R gene was dispersed over approximately 13 kb of genomic
DNA on the linkage group LG15 and was interrupted by two introns. The gene was located on the
same chromosome, as the AmOcta1R gene of which the coding region was interrupted by eight introns
(Table S1, Figure S1; [31,35]). Whereas the position of intron 1 was conserved between orthologous
receptors of A. mellifea and D. melanogaster, this is not the case for intron 2 (Figure S1). Since amplification
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on brain cDNA resulted in only one distinct product, we found no evidence for alternative splicing
of the AmOcta2R transcript, as has been described for transcripts of orthologous receptors of both
C. suppressalis [33] and D. melanogaster [34].

Applying several in silico analyses confirmed that AmOctx2R is a member of the class A
(thodopsin-like) GPCR family. This assessment was supported by the presence of cognate amino acid
residues and motifs within the TM segments in AmOcta2R, e.g., NyPFIY in TM7 or the D3¢pRY motif
at the C-terminal end of TM3.

Most class A (rhodopsin-like) GPCRs were activated by ligands docking to specific residues in
the binding pocket of the receptor near the extracellular side. Functionally important amino acid
residues present in o;-adrenergic-like octopamine receptors were well conserved in the AmOctx2R
sequence. They were an aspartic acid residue (D347) in TM3 and two of three closely grouped serine
residues found in TM5 (Sg¢ 430) (see Supplementary Figure 52). Octopamine appeared to bind via
its amine group and its hydroxyl group to the aspartic acid and one of the serine residues of the
receptor, respectively [52,53]. In addition, phenylalanine and/or tryptophan residues in TM6 and
TM?7 (see Supplementary Figure 52) might contribute to 7t— interaction with delocalized electrons in
octopamine or tyramine and stabilize the receptor ligand interaction.

The coupling of GPCRs to specific G proteins is brought about by amino-acid residues in close
vicinity to the plasma membranes of the 2nd and 3rd intracellular loops and of the cytoplasmic
C-terminus of the receptor [54-56]. Biogenic amine receptors that couple to G; proteins and thereby
inhibit adenylyl cyclase activity often possess short C termini [54]. This feature is conserved in
AmOcta2R and in other op-adrenergic-like octopamine receptors (Supplementary Figure S2; [33,34]).
In addition, the receptors possess strikingly similar amino-acid sequences in the vicinity of TM5 and
TM6 within their 3rd cytoplasmic loops, a region largely determining the specificity of receptor/G
protein coupling [57].

Our phylogenetic analysis including all major insect biogenic amine GPCR families resulted
in a well-resolved phylogram (Figure 3). Protostomian ay-adrenergic-like octopamine receptors
seemed to be closely related to deuterostomian «y-adrenergic receptors, emphasizing the idea of
“ligand-hopping” during evolution of aminergic GPCRs [35]. When new receptors evolved by gene
duplication, they needed new ligands. Because of structural constraints, the only way to obtain “new”
aminergic ligands was to repurpose already existing biogenic amines from other systems. The frequent
ligand exchanges during evolution of aminergic GPCRs strongly contrasted the situation observed for
neuropeptide and protein hormone GPCRs, where generally co-evolution between receptors and their
ligands takes place [35,58,59].

The sister group of both oy-adrenergic-like octopamine and «;-adrenergic receptors constituted
type 1 tyramine receptors which also couple to G; proteins (Figure 3; [33,34]). A slightly different
assignment of the ap-adrenergic-like octopamine receptor family has been described in an independent
study. Here, the phylogenetic trees were calculated with RAXML using the CIPRES Science Gateway [42].
The oy-adrenergic-like octopamine receptors assembled at the basal branches of the dendrogram
forming the sister group of all other tyramine-, octopamine-, and adrenergic receptors. The different
results may originate from the strategies applied in creating the datasets used for calculating the
phylograms. Based on our results, we suggest including all major receptor families to unravel the
evolutionary relationship of biogenic amine receptors.

3.2. Posttranslational Modification of AmOcta2R

Posttranslational modifications in intracellular loops of AmOcta2R, like phosphorylation, may also
affect the signaling properties of the protein. It has been recently shown that phosphorylation of
a single residue in the third intracellular loop of an octopamine receptor from D. melanogaster
(DmOctaR1B; [60,61] is sufficient to explain the receptor’s oscillatory Ca?* signaling behavior [62].
Whether transient changes in the surface charge of AmOcta2R also lead to oscillatory phases of adenylyl
cyclase inhibition remains to be addressed. Cysteine residues in the C-terminus of different biogenic
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amine receptors were found to undergo posttranslational palmitoylation [63]. This modification
generates a fourth intracellular loop that also participates in receptor—G protein binding [59]. Since
a cysteine is missing in the C-terminus of AmOcta2R, the fourth intracellular loop does not exist in
this GPCR.

3.3. Pharmacological Properties of the AmOcta2R Protein

The AmOcta2R receptor was functionally expressed in flpTM cells. The coupling of AmOctx2R
to intracellular signaling cascades was examined via cell-endogenous G proteins. AmOcto2R,
like other x;-adrenergic-like octopamine receptors from insects [33,34] and mammalian op-adrenergic
receptors (for a review, see [64]), was negatively coupled to the enzyme adenylyl cyclase via G;
proteins and thus resulted in a decrease in [CAMP];. With a mean ECsy of 58.7 nM, activation of
AmOcta2R was much more sensitive to octopamine than to tyramine (mean ECsg = 1.85 uM; Table 1).
These data agree well with those described for orthologous receptors [33,34]. Interestingly, besides
cAMP signaling, the addition of octopamine, tyramine (and dopamine) to CsOctax2R-expressing
HEK 293 cells also resulted in concentration-dependent increases in [Ca2*]; This has not been
found for DmOcta2R- [34] or AmOctx2R-expressing cells (this study). However, apart from
obvious similarities in the pharmacological properties, there were also significant differences between
DmOcta2R and AmOctx2R. Whereas DmOcta2R was activated by serotonin in a dose-dependent
manner (ECgy = 1.04 uM; [34]), serotonin failed to activate AmOcta2R.

The inhibition of AmOcta2R-HA-mediated attenuation of [cAMP]; in the cell line was examined
with various synthetic antagonists. In addition to phentolamine (IC5p = 5.6 nM/8.21 nM) which is a
nonselective o-adrenergic antagonist (for a review, see [65]), the action of tyramine and octopamine on
AmOcta2R could also be blocked by 5-CT (ICsp = 4.16 nM/0.27 nM) with even slightly higher potency.
The substance 5-CT is primarily known as an agonist at 5-HT 5, 5-HT1p, 5-HT1p, 5-HT5, and 5-HT7
receptors in mammals [66] and in insects [11,67,68]. Additional serotonergic ligands (e.g., the agonist
5-MT (IC5¢ = 20.6 nM/836 nM) and the antagonist mianserin (IC5y = 29.5 nM/21.5 nM)) were also
potent blockers of the action of tyramine and octopamine on AmOcta2R. Mianserin is known for some
time as a potent antagonist at octopamine receptors [69,70] and, more recently, was found to be an
antagonist of the AmMTAR2 receptor of the honeybee [30] and the PeaTAR1B receptor of the American
cockroach, P. americana [71].

Overall, our results support the notion that octopamine signaling in insects is highly complex.
It is noteworthy that octopamine receptors characterized so far have been shown to preferentially
couple to Gs proteins to activate adenylyl cyclases and to Gg-proteins, which induce intracellular
Ca%* mobilization (for reviews, see [2,4,72]. However, ap-adrenergic-like octopamine receptors have
been found to inhibit adenylyl cyclase activity ([33,34] and this study), a property reminiscent of the
phylogenetically related mammalian op-adrenergic receptors (for a review, see [64]) and insect type 1
tyramine receptors (e.g., [27,28,47,71,73-75]). Whether the signaling properties of a given receptor in a
cell line illustrates its typical behavior in a natural background would require experimental testing in
native cell or tissue samples. To the best of our knowledge, only stimulatory actions of octopamine
on adenylyl cyclase activity have been reported so far for native tissues of the honeybee [27,72] and
other insects [76-80] as well as for insect cells lines [81-83]. We speculate that the inhibitory effects of
ay-adrenergic-like octopamine receptors on adenylyl cyclase activity are masked by the effects of the
more prominent ;-adrenergic-like and 3-adrenergic-like octopamine receptors. To test this hypothesis,
native cells, tissue, or organs should be identified that express AmOcta2R as the only phenolamine
receptor. An alternative could be the use of well-characterized pharmacological tools that permit the
selective and efficient activation or inhibition of one or the other receptor in preparations expressing
more than one phenolamine receptor. We have successfully used such a strategy to disentangle
the signaling pathways of 5-HT, and 5-HT7 serotonin receptors, which are co-expressed in blowfly
(Calliphora vicina) salivary glands [84]. In any case, the characterization of the signaling properties of a
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sixth member of the octopamine receptor family presented here for the honeybee should facilitate future
in vivo pharmacological studies coupled with behavioral testing in this eusocial model organism.

4. Materials and Methods

4.1. Amplification of the Honeybee a2-Adrenergic-Like Octopamine Receptor (AmOcta2R) cDNA and
Construction of pcAmOcta2R-HA Expression Vector

Total RNA was extracted from 10 brains of honeybee foragers using the RNeasy Plus Micro Kit
(Qiagen, Hilden, Germany). Synthesis of cDNA was carried out with M-MLV Reverse Transcriptase
(Invitrogen/ThermoFisher Scientific, Dreieich, Germany). For the amplification of the entire coding
region of AmOcta2R, specific primers were designed based on available sequence information ([35];
GenBank accession number XM_001122075): sense primer 5'-CGAGGAATTCCACCATGCCGCTCC
TCGGCACC-3’; antisense primer 5-GACGTCTAGATTATGCATAGTCGGGGACGTCATAGGGA
TATTTGAAGAGTATCCTGCGG-3’ (eurofins, Ebersberg, Germany). Primers were designed to
enable ligation into pcDNA3.1(+) vector (Invitrogen/ThermoFisher Scientific, Dreieich, Germany) and
heterologous expression of AmOcta2R in eukaryotic cells. In the sense primer, an EcoRI restriction
site and a Kozak consensus motif (CCACC; [85]) were inserted in front of the translational start
codon. In the antisense primer, the receptor-encoding sequence was extended in a frame with a
sequence encoding the hemagglutinin A (HA) tag to allow monitoring of receptor protein expression
using specific anti-HA antibodies (Roche/Sigma-Aldrich/Merck, Darmstadt, Germany). In addition,
an Xbal recognition sequence was introduced immediately after the stop codon (TAA). PCR was
performed using the following protocol: 95 °C for 10 min, 35 cycles at 95 °C for 30 s, 65 °C for 30 s,
and 72 °C for 150 s and a final extension at 72 °C for 5 min. The PCR product was separated by agarose
gel electrophoresis. The fragment was excised from the gel, cleaned using a PCR clean-up and gel
extraction kit (Macherey-Nagel, Diiren, Germany), double-restricted with EcoRI and Xbal and cloned
into the pcDNA3.1(+) vector. The expression construct (pcAmOcta2R-HA) was verified by sequencing
on both strands (eurofins).

4.2. Multiple Sequence Alignment and Phylogenetic Analysis

For phylogenetic analysis, we included amino acid sequences of biogenic amine receptors of
various protostomian and deuterostomian species. Sequences were obtained from NCBI databases
(NCBI, Bethesda, MD, USA). Multiple amino acid sequence alignment was consequently trimmed to
regions encoding TM 1-4, TM 5, TM 6, and TM 7 using ClustalW. Afterwards, evolutionary analyses
were conducted in MEGAY [86]. The evolutionary history was inferred using the neighbor-joining
method [87] with 10,000-fold bootstrap resampling. The human rhodopsin sequence formed
the outgroup.

The sequence identity and similarity of ay-adrenergic-like octopamine receptors between
A. mellifera, B. mori, and D. melanogaster were determined by using BioEdit v. 7.0.5.3 [88] after
pairwise alignment.

4.3. Functional Expression of the AmOcta2R-HA Receptor

For AmOcto2R-HA expression and pharmacological analysis, we used a human embryonic kidney
(HEK293; flpIn cells; Invitrogen/ThermoFisher Scientific; #750-07)-based cell line that was transfected
with a gene encoding a variant of the A2-subunit of the olfactory CNG ion channel [89] (flpTM cells),
provided by Sibion biosciences, Jiilich, Germany. These flpTM cells were transfected with 3 ug, 8 ug,
or 12 pg of the pcAmOcta2R-HA construct by a modified calcium phosphate method [90] following a
previously established protocol [48]. Transfected cells were selected in the presence of the antibiotics
G418 (1 mg/mL) and hygromycin (100 pg/mL). Expression of AmOcta2R-HA was monitored by
Western blotting and immunocytochemistry using anti-HA antibodies (Roche/Sigma-Aldrich/Merck).
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4.4. Functional Analysis of the AmOcta2R-HA Receptor

A stably transfected cell line was used to examine AmOcta2R-HA receptor activity by Ca**
imaging. Control measurements were performed in the parental (flpTM) cell line. Changes in [cAMP];
were registered indirectly via co-expressed CNG channels that were opened by cAMP and cause an
influx of extracellular Ca2* [30,32,48]. Changes in [Ca2*]; were monitored with the Ca%*-sensitive
fluorescent dye Fluo-4. Cells were grown in 96-well dishes to a density of approximately 2 x 10* cells per
well and were loaded at room temperature with Fluo-4 AM as described previously [32]. After 90 min,
the loading solution was substituted with a dye-free extracellular solution (ECS; 120 mM NaCl, 5 mM
KCl, 2mM MgCl,, 2 mM CaCly, 10 mM HEPES, and 10 mM glucose, pH 7.4 (NaOH)) containing 100 uM
IBMX. The plate was transferred into a fluorescence reader (FLUOstar Omega, BMG Labtech, Ortenberg,
Germany) to monitor Fluo-4 fluorescence. The excitation wavelength was 485 nm. Fluorescence
emission was detected at 520 nm. Concentration series of various biogenic amines and synthetic
receptor ligands were added, once Fluo-4 fluorescence intensity reached a stable value in each well.
The changes in Fluo-4 fluorescence were recorded automatically. Concentration-response curves were
established from at least three independent experiments with quadruplicate measurements. Data were
analyzed and displayed using Prism 5.04 software (GraphPad, San Diego, CA, USA).

4.5. Western Blot Analysis

Membrane proteins from AmOctax2R-HA-expressing cells and non-transfected flpTM cells
were prepared as described previously [32]. Briefly, cells were lysed in buffer A (10 mM NaCl,
25 mM HEPES (pH 7.5), 2 mM EDTA, and a mammalian protease inhibitor cocktail diluted at 1:500
(mPIC; Sigma-Aldrich/Merck, Darmstadt, Germany)). After centrifugation, membrane proteins were
solubilized from the pellet with buffer B (100 mM NaCl, 25 mM HEPES pH 7.5, mPIC protease inhibitor
(dilution, 1:500) and 1% (w/v) (3-((3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate,
(CHAPS)). Proteins (30 pg per lane) were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE; 10% gel) and transferred onto a polyvinylidene fluoride membrane
(PVDE, Merck/Millipore, Darmstadt, Germany). Nonspecific binding sites were blocked by incubation
for 30 min in 5% (w/v) dry milk in phosphate buffered saline (PBS; 130 mM NaCl, 7 mM Na,HPOy,
and 3 mM NaH,POy; pH: 7.4). The membrane was incubated with primary antibodies (anti-HA;
dilution, 1:1000; Roche/Sigma-Aldrich/Merck) in PBS containing 0.02% (v/v) Tween-20 (PBT) overnight
at 4 °C. After rinsing the membrane three times with PBT for 15 min each, secondary antibodies
conjugated to horseradish peroxidase (donkey anti-rat-HRP; dilution, 1:5000 (Sigma-Aldrich/Merck,
Darmstadt, Germany)) in PBT containing 0.5% (w/v) dry milk were added for 1 h at room temperature.
After rinsing the membrane three times with PBT for 15 min each and two times with PBS for 5 min each,
signals were visualized with an enhanced chemiluminescence detection system (Western Bright™-Kit;
Advansta; San Jose, CA, USA) on Hyperfilm™ ECL (GE Healthcare/Merck, Darmstadt, Germany).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/24/
9334/s1.
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Abbreviations

5-CT 5-carboxamidotryptamine

5-MT 5-methoxytryptamine

5-HT 5-hydroxytryptamine, serotonin

8-OH-DPAT  8-Hydroxy-2-(dipropylamino)tetralin

GPCR G protein-coupled receptor

HA hemagglutinin A

IBMX 3-isobutyl-1-methylxanthine

NKH477 water-soluble forskolin analog

RFU relative fluorescence unit

™ transmembrane
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