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Zusammenfassung der Dissertation

Titel: Optimierung thermodynamischer Systeme

Author: M.Sc. Zhuolin Ye, Institut für Theoretische Physik, Universität Leipzig

Supervisor:
Prof. Dr. Klaus Kroy, Institut für Theoretische Physik, Universität Leipzig
Dr. Viktor Holubec, Abteilung für Makromolekulare Physik, Karls-Universität

Diese Dissertation fasst die von mir während meines Promotionsstudiums an
der Universität Leipzig verfassten Veröffentlichungen zum Thema Optimierung
thermodynamischer Systeme zusammen. Dabei konzentriere ich mich auf drei Op-
timierungsperspektiven: maximale Effizienz, maximale Leistung und maximale
Effizienz bei gegebener Leistung. Wir betrachten zwei derzeit intensiv unter-
suchte Modelle der Finite-Zeit-Thermodynamik, nämlich Modelle mit geringer
Dissipation und Brown’sche Systeme. Das Modell mit geringer Dissipation wird
verwendet, um allgemeine Grenzen für die Leistungsfähigkeit realer Maschinen
abzuleiten, während uns Brown’sche Systeme helfen, die praktischen Grenzen
und Eigenschaften kleiner Systeme besser zu verstehen. Zunächst leiten wir
die maximale Effizienz bei gegebener Leistung für verschiedene Aufbauten mit
geringer Dissipation ab, wobei wir uns besonders auf das Verhalten in der Nähe
der maximalen Leistung konzentrieren. Dies hilft uns festzustellen, ob es vorteil-
hafter ist, das System bei maximaler Leistung, nahe maximaler Leistung oder in
einem anderen Regime zu betreiben. Anschließend gehen wir zur Gestaltung von
Protokollen für maximale Effizienz und maximale Leistung bei Brown’schen Sys-
temen unter verschiedenen Randbedingungen über. Insbesondere präsentieren wir
eine geometrische Methode, die maximal-effiziente und maximal-leistungsstarke
Protokolle liefert, die für Systeme mit periodisch skaliertem Energiespektrum
und sonst beliebiger Dynamik gültig sind, wenn die Beschränkungen für die
Steuerungsparameter experimentell motiviert sind. Jedes Kapitel enthält eine
kurze informelle Einführung in das Thema sowie einen Ausblick, der die Richtung
unserer zukünftigen Forschung aufzeigt.
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Summary of the dissertation

Title: Optimization of thermodynamic systems

Author: M.Sc. Zhuolin Ye, Institute for Theoretical Physics, University of Leipzig

Supervisor:
Prof. Dr. Klaus Kroy, Institute for Theoretical Physics, University of Leipzig
Dr. Viktor Holubec, Department of Macromolecular Physics, Charles University

This thesis compiles the publications I coauthored during my doctoral studies at
University of Leipzig on the subject of optimizing thermodynamic systems, fo-
cusing on three optimization perspectives: maximum efficiency, maximum power,
and maximum efficiency at given power. We considered two currently intensely
studied models in finite-time thermodynamics, i.e., low-dissipation models and
Brownian systems. The low-dissipation model is used to derive general bounds
on the performance of real-world machines, while Brownian systems allow us to
better understand the practical limits and features of small systems. First, we de-
rived maximum efficiency at given power for various low-dissipation setups, with
a particular focus on the behavior close to maximum power, which helps us to
determine whether it is more beneficial to operate the system at maximum power,
near maximum power or in a different regime. Then, we move to the design of
maximum-efficiency and maximum-power protocols for Brownian systems under
different boundary conditions. Particularly, when the constraints on control pa-
rameters are experimentally motivated, we presented a geometric method yielding
maximum-efficiency and maximum-power protocols valid for systems with peri-
odically scaled energy spectrum and otherwise arbitrary dynamics. Each chapter
contains a short informal introduction to the matter as well as an outlook, pointing
out the direction for our research in the future.
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1 Introduction

Thermodynamic systems, characterized as collections of matter and energy

undergoing processes that are governed by the laws of thermodynamics, play a

fundamental role in a wide range of scientific and engineering disciplines [1, 2].

They find applications in diverse areas such as power generation [3, 4], refrigera-

tion [5, 6], heat transfer [7, 8], etc. In recent years, optimization of thermodynamic

systems has gained particular significance in light of global warming. Engineers

and scientists persistently enhance system design, operation strategies, and con-

trol techniques to attain optimal performance under the constraints dictated by

the laws of thermodynamics and current technology [9–11].

The second law theoretical maximum (Carnot) efficiency of thermodynamic

systems can only be achieved in the quasistatic limit, where all processes are exe-

cuted slowly and hence the power output is negligible compared to the maximum

achievable power [12]. Real-world thermodynamic systems therefore usually op-

erate at maximum power rather than at maximum efficiency with very limited

power. The concept of maximizing power under finite-time conditions, known as

efficiency at maximum power, was initially pioneered by Yvon [13], Novikov [14],

Chambadal [15], and later popularized by Curzon and Ahlborn [16]. Through

this optimization strategy, researchers have made significant progress in devel-

oping thermodynamic models and analyzing their performance, mainly including

endoreversible [16, 17], low-dissipation [5, 18], linear irreversible [19, 20], min-

imally nonlinear irreversible [21–23], Brownian [24, 25], and quantum [26, 27]

models.

Since it is impossible to optimize efficiency and power simultaneously, further

research has focused on exploring the trade-offs between these two factors using

various optimization criteria [28–30]. These include the χ criterion, which equals

the product of efficiency and power and serves as a direct compromise [30, 31],

the Ω criterion, which aims to balance energy benefits and losses [32, 33], and the

ecological criterion, which takes into account the trade-off between power and the

product of entropy production and cold reservoir temperature [34, 35]. However,
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these figures of merit do not always match the engineering demand. For example,

in many applications such as portable electronics or electric vehicles, power deliv-

ery needs to be stable (fixed). The optimization task of practical interest is thus

to find the maximum efficiency at fixed power, revealing under which conditions

this power delivery is cheapest. The research in this field can be traced back to

the 1980s when Chen and Yan [36] conducted studies on endoreversible heat en-

gines operating between two heat sources at temperatures Th and Tc(< Th). They

derived the optimal relation between efficiency and power (η and P ):

P

P ∗ =
η(ηC − η)

(1− η)(1−√
1− ηC)2

, (1)

where ηC = 1 − Tc/Th is Carnot efficiency and P ∗ is maximum power (thus

0 ≤ η ≤ ηC and 0 ≤ P ≤ P ∗). It implies the maximum efficiency at given power

(and, equivalently, maximum power at given efficiency). Obviously, the maximum

efficiency, η = ηC , corresponds to the reversible limit for vanishing power (P = 0).

The efficiency at maximum power, η = ηCA = 1−√
1− ηC , is the famous Curzon-

Ahlborn efficiency [16]. This indicates that maximum efficiency at given power

can be considered as a generalization of the results derived previously for the χ,

Ω, and ecological criteria [30–35].

In our research, we consider two currently intensely studied models in finite-

time thermodynamics, namely low-dissipation [18] and Brownian systems [24],

focusing on the above three optimization perspectives (maximum efficiency, max-

imum power, and maximum efficiency at given power). Low-dissipation models

are generally valid for slowly driven systems in contact with an equilibrium heat

bath [37, 38], where the model coefficients can be calculated from the dynamical

equations. The currently renewed interest in Brownian systems is mainly driven

by the advancements in experimental techniques, such as optical tweezers [39],

which allow a previously unprecedented control over microscopic systems. In

particular, they have been recently employed to realize micrometer-sized heat en-

gines [40, 41]. The performance of these small devices is strongly influenced by

thermal fluctuations and its study gave birth to the field of stochastic thermody-
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namics [42]. Interestingly, Brownian heat engines turn out to be a microscopic

example of low-dissipation heat engines under certain conditions [24].

The results presented in chapters 2 and 3 are based on the publications [5–

7, 9, 43] I coauthored during my doctoral studies at University of Leipzig. Specif-

ically, in chapter 2, we derived maximum efficiency at given power for low-

dissipation refrigerators [5] and heat pumps [7] as well as absorption refrigera-

tors [6] consisting of simultaneously operating low-dissipation heat engine and re-

frigerator. The derived expressions imply bounds on maximum efficiency at given

power for the corresponding devices, and tell us whether the machine should oper-

ate at maximum power or if it would be more beneficial to operate it in a different

regime to achieve a significant increase in efficiency. Maximum efficiency at given

power has been investigated for various heat engines, such as endoreversible [44],

low-dissipation [45–47], quantum thermoelectric [48, 49], underdamped stochas-

tic [25], linear irreversible [50], and minimally nonlinear irreversible systems [51].

To the best of our knowledge, however, the results for refrigerators and heat

pumps were only known for endoreversible and minimally nonlinear irreversible

models [44, 51, 52]. This research completed the collection of results for maximum

efficiency at given power for low-dissipation models.

In chapter 3, we focus on the design of optimal protocols for Brownian systems

operating at maximum efficiency or maximum power [9, 43]. Such optimization

tasks, i.e., seeking the optimal time variation of control parameters, such as mag-

netic or electric fields, to attain a desired performance with minimum dissipation

to the surroundings [24, 25, 53, 54], range from the design of a thermodynamic cy-

cle for heat devices [42, 55] to the erasure of information in information processing

devices [56–58]. In general, finding optimal finite-time protocols requires a func-

tional optimization over all possible paths in the space of the control parameters,

making it complicated and often challenging even for numerical analysis [53, 59].

This research allows us to better understand the practical limits and features of

small systems. Both chapters 2 and 3 include an outlook. Finally, we conclude in

chapter 4.
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2 Maximum efficiency of low-dissipation systems at given

power

The starting point of a low-dissipation model [18] is a Carnot engine operating

reversibly. While in contact with the hot bath at temperature Th during hot

isotherm, the system accepts heat Qh from the hot bath, resulting in the total

entropy change ∆Stot,h = −Qh

Th
+∆S = 0, where ∆S is the system entropy change.

When coupled to the cold bath at temperature Tc during cold isotherm, the system

releases heat Qc to the cold bath, leading to the total entropy change ∆Stot,c =

Qc

Tc
−∆S = 0. From these two equations the Carnot efficiency η = 1− Qc

Qh
= 1− Tc

Th

is recovered. Then, for finite-time Carnot cycles in the low-dissipation regime,

one might expect that

∆Stot,i =
Σi

ti
+O

(
1

t2i

)
, i = h, c, (2)

where ti are durations of the isotherms and Σi are the corresponding coefficients.

As a result, the transfered heats are given by [18]

Qh = Th

(
∆S − Σh

th

)
, (3a)

Qc = Tc

(
∆S +

Σc

tc

)
. (3b)

We stress that the low-dissipation assumption (2) is generally fulfilled in prac-

tice when the system is driven slowly [37, 38, 40, 41]. It can be described in

one sentence: the total entropy production in the universe during any isotherm

is inversely proportional to its duration. The low-dissipation model described by

Eqs. (3a) and (3b) thus contains all models that consider first-order expansion

in the velocity of the driving around a reversible process. Such systems were

thoroughly studied theoretically [7, 18, 29, 33, 60–63], and the predictions are in

accord with experiments [37, 40]. Additionally, low-dissipation models exactly de-

scribe some specific scenarios. Examples are Brownian heat engines under optimal

time-dependent driving [24], two-stage linear irreversible heat engines working be-
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tween finite-sized heat reservoirs [64], and two-state quantum systems coupled to a

heat bath of bosonic oscillators [65]. Interestingly, the Brownian heat engine [24]

can be arbitrarily far from equilibrium. At this point, one may notice that in

the low-dissipation model we do not need to specify the system dynamics. This

information is contained in the coefficients Σi, which tell us how the dissipation

increases as the system moves away from equilibrium. For example, Σi is inversely

proportional to the particle mobility in overdamped Brownian dynamics [5, 24]

(see more details in chapter 3). We also do not need to assume that the difference

between Th and Tc is small, so all results associated with the low-dissipation model

remain valid beyond the linear response regime.

One of the most influential theoretical result derived using the low-dissipation

model is the efficiency at maximum power of Carnot-type low-dissipation heat

engines [18]. It was obtained by utilizing Eqs. (3a) and (3b) and optimizing

the output power P = (Qh − Qc)/(th + tc) with respect to the durations th and

tc. For symmetric dissipation (Σh = Σc), the resulting efficiency is the famous

Curzon-Ahlborn efficiency [16]. This means that Curzon-Ahlborn efficiency is a

general property of Carnot heat engines operating under the conditions of low

and symmetric dissipation. Note that the durations of the adiabats have been

neglected during the optimization, since they only reduce the power but do not

affect the efficiency η = 1 − Qc/Qh. This assumption of infinitely fast adiabatic

processes is frequently utilized in theory and effectively, infinitely fast adiabatic

processes can be realized in experiments [41]. We use this assumption throughout

this dissertation.

Low-dissipation models are equivalent to minimally nonlinear irreversible mod-

els under the tight-coupling condition [5, 21–23, 46]. However, it is an open

question whether a similar equivalence exists between low-dissipation models and

endoreversible models, beyond the linear response regime [66, 67]. The minimally

nonlinear irreversible model generalizes the standard linear irreversible model [19],

by adding a nonlinear term describing the dissipation due to the internal friction

(or resistivity for thermoelectric machines [68]) [21–23]. The endoreversible mod-

els are usually phenomenological, which assume that the working medium operate
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reversibly and the irreversibility is solely due to the finite-time heat transfer be-

tween the reservoirs and the working medium [16, 17].

We focus on the derivation of maximum efficiency at given power for various

low-dissipation models and analyzing their behavior in proximity to or far from

the maximum power. To this end, we define the relative deviation of power P

from its maximal value P ∗ and the corresponding relative gain in efficiency [5, 6,

45, 50, 51, 69, 70]

δP =
P − P ∗

P ∗ , δη =
ηP − ηP ∗

ηP ∗
, (4)

where ηP (ηP ∗) is the corresponding efficiency at P (P ∗) and thus δP ∈ [−1, 0],

which means that the actual power cannot surpass the maximum power. The

definitions (4) usually simplify the resulting equations and allow us to obtain

some explicit results. One of them is the scaling

δη ∝
√
−δP (5)

for small value of δP , which implies a diverging slope of δη at δP = 0. A system

obeying the scaling (5) and working close to maximum power thus operates at

considerably larger efficiency than the efficiency at maximum power ηP ∗ . Conse-

quently, it is more advantageous to operate such a system at power with slightly

smaller power than the maximum power.

We note that both the diverging slope and the scaling (5) are direct conse-

quences of the fact that the maximum power corresponds to a vanishing derivative

of P with respect to the control parameter x [5, 45]. Indeed, if ∂P
∂x
|x=x∗ = 0, Taylor

expansions of power and efficiency near x∗ implies P − P ∗ ≈ (x−x∗)2

2
∂2P
∂x2 |x=x∗ and

η − ηP ∗ ≈ ∂η
∂x
|x=x∗(x− x∗), leading to the relation (5).
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Qc

Qh

W

A B

CD
Th

Tc

S

T

∆S

FIG. 1. Thermodynamic T -S (bath temperature-system entropy) diagram of the con-
sidered Carnot refrigeration cycle [5–7]. The fridge uses the input work W to extract
heat Qc from the cold bath at temperature Tc during the cold isotherm (AB, blue). The
used work and the extracted heat are then dumped as heat Qh = Qc +W into the hot
bath at temperature Th during the hot isotherm (CD, red). The input work equals the
enclosed area, Qc = Tc∆S, and Qh = Th∆S only if the cycle is performed reversibly.
Otherwise, the work is larger and the extracted heat smaller leading to a decreased ef-
ficiency (coefficient of performance) of the machine. The branches BC and DA (black)
of the cycle are adiabats.

2.1 Interpretation of the publications

2.1.1 Low-dissipation refrigerators

Refrigerators are invaluable appliances that play a crucial role in modern-day

living. Their usefulness and importance extend far beyond mere food preservation.

Refrigerators keep our perishable items fresh, preventing spoilage and reducing

waste. They enable us to store a wide range of food items, allowing for meal

planning, convenience, and cost savings. Moreover, refrigerators promote healthier

lifestyles by maintaining food safety standards, preventing bacterial growth, and

preserving essential nutrients. They also facilitate the storage of medications,

vaccines, and other temperature-sensitive items.

In our work [5], we considered a refrigerator, which operates along an inverse

finite-time Carnot cycle consisting of two isotherms and two adiabats depicted in

Fig. 1. In the low-dissipation regime, the heats exchanged by the system with the

heat baths during the two isotherms are described by the revised form of Eqs. (3a)
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and (3b),

Qh = Th

(
∆S +

Σh

th

)
, (6a)

Qc = Tc

(
∆S − Σc

tc

)
. (6b)

For refrigerators, power and efficiency are called cooling power and coefficient of

performance (COP). They are, respectively, defined as the heat extracted from

the cold bath per cycle over the cycle duration (th + tc) and the extracted heat

over the input work (W = Qh −Qc):

P =
Qc

th + tc
, ε =

Qc

Qh −Qc

. (7)

In [5], we first derived the efficiency at maximum power by optimizing P with

respect to th and tc, and showed that it exhibits a discontinuity at the maximally

skewed irreversibility ratio Σ ≡ Σh/Σc = 0:

ε∗− = 0 for Σ > 0, (8a)

ε∗+ =
εC

2 + εC
for Σ = 0, (8b)

where the Carnot COP εC = Tc/(Th − Tc). This discontinuity is caused by the

fact that P in Eq. (7) is a monotonically decreasing function of th, so maximum

power corresponds to the minimal allowed value of th, i.e., th = 0. This should

be understood in the sense that the hot isotherm is much faster than the cold

isotherm, th ≪ tc. Since Eqs. (8a) and (8b) are independent of Σ, they repre-

sent the lower and upper bounds on COP at maximum power of low-dissipation

refrigerators. We explained why the discontinuity at Σ = 0 is not present in the

optimization of power for minimally nonlinear irreversible models.

Then, we analytically derived the expression for maximum efficiency at given

power, εopt = εopt(δP,Σ, εC), by using the definitions (4). It yields the lower
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(Σ → ∞) and upper (Σ → 0) bounds on the maximum COP at fixed power:

0 ≤ εopt ≤ εC(1 +
√
−δP )

2 + εC(1−
√
−δP )

≡ εopt+ . (9)

The upper bound εopt+ on εopt in Eq. (9) shows the relative gain in COP (4):

εopt+ − ε∗+
ε∗+

= (1 + ε∗+)
√
−δP +O(δP ), (10)

which agrees with the scaling (5). For large irreversibility ratio Σ, this square root

behavior is not valid any more and we found that the scaling reads ∝ −δP . This

is caused by the fact that maximum power does not correspond to a vanishing

derivative of P with respect to th [see Eq. (8b) below]. The low-dissipation refrig-

erators thus exhibit different behavior close to maximum power from many models

of heat engines [12, 25, 45, 48–51], where the scaling (5) holds for all parameter

values. We concluded that it is beneficial to operate low-dissipation refrigerators

with small Σ near maximum power, where the trade-off between power and effi-

ciency is optimal. For large Σ , it is more advantageous to operate these machines

at maximum power. Because the full expression for maximum efficiency at given

power is cumbersome, we provided approximations of εopt valid for Σ → 0 and

Σ → ∞ yielding the two different qualitative behaviors described above, and we

discussed the range of validity of the approximations.

2.1.2 Low-dissipation heat pumps

Heat pumps are invaluable systems that play a crucial role in heating and

cooling our environments efficiently and sustainably. They utilize the principles of

thermodynamics to transfer heat from one place to another, allowing us to extract

warmth from the surrounding air, ground, or water sources and deliver it where

needed. With their ability to provide both heating and cooling functions, heat

pumps offer year-round comfort and energy savings. By utilizing renewable energy

sources, such as air or geothermal heat, they significantly reduce greenhouse gas
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emissions and contribute to combating climate change. Moreover, heat pumps can

be integrated with existing infrastructure, making them versatile and adaptable

to various applications, including residential, commercial, and industrial settings.

In our work [7], we considered a heat pump, which operates along an inverse

finite-time Carnot cycle consisting of two isotherms and two adiabats. The cycle

diagram is thus the same as in Fig. 1, and the heats exchanged by the system with

the heat baths during the two isotherms are still captured by Eqs. (6a) and (6b)

when the heat pump can be described by the low-dissipation model. For heat

pumps, power and efficiency are usually referred to as heating load and COP.

They are defined as the heat transferred to the hot bath per cycle over the cycle

duration (th + tc) and that over the input work (W = Qh −Qc):

P =
Qh

th + tc
, ϵ =

Qh

Qh −Qc

. (11)

In [7], we first derived the efficiency at maximum power by optimizing P with

respect to th and tc, under the requirement that the device pumps heat from

the cold bath to the hot one (Qh > Qc > 0). This condition limits the allowed

range of the system parameters such as the durations th and tc. As a result,

the maximum power diverges and the corresponding efficiency equals one (the

smallest possible efficiency for heat pumps), in agreement with the results obtained

using endoreversible thermodynamics [52, 71]. This regime is highly undesired,

because the heat pump turns out to be a pure work-to-heat converter. Then, we

analytically derived maximum efficiency at given power using Eqs. (6a) and (6b).

The diverging maximum power (P ∗ → ∞) makes the definitions (4) inappropriate,

so we instead defined the dimensionless power P̃ = Σh

(Th∆S)2
P . The resulting

maximum efficiency at given power, ϵopt = ϵopt(P̃ ,Σ, ϵC), depends on P̃ , Σ, and

the Carnot COP for the heat pump ϵC = Th/(Th−Tc). It yields the lower (Σ → 0)

and upper (Σ → ∞) bounds on the maximum efficiency:

1 ≤ ϵopt ≤ (1 +
√

1 + 4P̃ )ϵC

2− (1−
√

1 + 4P̃ )ϵC
. (12)
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We presented a graphical study (e.g., ϵopt varying with P̃ for different values of

Σ) showing that the increase of efficiency with decreasing power for large value of

power is slow. This implies that reasonably efficient heat pumps should operate at

small value of power, which is quite different from heat engines and refrigerators

that exhibit large gain in efficiency when power is slightly decreased from the

maximum power [5, 45]. Finally, we compared the maximum efficiency at given

power for low-dissipation heat pumps to the known results for endoreversible heat

pumps [44, 52, 72]. We identified a special parameter regime when the expressions

for their maximum efficiency at given power are exactly the same, and we pointed

out that this agreement is unfortunately nothing more than a lucky mathematical

coincidence.

2.1.3 Simultaneous absorption refrigerators

The absorption refrigerator is a remarkable cooling device that operates with-

out the need for electricity, making it incredibly useful in various settings. Its

importance lies in its ability to provide refrigeration in off-grid or remote areas

where electricity is scarce or unavailable. By utilizing the principles of heat and

chemical reactions, absorption refrigerators can provide reliable cooling for food,

medicine, and other perishable items. This technology is especially valuable in

developing regions, disaster-stricken areas, and recreational vehicles, where it en-

sures the preservation of essential supplies.

In our work [6], we considered absorption refrigerators consisting of a finite-

time Carnot heat engine and refrigerator depicted in Fig. 2. The internal engine

utilizes the temperature gradient Th − Tm > 0 between a hot thermal reservoir

and a thermal reservoir at a medium temperature to generate work. This work

is then used to propel the internal refrigerator, which pumps heat from the cold

thermal reservoir at temperature Tc < Tm into the intermediate bath. As a

result, the absorption refrigerator utilizes heat from the hot body to further cool

the cold one. Absorption refrigerators usually operate in two ways: the internal

engine and refrigerator work simultaneously or alternately [62]. Since we want to
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FIG. 2. Absorption refrigerators composed of an internal Carnot heat engine and Carnot
refrigerator [6]. The system communicates with three heat reservoirs at temperatures
Th > Tm > Tc. Both the internal engine and refrigerator use as their heat sink the
reservoir at the intermediate temperature Tm. The engine in addition communicates
with the hot bath at Th and the refrigerator with the cold bath at Tc.

provide an upper bound for the maximum efficiency at given power, we adopt the

former setup, because the latter one involves idle periods during the operation

of the internal devices and thus has smaller maximum efficiency than the latter.

However, when operating simultaneously, the internal heat engine cannot power

the internal refrigerator normally because the engine generates work during half

of the cycle only and accepts it during the rest. This can be solved as in usual

cyclic heat engines where an external power source (or storage) is included, such

that the work generated by the engine can be stored and be applied to drive the

combined system during parts of the cycle when the engine accepts energy.

After one cycle of the simultaneous absorption refrigerator, both the internal

engine and refrigerator return to their initial states. The cycle duration is thus

given by the least common multiple of the engine and refrigeration cycles te and

tr. We optimized the efficiency of the absorption refrigerator with respect to te

and tr, and found that its maximum efficiency at given power is given by the

product of those for the internal engine and refrigerator. This means that we can

get the maximum efficiency at given power for this general model of simultane-
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ous absorption refrigerators immediately by combining the known results for the

internal engine and refrigerator. For absorption refrigerators where the internal

engine and refrigerator operate alternately [62], we showed that the maximum

efficiency at given power cannot be derived directly from those for the internal

devices.

To obtain explicit results, we then assumed that the internal devices work in

the low-dissipation regime because their maximum efficiency at given power are

known [5, 45]. The derived expression for the maximum efficiency represents a

(loose) upper bound for the efficiency of real-world absorption refrigerators. Again

using the definitions (4), we found that a slight decrease in power of the absorption

refrigerator from its maximum value leads to a large nonlinear increase in efficiency

(δη ∝
√
−δP ), as observed in heat engines [45], whenever the ratio of maximum

powers of the internal engine and the refrigerator does not diverge. Otherwise, the

increase in efficiency is linear (δη ∝ −δP ) as observed in refrigerators with large

Σ [5]. This indicates that the efficiency of low-dissipation absorption refrigerators

significantly increases when their power is slightly decreased from its maximum

in all practical situations.

2.2 Outlook

As an extension, we plan to consider Carnot-type low-dissipation heat engine,

refrigerator, and heat pump in the presence of heat leak and derive their maximum

efficiency at given power. The heat leak implies the direct heat transfer between

the reservoirs (thermal conductivity denoted by κ) and one can assume that it

obeys Newton’s law of cooling [73, 74],

Ql = κtp(Th − Tc). (13)

The system then includes two most essential irreversibilities in real heat engines:

dissipation and heat leak. These irreversibilities are also taken into account by

steady-state irreversible heat engines such as thermoelectric devices [75]. For heat
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engines, the heats exchanged between the system and the heat bath during the

isotherms, Qh and Qc, are still captured by Eqs. (3a) and (3b). However, the

total heats released by the hot bath and injected into the cold one per finite-time

Carnot cycle are given by [73, 76]

QH = Qh +Ql, (14a)

QC = Qc +Ql. (14b)

One has to use Eqs. (14a) and (14b) to derive the maximum efficiency at given

power instead of Eqs. (3a) and (3b). The same arguments should be applied to

refrigerators and heat pumps. Due to the presence of heat leak, the maximum

attainable efficiency is not Carnot efficiency anymore. Therefore, in addition to

the regime of power close to maximum power, one should analyze the behavior

near the maximum achievable efficiency. One also should investigate the influence

of heat leak on this behavior.

Furthermore, one can investigate the connection among the maximum efficiency

at given power for heat engines, refrigerators, and heat pumps to immediately ob-

tain all known expressions for the maximum efficiency at given power from a

single maximum efficiency at given power. This should work because refrigerators

and heat pumps are essentially heat engines that run in the reverse direction.

Optimizing the engine in the refrigeration mode of operation thus implies the

optimization of the refrigerator and heat pump. These explains why many formu-

las that are quite similar occur in the derivation of maximum efficiency at given

power for low-dissipation heat engines, refrigerators, and heat pumps [5, 7, 45].

For this extension, we have completed all the data processing and are writing the

manuscript for publication.

As a second extension we plan to study absorption heat pumps consisting of

a simultaneously operating Carnot heat engine and heat pump, which are similar

to the case of absorption refrigerators [6]. This simultaneous setup would also

provide larger maximum efficiency than the one where the internal heat engine

and heat pump operate alternately [77]. Completely the same arguments as for
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simultaneous absorption refrigerators presented in the previous subsection can be

applied to the simultaneous absorption heat pump.

Third, our formulas for maximum efficiency at given power are expressed as

functions of the dimensionless power, e.g., Eq. (4). The maximum efficiency can

thus be further optimized with respect to the unit. For heat engines and refriger-

ators, a similar task of deriving maximum power at fixed maximum efficiency has

been solved in Refs. [61, 78] using a geometrical approach. For low-dissipation

heat pumps, such an optimization is still under investigation. Furthermore, the

situation in the simultaneous absorption refrigerator is more complicated, since

its maximum power depends on the maximum powers of both internal devices.

The fourth extension (and perhaps the most influential one) would be to re-

late the predictions of low-dissipation models to more realistic models, such as

thermoradiative devices [79, 80], where we can check the validity of the assump-

tion (2) and the generality of the obtained bounds on maximum efficiency at given

power. To this end, we briefly introduce the working principles and features of

thermoradiative devices in Appendix A. Thermoradiative devices [79, 80] repre-

sent a new technology that has recently emerged for electricity generation from

thermal energy. In connection to this task, one should naturally also investigate

the maximum efficiency at given power for thermoradiative devices, and evaluate

their behavior close to maximum power and maximum efficiency.

Furthermore, we plan to investigate maximum efficiency at given power for low-

dissipation systems with respect to their dynamical stability [63, 81, 82]. Finally,

we plan to investigate the maximum efficiency at given power for engines working

between finite-sized reservoirs [83–89] and compare the results to those derived for

the low-dissipation models. For heat engines operating between two finite-sized

reservoirs, the maximum efficiency at given power has been derived in Ref. [88].
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We analytically derive maximum efficiency at given cooling power for Carnot-type low-dissipation refrigera-
tors. The corresponding optimal cycle duration depends on a single parameter, which is a specific combination
of irreversibility parameters and bath temperatures. For a slight decrease in power with respect to its maximum
value, the maximum efficiency exhibits an infinitely fast nonlinear increase, which is standard in heat engines,
only for a limited range of parameters. Otherwise, it increases only linearly with the slope given by ratio
of irreversibility parameters. This behavior can be traced to the fact that maximum power is attained for
vanishing duration of the hot isotherm. Due to the lengthiness of the full solution for the maximum efficiency,
we discuss and demonstrate these results using simple approximations valid for parameters yielding the two
different qualitative behaviors. We also discuss relation of our findings to those obtained for minimally nonlinear
irreversible refrigerators.

DOI: 10.1103/PhysRevE.101.052124

I. INTRODUCTION

The laws of energy conservation and nondecrease of en-
tropy of the universe, cornerstones of classical thermody-
namics developed during 19th century, imply universal upper
bounds on efficiencies of thermodynamic machines such as
heat engines, heat pumps, and refrigerators [1]. They are
reached by idealized machines operating under reversible con-
ditions, with vanishing net entropy production. The advantage
of these results is their generality. The disadvantages are
omnipresent dissipation looses in real machines, rendering
their reversible operation difficult, and even more importantly,
the fact that reversible conditions correspond to practically
negligible output power [2].

These issues triggered a less general, but more practical,
branch of research based on various models of irreversible
and/or finite-time thermodynamics, which is efficiency of
thermodynamic machines at maximum power. Starting with
the works on performance of nuclear power plants by Yvon,
Chambadal, and Novikov [3–5] later popularized by Curzon
and Ahlborn [6], this model-based research attracted a con-
siderable attention during the last 50 years and is still lively
today. Efficiency at maximum power has been studied for en-
doreversible [6–8], low-dissipation [9–11], linear irreversible
[12–14], minimally nonlinear irreversible [15–17], quantum
[18–20], and Brownian [21–23] models.

In recent years, based on the above models, yet another, an-
other even more practice-oriented, branch of research started,
optimization of efficiency at given power. For vanishing power
the maximum efficiency equals the reversible limit and for
maximum power efficiency at maximum power. Below we

*viktor.holubec@mff.cuni.cz
†zhuolinye@foxmail.com

address this task, previously solved for various heat engines
[2] but only minimally nonlinear irreversible refrigerators
[24,25], for Carnot-type low-dissipation refrigerators.

In Secs. II and III we introduce in detail the considered
model and define variables describing its thermodynamic per-
formance. In Sec. IV we review the corresponding result for
efficiency at maximum power. Our main results on maximum
efficiency at a given power are given in Sec. V. We conclude
in Sec. VI. The relation between the low-dissipation and
minimally nonlinear irreversible models is discussed in the
Appendix.

II. MODEL AND ASSUMPTIONS

We consider a refrigerator operating along a finite-time
Carnot cycle of duration tp depicted and described in detail in
Fig. 1. We assume that in the limit of infinitely slow driving,
tp → ∞, the fridge operates reversibly and its finite-time
performance is captured by the so-called low-dissipation (LD)
assumption [9]

Qh = Th�S + σh

th
, (1)

Qc = Tc�S − σc

tc
, (2)

for total amounts of heat interchanged with the individual
reservoirs during the cycle. The ratio σh/(thTh) measures an
excess in the total amount of entropy Qh/Th − �S produced
during the hot isotherm due to its finite duration th, and
similarly for σc/(tcTc). We assume that the adiabatic branches
interconnecting the isotherms are ideal and thus the net
amount of entropy �Stot produced per cycle is solely given by
the dissipation due to the heat transferred to the two reservoirs

2470-0045/2020/101(5)/052124(10) 052124-1 ©2020 American Physical Society
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FIG. 1. Thermodynamic T -S (bath temperature-system entropy)
diagram of the considered Carnot refrigeration cycle. The fridge
uses the input work W to extract heat Qc from the cold bath at
temperature Tc during the cold isotherm (AB, blue). The used work
and the extracted heat are then dumped as heat Qh = Qc + W into
the hot bath at temperature Th during the hot isotherm (CD, red). The
input work equals the enclosed area, Qc = Tc�S, and Qh = Th�S
only if the cycle is performed reversibly. Otherwise, the work is
larger and the extracted heat smaller leading to a decreased efficiency
(coefficient of performance) of the machine. The branches BC and
DA (black) of the cycle are adiabats.

during the isotherms:

�Stot = Qh

Th
− Qc

Tc
= σh

thTh
+ σc

tcTc
. (3)

The fridge hence operates reversibly if the isotherms are
infinitely slow (and thus tp → ∞) or if the so-called irre-
versibility parameters σh and σc vanish.

Interestingly, this simple model, where all thermodynam-
ically important details about the system dynamics are de-
scribed by the irreversible parameters, represents quite well
two general realistic setups, justifying the considerable at-
tention it received in recent literature [9–11,26–30]. First,
Eqs. (1) and (2) can be interpreted as formal expansions
of the interchanged heats in the inverse cycle duration 1/tp.
Therefore, they should be generally valid for slowly, but
not quasistatically, driven systems. Indeed, the decay of total
dissipated heat with the inverse of duration was theoretically
predicted for various quantum and classical setups [31–34]
and observed in various experiments [35,36]. The second
situation, where assumptions (1) and (2) hold for arbitrary
cycle duration, is overdamped Brownian systems driven by
special time-dependent protocols (usually minimizing dissi-
pated energy during the isotherms [21,25,27,37,38]). While
a similar optimization might also be performed for other
systems, we are not aware of such results.

Furthermore, models of thermal machines utilizing the LD
assumption can exactly be mapped to the minimally nonlinear
irreversible (MNI) model operating under the tight coupling
condition [15–17,39]. This broadly used model of irreversible
thermodynamics generalizes the standard linear irreversible
model [12,40] by including terms describing dissipation of
the input work due to an internal friction (or, in the case
of thermoelectric machines, resistivity [41]), which are pro-
portional to the irreversibility parameters. Even though this

model also can describe cyclically operating systems [42], it
does not incorporate any obvious periodicity, and thus it is
usually interpreted as operating in a nonequilibrium steady
state. On the other hand, the LD model naturally describes
machines operating cyclically. Therefore, thermal machines
described by the two models are usually optimized differently.
The natural control parameter for MNI models is the external
force X1, corresponding to the (scaled) input work W/Th in the
LD model, or, equivalently, the flux J1 conjugated to X1, which
stands in the mapping to the LD model for the inverse cycle
duration 1/tp. Since the LD models are not only optimized
with respect to tp but also with respect to distribution of this
total duration among the individual branches of the cycle,
the obtained optimal performance in the two models usually
differs. The notable exception is bounds on performance
obtained by further optimizing with respect to the irreversible
parameters. Then the two optimization procedures coincide,
and the results obtained within the two models agree. For
more details, see the Appendix.

III. POWER AND EFFICIENCY

Central quantities describing performance of a refrigerator
are its cooling power, P, and efficiency, ε, often referred to as
the coefficient of performance (COP). The cooling power is
defined as heat extracted from the cold bath per cycle over the
cycle duration,

P = Qc

tp
= Tc�S

tp
− σc

tctp
, (4)

where we have applied the LD assumption (2). The COP
measures cost of the cooling in units of input work, W =
Qh − Qc, used to pump the heat from the cold bath,

ε = Qc

W
= εC

1 + ThεC�Stot/(Ptp)
. (5)

A first glance at these definitions reminds us of the textbook
knowledge that simultaneous optimization of power and COP
is not possible (textbooks usually deal with heat engines,
but the situation with refrigerators is the same). Maximum
COP, εC = Tc/(Th − Tc), is attained under reversible condi-
tions (�Stot = 0) when the term ThεC�Stot/(Ptp) in the de-
nominator of Eq. (5) vanishes. And, even though recent theo-
retical results on thermodynamics of small systems allowing
unprecedented control of the intrinsic relaxation times show
that power corresponding to εC can even diverge [43–46], it is
doomed to be negligible compared to its maximal value [2].

In practice, we thus always have to resort to a compromise
between power and COP. To this end, various ad hoc trade-off
figures of merit of refrigerators have been proposed. Examples
are the χ criterion [47–49], � criterion [50–52], and ecologi-
cal criterion [53–55]. However, none of these tell us what we
really want to know: what is the exact cost of running a refrig-
erator with a specific cooling power, which is usually fixed
by our needs (for example, the size of the space that should
be cooled). The optimization task of practical interest is thus
to find the maximum COP for a given cooling power, i.e., to
show under which conditions this cooling power is cheapest.
With respect to heat engines, this task has already gained
considerable attention in the literature [2]. Expressions for
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maximum efficiency at given power were derived for quantum
thermoelectric heat engines [56,57], LD heat engines [26,58],
MNI heat engines [59], and a stochastic heat engine based
on an uderdamped harmonic oscillator [60] and using general
linear response theory [40]. With respect to refrigerators, the
treasury of results for general models is not so overflowing,
with a notable exception of results for MNI refrigerators [25].

Below we derive maximum COP at given power for the
LD model defined above. Our bounds (22) on the maximum
COP agree with those obtained by Long et al. [25] for MNI
refrigerators. This is because, in these limiting cases, the two,
generally different, optimization procedures agree. The rest
of our results differ from those for MNI refrigerators quan-
titatively, but the most interesting qualitative features of the
obtained maximum COP are preserved. Thus our discussion
below might interest also readers of Ref. [25].

IV. COP AT MAXIMUM COOLING POWER

The values of cooling power accessible to a refrigerator
are bounded by 0 and the maximum power, P�. A natural
starting point for calculating maximum COP at fixed power
is thus determination of P� for LD refrigerators, which was
done in Ref. [61]. Since peculiarities of the derivation strongly
affect qualitative behavior of maximum COP at fixed power,
we review it in detail.

We aim to maximize the cooling power (4) as function of
the cycle duration tp and its division among the individual
branches. To this end, we assume, without loss of generality,
that the sum of durations of the adiabatic branches is propor-
tional to the total duration of the isotherms, ti = th + tc, so that
tp = ati with a � 1. This assumption allows us to simplify the
calculations, and it can easily be relaxed. Maximum power is
obviously obtained for a = a� = 1 (adiabats infinitely faster
than isotherms). Since the parameter a does not influence the
COP (5), we keep it at this value for the rest of our dis-
cussion. Even though such infinitely fast adiabatic branches
seem strange at first glance, they were realized in experiments
with Brownian heat engines [62]. Together with infinitely fast
adiabats an issue might arise with bringing the system far from
equilibrium, thus effectively breaking the regime of validity
of the LD model. However, this can be avoided by properly
adjusting the value of the control parameter (for example,
volume or stiffness of a potential) and temperature at the ends
of the adiabatic branches [37,63]. Readers who nevertheless
feel uncomfortable setting a = 1 can redefine the power for
the rest of the paper as aP. Furthermore, we introduce the
dimensionless parameter

α = th/ti ∈ [0, 1] (6)

measuring relative duration of the hot isotherm.
Maximizing the cooling power in Eq. (4) with respect to ti

gives [61]

t∗
i,α = 2σc

(1 − α)Tc�S
, (7)

P∗
α = (1 − α)(Tc�S)2

4σc
, (8)

ε∗
α = εC

2 + εC + σεC(1/α − 1)
, (9)

where we have introduced the irreversibility ratio

σ ≡ σh/σc. (10)

With decreasing α, the partially optimized cooling power
(8) monotonously interpolates between 0 [attained for α = 1,
t∗
i,α = ∞, and ε∗

α = εC/(2 + εC); note that this process is not
reversible even though the cycle duration diverges] and its
maximum, reached for α = α∗ = 0 [61]. The resulting maxi-
mum power and the corresponding duration of the isothermal
branches thus read

P∗ = (Tc�S)2

4σc
, (11)

t∗
i = 2σc

Tc�S
. (12)

With decreasing irreversibility parameter σc, the maximum
power and 1/ti monotonously interpolate between 0 and ∞.
In contrast, the COP at maximum power, ε∗, reads

ε∗
− = 0 for σ > 0, (13)

ε∗
+ = εC

2 + εC
for σ = 0, (14)

and thus it exhibits a discontinuity at σ = 0 [61], which
should be understood in the sense that σh � σc. This discon-
tinuity is caused by the requirement α∗ = 0, which should be
understood in the sense that the duration of the hot isotherm
is negligible compared to that of the cold one, i.e., th � tc.
Then the total entropy production (3) diverges unless the
irreversibility parameter σ is set to zero before α.

Actually, if one does not set α = α∗ = 0 exactly in the
derivation, but instead considers a limiting process α → α∗,
they can get efficiencies at maximum power, ε∗, within the
bounds [ε∗

−, ε∗
+]. For example, assuming that limα→α∗ σ/α =

k and thus σ = kα, k > 0, the efficiency at maximum power
reads

ε∗ = εC

2 + (1 + k)εC
. (15)

Since Eqs. (13) and (14) do not depend on σ , they represent
lower and upper bounds on COP at maximum power of LD
refrigerators. For MNI refrigerators, ε∗

± describe bounds on
COP at maximum power [15,25], obtained as extreme values
of (9) as a function of σ . Thus the discontinuity found in the
LD model, caused by optimization with respect to α, is not
present in the MNI model.

In closing this section, we should discuss how reasonable
taking the limit σ → 0 is, leading to the nontrivial value ε∗

+ of
COP at maximum power, from a physical perspective. How-
ever, we postpone this discussion to Sec. V A and continue
with optimization of COP at fixed power.

V. MAXIMUM COP AT ARBITRARY COOLING POWER

From technical reasons [2,26,27,40], it is advantageous to
study the maximum COP at fixed power using the dimension-
less loss in power (with respect to the maximum power),

δP ≡ P − P∗

P∗ ∈ [−1, 0], (16)
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and the dimensionless duration (of the isotherms),

τ = ti − t∗
i

t∗
i

∈ [−1,∞]. (17)

The loss in power vanishes for P = P� and assumes its mini-
mum value −1 if the power P is negligible compared to P� [2].
The definition (16) physically means that we measure energy
flows in units of maximum power (11), and thus we effectively
fix the value of σc. The duration τ equals −1 for ti = 0,
and it is negative (positive) for ti < t∗

i (ti > t∗
i ). Since we are

interested in maximum COP at fixed power and longer cycles
in general allow for larger COPs, our intuition suggests (and
the calculation below proves) that we can focus on positive
values of τ only.

Fixing the cooling power (or, equivalently, δP) creates a
dependence between the duration, τ , and relative duration of
the hot isotherm, α. Using Eq. (4), we find that

α = 1 + 1

(1 + δP)τ 2 + 2δPτ + δP − 1
. (18)

Using further the definition (6), implying that 0 � α � 1, we
find that the above formula makes sense only for a limited
interval of τ :

−
√−δP

1 + √−δP
� τ �

√−δP

1 − √−δP
. (19)

The COP (5) in these new variables reads

ε = τ 3 + A1,3τ
2 + A0,3τ + A0,1

−τ 3 + A1/ε∗+,−3τ 2 + B3,4,1τ + B1,2,−1
, (20)

with Ak,l = (k + lδP)/(1 + δP) and Bk,l,m = [−k(δP)2 +
(l/εC + 1 + σ )δP + mσ ]/(1 + δP)2, and we will now find its
maximum as function of τ .

A. Bounds

For fixed τ , δP, and εC, the COP (20) is a monotonously
decreasing function of σ . Analytically, this follows by notic-
ing that ∂ε/∂σ < 0. Intuitively, it can be understood as fol-
lows. As noted above, σc is fixed by the chosen energy unit P∗,
and thus σ is solely determined by σh. COP (5) monotonously
decreases with increasing entropy production �Stot , which is,
for fixed dissipation during the cold isotherm, a monotonously
increasing function of σh.

The lower bound on COP is thus obtained in the limit of an
infinitely irreversible hot isotherm (σ = ∞). Then �Stot/P in
Eq. (5) diverges and the maximum attainable COP vanishes,
regardless of values of τ and δP. Fortunately, the upper bound
on COP, obtained if the hot isotherm is reversible (σ = 0), is
positive. In this case, Eq. (20) can be simplified to

ε =
[

2(1 + εC)

(1 + τ )εC(1 + δP)
− 1

]−1

. (21)

For the allowed values (19) of τ , this function monotonously
increases, and thus the upper bound on COP is obtained by
setting τ = √−δP/(1 − √−δP). In agreement with the result
derived for MNI refrigerators [25], we find that the maximum

COP at fixed power, εopt = εopt (δP), is bounded as

0 � εopt � εC(1 + √−δP)

2 + εC(1 − √−δP)
≡ ε

opt
+ . (22)

All known bounds on maximum efficiency at fixed power for
heat engines [2,26,40,56,57,59,60] exhibit an infinite gain in
efficiency (with respect to the efficiency at maximum power)
when the engines operate at powers infinitely smaller than P∗,
in symbols ∂ηopt/∂δP|δP=0 → ∞. The upper bound ε

opt
+ on

εopt in Eq. (22) shows qualitatively the same large gain in
COP. The corresponding relative gain in COP for small δP
reads

ε
opt
+ − ε∗

+
ε∗+

= (1 + ε∗
+)

√−δP + O (δP), (23)

where O(δP) denotes a correction of order δP. Thus the
derivative of the relative gain with respect to δP diverges with
δP → 0− as 1/

√−δP. This is a general behavior expected
for a COP near maximum power if the latter is determined by
a vanishing derivative with respect to a control parameter x
[26,40,60]. Indeed, if ∂P/∂x|P=P∗ = 0 (in the present setting,
x stands for α or τ ) one would expect that expansions of power
and efficiency around the maximum power P∗ read δP ≈
−x2/c2 and ε − ε∗ = |a|x, leading to the relation ε − ε∗ =
|ac|√−δP. In the present case, however, the maximum power
(11) does not correspond to a a vanishing derivative with
respect to α. As a result, the described “universal” behavior
for LD refrigerators can be observed for small parameters σ

and εC only, as suggested by behavior of bounds (22) and
discussed in the following two sections.

In closing this section, let us review how (physically)
reasonable the limiting values 0 and ∞ of the irreversibility
ratio are, leading to the bounds (22). To this end, there is a
handful of microscopic models yielding reasonable expres-
sions for σ . For a relatively broad class of slowly driven sys-
tems (described by a generalized Markovian master equation
with a symmetric protocol for hot and cold isotherms), the
irreversibility ratio assumes the form σ = (Th/Tc)1−ξ , where
ξ stands for the exponent in the bath spectral density [33]. The
limit σ → 0 thus corresponds to an infinitely superohmic bath
(ξ → ∞), while the opposite limit σ → ∞ is obtained for
an infinitely subohmic bath (ξ → −∞). Obviously, neither of
such strongly diverging spectral densities (and thus also the
corresponding values of σ ) make much physical sense. For
overdamped Brownian dynamics with time-dependent driving
optimized to minimize the dissipated work, the irreversibility
ratio is given by the ratio σ = μc/μh of mobilities [21].
Since the infinite mobility is not compatible with assumptions
of overdamped dynamics [2,21,27,28,46], meaningful possi-
bilities to reach the limiting values of σ are the vanishing
mobility μc during the cold isotherm (σ = ∞) or vanishing
mobility during the hot isotherm (σ = 0). Such conditions
can indeed be realized. One ensuing technical problem is that
with decreasing mobility the relaxation time of the system
increases, and thus one has to resort to a stronger driving
to get the same performance [46]. To conclude, realizing
the limiting values of the irreversibility ratio exactly in the
laboratory is practically impossible, but these regimes can the-
oretically be reasonably approximated. Nevertheless, this can
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FIG. 2. COP (20) as function of τ for six values 0, 0.01, 0.1,
1, 10, and 100 of σ increasing from the top black solid line to the
lowermost broken line. The inset shows that the maximum COP is
attained at σ = 0. Parameters taken: δP = −0.5 and εC = 1.

be quite expensive, and thus, for real practical applications, it
is important also to study the behavior of εopt for nonextreme
values of the irreversibility ratio, which is a topic of the next
section.

B. Arbitrary parameters

In Fig. 2 we show the COP (20) as a function of the
duration τ for six values of the irreversibility ratio. For σ = 0,
ε indeed monotonously increases. For all larger σ , it develops
a peak at a position τ opt <

√−δP/(1 − √−δP), which can be
determined from the condition ∂ε/∂τ |τ=τ opt = 0. Explicitly, it
reads

(τ opt )4 + Ã(τ opt )3 + B̃6+3σ̃ ,2+2σ̃ ,−σ̃ (τ opt )2

+ B̃4+3σ̃ ,−2σ̃ ,−σ̃ τ opt + B̃1+σ̃ ,−2σ̃ ,0 = 0, (24)

where the the coefficients Ã = [(4 + σ̃ )δP + σ̃ ]/(1 + δP)
and B̃k,l,m = (kδP2 + lδP + m)/(1 + δP)2 depend on σ and
εC only through the combination σ̃ = σ/( 1

εC
+ 1). For a given

loss in power, the optimal duration is thus solely determined
by σ̃ , which monotonously increases with both σ and εC.

The quartic equation (24) has four roots and can be an-
alytically solved using Ferrari’s method [64]. The physical
optimal duration τ opt is given by the root in the interval (19),
which can be determined by inserting some specific values
of δP and σ̃ into the formal expressions for the roots. Even
though the ensuing expression is far too long and cumbersome
to be more enlightening than a numerical solution, it can
be used as a basis of various approximations explaining the
qualitative behavior of τ opt (or αopt) and εopt, depicted in
Fig. 3.

Specifically, the maximum COP, shown in Fig. 3(a), ex-
hibits a sharp increase with power near the maximum power
only for small values of σ . In agreement with the dis-
cussion in the preceding section, the rate of this increase
−∂εopt/∂δP|δP=0 actually decreases with σ from ∞ (for σ →
∞) to 0 (for σ = 0). For large values of σ , the maximum COP
exhibits a fast increase (similar to that of εopt near P = P∗ for
small σ ) close to the vanishing power, where the COP attains
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FIG. 3. (a) The optimal COP εopt as a function of δP for six
values 0, 0.01, 0.1, 1, 10, and 100 of σ increasing from the top
black solid line to the lowermost broken line. Panels (b) and (c) show
the corresponding parameters τ opt and αopt. The inset in panel
(b) magnifies the differences between the individual curves. Note the
inverse ordering of the curves in panel (c). We took εC = 1.

its ultimate upper bound εC. While the described dependence
of εopt on σ is significant, the optimal duration τ opt in Fig. 3(b)
changes with σ only slightly, always monotonously inter-
polating between 0 for δP = 0 and ∞ for δP = −1. This
suggests that a reasonable approximation of τ opt substituted
for τ in Eq. (20) might lead to an excellent approximation of
εopt. The optimal relative duration of the hot isotherm shown
in Fig. 3(c) is fixed by τ and δP through Eq. (18). Contrary to
that of τ opt, the dependence of αopt on σ is significant. Let us
note that a similar situation occurs also for LD heat engines
[26]. To get a more analytical and quantitative grasp of the
described qualitative behavior of the maximum COP, we now
derive several approximate formulas valid in the two regions
of σ described above.
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C. Approximations

1. Small irreversibility ratio

Expanding the exact optimal duration τ opt and COP εopt,
obtained using Eq. (24), up to the first order in σ̃ , we find that,
up to a correction O(σ̃ ),

τ opt ≈
√−δP

1 − √−δP
−

√
σ̃

2(−δP)1/4
, (25)

εopt ≈ ε
opt
+ − 2(1 + εC)(εopt

+ )2(1 − √−δP)
√

σ̃

εC(−δP)1/4(1 + √−δP)
. (26)

The expansion (26) explodes to −∞ for δP → 0, and thus
it makes sense for reasonably large −δP only. A similar
divergence is present for all other terms in the series. This,
mathematically undesirable, sharp decrease of the correction
term for small −δP describes the jump in the COP at maxi-
mum power (13)–(14) from ε∗

+ for 0 for σ > 0. Note that the
approximate optimal duration (25) exhibits a similar behavior.

2. Large temperature difference

The above approximation is valid for small σ̃ attained
for both large temperature differences (small εC) and small
irreversibility ratios σ . For small εC expression (26) can be
further simplified to

εopt

εC
= (1 + √−δP)

2
− (1 + δP)σ̃ 1/2

2(−δP)1/4
+ O(εC). (27)

Interestingly, the first term above is the same as that in LD
[26], linear irreversible [40], and MNI [59] heat engines.

3. Large irreversibility ratio

Let us now turn to the case of large irreversibility ratio. Up
to the leading order in σ̃ , the solution to Eq. (24) reads

τ opt = − 2δP

1 + δP
. (28)

Interestingly, the same expression is obtained for σ̃ = 1 and
thus, for example, for an infinitely small temperature differ-
ence (εC → ∞) and σ = 1. Substituting this τ opt for τ in
Eq. (20) leads to the expression for maximum COP at fixed
power,

εopt ≈ δP(1 − δP)εC

2δP + (1 + δP)(δP − σ )εC
, (29)

which is exact for σ̃ = 1 and ∞, and which can be expected
to give a good approximation of εopt for all σ̃ ∈ [1,∞]. The
expansion of Eq. (29) up to the first order in δP reads

εopt ≈ −δP

σ
+ O(δP). (30)

4. Discussion

In agreement with results shown in Fig. 3(a), the ex-
pansions (26) and (27) clearly show that for small values
of σ and/or εC the COP (26) exhibits a sharp nonlinear
increase when the power is decreased from its maximum
value. Equation (29), on the other hand, shows that, for
moderate and large values of σ , this increase is linear with
the slope determined by an inverse irreversibility ratio, which

is again seen in Fig. 3(a). It is noteworthy that all the above
approximate results give the correct maximum COP εC for
vanishing cooling power δP = −1.

Let us now discuss the range of validity of the above
approximations more quantitatively. To this end, we define the
function

E = 1

εC

∫ 0

−1
d (δP)

∣∣εopt (δP) − εopt
approx(δP)

∣∣, (31)

which measures the area in the εopt-δP plot between the
true maximum COP and its individual approximations ε

opt
approx

given by Eqs. (26), (27), and (29).
In Fig. 4 we show only the performance of the approxi-

mations (26) and (29). Equation (27) performs slightly worse
than Eq. (26) for large εC, but it shares the same qualitative be-
havior. In agreement with our vague discussion above, Fig. 4
proves that the approximation (26) works well for small σ̃ 

1 (parameters c and d), but that it is also reasonable for small
εC and large σ , yielding σ̃ of order 1 (a). For large values
of the irreversibility ratio, Eq. (26) yields negative values for
(almost) all δP, and thus the approximation completely fails
(b). The approximation (29), on the other hand, performs
almost perfectly for moderate and large values of σ̃ (a and b)
but gives reasonable results also for small irreversibility ratios
(c and d).

VI. CONCLUSION AND OUTLOOK

We have derived an exact but complicated formula for
maximum COP at arbitrary power for Carnot-type low-
dissipation refrigerators and also three simple approxima-
tions valid for a large part of the parameter space of the
model. Based on these results, we have shown that the in-
finitely fast nonlinear increase in COP with decreasing power
from its maximum value P�, routinely seen in heat engines
[2,26,40,56,57,60], occurs in LD refrigerators only for small
values of the irreversibility ratio (10) or large temperature
differences (which, however, lead to small ultimate upper
bounds on COP εC). For large irreversibility ratios, such an
increase occurs only for small values of power, where the COP
rapidly grows towards its maximum εC.

Our formulas for efficiency are functions of power mea-
sured in units of maximum power, which thus can further
be optimized without affecting the efficiency corresponding
to the fixed ratio P/P�. For slowly driven systems, one can
straightforwardly use the results obtained in Ref. [65] for LD
heat engines. For arbitrary cycle duration and a given change
in the system volume (measured by the increase �S in system
entropy during the hot isotherm), larger maximum cooling
power (11) corresponds to small values of the reversibility
parameter during the cold isotherm, σc. To conclude, an ideal
LD refrigerator should be based on a working fluid with
small σc (yielding large maximum cooling power) and even
much smaller σh (allowing one to profit from the large gain
in COP while sacrificing only a small part of the maximum
power).

Our present contribution to the collection of maximum effi-
ciencies at given power for various systems might be of imme-
diate practical interest. Even though the used assumptions are
valid only for systems under perfect experimental control such
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FIG. 4. Performance of the approximations (26) (top) and (29) (bottom) of the exact maximum COP. The left panels depict the error (31)
(color code) as function of εC and σ . The remaining panels show the individual approximate functions (broken lines) and the exact εopt (solid
lines) for the points a, b, c, and d, depicted in the leftmost figures. Their coordinates are a = (10−3, 103), b = (103, 103), c = (10−3, 10−3), and
d = (103, 10−3). For the parameters b, Eq. (26) yields positive values only near the left boundary of the corresponding figure. For parameters
c and d above and a and b below, the curves almost perfectly overlap.

as Brownian heat engines [21,27,35,62], taking into account
additional sources of dissipation just leads to a decrease in
efficiency. And thus the derived maximum efficiencies can be
thought of as upper bounds on efficiencies even for relativistic
settings. Furthermore, our results for refrigerators could be
combined with known results for heat engines to yield max-
imum efficiency at fixed power for absorption refrigerators,
which were studied numerically in Ref. [66]. What remains
to complete the collection for LD models is a derivation of
maximum efficiency at fixed power for heat pumps. Both
these tasks are subjects of our present research. Furthermore,
it would be interesting to investigate maximum efficiency at
fixed power for LD systems with respect to their dynamical
stability [10,29,30].
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APPENDIX: MINIMALLY NONLINEAR
IRREVERSIBLE MODEL

In this Appendix, we review in detail the mapping between
the LD model and the minimally nonlinear irreversible (MNI)
model [15–17]. We proceed in two steps. First, we map the
average total entropy production rate

�Stot

tp
= − Qc

tpTc
+ Qh

tpTh
= 1

tp

W

Th
+ P

(
1

Th
− 1

Tc

)
(A1)

for cyclic Carnot-type refrigerators, depicted in Fig. 1, to
the entropy production rate σ̇ = J1X1 + J2X2, written as a

linear combination of (generalized) fluxes Ji and forces Xi,
i = 1, 2, used in linear irreversible thermodynamics [12,40].
While there is a variety of possible choices, we employ the
commonly used mapping [14,17,24] J1 = 1/tp, X1 = W/Th,
and J2 = P, X2 = 1/Th − 1/Tc. Consequently, the heat flux to
the hot reservoir reads Qh/tp = J2 + J1X1Th ≡ J3.

The MNI model assumes that the linear flux-force relation
applied in linear irreversible thermodynamics is generalized
as [15–17]

J1 = L11X1 + L12X2, (A2)

J2 = L21X1 + L22X2 − γcJ2
1 . (A3)

Here Li j i, j = 1, 2 denote Onsager coefficients, and the new
term −γcJ2

1 , with γc � 0, stands for a fraction of input power
leaking into the cold bath. Physically, it describes frictional
losses in mechanical machines or losses due to a finite resis-
tivity in thermoelectric devices [41].

Using Eq. (A2), the heat fluxes from the cold bath (J2) and
to the hot bath (J3) read

J2 = L21

L11
J1 + L22(1 − q2) X2 − γcJ2

1 , (A4)

J3 = L21

L11

Th

Tc
J1 + L22(1 − q2) X2 + γhJ2

1 , (A5)

where γhJ2
1 denotes the fraction of input power leaking into

the hot reservoir. The Onsager reciprocity relations imply that
the coupling strength parameter q = L12/

√
L11L22 is bounded

as (|q| � 1). As the second step in the mapping, we compare
Eqs. (1) and (2) and (A4) and (A5) and try to find a mapping
between the parameters. This can be done under the tight
coupling condition |q| = 1, when the flux J1 and the heat
fluxes Ji, i = 2, 3 are proportional in the linear irreversible
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model and efficiencies of machines based on the MNI model
are largest. The result is [17](

L11 L12

L21 L22

)
=

( Th
λ

ThTc�S
λ

ThTc�S
λ

Th (Tc�S)2

λ

)
, (A6)

γh = σh

α
, (A7)

γc = σc

1 − α
, (A8)

where γ ≡ γh/γc and λ ≡ σh/α + σc/(1 − α). Let us now
study the COP at maximum power of refrigerators based on
the MNI model in terms of this mapping.

Assuming that we control either the flux J1 or the cor-
responding thermodynamic force X1, the maximum cooling
power ensues from the formula ∂J2/∂J1 = 0 (or, equivalently,
∂J2/∂X1 = 0). We obtain the following values of model pa-
rameters at maximum cooling power [25]:

1

J∗
1

= 2γcL11

L21
, (A9)

J∗
2 = L2

21

4γcL2
11

, (A10)

J∗
2

J∗
3 − J∗

2

= εC

2 + (1 + γ )εC
, (A11)

where the last expression describes the COP at maximum
power. Substituting the mapping (A6)–(A8) into (A9)–(A11),
we reproduce Eqs. (7)–(9) corresponding to power in the LD
model optimized only with respect to the duration of the
isothermal branches, ti. These expressions thus still depend on
the distribution of ti between the two isotherms, α [16,58]. In
order to get the final results (12)–(14) for COP at maximum
power in the LD refrigerator, one thus just needs to further
optimize the power (A9) with respect to α. This also holds for
maximum COP at fixed cooling power and all other figures
of merit. Indeed, substituting the mapping (A7)–(A8) into
Eq. (17) in Ref. [25] for maximum COP at given power for
MNI refrigerators and optimizing the resulting expression
with respect to α, one obtains our results for the maxi-
mum COP at fixed power for LD refrigerators, described in
Sec. V.

To conclude, LD models can exactly be mapped to MNI
models with tight coupling if the latter are further optimized
with respect to the additional parameter α. However, to the
best of our knowledge, this possibility is usually overlooked
[15–17,25]. One exception where both models always give the
same results is bounds on performance, obtained by taking
the limits σ → 0 and ∞ (or, equivalently, γ → 0 and ∞).
The reason is that the dependence of the mapping on α is lost
during the limiting process.
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We derive an analytical expression for maximum efficiency at fixed power of heat pumps operating along a
finite-time reverse Carnot cycle under the low-dissipation assumption. The result is cumbersome, but it implies
simple formulas for tight upper and lower bounds on the maximum efficiency and various analytically tractable
approximations. In general, our results qualitatively agree with those obtained earlier for endoreversible heat
pumps. In fact, we identify a special parameter regime when the performance of the low-dissipation and
endoreversible devices is the same. At maximum power, heat pumps operate as work to heat converters with
efficiency 1. Expressions for maximum efficiency at given power can be helpful in the identification of more
practical operation regimes.
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I. INTRODUCTION

Besides the uneasy transfer to carbon-free electricity gen-
eration, e.g., by using solar, wind, water, geothermal, fission,
and, soon hopefully also fusion power, a possibility to fight
global warming is to use more efficient devices. To this end,
practical heat engines can already operate at high efficiencies
differing from the reversible efficiency by less than a factor of
2 [1]. On the other hand, most state-of-the-art heat pumps can
easily decrease energy consumption for heating by a factor
of 3 [2], which is still far below their second law theoretical
maximum (Carnot) coefficient of performance (COP)

εC = Th/(Th − Tc). (1)

For example, a common situation in households with room
(target) temperature Th ≈ 293 K and heat source temperature
Tc ≈ 273 K corresponds to εC ≈ 14.7, i.e., one joule of elec-
tric energy can transfer 14.7 J of heat. The recent raised
interest in heat pumps [3–5] is thus fully deserved as already
their implementations with current COPs might help to reduce
CO2 emissions [6,7].

It is well known that the maximum COP (1) is attained
in heat pumps that operate quasistatically and, similarly as
for heat engines [8], their output power (called heating load)
is negligibly small. Heat pumps able to heat a household
thus have to operate outside the quasistatic limit, in a regime
described by finite-time thermodynamics. For heat engines
and refrigerators, similar considerations lead to a thorough
investigation of their efficiency at maximum power using a
variety of models [9–40]. However, idealized models of heat
pumps, e.g., based on the endoreversible thermodynamics
[41,42], imply diverging maximum power with COP 1. At
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maximum power, such heat pumps thus operate as pure work
to heat converters, which is a highly undesirable operation
regime.

As a result, efficiency at maximum power is for heat pumps
not a useful measure of performance. A more informative
figure of merit is the maximum efficiency at a given power,
which generalizes various trade-off measures between power
and efficiency [12,23,43–50]. Maximum efficiency at given
power was thoroughly studied for various models of heat
engines [30,51–58] and refrigerators [16,40,59]. However,
besides numerical studies [60], the only available analytical
results for heat pumps were obtained for endoreversible heat
pumps [42,61,62].

In this paper, we derive the analytical expression for
maximum COP at a given heating load for Carnot-type low-
dissipation (LD) heat pumps. In Secs. II and III, we introduce
the considered model and define the thermodynamic quanti-
ties of interest. In Sec. IV, we discuss the performance of the
LD heat pumps operating at maximum power. In Sec. V, we
present our main results. Specifically, the lower and upper
bounds on maximum COP at a given power for LD heat
pumps are derived in Sec. V A. And in Sec. V B, we derive
a general expression for the maximum COP together with an
analytically tractable approximation. In Sec. VI, we compare
the obtained results for maximum COP of LD heat pumps to
the known results for endoreversible heat pumps. We conclude
in Sec. VII.

II. MODEL

Consider a heat pump operating along the finite-time re-
verse Carnot cycle depicted in Fig. 1. The cycle consists of
two isotherms and two adiabats. During the cold isotherm,
the system extracts heat Qc from the cold bath at tempera-
ture Tc. Afterward, during the hot isotherm, it uses the input
work W to pump this heat into the hot bath at temperature
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FIG. 1. Bath temperature T -system entropy S diagram of the
considered Carnot heat pump cycle. The red (blue) horizontal line
denotes the hot (cold) isotherm. The black vertical lines depict
the adiabats. Per cycle, the input work W is consumed to pump the
heat Qc from the cold bath at temperature Tc and deliver the heat
Qh = Qc + W into the hot bath at temperature Th.

Th. The resulting heat delivered per cycle into the hot bath,
Qh = Qc + W , consists of the used work and the extracted
heat.

In the LD regime [14,63,64], Qi, i = c, h assume the forms

Qc = Tc�S − σc

tc
, (2)

Qh = Th�S + σh

th
, (3)

where the positive irreversibility parameters σi depend on the
details of system construction, and ti are durations of the two
isotherms. �S denotes the increase (decrease) in the entropy
of the system during the cold (hot) isotherm. The correspond-
ing contributions to Qc and Qh are reversible, i.e., they do not
contribute to the total entropy produced per cycle,

�Stot = −Qc

Tc
+ Qh

Th
= σc

tcTc
+ σh

thTh
� 0. (4)

�Stot is thus solely determined by the irreversible contri-
butions, proportional to the irreversibility parameters, and
vanishes both in the quasistatic limit, th → ∞ and tc → ∞,
and in the equilibrium limit, σc = σh = 0. The LD forms (2)
and (3) of the transferred heats can be quite generally consid-
ered as first-order expansions of the exact expressions in the
inverse durations of the isotherms [63,65–69]. In addition, the
LD model is exact for optimized overdamped Brownian heat
engines [1,27] and other specific scenarios [66,70].

We assume that durations of the adiabatic branches are
proportional to durations of the isotherms so that the cycle
time is given by tp = a(th + tc). Since the constant a � 1 only
affects the heating load of the pump [see Eq. (5)], we assume
in the rest of the paper that a = 1. This value corresponds to
infinitely fast adiabats [71] and thus maximum heating load as
a function of a.

III. HEATING LOAD AND COP

The performance of heat devices is described by their
power, P, and efficiency, ε. For heat pumps, P and ε are called

heating load and COP [60,72]. P measures the average heat
pumped into the hot bath per unit time, and ε shows how much
work is needed to pump 1 J of heat to the hot body.

Using Eqs. (2) and (3) together with the first law of ther-
modynamics, W = Qh − Qc, the heating load and COP of the
LD heat pump can be expressed as

P = Qh

tp
= Th�S

tp
+ σh

thtp
, (5)

ε = Qh

W
= εC

1 + TcεC�Stot/(Ptp)
. (6)

The maximum (Carnot) COP, ε = εC , is attained under re-
versible conditions (�Stot = 0). The minimum COP, ε = 1,
describes the situation when no heat is pumped from the cold
bath and thus the delivered heat, Qh, equals the input work,
W . In this regime, heat pumps are not better than work-to-
heat converters, such as resistance heating wires. In the next
section, we study COP at maximum heating load for LD heat
pumps.

IV. COP AT MAXIMUM HEATING LOAD

Most of the available expressions for maximum efficiency
at a fixed power for various models [16,30,40,51,54–59] are
given as functions of the dimensionless variable P/P∗, mea-
suring loss in power, P, with respect to the maximum power,
P∗. This normalization of power usually significantly sim-
plifies the resulting expressions. However, for endoreversible
heat pumps [41,42] the maximum power diverges, suggesting
that such a normalization might, in our case, not be possible.
Indeed, we show below that P∗ → ∞ also for LD heat pumps.

To introduce a meaningful dimensionless heating load, we
define the reduced heats and durations as

Q̃i = Qi

Th�S
, t̃i = Th�S

σh
ti, i = c, h. (7)

Using Eqs. (2) and (3), the reduced heats read

Q̃c = εC − 1

εC
− 1

σ (1 − α)t̃p
. (8)

Q̃h = 1 + 1

αt̃p
. (9)

Here, σ = σh/σc is the so-called irreversibility ratio, t̃p = t̃h +
t̃c denotes the reduced cycle duration, and α ≡ th/tp measures
the allocation of the cycle duration between the two isotherms.
We define the reduced heating load as the ratio of the reduced
heat to the reduced cycle duration:

P̃ = Q̃h

t̃p
= 1

t̃p
+ 1

αt̃2
p

= σh

(Th�S)2
P. (10)

The reduced heating load is a monotonically decreasing func-
tion of both α and t̃p. The inequality Qh > Qc > 0, following
from the requirement that the considered device pumps heat
from the cold to the hot bath, restricts the minimal reduced
cycle duration as

t̃p >
εC

σ (εC − 1)(1 − α)
. (11)
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The maximum reduced heating load, P̃∗, attained for the min-
imal allowed values of α and t̃p,

α∗ = 0, (12)

t̃∗
p = εC

σ (εC − 1)
, (13)

hence diverges. The corresponding COP is most easily ob-
tained from the formula ε = Q̃h/(Q̃h − Q̃c). Altogether, the
maximum reduced heating load and the corresponding COP
read

P̃∗ = ∞, (14)

ε∗ = 1. (15)

This performance is achieved whenever the hot isotherm is
much faster than the cold one and thus α = α∗ → 0. Note-
worthy, the COP at maximum power is the smallest possible,
corresponding to the negligible amount of heat pumped from
the cold bath compared to the input work, Q̃h = W̃ + Q̃c �
Q̃c. A heat pump operating at the maximum heating load thus
works as an electric heater transforming work in the form
of electric energy into heat. Practical heat pumps should not
operate anywhere close to this regime. In the next section, we
uncover more practical operation regimes of LD heat pumps
by deriving their maximum COP at a given heating load.

V. MAXIMUM COP AT GIVEN HEATING LOAD

Fixing the reduced heating load in Eq. (10) creates the
dependency

α = 1

t̃p(P̃t̃p − 1)
(16)

between α ∈ [0, 1] and t̃p. Substituting Eq. (16) into Eqs. (8)
and (9) and using the condition Q̃h > Q̃c > 0, we find the
inequality

t̃p >
1 + P̃t̃∗

p

2P̃
+

√√√√(
1 + P̃t̃∗

p

2P̃

)2

+ 1 − t̃∗
p

P̃
≡ t̃p,min. (17)

The minimum value of the reduced cycle duration for fixed
heating load, t̃p,min, thus depends on the irreversibility ratio σ

and the Carnot COP εC via t̃∗
p in Eq. (13). For maximum and

minimum values of σ , t̃p,min reads

t̃p,min =
{

1+
√

1+4P̃
2P̃

for σ → ∞
∞ for σ → 0.

(18)

The COP (6) can be written in terms of the reduced parameters
introduced above as

ε =
[

1 + P̃t̃p − 1

σ P̃t̃p
(
P̃t̃2

p − t̃p − 1
) − εC − 1

P̃t̃pεC

]−1

. (19)

Below we will find its maximum as a function of t̃p > t̃p,min.

A. Bounds

First, we determine the upper and lower bounds on the
maximum COP at a given heating load. Taking the derivative

FIG. 2. COP (19) as a function of t̃p/t̃p,min (17) for different
values of σ , P̃ = 1, and εC = 15. The figure shows that the upper
bound (21) on the optimal COP is obtained for σ → ∞.

of ε (19) with respect to σ , one finds that ∂ε/∂σ > 0 and thus
ε monotonically increases with σ . Physically, this is because
the COP in Eq. (6) is for a fixed P and σh (fixed by our
choice of time unit) a monotonically decreasing function of
the entropy production, �Stot, and thus σc. The lower bound
on COP (19) for a fixed P is thus attained if the irreversible
losses during the hot isotherm are negligible compared to
those during the cold one (σ = σh/σc → 0). The correspond-
ing COP equals 1. Note that due to the condition (17) the
reduced cycle duration t̃p in this regime diverges [cf. Eq. (18)].

The upper bound on COP (19) for a fixed P is attained
if irreversible losses during the cold isotherm are negligi-
ble compared to those during the hot one (σ → ∞). In this
regime, the COP,

ε =
(

1 − εC − 1

P̃t̃pεC

)−1

, (20)

monotonically decreases with t̃p and thus it attains its max-

imum for t̃p = t̃p,min = (1 +
√

1 + 4P̃)/(2P̃). Altogether, the
bounds on the maximum COP at given heating load, εopt =
εopt(P̃), are given by

1 � εopt � (1 +
√

1 + 4P̃)εC

2 − (1 −
√

1 + 4P̃)εC

≡ εopt
> . (21)

As expected, the upper bound, εopt
> , converges to εC for P̃ → 0

and to 1 for P̃ → ∞.

B. Arbitrary parameters

Outside the limiting regimes discussed in the previous
section, the optimization of COP (19) for a fixed P is more
complicated. In Fig. 2, we show ε as a function of t̃p/t̃p,min

for five values of σ . The black solid line for σ → ∞ indeed
monotonously decreases with t̃p. However, for an arbitrary
finite σ , the COP exhibits a global maximum for t̃opt

p > t̃p,min.
Its position follows from the condition ∂ε/∂ t̃p|t̃p=t̃opt

p
= 0,

which implies the quartic equation

t̃4
p + at̃3

p + bt̃2
p + ct̃p + c

2
= 0, t̃p = t̃opt

p , (22)
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with the coefficients⎛
⎝a

b
c

⎞
⎠ = 1

P̃2

⎛
⎜⎝

−2P̃ − 2P̃2t̃∗
p

1 − 2P̃ + 4P̃t̃∗
p

2 − 2t̃∗
p

⎞
⎟⎠. (23)

Equation (22) has four roots which can be determined ana-
lytically using Ferrari’s method. The optimal reduced cycle
duration is given by the largest real-valued root:

t̃opt
p (P̃, t̃∗

p ) = −a

4
+ F + 1

2

√
−2C − 4F 2 − D

F
, (24)

where

A = b2 + 3c(2 − a), (25)

B = 2b3 − 9bc(4 + a) + 27c

2
(a2 + 2c), (26)

C = b − 3a2

8
, (27)

D = a3

8
− ab

2
+ c, (28)

E = 3

√
B + √

B2 − 4A3

2
, (29)

F =
√

3

6

√
A

E
+ E − 2C. (30)

For a fixed P̃, the reduced optimal cycle duration only de-
pends on t̃∗

p in Eq. (13). Inserting t̃opt
p into Eq. (19) yields the

maximum COP at given heating load for the LD heat pump,
εopt = εopt(P̃, σ, εC ).

In Fig. 3, we show εopt, t̃opt
p , and αopt = [t̃opt

p (P̃t̃opt
p − 1)]−1

[see Eq. (16)] as functions of P̃ for five values of σ . The exact
theoretical results are depicted by solid lines. We checked
that they agree within numerical precision with the optimal
COP obtained by the direct numerical maximization of ε

in Eq. (19). In agreement with the inequalities (21), εopt in
Fig. 3(a) converges to 1 for P̃ → ∞ and to εC for P̃ → 0
(see the inset) for all σ . This panel also shows the monotonic
increase of εopt with σ discussed in Sec. V A. The increase of
the maximum COP with decreasing heating load for large P̃ is
very slow, showing that reasonably efficient heat pumps have
to operate at small values of P̃. In this respect, heat pumps
qualitatively differ from heat engines and refrigerators, which
exhibit large gains in efficiency when their power is slightly
decreased from its maximum value [16,58].

The σ - dependency of t̃opt
p in Fig. 3(b) is significant for

small values of σ but negligible for large σ . Even though the σ

dependency of αopt in Fig. 3(c) is always significant, the COP
in Eq. (19) no longer depends on α. This suggests that we
might obtain an analytically tractable approximation for εopt,
valid for intermediate and large values of σ , by expanding t̃opt

p

in powers of t̃∗
p ∼ 1/σ . Up to the leading order in t̃∗

p , we find

t̃opt
p ≈ 1 +

√
1 + 4P̃

2P̃
+

√
t̃∗
p

(1 + 4P̃)1/4
, (31)

εopt ≈ εopt
> −

8P̃
(
1 − ε−1

C

)
(εopt

> )2
√

t̃∗
p

(1 + 4P̃)1/4(1 +
√

1 + 4P̃)2
. (32)

FIG. 3. The optimal COP (a), the corresponding reduced cycle
duration (b), and its allocation between hot and cold isotherms (c) as
a function of P̃ for different values of σ and εC = 15. The circles
follow from the approximate expressions (31) and (32). The lines
were obtained using the exact result (24).

The corrections to these formulas are proportional to t̃∗
p . For

large values of t̃∗
p , the approximation (32) leads to negative

(thus unphysical) COP. Circles in Fig. 3 show the predic-
tions from the approximate formulas for σ > 1, when the
approximate εopt > 0. For large values of σ (small t̃∗

p ), the
approximate (circles) and exact (lines) results indeed perfectly
overlap.

VI. COMPARISON WITH ENDOREVERSIBLE
HEAT PUMPS

Let us now compare the obtained results on maximum COP
at a given heating load of LD heat pumps to the correspond-
ing known results for endoreversible heat pumps [42,61,62].
The endoreversible thermodynamics assumes that the working
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fluid of thermal devices operates reversibly. The only consid-
ered sources of entropy production are the finite-time heat
transfers between thermal reservoirs and the working fluid
[73–75]. LD models generally describe the thermodynamics
of slowly driven systems [14,63,64]. On the other hand, up
to a few exceptions [76–78], the endoreversible models are
usually phenomenological [10,11,75,79,80].

The works [42,61] on the maximum COP at a given heat-
ing load of endoreversible heat pumps assume that the heat
transfers between the working fluid and baths obey Newton’s
law of cooling. Denoting the temperatures of the working
fluid during the hot and cold isotherms by Thw and Tcw and
the corresponding heat conductivities as κh and κc, the heats
transferred during the isotherms are in this case given by

Qh = κhth(Thw − Th), (33)

Qc = κctc(Tc − Tcw ). (34)

More general heat transfer laws used in Ref. [62] lead to
qualitatively the same results as Newton’s law of cooling, to
which we stick in the following discussion.

In the endorevesible models, the COP εen = Qh/(Qh − Qc)
is maximized with respect to the temperatures of the work-
ing fluid Thw and Tcw. The ratio th/tc of the durations of
the two isotherms is determined by the endoreversibility re-
quirement Qh/Thw − Qc/Tcw = 0 and the total cycle duration
does not influence the resulting expressions. Performing the
maximization for a fixed heating load P = Qh/(th + tc) with
the definitions (33) and (34) yields the maximum COP [42,62]

εopt
en = 1 + εC − 1

1 + εCP(1 + √
r)2

/(κhTh)
, (35)

where r = κh/κc. The maximum COP at fixed heating load
thus behaves qualitatively in the same way as the correspond-
ing result for LD heat pumps: ε

opt
en converges to εC for P → 0

and to 1 for P → ∞. However, the precise functional forms
of the maximum COP for LD and endoreversible heat pumps
in general differ. The exception is the parameter regime

t̃∗
p = 1,

(1 + √
r)2

κh
= 4σh

Th�S2
, (36)

when the expressions for ε
opt
en and εopt are identical. In this

regime, one can thus find an exact mapping between the LD
and the endoreversible model. Note that for t̃∗

p = 1, Eq. (22)
reduces to a quadratic equation, and Eq. (13) implies σh/Th =
σc/Tc.

One way to show that the two models are equivalent only in
the parameter regime (36) is to compare the formulas for ε

opt
en

and εopt in the limiting regimes, where they become simple.
To this end, we expand the two maximum COPs as functions
of the heating load close to infinite and close to vanishing P.
Up to the leading order in P, the expansions read

εopt ≈ 1 + 1 − ε−1
C

4t̃∗
p

(Th�S)2

σhP
, (37)

εopt
en ≈ 1 + 1 − ε−1

C

(1 + √
r)2

κhTh

P
, (38)
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FIG. 4. The maximum COPs at fixed heating load for LD (εopt)
and endoreversible (εopt

en ) heat pumps as functions of P̃ for εC = 15
and σh/(Th�S)2 = 1/(κhTh ). The marked black solid lines show that
the condition (36) implies εopt = ε

opt
en . For the remaining lines, we

set σ = 5 and thus t̃∗
p = 3/14. The blue dotted line corresponds to r

obtained from Eq. (41). For the red dash-dotted line, we calculated r
using Eq. (42).

and

εopt ≈ εC − εC (εC − 1)(1 +
√

t̃∗
p )2 σhP

(Th�S)2
, (39)

εopt
en ≈ εC − εC (εC − 1)(1 + √

r)2 P

κhTh
. (40)

The corrections to Eqs. (37) and (38) are proportional to 1/P2

and those to (39) and (40) are proportional to P2. The LD and
endoreversible models for heat pumps can be mapped to each
other only if the two types of expansions agree, leading to the
conditions

(1 + √
r)2

κh
= σh

Th�S2
4t̃∗

p , (41)

(1 + √
r)2

κh
= σh

Th�S2
(1 +

√
t̃∗
p )2. (42)

The first equality follows from Eqs. (37) and (38) and the
second one from Eqs. (39) and (40). Requiring validity of both
yields the condition (36) (see Appendix A for more details).
In Fig. 4, we show εopt and ε

opt
en as functions of the reduced

heating load P̃. The marked lines show the agreement of εopt

and ε
opt
en when Eq. (36) holds and thus t̃∗

p = 1. The remaining

lines show εopt (green dashed line) and ε
opt
en for parameters

obeying solely Eq. (41) (blue dotted line) and (42) (red dash-
dotted line) for t̃∗

p = 3/14. As expected, the green dashed line
only agrees with the blue dotted line for large values of P̃ and
with the red dash-dotted line for small values of P̃.

We tested that also the LD and endoreversible models for
heat engines and refrigerators lead to identical results when
Eq. (36) holds (data not shown). In addition, an equivalent
condition was derived in the linear response regime for heat
engines operating at maximum power [52,53].
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VII. CONCLUSION AND OUTLOOK

Like endoreversible heat pumps, Carnot-type LD heat
pumps operate at maximum power as work to heat converters
such as standard electric heaters. Practical heat pumps thus
should not operate in this regime. To provide a tool to decide
a suitable regime of operation for a given application, we
derived an analytical expression for maximum efficiency at a
given heating load for LD heat pumps. In addition, we derived
upper and lower bounds on this quantity. Qualitatively, our
results agree with the corresponding findings obtained earlier
for endoreversible heat pumps. Unlike the phenomenological
endoreversible models, LD models represent a general first-
order finite-time correction to the reversible operation and
thus their parameters can be either calculated using a pertur-
bation analysis or measured in experiments. Furthermore, the
derived upper bound on the maximum efficiency can be con-
sidered as a loose upper bound on the efficiency of heat pumps
in general. By adding the result for heat pumps to the known
formulas for LD heat engines and refrigerators [16,58,59], the
present paper completes the collection of results for maximum
efficiency at a given power for LD thermal devices.

The presented result for maximum efficiency at a given
heating load depends on the reduced heating load P̃ in
Eq. (10). Therefore, the heating load can be further opti-
mized for the chosen unit of energy flux without affecting
the corresponding maximum efficiency. Such optimization
tasks performed for LD heat engines and refrigerators are
described in Refs. [81,82]. In addition, it would be interesting
to investigate the operation regime of maximum efficiency at
given power for LD thermal devices concerning its dynamical
stability [15,83–85]. Finally, it would be worthy to investigate
maximum efficiency at given power for heat devices operating
between finite-sized heat sources [19,86–90] and compare
the results to those derived using the idealized LD models.
For heat engines working with two finite-sized reservoirs,
the maximum efficiency at given power has been derived in
Ref. [90].
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APPENDIX: HEAT FLOWS IN THE
PARAMETER REGIME (36)

In this Appendix, we investigate the physical significance
of the parameter regime (36), leading to the same expressions

for ε
opt
en and εopt for the endoreversible and LD models. As the

average heat flows Qh/tp are for the two models fixed to be
the same value of power P, we focus on the structure of the
average heat flows Qc/tp.

For the endoreversible heat pump, combining Eqs. (33) and
(34), together with the endoreversibility condition Qen

h /Thw −
Qen

c /Tcw = 0 yields (here and below we use the superscript
“en” to distinguish between the heats for the endoreversible
and LD models)

Qen
c

tp
= TcP[P + κh(Th − Thw )]

rP(Th − Thw ) + Thw[P + κh(Th − Thw )]
. (A1)

For the LD heat pump, inserting Eq. (16) into Eq. (8) implies

Qc

tp
= TcTh�S2

σh

P̃t̃2
p − t̃p(1 + P̃t̃∗

p ) + t̃∗
p − 1

t̃p
(
P̃t̃2

p − t̃p − 1
) . (A2)

Imposing the condition (36) and returning to dimensional
power (10), the heat flow for the LD model changes to

Qc

tp
= 4κhTc

(
√

r + 1)2

P(
√

r + 1)2(t̃p − 1) − 4κhTh

P(
√

r + 1)2t̃2
p − 4κhTh(t̃p + 1)

. (A3)

Interestingly, the functional forms of the heat flows (A1) and
(A3) in terms of power P and the parameter to be optimized
(Thw for the endoreversible and t̃p for the LD model) are
different, even though the analysis in the main text proves that
they must be the same functions of power when Thw and tp are
substituted by the values

Thw = Th + (1 + √
r)P

κh
, (A4)

t̃p = 2 + 4κhTh

(
√

r + 1)2P
, (A5)

maximizing the two heat flows and thus, for fixed power,
also the COP (6). The formulas for the two heat flows
remain different even after the substitutions Thw = (1 +√

r)T/κh and t̃p = 2 + 4κhTh/[(
√

r + 1)2T ], which lead to
expressions Q̃en

c (T, P)/tp and Q̃c(T, P)/tp exhibiting the same
maximum,

Q̃en
c

tp
= Q̃c

tp
= κhTcP

κhTh + P(1 + √
r)2

, (A6)

for the same value of T = P. The expressions Q̃en
c (T, P)/tp

and Q̃c(T, P)/tp are thus different unless T = P. We conclude
that there is no deep physical reason why the performances of
the optimized endoreversible and LD models are the same in
the parameter regime (36).
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We consider absorption refrigerators consisting of simultaneously operating Carnot-type heat engine and
refrigerator. Their maximum efficiency at given power (MEGP) is given by the product of MEGPs for the internal
engine and refrigerator. The only subtlety of the derivation lies in the fact that the maximum cooling power of
the absorption refrigerator is not limited just by the maximum power of the internal refrigerator, but, due to the
first law, also by that of the internal engine. As a specific example, we consider the simultaneous absorption
refrigerators composed of low-dissipation (LD) heat engines and refrigerators, for which the expressions for
MEGPs are known. The derived expression for maximum efficiency implies bounds on the MEGP of LD
absorption refrigerators. It also implies that a slight decrease in power of the absorption refrigerator from
its maximum value results in a large nonlinear increase in efficiency, observed in heat engines, whenever the
ratio of maximum powers of the internal engine and the refrigerator does not diverge. Otherwise, the increase
in efficiency is linear as observed in LD refrigerators. Thus, in all practical situations, the efficiency of LD
absorption refrigerators significantly increases when their cooling power is slightly decreased from its maximum.

DOI: 10.1103/PhysRevE.103.052125

I. INTRODUCTION

The performance of heat engines, transforming heat to
work, or refrigerators and heat pumps, displacing heat against
a temperature gradient, is determined by two main quantities:
output power and efficiency. Unfortunately, thermodynamic
laws imply that they cannot be optimized simultaneously
[1]. This is because the largest efficiencies correspond to
reversible and thus slow processes, leading to output powers
which are at best negligible fractions of the maximum power
[2].

The implication for engineers, whose natural task is to
develop designs that deliver a desired (fixed) power as cheaply
as possible, is that their devices in general do not operate
in the regimes of maximum efficiency [1,3] or maximum
power [4–21], which were both thoroughly investigated theo-
retically in the past, but rather in the regime with maximum
efficiency corresponding to the given power (MEGP). The
MEGP received the attention of the theory of finite-time
thermodynamic processes only recently [22–27], generalizing
results obtained previously for a variety of trade-off relations
between power and efficiency [28–37].

Unlike model-independent equilibrium results such that
the maximum efficiency of thermal devices is the Carnot effi-
ciency [1,3], all available results on the optimal performance
of thermal devices operating with finite cycle times are based
on specific model systems. Nevertheless, these models are
usually constructed in an idealized fashion so that real-world

*zhuolinye@foxmail.com
†viktor.holubec@mff.cuni.cz

devices inevitably dissipate more and thus operate at smaller
efficiencies. The results for MEGP obtained in these models
thus represent (loose) upper bounds on real-world efficiencies.

Specifically, the idealized models just consider inevitable
energy losses imposed by the second law of thermodynamics.
In particular, losses connected to heat leakages and construc-
tion imperfections are neglected. Most of the idealized models
operate along a finite-time Carnot cycle composed of two adi-
abatic and two isothermal branches and assume that the total
entropy change in the universe during each of the isotherms
obeys the so-called low-dissipation (LD) assumption [7]

�Stot = �/t, (1)

where the irreversibility parameter � > 0 depends on de-
tails of the system construction, and t is the duration of the
isotherm. The low-dissipation assumption is not just a useful
approximation allowing to derive explicit analytical results.
This model exactly describes Brownian heat engines opti-
mized with respect to output power [15,24], which can now
be realized in experiments [38,39]. More generally, the LD
model describes the first finite-time correction to the qua-
sistatic dissipation, which was revealed not only in theoretical
studies [40–42], but also in experiments [39,43]. Further-
more, with respect to MEGP, the LD model was shown to
be equivalent to the minimally nonlinear irreversible model
[14,33,44], and, for small temperature gradients, also to the
linear irreversible model [26]. Regardless of the relatively
simple mathematical structure of the LD models, the exact
results on MEGP are so far known for LD heat engines [25]
and refrigerators [44] only. Other devices such as absorption
refrigerators [45] and heat pumps [46] are still investigated
numerically even when formulated within the LD setting.
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FIG. 1. Sketch of the CAR composed of internal Carnot heat en-
gine and Carnot refrigerator. The overall CAR system communicates
with three heat reservoirs at temperatures Th > Tm > Tc. Both the in-
ternal engine and refrigerator use as their heat sink the reservoir at the
intermediate temperature Tm. The engine in addition communicates
with the hot bath at Th and the refrigerator with the cold bath at Tc.

In the present paper, we consider absorption refrigerators
consisting of simultaneously operating Carnot-type (internal)
heat engine and refrigerator. We show how the MEGP for
this general model follows from the MEGPs for the internal
heat engine and refrigerator. To derive explicit results, we
consider absorption refrigerators consisting of LD heat en-
gines and refrigerators, for which expressions for MEGPs are
known. The obtained MEGP represents a loose upper bound
for the efficiency of real-world absorption refrigerators, which
recently experienced a renewed interest of physicists due to
their potential to recycle waste heat in microscopic (quantum)
devices [47–52].

The rest of the paper is organized as follows. In Sec. II, we
introduce the general model and derive the general results. In
Sec. III, we derive the MEGP for LD absorption refrigerators
and discuss its properties. We conclude in Sec. IV.

II. CARNOT ABSORPTION REFRIGERATORS

We consider absorption refrigerators consisting of a finite-
time Carnot heat engine and refrigerator, which we call as
Carnot absorption refrigerators (CARs). As shown in Fig. 1,
the internal engine utilizes the temperature gradient Th −
Tm > 0 between a hot thermal reservoir and a thermal reser-
voir at a medium temperature to generate work. This work is
then used to propel the internal refrigerator, which pumps heat
from the cold thermal reservoir at temperature Tc < Tm into
the intermediate bath. As a result, the CAR utilizes heat from
the hot body to further cool the cold one. In practice, such
refrigerators are often used in cases where there is no reliable
source of electricity, for example, in caravans. While de-
scribed already in 1858 by Carré, absorption refrigerators now
acquired renewed attention in the field of quantum thermody-
namics [47–53]. This is because they seem to be promising

building blocks of quantum devices, where they should help to
keep the quantum parts at very low temperatures by utilizing
the junk heat produced by classical chips inevitably present in
these setups.

In this work, we aim to provide an upper bound for
MEGP for CARs and thus we assume that the internal engine
and refrigerator work simultaneously [54]. Another possibil-
ity would be that they alternate [45]. Such CARs, however,
involve during their operation idle periods of the internal
devices and thus provide smaller MEGPs than the simulta-
neously operating setup. As we show below, the MEGP for
simultaneous setups follows from MEGPs for the internal
devices. In Appendix A, we discuss that for the alternating
setup the optimization is actually more complicated and the
knowledge of MEGPs of the internal engine and refrigerator
is not sufficient for the derivation of MEGP.

A. Working cycle of simultaneous CAR

Below, we will optimize the efficiency of the CAR with
respect to durations te and tr of the engine and refrigeration
cycles and thus we assume that they are different. The duration
of one cycle of the CAR, ts, is defined as a period after which
both the internal devices attain their initial states. It is thus
given by the least common multiple of te and tr . We assume
that such a common multiple exists and denote it as

Ne = ts/te, (2)

(Nr = ts/tr) the number of engine (refrigeration) cycles per-
formed per one full CAR cycle.

Now we are ready to define the thermodynamic quantities
of interest, sketched in Fig. 1. Per CAR cycle, the engine
produces work W = NeWe, which is used by the refrigerator
to pump heat NrQc from the cold bath. The output power of
the engine W/ts and the input power of the refrigerator thus
reads

P ≡ We/te = Wr/tr, (3)

where Wr = W/Nr denotes the work used by the refrigerator
per refrigeration cycle.

According to the first law, we have We = Qh − Qme and
Qc = Qmr − Wr . Here, Qh and Qme are the heats taken from
the hot bath and delivered to the intermediate bath by the en-
gine per period te, respectively. Similarly, Qmr is heat pumped
into the intermediate bath by the refrigerator per period tr . The
amount of heat extracted by the internal refrigerator from the
cold bath per CAR cycle is given by NrQc. The cooling powers
of the simultaneous CAR Rs and the internal refrigerator R are
thus the same and read

Rs = R = NrQc/ts = Qc/tr . (4)

The energy input of the CAR is NeQh and thus its efficiency,
referred to as the coefficient of performance (COP), is given
by

ψ = NrQc

NeQh
= Qc/tr

Qh/te
= εη. (5)

Here, η = We/Qh and ε = Qc/Wr = R/P denote the effi-
ciency of the internal heat engine and refrigerator, respec-
tively.
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B. Maximum cooling power

Before we turn our attention to the MEGP for CARs, we
determine the interval of allowed values of the cooling power
(4). Its minimum value 0 is achieved for infinitely slow cycles.
The maximum cooling power R∗

s turns out to be limited by
maximum powers of both constituting devices.

The power source of the refrigerator inside the CAR is the
internal heat engine and thus the maximum cooling power of
the CAR cannot be larger than the maximum cooling power
of the internal refrigerator without restrictions to input power
R∗, i.e., R∗

s � R∗. Furthermore, the cooling power is related to
output power of the engine by

P = R/ε(R). (6)

We denote as R̄ the maximum value of cooling power solving
the equation

P∗ = R̄/ε(R̄), (7)

where P∗ is the maximum power of the engine. If R̄ < R∗, the
engine is not powerful enough to utilize the whole potential
of the refrigerator and R∗

s = R̄. Similarly, R̄ > R∗ means that
the refrigerator is not powerful enough to use the enitre power
provided by the engine and R∗

s = R∗. Altogether, we found
that the maximum power of the CAR is given by

R∗
s = min(R̄, R∗). (8)

In the next section, we finally discuss the MEGP for the
simultaneous CARs.

C. MEGP for simultaneous CARs

Inserting Eq. (6) for engine output power as function of
power of the refrigerator in Eq. (5), we obtain the COP of the
CAR as function of R:

ψ (R) = ε(R)η

[
R

ε(R)

]
. (9)

To get the MEGP for CAR, we need to optimize the right-hand
side of this equation with respect to the durations of tr and te
for fixed R. Using Eqs. (6), (B2), and (C1), Eq. (9) can be
rewritten in the form

ψ (R) = ηCεC

1 + εCTmσ/R
, (10)

where ηC and εC are the Carnot efficiency of reversible
Carnot heat engine and refrigerator, respectively, i.e., ηC =
1 − Tm/Th and εC = Tc/(Tm − Tc), and

σ = �Stot,r/tr + �Stot,e/te (11)

is the sum of the average entropy production rates in the
internal heat engine and internal refrigerator and thus the
total average entropy production rate during the CAR cycle.
Expressions for the total entropy changes per engine and
refrigeration cycle �Stot,r and �Stot,e are given in Eqs. (B3)
and (C2) in the Appendix. The maximization of COP (9) at
fixed R is thus equivalent to the minimization of the average
entropy production rate σ = σ (R) under the same conditions.

The output power of the internal heat engine depends
on the setup and performance of the refrigerator through

the refrigeration power R/ε(R) only. Thus, to yield the
maximum value of the product in Eq. (9), η[R/ε(R)] must
attain its maximal value, ηopt[R/ε(R)], corresponding to the
given refrigeration power (MEGP). Furthermore, all known
expressions for MEGP are decreasing functions of power
[25,26,44,55,56]. Importantly, all these models neglect losses,
which cannot be avoided by quasistatic operation, such as
heat leakages, and thus they can saturate the Carnot bound
on efficiency in the limit of vanishing power. Assuming that
this idealization holds also in our present case, ηopt[R/ε(R)]
will be maximal if ε(R) will be given by the maximum refrig-
erating efficiency at the given power εopt (R). Altogether, the
MEGP for the considered idealized CARs reads

ψopt (R) = εopt (R)ηopt

[
R

εopt (R)

]
. (12)

The MEGP for the simultaneous CAR thus, in general, fol-
lows from the expressions for MEGPs for the internal engine
and refrigerator. Let us now consider the simultaneous CAR
composed of a LD heat engine and LD refrigerator [25,44].
For this specific model, we verified the validity of Eq. (12) by
direct numerical maximization of Eq. (9). In the next section,
we utilize the known analytical expressions for ηopt and εopt

for this model to discuss in detail properties of the MEGP (12)
for this LD CAR based on analytical grounds.

III. LOW-DISSIPATION SIMULTANEOUS CARS

Let us now consider the Carnot LD heat engine and refrig-
erator depicted in Fig. 2, for which the MEGPs were derived
in Refs. [25] and [44], respectively. Their working cycles are
composed of two isotherms realized in finite time and de-
scribed by the irreversibility parameters �i, i = h, me, c, mr.
These isotherms are interconnected by infinitely fast adiabats
[57].

The internal engine accepts heat

Qh = Th�Se − �h

th
(13)

during the hot isotherm (red) of duration th and releases heat

Qme = Tm�Se + �me

tme
(14)

during the isotherm corresponding to the medium temperature
(green) of duration tme. The terms proportional to the increase
in the entropy of the working medium of the engine during
the hot isotherm, �Se, correspond to the reversible parts of
the transferred heats. The total duration of the engine working
cycle reads te = th + tme. Similarly, the refrigerator accepts
heat

Qc = Tc�Sr − �c

tc
(15)

during the cold isotherm (blue) of duration tc and dumps heat

Qmr = Tm�Sr + �mr

tmr
(16)

during the intermediate isotherm (green) of duration tmr . The
reversible components of transferred heats are proportional
to the increase in the entropy of the working medium of the
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FIG. 2. Bath temperature-system entropy (T -S) diagrams of the
components of the CAR depicted in Fig. 1 considered in its low-
dissipation version. (a) LD Carnot heat engine and (b) LD Carnot
refrigerator. The horizontal colored lines are isotherms and the ver-
tical black lines represent adiabats. The areas enclosed of the two
rectangles equal to the respective works only if the cycles are realized
quasistatically.

refrigerator during the cold isotherm �Sr , which can be dif-
ferent than �Se. The total duration of the refrigeration cycle is
tr = tc + tmr . The internal heat engine and refrigerator operate
reversibly if the duration of all the isotherms diverge or if all
the irreversibility parameters vanish.

Let us now consider a simultaneous CAR composed of
the LD heat engine and LD refrigerator. We call it an LD
simultaneous CAR. In what follows, we discuss in detail its
performance in terms of MEGP.

A. MEGP

The MEGP for the LD CAR follows from Eq. (12) af-
ter inserting the expressions for MEGP of the internal LD
heat engine ηopt and refrigerator εopt. For the engine, we
derive ηopt in Appendix B. Similarly to the derivation given
in Ref. [25], our present approach involves an approximation
in calculation of the optimal redistribution of the total cycle
duration between the two isothermal branches. Nevertheless,
our analytical result for ηopt is, within the numerical precision,
indistinguishable from the corresponding result obtained by
exact numerical optimization of the efficiency. For the refrig-
erator, we review in Appendix C the derivation of analytical
expression for εopt from Ref. [44].

All results for MEGP available in the literature [2,24–
26,44,55,56] are given as functions of the dimensionless vari-
able

δX = X − X ∗

X ∗ , (17)

measuring how much power is lost by operating the device
at power X smaller than the maximum power X ∗. In our
case, we have three such variables: the loss in power of the
internal engine δP; the loss in cooling power of the internal
refrigerator δR; and the loss in cooling power of the CAR
δRs. In general, these variables can assume values from the
interval [−1, 0]. The minimum is attained if the actual power
is negligible compared to the maximum power and the max-
imum corresponds to devices operating at maximum power.
However, in our specific setting where the input power of the
refrigerator can be limited by the output power of the engine,
the upper bound for δR reads R∗

s /R∗ − 1 � 0.
To insert the known results for MEGP of the refrigerator

and heat engine into Eq. (12), we need to express them in
terms of refrigeration power R and engine output power P =
R/εopt (R), respectively. From now on, we use the shorthand
notation εopt (δR) ≡ εopt[R(δR)], where R(δR) = (1 + δR)R∗,
and similarly for ηopt (δP). Furthermore, to be able to discuss
the MEGP of the CAR, ψopt = εopt (δR)ηopt (δP), as a function
of the loss in cooling power of the CAR, we use Eqs. (6) and
(17) to express δP and δR in terms of δRs. The result is

δP = 1

P̃∗
1 + δR

εopt (δR)
− 1, (18)

δR = (1 + δRs)R̃∗
s − 1, (19)

where we introduced the reduced maximum powers of the
engine P̃∗ = P∗/R∗, and the CAR, R̃∗

s = R∗
s /R∗, measured in

units of maximum power of the internal refrigerator.
When expressed in terms of δP, the MEGP of the LD heat

engine ηopt depends only on the ratio of the irreversibility
parameters �e = �h/�me, Carnot efficiency, ηC , and δP. For
details, see Appendix B. Similarly, we show in Appendix C
that εopt is only a function of �r = �mr/�c, εC = Tc/(Tm −
Tc) and δR. Since the MEGP εopt (R) is a monotonously
decreasing function of R, the ratio R/εopt (R) attains its maxi-
mum value for R∗. Therefore, Eqs. (7) and (8) imply that the
reduced maximum power of the CAR R̃∗

s is given by

P̃∗ = R̃∗
s /ε

opt (R̃∗
s − 1) (20)

if the resulting R̃∗
s is smaller than 1 and by R̃∗

s = 1 otherwise.
Hence R̃∗

s is determined by �r , εC , and P̃∗. Collecting all
these results and inserting them into Eq. (12), we can finally
write the MEGP of the LD simultaneous CAR in terms of the
relative loss in its maximum cooling power δRs. The resulting
expression depends on the six parameters introduced above,
namely,

ψopt ≡ ψopt (δRs, P̃∗, �e, �r, ηC, εC ). (21)

In the following sections, we use this expression to provide
more explicit results on MEGP of CARs.
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B. Bounds on MEGP

We start by deriving maximum and minimum values of
the optimal COP ψopt with respect to the working medium
of the CAR (or of its constituents). In the LD approximation,
the detailed physics of the working medium is described by
the irreversibility parameters �i, i = h, me, c, mr defined by
Eqs. (13) to (16) [15,24,40,58,59].

The optimal COP (21) depends on irreversibility parame-
ters through the ratios �e = �h/�me and �r = �mr/�c and
the reduced maximum power of the internal engine P̃∗. With
respect to the previous two, the optimal COP attains its min-
imum for �e → 0 (hot isotherm of the internal engine cycle
is reversible compared to the other one) and �r → ∞ (cold
isotherm of the refrigeration cycle is reversible compared to
the other one). Its maximum ψopt is attained in the opposite
limit �e → ∞ and �r → 0. Taking these limits into Eq. (21),
we find the lower and upper bounds for the optimal COP as
follows:

0 � ψopt � εC (1 + √−δR)

2 + εC (1 − √−δR)

ηC (1 + √−δP)

2 − ηC (1 − √−δP)
. (22)

This inequality has to be further optimized with respect to the
parameter P̃∗, which enters the upper bound through Eqs. (18)
and (19) for δP and δR, respectively. Note that, due to the
limits �e → ∞ and �r → 0 taken to derive the upper bound,
we have to use εopt = ε

opt
+ defined in Eq. (C13) in the formula

for δP. One finds that the upper bound is a monotonously
decreasing function of P̃∗ and thus its maximum is obtained
for P̃∗ = 0. The resulting ultimate bounds on the optimal COP
of the CAR at given cooling power read

0 � ψopt � εCηC (1 + √−δRs)

2 − ηC (1 − √−δRs)
≡ ψ

opt
+ (δRs). (23)

The upper bound evaluated for δRs = 0, ψ
opt
+ (0) =

εCηC/(2 − ηC ), denotes the upper bound for COP of the
CAR at maximum cooling power.

The increase in COP gained after a slight decrease of the
cooling power from its maximum value can be measured by
the expression

ψ
opt
+ (δRs) − ψ

opt
+ (0)

ψ
opt
+ (0)

= 2 − 2ηC

2 − ηC

√
−δRs + O(δRs). (24)

Its derivative with respect to δRs diverges, implying that a
slight decrease of the cooling power leads to a significant gain
in the upper bound on COP. Qualitatively the same behav-
ior has generally been observed for MEGPs of various heat
engines [22,23,25–27,56]. With respect to LD refrigerators,
the MEGP is proportional to

√−δR for a limited range of
parameters only and behaves as ∝ −δR otherwise [44]. In the
next section, we investigate whether the increase of MEGP
for the CAR behaves for small values of δRs always like the
MEGPs in heat engines [25] or if it sometimes also exhibits
the linear behavior observed in refrigerators [44].

C. MEGP near maximum cooling power

Examples of parameter regimes where the MEGP for LD
refrigerators exhibits the two qualitatively different behaviors
are �r → 0 (square root) and �r → ∞ (linear) [44]. We thus

investigate behavior of the MEGP for the CAR (21) in these
two regimes using the cumbersome analytical expressions
derived in Appendixes B and C.

1. �r → 0

Expanding the exact expression for εopt in Eq. (C12) up to
the first order with respect to �r , we obtain

εopt = ε
opt
+ − 2(1 + εC )

(
ε

opt
+

)2
(1 − √−δR)

√
�̃r

εC (−δR)1/4(1 + √−δR)
, (25)

where �̃r is defined below Eq. (C11) and ε
opt
+ in Eq. (C13).

Substituting Eqs. (25) and (B14) for εopt and ηopt into Eq. (12)
for MEGP for the CAR, expressing δP and δR in terms of
δRs using Eqs. (18) and (19), and expanding the resulting
expression up to the first order in δRs, we find

ψopt = r1 + r2

√
−δRs. (26)

The coefficients r1 and r2 depend, in a complicated way, on
the parameters P̃∗, εC , ηC , and �e. The obtained dependence
of the MEGP of the CAR on the loss in cooling power might
have been expected since, in this parameter regime, the behav-
ior near maximum power of the engine and the refrigerator is
the same [25,44].

2. �r → ∞
In this limit, the MEGP for LD refrigerators (C12) reads

(see Eq. (29) in Ref. [44])

εopt ≈ δR(1 − δR)εC

2δR + (1 + δR)(δR − �r )εC
. (27)

Using a similar procedure as for obtaining Eq. (26), we find
that up to the second order in δRs

ψopt = g1 + g2

√
−δRs + g3δRs, (28)

where the coefficients g1, g2, and g3 depend on P̃∗, εC , ηC ,
and �e in a complicated way. Interestingly, for P̃∗ → ∞, g2

vanishes and the increase in COP of the CAR becomes linear.
As discussed at the end of the next section, for diverging P̃∗,
the heat engine works at Carnot efficiency and the behavior
of the MEGP of the CAR is solely determined by that of the
refrigerator [44].

D. MEGP for arbitrary parameters

Outside the limiting parameter regimes discussed above,
the full analytical expression (21) for the MEGP is too cum-
bersome to get an immediate insight into the behavior of ψopt.
Therefore, in this section, we investigate its dependence on
the model parameters graphically.

In Fig. 3, we show the reduced maximum power of the
CAR R̃∗

s as a function of the reduced power of the internal
heat engine P̃∗. The larger the available input power of the
refrigerator (provided by the engine) the larger the corre-
sponding maximum cooling power of the CAR until it reaches
its maximum R̃∗

s = 1, where the whole cooling potential of
the internal refrigerator is utilized. The minimum value of the
reduced power P̃∗ = 1/εopt (0), allowing for R̃∗

s = 1, follows
from Eq. (20). Here, εopt (0) = ε∗

± denotes the MEGP for the
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FIG. 3. The reduced maximum power of the CAR R̃∗
s as a func-

tion of the reduced maximum power of the internal heat engine P̃∗ for
three values 0, 1, and 10 of the ratio �r of irreversibility parameters,
which increases from the uppermost solid line to the lowermost
dashed one. We take εC = 1.

refrigerator defined in Eqs. (C5) and (C6). Hence, R̃∗
s = 1

for finite value (P̃∗ = 1/ε∗
+) of the reduced power only if

�r = 0, i.e., when the dissipation during the hot isotherm of
the refrigeration cycle becomes negligible compared to that
during the cold one. For �r > 0, the whole cooling potential
of the internal refrigerator can be utilized only for infinite
values of the reduced power P̃∗ = 1/ε∗

− → ∞. This is caused
by the discontinuity in the ability of the refrigerator working at
maximum power conditions to utilize the energy provided by
the engine εopt (0), which is positive for �r = 0 and vanishes
for �r > 0 [44]. Figure 3 also shows that, for fixed P̃∗ and εC ,
R̃∗

s decreases as the amount of energy dissipated during the hot
isotherm of the refrigeration cycle increases (larger �r).

In Fig. 4, we plot the MEGP for CARs (21) as a function of
δRs for different values of P̃∗, �e, and �r . The upper bounds
(22) for MEGP for fixed reduced power P̃∗ are depicted for
P̃∗ = 1 (top pink solid line in the middle) and P̃∗ � 1/ε∗

+
(bottom pink solid line in the middle). They indeed bound the
MEGP obtained for arbitrary values of ratios of irreversibility
parameters �e and �r , and values of P̃∗ larger than those
chosen to plot the individual curves. The ultimate upper bound
on MEGP (23) is depicted by the uppermost black solid line.
According to the figure, the MEGP ψopt exhibits a fast non-
linear increase with decreasing power near δRs → 0 unless
P̃∗ → ∞. Only then is this increase linear, in agreement with
our discussion below Eq. (28). To check our analytical results,
we also calculated the MEGP for simultaneous LD CARs by
a direct brute-force numerical optimization of COP (5). The
figure shows that the obtained numerical results (symbols)
perfectly overlap with our analytical predictions (lines).

In Fig. 5, we show the characteristics of the heat engine
and refrigerator corresponding to the MEGP of the CAR with
�r = �e = 1, depicted in Fig. 4. For P̃∗ → 0, Eqs. (18) to
(20) imply that δR = −1, εopt = εC , and δP = δRs. Similarly,
for P̃∗ → ∞ it follows that δR = δRs, δP = −1, and ηopt =
ηC . When the refrigerator works at the Carnot COP εC , the
dimensionless refrigeration cycle duration τ

opt
r diverges and

-1 -0.75 -0.5 -0.25 0

0

0.1

0.2

0.3
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0.5

FIG. 4. The MEGP of the CAR (21) as a function of the loss
in cooling power δRs for three values 0, 1, and ∞ of the reduced
maximum power of the engine P̃∗. The reduced power P̃∗ increases
from the uppermost dashed line to the lowermost one with �r =
�e = 1. The dot-dashed lines of the same color as the dashed ones
correspond to the same P̃∗ and �r = �e = 10. The two pink solid
lines in the middle depict the upper bound on MEGP (22) for fixed P̃∗

obtained for �r = 0 and �e → ∞. For the top one we took P̃∗ = 1.
The bottom one corresponds to arbitrary P̃∗ � 1/ε∗

+. The bottom
and top black solid lines represent the ultimate lower (�r → ∞,
�e = 0, and arbitrary P̃∗) and upper (�r = 0, �e → ∞, and P̃∗ = 0)
bounds on MEGP (23) (note that the lower bound coincides with
the horizontal axis). MEGP for the CAR obtained using brute-force
numerical optimization of its COP (circles) perfectly agree with the
curves calculated using the analytical formula (21) (lines). Other
parameters taken: εC = 1 and ηC = 1/2.

we have Ne/Nr → ∞, i.e., within one full CAR cycle, there
are infinitely more engine cycles than refrigeration cycles. An
opposite situation occurs when the engine works at Carnot
efficiency.

IV. CONCLUSION AND OUTLOOK

We showed that the maximum efficiency at given cooling
power (MEGP) for an absorption refrigerator composed of
simultaneously operating Carnot-type heat engine and Carnot-
type refrigerator (CAR) follows from the MEGPs for the
internal heat engine and refrigerator. We applied these general
findings to low-dissipation (LD) simultaneous CARs, where
the internal devices work in the LD regime and the corre-
sponding expressions for MEGPs are known [25,44]. We used
the resulting cumbersome analytical formula for the MEGP
for derivation of concise expressions for upper and lower
bounds on the MEGP for the LD CARs. We also investigated
the behavior of the MEGP close to the maximum power.
Unless the ratio of maximum powers of the internal engine
and the refrigerator diverges, a slight decrease in power of the
LD CAR leads to a fast nonlinear increase in the MEGP gener-
ically observed in heat engines [25]. Otherwise, the increase
in the MEGP is linear as can be observed in LD refrigerators
[44].

In the LD approximation, the detailed dynamics of the
system in question determines the so-called irreversibility
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FIG. 5. Top: Characteristics of the internal refrigerator corresponding to the MEGP for the CAR depicted in Fig. 4 for �r = �e = 1
as functions of the loss in output power of the CAR, δRs. (a) The loss in output power δR, (b) MEGP εopt, (c) the optimal dimensionless
cycle duration τ opt

r , defined in Eq. (C7), and (d) the optimal relative duration of the hot isotherm αopt
r , defined below Eq. (C7). Bottom: The

corresponding characteristics of the internal heat engine. (e) The loss in output power δP, (f) MEGP ηopt, (g) the optimal dimensionless
cycle duration τ opt

e defined in Eq. (B8), and (h) the optimal relative duration of the hot isotherm αopt
e , defined above Eq. (B1). Colors of the

individual lines, marking the used value of the reduced maximum power P̃∗, are the same as those used in Fig. 4 (red dashed, blue dotted,
green dash-dotted corresponds to reduced powers 0, 1, and ∞, respectively). The vanishing reduced power corresponds to the Carnot COP
of the refrigerator εopt = εC , where τ opt

r diverges, and arbitrary αopt
r . Panels (c) and (d) thus show no red dashed lines. Similarly, diverging

P̃∗ corresponds to the Carnot efficiency of the engine ηopt = ηC , and thus we show no green dash-dotted lines in panels (g) and (h). Even
though the depicted parameters for the heat engines were obtained using the approximation (B13), they are almost indistinguishable from
exact numerical results (circles). Slight deviations can be observed for αopt

e only.

parameters. The MEGP for simultaneous LD CARs, derived
in this paper, is as function of power measured in units of
the maximum power, which depends on the irreversibility
parameters. Using a specific dynamical model, the maximum
power can be further optimized with respect to theses param-
eters, allowing to derive expressions for maximum power at
fixed maximum efficiency. For LD heat engines and refriger-
ators, such an optimization was performed in Refs. [58,59]
using the geometrical approach to thermodynamics generi-
cally valid close to equilibrium. While the dependence of
maximum power on irreversibility parameters in these two
settings is obvious, the situation in LD CARs is slightly dif-
ferent since their maximum power is controlled by both the
maximum power of the internal refrigerator and that of the
internal heat engine. Equations (7) and (8) suggest that the
power of the CAR attains its maximum if one maximizes the
COP of the internal refrigerator, its maximum power, and also
the maximum power of the heat engine. However, detailed
investigations in this direction will be a subject of our future
work.

The presented LD model is constructed in an idealized
fashion and the resulting MEGP can serve as a (loose) upper
bound for real-world absorption refrigerators. Such bounds
are thus nowadays available for heat engines [25], refriger-
ators [44], and absorption refrigerators. It remains to derive
them for heat pumps, which will also be a subject of our future
work. For a numerical study of the MEGP for absorption
heat pumps, we refer to Ref. [46]. Furthermore, it would be
interesting to investigate MEGPs for LD systems in context
of the stability analysis described in Refs. [8,60–62].

Originally, the finite-time performance of heat engines was
studied using the endoreversible model [63]. While efficien-
cies at maximum power for the endoreversible and LD models
are described by similar expressions [64], to the best of our
knowledge, no results for MEGP for endoreversible models
are known. As a future research project, it would be also in-
teresting to investigate to what extent the apparent equivalence
between the two models holds concerning the MEGP.
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APPENDIX A: MEGP FOR ALTERNATING CARS

For alternating CARs [45], the internal heat engine and re-
frigerator do not operate simultaneously. The duration of one
cycle of the alternating CAR is thus given by the sum te + tr
of the durations of the engine and refrigerator. According to
the first law of thermodynamics, the output work of the heat
engine per cycle equals to the input work of the refrigerator,
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i.e., We = Wr . The power of the heat engine and the cooling
power of the refrigerator then read

P = We

te + tr
= P

1 + �
, (A1)

R = Qc

te + tr
= R

1 + 1/�
, (A2)

where � ≡ tr/te measures the ratio of durations of the two
internal cycles. The first law in the form of Eq. (6) implies
that these two powers are interconnected through the COP ε

of the refrigerator

P = R
ε(R)

. (A3)

Using Eqs. (A2) and (A3), the COP (5) can be rewritten as

ψ (R) = ε(R)η(P)

= ε(R,�)η(P,�)

= ε(R,�)η

( R
ε(R,�)

,�

)
, (A4)

where the notation ε(R) = ε[R(1 + 1/�)] ≡ ε(R,�) high-
lights that both the efficiencies now explicitly depend on the
ratio of the durations of the internal cycles � through the
definitions (A1) and (A2) of R and P . Consequently, in the
optimization of COP (A4) with respect to the durations of the
refrigeration and engine cycles, the engine and refrigeration
efficiencies cannot be optimized independently as it was done
in Eq. (12). The optimization of COP for alternating CARs is
thus more complicated than that for simultaneous CARs and
the knowledge of MEGPs for the internal engine and refrig-
erator might not be sufficient for determination of MEGP for
alternating CARs.

APPENDIX B: MEGP FOR LD HEAT ENGINES

In this Appendix, we derive the expression ηopt for MEGP
for LD heat engines. The derivation is slightly different from
that used in Ref. [25].

Introducing the relative duration of the hot isotherm, αe =
th/te, in Eqs. (13) and (14), the power output and efficiency of
the LD heat engine can be expressed as

P = We

te
= (Th − Tm)�Se

te
− α�me + (1 − α)�h

α(1 − α)t2
e

, (B1)

η = We

Qh
= ηC

1 + Tm�Stot,e/(Pte)
, (B2)

where

�Stot,e = −Qh

Th
+ Qme

Tm
= �h

thTh
+ �me

tmeTm
� 0 (B3)

is the total entropy production per engine cycle.
Maximizing the power (B1) with respect to α and te yields

[15]

α∗
e =

√
�e

1 + √
�e

, (B4)

t∗
e = 2

(√
�h + √

�me
)2

ThηC�Se
, (B5)

P∗ = 1

4

(
ThηC�Se√
�h + √

�me

)2

, (B6)

η∗ = ηC
(
1 + √

�e
)

2 + √
�e(2 − ηC )

, (B7)

where �e = �h/�me is the so-called irreversibility ratio
and ηC = 1 − Tm/Th denotes Carnot efficiency. Now we use
Eqs. (B4) and (B5) to define the coordinate transformation

τe = te
t∗
e

− 1 ∈ [−1,∞], (B8)

a = αe

α∗
e

− 1 ∈
[
−1,

1

α∗
e

− 1

]
, (B9)

which reduces the number of variables in the problem [25].
The point of maximum power (B6) corresponds to δP = 0
(17) and τe = a = 0. The (relative) loss in power (17) and
efficiency (B2) in these new coordinates read

δP = a2
√

�e

(1 + a)(a
√

�e − 1)(1 + τe)2
−

( τe

1 + τe

)2
, (B10)

η = (1 + √
�e)ηC

a
√

�e − 1

× 2a2
√

�e(1 + τe) + (a
√

�e − a − 1)(1 + 2τe)

2(1 + a)(1 + √
�e)(1 + τe) − ηC

√
�e

.

(B11)

Solving Eq. (B10) with respect to the dimensionless cycle
duration τe, we find two roots

τe = −δP

1 + δP
±

√
δP(1 + a − a

√
�e) + a2

√
�e

(1 + δP)
√

(1 + a)(a
√

�e − 1)
. (B12)

Since longer cycles in general allow for larger efficiencies,
we thus take the root with the positive sign. Substituting it
into Eq. (B11), evaluating the condition ∂η/∂a|a=aopt = 0 for
maximum efficiency, and expanding it up to the fourth order
in a, we find

∂η

∂a

∣∣∣∣
a=aopt

=
4∑

n=0

bnan + O(a5) = 0, (B13)

where the coefficients bn are complicated functions of δP,
�e, and ηC . Equation (B13) for the optimal value aopt of the
parameter a can be solved exactly [65]. The corresponding
optimal value of τ

opt
e follows by substituting the resulting aopt

for a in Eq. (B12).
Substituting the obtained expressions for aopt and τ

opt
e for

a and τ into Eq. (B11), we obtain a lengthy but manageable
(e.g., by using software for symbolic manipulation such as
MATHEMATICA) formula for the MEGP for LD heat engines

ηopt = ηopt (δP, �e, ηC ). (B14)

Even though this results was obtained using the approxima-
tion (B13), we tested that the resulting approximate MEGP
(B14) and the exact MEGP obtained numerically are indis-
tinguishable within the numerical precision (the measured
absolute error is on the order of 10−7). Furthermore, the
expression (B14) yields exact lower (�e = 0) and upper
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(�e → ∞) bounds on the MEGP of LD heat engines [25]

ηC

2
(1 + √−δP) � ηopt � ηC (1 + √−δP)

2 − ηC (1 − √−δP)
. (B15)

APPENDIX C: MEGP FOR LD REFRIGERATORS

In this Appendix, we review the derivation of the expres-
sion εopt for MEGP for LD refrigerators given in Ref. [44].

The COP of the refrigerator is given by

ε = Qc

Wr
= εC

1 + εCTm�Stot,r/(Rtr )
, (C1)

where

�Stot,r = −Qc

Tc
+ Qmr

Tm
= �c

tcTc
+ �mr

tmrTm
� 0 (C2)

is the total entropy production per refrigeration cycle. Sub-
stituting Eq. (15) into Eq. (4) and maximizing the resulting
expression with respect to tmr and tc gives [44,66]

t∗
c = t∗

r = 2�c

Tc�Sr
, (C3)

R∗ = (Tc�Sr )2

4�c
. (C4)

At maximum power conditions, the duration of the cold
isotherm t∗

c thus equals the duration of the entire cycle t∗
r ,

which should be understood in the sense that the hot isotherm
is infinitely faster than the cold one. The corresponding COP
of the internal refrigerator at maximum power ε∗ reads

ε∗
− = 0 for �r > 0, (C5)

ε∗
+ = εC

2 + εC
for �r = 0, (C6)

where �r = �mr/�c is the so-called irreversibility ratio and
εC = Tc/(Tm − Tc) denotes Carnot COP. The COP at maxi-
mum power ε∗ thus exhibits a discontinuity at �r = 0. Using
Eq. (C3), we define the dimensionless cycle duration as

τr = tr
t∗
r

− 1 ∈ [−1,∞]. (C7)

Introducing further the relative duration of the hot isotherm
αr = tmr/tr , we find from Eqs. (4), (17), and (C7) that

αr = 1 + 1

(1 + δR)τ 2
r + 2δRτr + δR − 1

. (C8)

Since αr by definition satisfies 0 � αr � 1, the above formula
makes sense only if

−
√−δR

1 + √−δR
� τr �

√−δR

1 − √−δR
. (C9)

The COP (C1) in these new variables reads

ε = τ 3
r + A1,3τ

2
r + A0,3τr + A0,1

−τ 3
r + A1/ε∗+,−3τ 2

r + B3,4,1τr + B1,2,−1
, (C10)

with Ak,l = (k + lδR)/(1 + δR) and Bk,l,m = [−k(δR)2 +
(l/εC + 1 + �r )δR + m�r]/(1 + δR)2. The maximum
of COP (C10) can be determined by the condition
∂ε/∂τr |τr=τ

opt
r

= 0, which explicitly reads

(
τ opt

r

)4 + Ã
(
τ opt

r

)3 + B̃6+3�̃r ,2+2�̃r ,−�̃r

(
τ opt

r

)2

+ B̃4+3�̃r ,−2�̃r ,−�̃r
τ opt

r + B̃1+�̃r ,−2�̃r ,0 = 0. (C11)

Above, the coefficients Ã = [(4 + �̃r )δR + �̃r]/(1 + δR) and
B̃k,l,m = (kδR2 + lδR + m)/(1 + δR)2 depend on �r and εC

only through the combination �̃r = �r/( 1
εC

+ 1).
The quartic equation (C11) has four roots and can be

analytically solved [44,65]. The optimal dimensionless cycle
duration τ

opt
r = τ

opt
r (δR, �r, εC ) is determined by the only

physically reasonable root, located in the interval (C9). Sub-
stituting it for τ in Eq. (C10), we obtain a lengthy but
manageable (e.g., by using software for symbolic manipula-
tion such as MATHEMATICA) exact expression for εopt,

εopt = εopt (δR, �r, εC ). (C12)

It turns out to be bounded by the inequalities

0 � εopt � εC (1 + √−δR)

2 + εC (1 − √−δR)
≡ ε

opt
+ , (C13)

where the lower bound corresponds to �r → ∞ and the upper
bound to �r = 0.
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3 Optimal protocols for Brownian systems

Brownian motion can be traced to the observations by Robert Brown in 1827.

While examining pollen grains suspended in water under a microscope, Brown

made an intriguing observation. He noticed that the particles displayed erratic

and jiggling movements, which seemed to occur spontaneously and independently

of external forces or deliberate motion. His observations sparked scientific inter-

est and triggered further investigations into the phenomenon. Initially, there were

various speculations about the cause of this random motion, including theories

involving electric or magnetic interactions. The true theoretical explanation for

Brownian motion was provided by Albert Einstein in 1905 [90], who formulated a

mathematical model that described Brownian motion as the result of random col-

lisions between particles and fluid molecules. Einstein’s work on Brownian motion

played a crucial role in confirming the existence of atoms and molecules, which

was still debated at the time. Furthermore, his theoretical framework provided a

quantitative understanding of the random behavior observed in Brownian motion,

validating the molecular kinetic theory. Since then, Brownian motion has become

an important concept in physics, mathematics, and other scientific disciplines. It

serves as a fundamental example of stochastic processes in areas such as statistical

physics, biology, and economics.

A useful tool to model Brownian motion is the Langevin equation that describes

the motion of a particle in a fluid under the influence of both deterministic and

random forces

mẍ︸︷︷︸
inertial force

= − ▽V (x)︸ ︷︷ ︸
potential force

− γẋ︸︷︷︸
viscous force

+
√

2γkBTη(t)︸ ︷︷ ︸
random force

, (15)

where V is the external potential, m (x) is the mass (position) of the particle, t is

time, γ is the friction coefficient that accounts for the damping effect of the fluid, T

is temperature, kB is Boltzmann’s constant, and η(t) represents a delta-correlated

stationary Gaussian process with zero-mean, i.e., ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ =

δ(t − t′), which means that it has zero average and vanishing correlations at

56



different times. The Langevin equation (15) is a stochastic version of Newton’s

second law of motion, where the random force term accounts for the random,

unpredictable forces acting on the particle due to the thermal motion of the fluid

molecules. The inertial force, known as inertial resistance or inertial effect, is a

force that arises from the Brownian particle’s tendency to resist changes in its

state of motion. It is related to Newton’s first law of motion, which states that an

object at rest will remain at rest, and an object in motion will continue in motion

with the same velocity unless acted upon by an external force. The viscous force,

known as viscous drag or simply viscosity, is a type of resistance that opposes the

motion of the Brownian particle through the fluid.

Typically, the Langevin equation (15) is investigated in two regimes: the

overdamped regime and the underdamped regime. The difference between over-

damped and underdamped Brownian motion lies in the relative strengths of the

damping and inertial forces acting on the particle. In overdamped regime, the

damping force dominates over the inertial force, which means that the particle

experiences strong resistance from the surroundings, causing it to move slowly and

gradually approach a steady state. The particle thus quickly reaches equilibrium

without exhibiting significant oscillations or fluctuations. On the other hand,

underdamped regimes occurs when the inertial force is comparable or stronger

than the damping force. In this case, the particle experiences less resistance from

the medium and is more affected by the inertia. The particle moves rapidly,

exhibiting oscillatory behavior and undergoing periodic fluctuations around the

equilibrium position. The inertia of the particle allows it to move more freely. In

the overdamped limit, the inertial force term is so much smaller than the other

three that it can be eliminated adiabatically from the the full inertial Langevin

equation (15),

γẋ︸︷︷︸
viscous force

= − ▽V (x)︸ ︷︷ ︸
potential force

+
√
2γkBTη(t)︸ ︷︷ ︸

random force

, (16)

Motivated by the improvements in micromanipulation, e.g., optical tweezers,

which allows building engines based on a single particle, and the desire to bet-

ter understand the performance of thermodynamic systems on the microscale,
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FIG. 3. Top: engines based on a single particle [41]. Bottom: real equipment of optical
tweezers.

researchers started to derive finite-time optimal protocols. Optical tweezers (orig-

inally called single-beam gradient force trap) are scientific instruments that use

a highly focused laser beam to hold and move microscopic and sub-microscopic

objects like atoms, nanoparticles and droplets, in a manner similar to tweezers,

as shown in Fig. 3. If the object is held in air or vacuum without additional

support, it can be called optical levitation. Most of available experimental setups

with optical tweezers are designed to control colloids in water. These systems are

well described by the overdamped Langevin dynamics (16). Motivated by these

experiments, Schmiedel and Seifert [24, 53] derived optimal protocols for engines

based on a colloidal particle embedded in water (acting as the heat bath).

Let us now briefly review the paradigmatic model of stochastic thermody-
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FIG. 4. The operational cycle of heat engines based on a particle diffusing in a time-
dependent potential [12, 24]. The filled blue curve represents the probability density for
the position of the particle. The black parabola stands for the potential at the beginning
of the individual branches.

namics developed by Schmiedel and Seifert [24]. In their work, they derived the

maximum-power protocol of a Carnot-type engine based on an overdamped Brow-

nian particle diffusing in a harmonic potential, V (x) = λ(t)x2/2, where λ(t) is the

stiffness describing the strength of the potential that can be controlled experimen-

tally. The system dynamics is described by Eq. (16). Denoting as σ(t) ≡ ⟨x2(t)⟩
the position variance of the particle, one get its time evolution from (16),

σ̇ = −2µλσ + 2µT, (17)

where µ = 1/γ is the mobility of the particle. Note that the Langevin equation

can be reformulated as the Fokker–Planck equation that governs the probability

distribution of the position of the particle, from which we can also obtain the

equation of motion (17) in Ref. [24]. The optimization is performed in two steps.

First, fixing the time intervals of the isotherms of the cycle ti ≤ t ≤ tf , they

optimize the work done during the two isotherms assuming fixed initial (σi) and

final (σf ) position variances

W [λ(t)] =

∫ tf

ti

dtλ̇
σ

2

=
1

4µ

∫ tf

ti

dt
σ̇2

σ
− 1

2
[lnσ]|tfti +

1

2
[λσ]|tfti

. (18)
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This allows to find the optimal periodic response of the system [σ∗(t)] during the

cycle, which in turn leads to the corresponding optimal protocol [λ∗(t)] via (17).

The resulting optimal protocol λ∗(t) involves discontinuities at the beginning and

at the end of the isotherms, which can be considered as two infinitely fast adiabatic

branches. The transferred heats between the system and the reservoirs during the

two optimized isotherms read

Qh = Th

[
1

2
ln

σf

σi

− (σf − σi)
2

µThth

]
, (19a)

Qc = Tc

[
1

2
ln

σf

σi

+
(σf − σi)

2

µTctc

]
, (19b)

which agree with Eqs.(3a) and (3b). This means that the Brownian heat engine

is a microscopic example of the low-dissipation model. We reiterate that the

Brownian heat engine can be arbitrarily far from equilibrium. Finally, Schmiedel

and Seifert [24] optimized the power P = (Qh −Qc)/(th + tc) by using Eqs. (19a)

and (19b) with respect to the durations th and tc.

We stress that during the optimization the boundary values σi and σf are fixed.

This condition was adopted in most of the subsequent work [25, 91, 92]. However,

as we can see from Eq. (17), modulating the stiffness λ(t) defines the evolution

of the response σ(t). Conversely, a given response trajectory σ(t) is translated

to the initial control λ(t). This implies that fixing the boundary values of σ(t)

(constrained response) is non-trivially related to fixing the boundary values of λ(t)

(constrained control). In what follows, we show that the results of optimization

strongly depend on where the boundary conditions are imposed [9, 10, 43, 93].

From an experimental point of view, one should thus better impose known and

equipment-motivated constrains on the control variable λ(t). Below we first derive

optimal protocols for finite-time heat engines under constrained control. Then, we

show how to generalize the results of [24] to the multidimensional case, perhaps

with a limited control over some of the degrees of freedom.
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3.1 Interpretation of the publications

3.1.1 Constrained control

In this work [9], we considered a finite-time stochastic heat engine described

by a periodically scaled Hamiltonian with the scaling parameter λ

H(x, t) = λ(t)f(x), (20)

where f(x) represents an arbitrary function of the system degrees of freedom

x. This class of Hamiltonian generalizes the well-known “breathing” parabola

model [24] for a Brownian particle subject to the harmonic potential H(x, t) =

λ(t)x2/2 [thus f(x) = x2/2]. Furthermore, it includes semiclassical two-level (or

multilevel) systems with controlled gaps between the individual energy levels [94]

and quantum spins, where the control parameter is an externally controlled mag-

netic field [95]. We assume that the system is coupled to a reservoir at tempera-

ture T (t) with the same period tp as λ(t). Motivated by experimental praxis, our

control parameters are thus λ(t) and T (t) fulfilling

λ(t) ∈ [λ−, λ+], T (t) ∈ [T−, T+], (21)

and we aim to find the optimal time variation for them yielding maximum effi-

ciency and maximum power.

Denoting as σ(t) ≡ ⟨f [x(t)]⟩ the average response of the system, the maximum-

efficiency protocol can be evaluated in the λ − σ diagram shown in Fig. 5. The

starting point is the definitions of work and heat in stochastic thermodynamics.

Per cycle, the engine transforms the fraction

η =
Wout

Qin

= 1− Qout

Qin

(22)

of the heat

Qin =

∫ tp

0

λ(t)θ[dσ(t)]dσ(t) (23)
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λ+

λ−

σ

λ

σ− σ+

Qout

Qin

FIG. 5. The maximum-efficiency protocol under the constraints (21) (dashed line) com-
pared to a suboptimal cycle (dotted line) [9].

from the heat source into output work

Wout = −
∫ tp

0

σ(t)dλ(t), (24)

and dumps the remaining heat Qout = Qin − Wout =
∫ tp
0

λ(t)θ[−dσ(t)]dσ(t) into

the heat sink (The Heaviside step function θ(•) = 1 when the heat flows on average

into the system, i.e., dσ > 0). Maximizing η (22) is equivalent to minimizing the

ratio Qout/Qin. From the definitions of Qin and Qout, it is not very difficult to

find that this corresponds to the rectangle in Fig. 5. This means that the optimal

variation of λ(t) is piecewise constant. We noted that a similar optimization

problem is often solved in classical thermodynamics showing that the maximum

efficiency of an equilibrium cycle under the constraint T (t) ∈ [T−, T+] on the

bath temperature is the Carnot efficiency. However, in our case, the system

can be arbitrarily far from equilibrium. Unlike the piecewise constant variation

of λ(t) yielding the maximum efficiency, the variation of T (t) corresponding to

maximum efficiency in our work [9] has more freedom. Actually, we provided basic

conditions that T (t) should follow guaranteeing the proper operation of the engine.

However, we adhered to the piecewise constant variation of T (t), because it yields

the maximum output work. Altogether, the maximum-efficiency finite-time cycle

under the constraints (21) is both Carnot [piecewise constant T (t)] and Otto

[piecewise constant λ(t)] cycles. Furthermore, when the variation of λ is small
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and the system is close to equilibrium at the ends of the isotherms, we provided a

similar geometric proof showing that the maximum-efficiency protocol (piecewise

constant variation of both λ and T ) also yields maximum output power. Finally,

we provided numerical evidence supporting our results by using an overdamped

Brownian heat engine described by Eqs. (16) and (17) [24].

We stress that our results of maximum-efficiency and maximum-power proto-

cols are valid for arbitrary dynamics. This means that they can be applied to

anything driven cyclically and described by the factorized structure of the Hamil-

tonian (20). However, they in general cannot be applied to molecular motors

operating in steady state (thus not driven cyclically). Furthermore, macroscopic

systems are usually described by much more complicated Hamiltonians. More

importantly, for macroscopic systems one usually cannot control the full Hamil-

tonian but rather some collective degree of freedom such as volume or pressure.

Nevertheless, our results might apply for these systems if macroscopic internal

energy would have functional form of our Hamiltonian (20).

3.1.2 Constrained response

In this work [43], we imposed the boundary conditions on the system state

σ(t), as done in Ref. [24, 53]. However, we generalized the derivation to the

multidimensional case. To this end, we considered a system of N overdamped

Brownian particles described by the position vector x and mutually interacting

via the time-dependent potential

V (x, t) =
1

2
x⊺λ(t)x . (25)

Each particle i = 1, . . . , N might have a different number of degrees of freedom di,

i.e. x ∈ RM , where M =
∑N

i=1 di. The potential (25) accounts for both self-energy

of the individual particles and interactions between the particles. The stiffness

matrix λ ≥ 0 is symmetric. Assuming that all the particles have the same friction
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coefficient γ, the system dynamics obeys the set of Langevin equations [96]

γẋ = −λx+
√
2γkBTη , (26)

where the Gaussian noise η obeys ⟨η⟩ = 0. Its components ⟨ηi(t)ηj(t′)⟩ = δijδ(t−
t′), and T is the temperature of the thermal environment, which we assume is

constant. The time evolution of the covariance matrix σ(t) = ⟨xx⊺⟩ (t) can be

obtained from Eq. (26) and reads Σ̇ = ⟨xẋ⊺⟩+ ⟨ẋx⊺⟩

σ̇(t) = −λ(t)σ(t)− σ(t)λ(t) + 2T , (27)

where σ̇ = ⟨xẋ⊺⟩ + ⟨ẋx⊺⟩. Following Refs. [24, 53], we expressed the work input

of a finite time transformation of duration τ by using (27) as

W =
1

2

∫ τ

0

dt Tr[λ̇σ]

=
1

2
Tr[λσ]

∣∣∣τ
0
− T

2
log detσ

∣∣∣τ
0
+

1

2

∫ τ

0

dt Tr
[∫ ∞

0

dν e−νσσ̇e−νσσ̇

]. (28)

This allowed us to find the optimal variation of the covariance matrix [σ∗(t)] and

thus the corresponding optimal protocol [λ∗(t)] via Eq. (27).

Then, we further generalized the paradigmatic case of the potential (25) to

a more general case of the quadratic potential with time-dependent center z(t),

i.e. V (x, t) = 1
2
[x− z(t)]λ(t)[x− z(t)]. We illustrated our findings and high-

lighted the distinction between partial and global control by performing an anal-

ysis on a system involving two interacting particles and a particle confined in a

2-dimensional squeezing potential, each subject to different control limitations.

Here partial control means that only some of the elements of the matrix λ and

the vector z can be controlled. This is a frequently encountered scenario in ex-

perimental studies involving complex many-body systems.

64



3.2 Outlook

As a natural extension of our work, we plan to investigate optimal perfor-

mance of underdamped Brownian heat engines under constrained control, i.e.,

fixing the boundary values of the experimentally motivated parameters instead

of the system state. We plan to find the corresponding maximum-efficiency and

maximum-power protocols, and compare the performance to the known results

in the situation when boundary conditions are imposed on the system state [25]

and also to our results obtained using the ‘overdmaped’ (without kinetic energy)

Hamiltonian (20). We also plan to generalize the harmonic potential (20) to more

complicated forms, study the optimal performance under constrained control, and

compare the obtained results to those under constrained response.
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We optimize finite-time stochastic heat engines with a periodically scaled Hamiltonian under experimentally
motivated constraints on the bath temperature T and the scaling parameter λ. We present a general geometric
proof that maximum-efficiency protocols for T and λ are piecewise constant, alternating between the maximum
and minimum allowed values. When λ is restricted to a small range and the system is close to equilibrium
at the ends of the isotherms, a similar argument shows that this protocol also maximizes output power. These
results are valid for arbitrary dynamics. We illustrate them for an overdamped Brownian heat engine, which can
experimentally be realized using optical tweezers with stiffness λ.

DOI: 10.1103/PhysRevResearch.4.043130

I. INTRODUCTION

The unprecedented improvement in experimental control
over microscopic Brownian [1] and quantum systems [2–4]
has induced a revolution in the study of heat engines [5,6].
It aims to generalize equilibrium and finite-time thermody-
namics [7–15] to the nanoscale, where thermal and quantum
fluctuations render thermodynamic variables such as work
and heat stochastic [16]. Intense effort is devoted to un-
cover optimal performance of stochastic heat engines [16–41].
However, optimal control protocols are only known under
approximations of fast [34–36] or slow [28,37–41] driving,
or for specific microscopic models: engines based on over-
damped Brownian particles in harmonic [24] or log-harmonic
[42] potential, and underdamped harmonic Brownian heat
engines [43]. Furthermore, most of these exact results are
obtained under constraints on the state of the working medium
[44], instead of experimentally motivated constraints on the
control parameters [45,46]. An exception is Ref. [47], show-
ing that reaching maximum efficiency of slowly driven cyclic
heat engines requires control over the scaling of the full
Hamiltonian to avoid heat leakages.

*zhuolinye@foxmail.com
†viktor.holubec@mff.cuni.cz

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In this paper, we optimize finite-time thermodynamic cy-
cles under constraints on control parameters such as trap
stiffness of optical tweezers λ and bath temperature T . We
show that, different from constraining the response such as
the width σ of the phase distribution, constraining the con-
trol allows for surprisingly simple and general derivation of
maximum-efficiency and maximum-power protocols. Besides
other stark differences, for constrained control of Brownian
heat engines, these protocols significantly outperform the pro-
tocol optimized for power and efficiency under constraints
on σ [24].

The paper is organized as follows. In Sec. II, we introduce
the considered setup with a periodically scaled Hamilto-
nian under experimentally motivated constraints. In Sec. III,
we derive the corresponding maximum-efficiency protocol.
In Sec. IV, we prove that the maximum-efficiency protocol
yields, under certain conditions, also maximum output power.
In Sec. V, we present a case study of optimization of power
and efficiency for constrained control by considering a spe-
cific overdamped Brownian heat engine. Besides illustrating
the general results derived in Secs. III and IV, we provide
numerical evidence that the maximum-power protocol is, in
this case, piecewise linear. We conclude in Sec. VI.

II. SETUP

Following Ref. [47], we assume that the Hamiltonian of the
system that serves as a working medium of the stochastic heat
engine is of the form

H (x, t ) = λ(t ) f (x), (1)

2643-1564/2022/4(4)/043130(12) 043130-1 Published by the American Physical Society
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where the control parameter λ(t ) periodically expands and
shrinks the energy spectrum in time, and f (x) is an arbitrary
function of the system degrees of freedom x such that the
equilibrium partition function Z (t ) = ∫

dx exp[−H (x, t )/
(kBT )] is finite for all kBT � 0 (kB denotes the Boltzmann
constant). This class of Hamiltonians generalizes the well-
known “breathing” parabola model [24] for an overdamped
particle trapped in a parametrically driven harmonic potential.
It also includes semiclassical two-level (or multilevel) systems
with controlled gaps between the individual energy levels
[16], and quantum spins, where the control parameter is an
externally controlled magnetic field [17].

We connect the system to a heat bath and periodically alter
its temperature T (t ) with the same finite period tp as λ(t ). The
parameters under experimental control are thus λ(t ) and T (t )
and our aim is to find optimal tp-periodic protocols for them
under the experimentally motivated constraints [48]

λ(t ) ∈ [λ−, λ+], T (t ) ∈ [T−, T+]. (2)

III. MAXIMUM-EFFICIENCY PROTOCOL

Our first main result is a general geometric proof
that the maximum-efficiency finite-time cycle under the
constraints (2) is a Carnot-Otto cycle composed of two
isotherms/isochores interconnected by two adiabats. The
maximum-efficiency protocol {T (t ), λ(t )} is thus piecewise
constant:

{T (t ), λ(t )}η =
{{T+, λ+}, 0 < t < t+,

{T−, λ−}, t+ < t < tp.
(3)

And the maximum efficiency is given by

η = 1 − λ−
λ+

. (4)

The proof relies just on the definition of heat and it is thus
independent of the details of the system dynamics, including
the times t+ and tp. It holds both for situations when the
heat bath is memoryless (Markovian) and non-Markovian.
The nonequilibrium dynamics of the system communicating
with a Markovian bath can be described by Fokker-Planck or
master equations for the probability density for x [49]. Except
for a few exactly solvable settings [16,49], these equations are
usually hard to solve analytically for non-quasi-static time-
dependent protocols. However, in the non-Markovian case,
a corresponding closed deterministic description might not
be available at all [50]. Then one has to resort to stochastic
descriptions, such as a generalized Langevin equation, making
even a numerical optimization challenging. The derivation
also holds in situations with a nonequilibrium bath, such as in
recently intensely studied cyclic active Brownian heat engines
[51–54].

Let us now derive Eqs. (3) and (4). Under reasonable as-
sumptions, any periodic variation of the control parameters
eventually induces a periodic average response of the system,
σ (t ) = 〈 f [x(t )]〉. This ensemble average is a functional of
T (t ) and λ(t ) specified by dynamical equations of the system.
Due to the factorized structure of the Hamiltonian (1), the
average internal energy of the system 〈H (x, t )〉 is given by
λ(t )σ (t ). Decomposing its infinitesimal change into a com-
ponent corresponding to the external variation of the control λ

λ+

λ−

σ

λ

σ− σ+

Qout

Qin

FIG. 1. The maximum-efficiency protocol (3) under the con-
straints in Eq. (2) (dashed line) compared to a suboptimal cycle
(dotted line).

(work) and the rest (heat) [5,6], it follows that output work and
input heat increments are given by đWout (t ) = −σ (t )dλ(t )
and đQ(t ) = λ(t )dσ (t ), respectively. Per cycle, the engine
transforms the fraction

η = Wout

Qin
= 1 − Qout

Qin
(5)

of the heat

Qin =
∫ tp

0
λ(t )θ [dσ (t )]dσ (t ) (6)

from the heat source into output work

Wout = −
∫ tp

0
σ (t )dλ(t ), (7)

and dumps the remaining heat Qout = Qin − Wout =∫ tp
0 λ(t )θ [−dσ (t )]dσ (t ) into the heat sink. [The Heaviside

step function θ (•) = 1 when the heat flows on average into
the system, i.e., dσ > 0.]

Consider now the λ-σ diagram of the cycle depicted in
Fig. 1. We seek the shape of the cycle which yields maxi-
mum efficiency η under the constraints (2).1 The cycle must
run clockwise to secure that Qin > Qout. Next, we note that
maximizing η amounts to minimizing the ratio Qout/Qin. For
given boundary values σ± of σ , this is obviously achieved by
setting λ = λ+ when dσ > 0 and λ = λ− when dσ < 0. In
such a case, Qin = λ+�σ , Qout = λ−�σ , and the efficiency
is given by Eq. (4). The increase in the system response
�σ = σ+ − σ−, which can be a complicated functional of the
protocol {T (t ), λ(t )}, canceled out. Equation (4) is thus valid
for arbitrary σ±, and it represents the maximum efficiency of
a heat engine based on Hamiltonian (1) under the constraints
(2). The corresponding maximum-efficiency protocol for λ

forms a rectangle ranging from λ− to λ+ in the λ-σ diagram
regardless the cycle duration and dynamical equations of the

1A similar optimization problem is often solved in courses on
classical thermodynamics to show that maximum efficiency of an
equilibrium cycle under the constraint T (t ) ∈ [T−, T+] on the bath
temperature is the Carnot efficiency. However, in our case, the system
can be arbitrarily far from equilibrium.
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system. The only constraint on these control parameters is that
the cycle runs in the λ-σ diagram clockwise.

When not driven, a system out of equilibrium relaxes
towards the equilibrium state corresponding to the instanta-
neous values of the fixed control parameters. For cyclically
varied control parameters, the system can no longer relax to
equilibrium and its nonequilibrium state “lags behind” the
quasistatic cycle specified by the instantaneous values of the
control parameters. In our setting, σ (t ) lags behind σ eq(t ) =∫

dx f (x) exp{−λ(t ) f (x)/[kBT (t )]}/Z (t ). In Appendix B 1,
we show that σ eq(t ) is a monotonically increasing func-
tion of T/λ. Denoting as t+ the duration of the λ = λ+
branch, clockwise cycles with �σ > 0 are thus obtained for
temperature protocols T (t ) which obey (i) Ṫ (t ) � 0 when
λ = λ+, (ii) Ṫ (t ) � 0 when λ = λ−, and (iii) T (t+−)/λ+ >

T (tp−)/λ−, where T (t−) ≡ limε→0 T (t − |ε|). The last con-
dition implies that the maximum efficiency (4) obeys the
standard second-law inequality η � 1 − T (tp−)/T (t+−) �
1 − T−/T+. It saturates for the “compression ratio” λ−/λ+ =
T−/T+. Even for a finite cycle time tp, output power, in this
case, vanishes because σ eq(t ) becomes constant, yielding an
infinitesimal quasistatic cycle with a vanishing output work.
In the maximum-efficiency protocol (3), we use the specific
protocol for T (t ) that maximizes the upper bound on η. In
Appendix B 1, we argue that this temperature protocol also
maximizes the output work of the engine regardless of λ(t )
because it yields the largest temperate differences between the
bath and the system when they exchange heat. However, we
reiterate that the maximum efficiency (4) can be achieved for
an arbitrary protocol for T (t ) that obeys the above conditions
(i)-(iii). This freedom in T (t ) can be exploited in setups where
precise control of the bath (effective) temperature is difficult,
such as in active Brownian heat engines [52].

The adiabatic branches connecting the isotherms in the
protocol (3) can be realised using several qualitatively differ-
ent approaches [31]. (i) One can disconnect the system from
the heat bath, which might be impractical for microscopic
engines. (ii) One may keep the system in thermal contact
with the bath and vary the control parameters T and λ in
such a way that the response σ does not change [55]. This
approach allows circumventing some of the shortcomings
of overdamped thermodynamics [56], where the heat fluxes
through the momentum degrees of freedom are neglected.
(iii) One can realize the adiabatic branches by changing the
control parameters much faster than the relaxation time of the
response σ [57]. In the specific maximum-efficiency protocol
(3), we employ the last possibility. It minimizes the cycle
time tp and thus maximize the output power P ≡ Wout/tp.
Besides, it allows for a direct comparison with the maximum-
efficiency protocols derived for Brownian heat engines under
constraints on σ [24]. However, other realisations of the adi-
abatic branches yield the same maximum efficiency (4). We
reiterate that also the choice of the durations t+ and tp − t+ of
the isotherms in (3) do not affect the maximum η.

IV. MAXIMUM-POWER PROTOCOL

If the durations of the isotherms are long enough compared
to the relaxation time of the system, i.e., �σ is close to its
equilibrium value, and the compression ratio λ−/λ+ is large,

the maximum-efficiency protocol (3) also yields maximum
output work Wout (7) and power

P = Wout

tp
(8)

under the constrained control (2). This is our second main re-
sult. To prove it, consider the generally unreachable geometric
loose upper bound on the output work max Wout = �λ max
�σ eq = (λ+ − λ−)[σ eq(T+/λ−) − σ eq(T−/λ+)], which fol-
lows from the broadly valid assumption max �σ < max �σ eq

and the insight that Wout is given by the area enclosed
by the cycle in the λ-σ diagram. Expanding max Wout

in �λ yields max Wout = �λ[σ eq(T+/λ+) − σ eq(T−/λ−)] +
O(�λ2). Up to the leading order in �λ and under the con-
dition that the system has relaxed at the ends of the two
isotherms to equilibrium, this upper bound is saturated by
the protocol (3), which completes the proof. We note that
(i) the condition �σ = �σ eq does not mean that the cycle
is slow as the system has to be close to equilibrium at the
ends of the two isotherms only and can be arbitrarily far
from equilibrium otherwise. (ii) This condition allows one
to analytically calculate the whole probability distribution for
the output work regardless of additional details of the system
dynamics [16,58]. Interestingly, for semiclassical systems,
piecewise constant protocols with two or more branches also
maximize output power when the cycle time is much shorter
than the system relaxation time [34,35,59].

Beyond these regimes, Wout and P strongly depend on all
details of the dynamics through σ (t ) and cycle time tp. While
Wout and P are still optimized by the temperature protocol and
the choice of fast adiabats in (3), optimal protocols for λ(t )
under the constraints (2) are no longer piecewise constant and
they have to be identified for each system separately. Similarly
to the derivation of maximum-efficiency and maximum-power
protocols under constraints on the system state [24,42–44],
this often involves functional optimization or extensive nu-
merical work which are both nontrivial tasks.

In the next section, we illustrate the main features of
maximum-efficiency and maximum-power protocols under
constrained control on an engine based on an overdamped
Brownian particle in a harmonic potential. This model de-
scribes experimental realizations of microscopic heat engines
using optical tweezers [57,60,61]. Besides, the corresponding
maximum-efficiency and maximum-power protocols under
the constrained response are known [24], allowing for a di-
rect comparison with our results obtained under constrained
control.

V. CASE STUDY: OVERDAMPED BROWNIAN
HEAT ENGINE

Let us now consider the specific Brownian heat engine
based on an overdamped particle with mobility μ diffusing
in a controlled harmonic potential. The Hamiltonian (1) now
reads H (x, t ) = λ(t )x2/2, with x the position of the particle.
The response of the system σ (t ) = 〈x2/2〉 is proportional to
the position variance and it obeys the first-order differential
equation [16,24,62]

dσ (t )/dt = −2μλ(t )σ (t ) + μkBT (t ). (9)
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TABLE I. Considered classes of protocols with free parameters
a, b, c, d to be determined by the optimization (protocols λpwc and
λS have only two free parameters). The protocols are in general
discontinuous at times t+ and tp. The piecewise constant protocol
λpwc(t ) is a variant of the maximum-efficiency protocol λη(t ) (3),
where λpwc(t ) does not have to reach the boundary values λ− and
λ+. The piecewise linear protocol λpwl(t ) has zero curvature. The
protocol λslow(t ) minimizes the irreversible losses during isothermal
branches under close-to-equilibrium conditions. Such protocols can
be derived for Brownian heat engines with Hamiltonians of the form
λ(t )xn/n (for details, see Appendix C). The protocol λS(t ) maximizes
both power and efficiency under the constraint that σ (0) = σ (tp) ≡ a
and σ (t+) ≡ b [24]. The corresponding response σS(t ) is given by
Eq. (D2). For b = d = 0, λpwl and λslow reduce to λpwc.

λpwc(t ) λpwl(t ) λslow(t ) λS(t )

t < t+ a a + bt a
(1+bt )2

T+
2σS(a,b,t ) −

√
b−√

a
μt+

√
σS(a,b,t )

t > t+ c c + dt c
(1+dt )2

T−
2σS(a,b,t ) +

√
b−√

a
μt−

√
σS(a,b,t )

In Sec. III, we proved that the maximum-efficiency pro-
tocol under the constraints (2) should, in this case, be the
protocol (3). In this section, we illustrate this results by direct
numerical optimization. In addition, we ask which protocol
for λ yields the largest output power under the constraints (2).
Even though the model (9) is exactly solvable [16], the cor-
responding optimal λ(t ) has to be found numerically, e.g., by
the method in Ref. [63]. To keep the optimization transparent,
we instead consider the specific set of families of protocols
for the isothermal strokes in Table I and numerically optimize
over their free parameters. When such classes are chosen
suitably, the resulting suboptimal performance will be close
to the global optimum [64,65]. Besides, we use the protocol
for temperature and adiabatic branches from Eq. (3), and fix
the durations of the two isotherms and thus tp. The durations
can be further optimized once the optimal variation of λ is
known. The solutions to Eq. (9) can involve exponentials of
very large or small numbers, which can lead to numerical
instabilities inducing large losses of precision, and thus they
have to be treated with care. To secure that our solutions are
always precise enough, we have solved Eq. (9) in our analysis
also numerically.

For the protocols in Table I and the temperature protocol in
Eq. (3), we thus numerically optimized the efficiency (5) and
output power (8) as functions of the parameters {a, b, c, d}
under constraints on λ(t ). For constrained response σ (t ), we
additionally verified in Appendix D that the protocol λS ob-
tained from Ref. [24] indeed yields both the maximum power
and maximum efficiency.

The results of optimizing efficiency under the constrained
control are depicted in Fig. 2. For all of the trial protocols from
Table I except for λS the optimal values of parameters b and
d were 0. All these protocols thus collapsed to the piecewise
constant maximum-efficiency protocol λη (3), illustrating our
general theoretical result. Notably, the efficiency achieved by
the maximum-efficiency protocol is significantly larger than
that provided by usage of the protocol λS, which gives maxi-
mum efficiency under constrained response.

0.3 0.5 0.7 0.9
0.2

0.4

0.6

0.8

1

(a)

0.3 0.5 0.7 0.9
0.4

0.6

0.8

1 (b)

FIG. 2. Numerical optimization of the efficiency of the Brownian
heat engine under constrained control verifies that the maximum-
efficiency protocol is given by Eq. (3). (a) Maximum efficiency
and (b) the corresponding power (in units of the ultimate maximum
power P∗

λpwl
for λpwl) as functions of λ−/λ+. All protocols except

for λS perfectly overlap. Parameters used are t+ = t− = 1, kBT+ = 1,
kBT− = 0.25 (thus Carnot efficiency ηC ≡ 1 − T−/T+ = 0.75), λ+ =
0.5, and μ = 1.

Main results of the optimization of output power under
the constrained control are summarized in Fig. 3. (i) With
increasing minimum compression ratio λ−/λ+ allowed by the
constraints (2), maximum power for all considered protocols
in (a) is first constant and then, at an optimal compression
ratio r∗, decreases. The decreasing part corresponds to pro-
tocols which span between the allowed boundary values,
i.e., max λ(t ) = λ(0+) = λ+ and min λ(t ) = λ(t++) = λ−.
At the plateau, the boundary values of the protocols are chosen
within the bounds (2) to keep the optimal compression ratio
r∗. (ii) Values of maximum power obtained for the proto-
cols which have enough free parameters are indistinguishable
within our numerical precision. As the corresponding opti-
mized protocols seem to have minimum possible curvature
λ̈(t ), we conclude that the maximum-power protocol is λpwl.
(iii) Only the protocol λS, optimized for constrained response
σ , yields notably smaller power than other protocols. (iv) In
agreement with our above discussion, for large enough val-
ues of λ−/λ+ � 0.59, the optimized parameters for protocols
λpwc, λpwl, and λslow are b = d = 0, a = λ+, and c = λ−,
reducing them to λη (3). (v) The maximum powers for the
protocols λη and λpwl differ just by 1%.

In Fig. 4, we further show that the relative difference
in maximum power for λpwl and λη is small for a broad
range of values of T−/T+ and t−/t+. From panels (c)–(f) we
conclude that the optimal ratio t−/t+ is between 1 and 2,
which is in agreement with the results of Appendix B 2 b [see
Eq. (B19) below]. Thus, for branch durations that optimize
output power, the relative difference δP in (a) is always below
12%, decreasing with the temperature ratio. These results
indicate that when one can optimize Wout and P over λ−,
the maximum-efficiency protocol (3) often yields almost the
maximum power.

The optimization over λ− is natural for experimental
platforms with limitations on the maximum strength of
the potential only. The maximum power regime of the
maximum-efficiency protocol (3) can be, to a large extend,
investigated analytically. First, assuming again that dura-
tions of the isotherms are long enough that the system is
close to equilibrium at times t+ and tp, we have Wout =
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FIG. 3. Numerical optimization of the output power of the Brow-
nian heat engine illustrates that the maximum-efficiency protocol λη

(3) also yields maximum power when the compression ratio λ−/λ+ is
large and the durations t+ = t− = 1 of the two isotherms are compa-
rable to the relaxation times 1/(2μλ±) for σ . (a) Powers (in units of
the ultimate maximum power P∗

λpwl
for λpwl) and (b) the correspond-

ing efficiencies obtained using λη (3) and the protocols in Table I. For
λ−/λ+ � 0.59 all protocols except for λS coincide. (c) and (d) show
the protocols and the resulting response for λ−/λ+ = 0.4. (e) The
relative differences δX = (Xλpwl − Xλpwc )/Xλpwl of power (X = P)
and efficiency (X = η) for λpwl and λpwc. (f) The optimal values of
parameters b and d for λpwl. We used the same parameters as in Fig. 2.

(λ+ − λ−)[σ eq(T+/λ+) − σ eq(T−/λ−)]. For f (x) = |x|n in
Eq. (1), we then find that the optimal compression ra-
tio is λ−/λ+ = √

T−/T+, which leads to the output work
Wout = kBT+(2ηCA − ηC)/n and Curzon-Ahlborn efficiency
η = ηCA = 1 − √

T−/T+ (see Appendix B 2 a for details). For
other than power-law Hamiltonians, the efficiency at maxi-
mum power can differ from ηCA but it can still be determined
numerically regardless details of dynamical equations for the
system (for details, see Appendix B 2 a). Relaxing the assump-
tion of slow (but not quasistatic) isotherms, the optimization
of Wout with respect to λ− requires specification of the dynam-
ics. In Fig. 5, we show that the efficiency at maximum power
of the Brownian heat engine described by Eq. (9) and driven
by the maximum-efficiency protocol (3) is bounded between
the Curzon-Ahlborn efficiency, achieved for slow isotherms,
and the efficiency 2 − √

4 − 2ηC < ηCA, reached in the limit
tp → 0.

In closing this section, we summarize the strong effects
of the constraints (constrained control versus constrained

response [24]). First, constraining the control allowed us to
derive much more generally valid results than constraining the
response. Second, for the constrained response, the power and
efficiency can be optimized simultaneously, whereas for the
constrained control this is, in general, not possible. Third, the
resulting functional forms of the optimal protocols and the
corresponding optimal performance strongly differ. Fourth,
the change of boundary conditions alters the optimal alloca-
tion of cycle duration between hot and cold isotherms, t+/t−,
as we show below Eq. (B19) in the Appendix.

VI. CONCLUSION

We have optimized the thermodynamic performance of
finite-time overdamped stochastic heat engines under the con-
straint that control parameters, such as potential strength or
bath temperature, can be varied only over a limited range. This
optimization problem is experimentally motivated and differs
from previously studied optimization studies performed with
constraints on the system’s state. We have found that, for
working fluids described by the experimentally most common
“breathing” Hamiltonians proportional to a control parameter,
the maximum efficiency is reached by piecewise constant
modulation of the control parameters, independently of the
detailed dynamics of the system. When the control parame-
ter can only be changed over a small range and the system
is close to equilibrium at the ends of the isotherms, the
maximum-efficiency protocol also yields maximum output
power. But outside this regime, the maximization of power
requires specifying the dynamical equations of the working
fluid. For engines based on an overdamped Brownian parti-
cle trapped in a harmonic potential, we numerically found
that the maximum-power protocol is linear. Nevertheless,
the global maxima of the maximum-power and maximum-
efficiency protocols are in this setting close, suggesting that
the maximum-efficiency protocol provides a reasonable esti-
mate of the output power.

The main strength of the presented derivations of the
maximum-efficiency and maximum-power protocols under
constrained control is their simplicity and unprecedented
generality. Their possible extension to more complicated
Hamiltonians is sketched in Appendix A. While more general
extensions remain to be explored in future work, the validity
of our results for Brownian heat engines is already of ex-
perimental relevance. These engines are often realized using
optical tweezers with strict bounds on the trap stiffness λ: too
small λ leads to losing the Brownian particle while too large
λ can induce its overheating. Interestingly, the achievable
trap stiffnesses are well above 10−6 N/m [31]. For spherical
Brownian particles with the radius of 10−6 m in water, the
Stokes law predicts the mobility of μ ≈ 0.5 × 108 m/Ns,
leading to the relaxation time 1/(2μλ) of the response σ on
the order of 10−2 s. The assumption that the durations of the
isotherms are longer than the response relaxation time, used
in our derivation of the maximum-power protocol, is thus,
in this setup, natural. Besides, we believe that extensions of
our results can find applications in more involved optimiza-
tion tasks, e.g., performed using machine learning algorithms
[66,67] or geometric methods [68,69], as well as in quantum
setups [39,70,71].
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FIG. 4. The relative differences δX = (Xλpwl − Xλη
)/Xλpwl of (a) maximum power (X = P) optimized with respect to λ− and (b) the

corresponding efficiency (X = η) for the linear protocol λpwl and the maximum-efficiency protocol (3) for different values of T−/T+ and t−/t+.
(c)–(f) show the corresponding values of maximum power and efficiency. The piecewise constant protocol λpwc and the maximum-efficiency
protocol λη (3) are in this case equal. We used the same parameters as in Fig. 2.
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APPENDIX A: MAXIMUM-EFFICIENCY PROTOCOL
FOR MULTITERM HAMILTONIANS

Consider a heat engine with a working fluid described by
the Hamiltonian

H (x, t ) =
∑

i

λi(t ) fi(x) (A1)

with control parameters λi(t ), i = 1, . . . , N . As in the main
text, we now aim to derive the finite-time protocol for the con-
strained control parameters, λi(t ) ∈ (λ−

i , λ+
i ), which would

yield maximum efficiency of the engine. It will turn out that
if the compression ratios λ−

i /λ+
i for all the control parameters

equal, the geometric argument from the main text still applies.
The heat increment is for the Hamiltonian (A1) given

by đQ = ∑
i λi(t )dσi(t ) with the response functions σi(t ) =

〈 fi(x)〉. For arbitrary fixed maximum changes �σi in the re-
sponse functions during the cycle, geometric upper and lower
bounds on Qin and Qout and thus on efficiency are achieved by
clockwise rectangular cycles in the individual λi-σi diagrams.
These hypothetical cycles yield the following geometric upper
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bound on efficiency:

η = 1 − Qout

Qin
� 1 −

∑
i �σiλ

−
i∑

i �σiλ
+
i

. (A2)

We use the term “geometric” to stress that this bound follows
from the analysis of the cycle in the λ-σ diagram, without con-
sidering the relation between the protocol [λ1(t ), . . . , λN (t )]
and the response [σ1(t ), . . . , σN (t )] imposed by dynamical
equations of the working fluid. This means that the given set
of �σi might not be achievable by the piecewise constant
protocol and thus the bound in (A2) is loose. Furthermore, we
seek an optimal protocol constrained just by the conditions on
λi, and the upper bound in (A2) in general strongly depends
on the fixed values of �σi. For the single-term Hamiltonian
H (x, t ) = λ(t ) f (x) used in the main text, this has not been
an issue because then �σ in the nominator and denominator
in (A2) cancel out and the upper bound becomes indepen-
dent of the details of the dynamics. The optimal protocol
for efficiency is then the piecewise constant protocol for λ(t )
because it saturates the geometric upper bound. To sum up, the
bound in (A2) allows one to derive the maximum-efficiency
protocol only if it happens to be independent of �σi. In
the opposite case, the optimal protocol cannot be determined
without considering the dynamical equations and performing
the corresponding functional optimization.

Let us now investigate when the upper bound in (A2)
becomes independent of the system response, �σi. Defining
the set of “probabilities” pi = �σiλ

+
i /

∑
i �σiλ

+
i , the ratio in

the upper bound in (A2) can be rewritten as the average∑
i �σiλ

−
i∑

i �σiλ
+
i

=
∑

i

pi
λ−

i

λ+
i

. (A3)

This expression becomes independent of σi only if all the
compression ratios λ−

i /λ+
i are equal. In such a case, the

maximum-efficiency protocol is thus a piecewise constant
protocol for each of λi and yields the efficiency

η = 1 − λ−
i /λ+

i . (A4)

Besides this result, the probabilistic interpretation (A3) of the
upper bound in (A2) also yields the dynamics independent
(but in general loose) upper bound on efficiency,

η � 1 − min
i

λ−
i

λ+
i

. (A5)

To close this section, we note that a piecewise con-
stant protocol for λi will always yield the efficiency
1 − (

∑
i �σiλ

−
i )/(

∑
i �σiλ

+
i ), with values of �σi induced by

the dynamical equations of the system. Within the class of
piecewise constant protocols, the upper bound (A5) is then
tight if the constraints on all the control parameters λi allow

to achieve the minimum compression ratio mini
λ−

i

λ+
i

. Further-
more, for such protocols, Eq. (A3) also implies the lower
bound on the efficiency,

η � 1 − max
i

λ−
i

λ+
i

, (A6)

which is always tight.

APPENDIX B: PROPERTIES OF MAXIMUM-
EFFICIENCY PROTOCOL

In this section, we provide further details concerning the
maximum-efficiency protocol for the Hamiltonian, H (x, t ) =
λ(t ) f (x), discussed in the main text. First, we argue that
the maximum-efficiency protocol that yields maximum output
work for the given piecewise constant λ(t ) requires piecewise
constant variation of temperature. Then, we investigate output
power of the maximum-efficiency protocol as a function of
the lower bound on the control parameter λ(t ).

1. Temperature protocol

In the main text, we have shown that the maximum-
efficiency protocol for the control parameter λ(t ) is piecewise
constant and the corresponding efficiency η = 1 − λ−/λ+.
The only condition on the temperature protocol was that the
cycle is performed clockwise in the λ-σ diagram. Never-
theless, in order to allow the engine to operate at Carnot
efficiency and to maximize its output work, we have chosen
the protocol (3).

For this choice of T (t ), the working medium of the engine
operates with the largest possible temperature gradient during
the whole cycle. This maximizes the heat flux through the
engine, which can be utilized to yield the maximum amount
of work Wout = ηQin. Besides, the engine efficiency η is also
known to increase with the bath temperature difference [see
also Figs. 4(c)–4(f)].

Let us now provide an alternative and more technical argu-
ment that the choice of T (t ) in Eq. (3) maximizes the output
work. We restrict this argument to the maximum-efficiency
protocol for λ in Eq. (3). However, generalizations to other
protocols are straightforward. The main idea is that connect-
ing the system to the hottest possible bath when σ̇ > 0 and to
the coldest possible bath when σ̇ < 0 maximizes the extent of
the cycle in the σ direction in the σ -λ diagram and thus also
Wout.

For the protocol (3), the output work is given by

Wout = �λ�σ, (B1)

with �λ = λ+ − λ− and the maximum change in the response
parameter during the cycle �σ = σ+ − σ−. To maximize
Wout, we thus need to maximize �σ . To this end, it is rea-
sonable to assume that

�σ � �σ eq, (B2)

where �σ eq = max σ eq − min σ eq is the maximum change
in the response parameter σ during the cycle with iso-
choric branches (constant λ) longer than the system relaxation
time. This assumption is in particular valid for arbitrary
overdamped dynamics, where σ always converges to its equi-
librium value (kB denotes the Boltzmann constant)

σ eq(t ) =
∑

x

f (x)
exp {−λ(t ) f (x)/[kBT (t )]}∑
x exp {−λ(t ) f (x)/[kBT (t )]} , (B3)

corresponding to the instantaneous values of the control
parameters {T (t ), λ(t )}. Noticing that σ eq(t ) = U (t )/λ(t ),
where U (t ) = 〈H (x, t )〉 is the thermodynamic internal energy
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of the system, the positivity of heat capacity

Cv = ∂U

∂T
= ∂σ eq

∂ (T/λ)
> 0 (B4)

implies that σ eq is a monotonously increasing function of the
ratio T/λ.

From Fig. 1 in the main text, it follows that max σ eq and
min σ eq are the values of σ eq at the ends of the isochores with
λ = λ+ and λ = λ−, respectively. The upper bound on �σ is
thus given by

max σ eq − min σ eq = σ eq(T+/λ+) − σ eq(T−/λ−). (B5)

It is attained for slow isochores when T = T+ for λ = λ+
and T = T− for λ = λ−. As long as σ̇ eq > 0 for λ = λ+ and
σ̇ eq < 0 for λ = λ− (so that the used definitions of input and
output heat hold), details of the temperature protocol during
the isochores in this limit do not alter the value of �σ eq and
thus Wout = �λ�σ eq. However, these details become impor-
tant for finite-time cycles.

A typical dynamical equation for an overdamped degree of
freedom has the form

σ̇ (t ) = t−1
R [σ eq − σ (t )]. (B6)

For constant values of control parameters T (t ) and λ(t ), which
enter the relaxation time tR and the equilibrium state σ eq(t )
defined in Eq. (B3), this equation describes an exponential
relaxation of σ to σ eq (for a specific example, see Sec. B 2 b).
For a cyclic variation of the control parameters, σ lags behind
σ eq [72]. More precisely, σ � σ eq and σ̇ � 0 for λ = λ+,
when σ eq increases to max σ eq, and σ � σ eq and σ̇ � 0 for
λ = λ−, when σ eq decreases to min σ eq. The change in the
response �σ = ∫ t+

0 σ̇ dt = − ∫ tp
t+

σ̇ dt and thus it can be max-
imized by maximizing (minimizing) the instantaneous rate of
change of the response, σ̇ , during the first (second) isochore.
From Eq. (B6), it follows that this is achieved by setting
σ eq = max σ eq during the fist isochore and σ eq = min σ eq

during the second one. Altogether, this suggests that the piece-
wise constant temperature protocol in Eq. (3) yields maximum
�σ and thus output work Wout (B1) for arbitrary cycle
duration.

2. Efficiency at maximum power

Let us now turn to the task of maximizing the output work
Wout = (λ+ − λ−)�σ with respect to λ−. Analytical results
can be obtained in the limits of slow and fast isotherms.

a. Slow isotherms

When the duration of the isotherms is longer than the
relaxation time of the response σ , one can approximate σ+
and σ− in �σ by their equilibrium values. Using Eq. (B1), the
output work then reads

Wout = �λ�σ eq. (B7)

Equation (B4) implies that the partial derivative of σ eq with
respect to the control parameter λ (T is constant) is given by

∂

∂λ
σ eq(T/λ) = − T

λ2
Cv. (B8)

0 0.25 0.5 0.75 1
0.92

0.96

1

FIG. 6. Efficiency at maximum output work obtained using the
Hamiltonian H = λ(t )(|x|n/n − ln |x|) as a function of T−/T+. Pa-
rameters used are kBT+ = 1 and λ+ = 0.5.

The condition on the extreme of Wout (B7) with respect to λ−
thus reads

∂Wout

∂λ−
= (λ+ − λ−)

T−
λ2−

Cv(T−/λ−) − U (T+/λ+)

λ+

+ U (T−/λ−)

λ−
= 0, (B9)

where we additionally used the relation σ eq = U/λ between
σ eq and the internal energy U .

For power law Hamiltonians of the form H = λ|x|n/n
where Cv = kB/n and U = kBT/n, this equation can be solved
explicitly. The resulting optimal compression ratio is given by
λ−/λ+ = √

T−/T+. The corresponding efficiency at the maxi-
mum output work is given by the Curzohn-Ahlborn efficiency,

η = 1 − λ−
λ+

= 1 −
√

T−
T+

≡ ηCA, (B10)

and the maximum output work is (Carnot efficiency ηC = 1 −
T−/T+)

Wout = kBT+
n

(2ηCA − ηC). (B11)

Let us now consider the asymmetric Hamiltonian
H = λ(t )(|x|n/n − ln |x|). In this case, the internal energy and
heat capacity are given by

U = kBT + λ
[
1 + ln λ

nkBT − ψ (0)
(

λ+kBT
nkBT

)]
n

, (B12)

Cv = nkBT (kBT − λ) + λ2ψ (1)
(

λ+kBT
nkBT

)
n2k2

BT 2
, (B13)

where ψ (m)(z) denotes the polygamma function of order m.
In this case, Eq. (B9) is transcendental and we solved it nu-
merically. In Fig. 6, we show the resulting efficiency at the
maximum output work as a function of T−/T+. Even though
the resulting efficiency is still close to ηCA, it can be both
slightly larger and smaller than that.
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b. Fast isotherms

Let us now assume that the duration of the isothermal
branches are much shorter than the system relaxation time.
In such a case, the work optimization cannot be done without
specifying the dynamical equation for the response σ . To this
end, we assume that it obeys the overdamped equation (B6)
with the equilibrium value σ eq and relaxation time tR deter-
mined by the values of the control parameters {T (t ), λ(t )} at
time t . The most prominent examples of systems described by
this formula are a two-level system [35] and an overdamped
particle trapped in a harmonic potential [24].

Solving Eq. (B6) for the maximum-efficiency protocol (3),
we find that

σ (t ) =

⎧⎪⎪⎨
⎪⎪⎩

σ0e
− t

t+R + σ+
eq

(
1 − e

− t
t+R

)
, 0 < t < t+,

σ1e
− t−t+

t−R + σ−
eq

(
1 − e

− t−t+
t−R

)
, t+ < t < tp,

(B14)
where σ0 ≡ σ (0) and σ1 ≡ σ (t+) are determined by the con-
dition that σ (t ) must be a continuous function of time. The
variables corresponding to the first (second) isotherm are de-
noted by max (min). It turns out that

�σ = σ+ − σ− = σ1 − σ0

= �σ eq sinh (t+/t+
R ) sinh (t−/t−

R )

sinh (t+/t+
R + t−/t−

R )
� �σ eq.

(B15)

Substituting this result into the expression for the output work
(B1) and expanding the result up to the leading order in the
ratios of duration of the individual isotherms to the corre-
sponding relaxation times, t+/t+

R and t−/t−
R , we find that

Wout = �λ�σ eq

t+t−
t+
R t−

R

t+
t+
R

+ t−
t−
R

. (B16)

To maximize the output work, we need to choose a specific
model to determine the dependence of the equilibrium values
of response and relaxation times on the control parameters.
To this end, we consider the paradigmatic model of stochastic
thermodynamics, σ̇ (t ) = −2 μλ(t ) σ (t ) + μ kBT , describing
an overdamped Brownian particle with mobility μ in a har-
monic trap [24,62]. In this case, σ eq = T/(2μλ) and tR =
1/(2μλ), and the maximum output work (B16) is produced
for

λ−
λ+

=
√

(α + 1)(α + 1 − ηC) − α, (B17)

where α ≡ t+/t−. The corresponding efficiency reads

η = 1 − λ−
λ+

= α + 1 −
√

(α + 1)(α + 1 − ηC), (B18)

which reduces to ηCA for α → 0 and ηC/2 for α → ∞.
Assuming that α = 1 (t+ = t−), Eq. (B18) is given by the
formula

η = 2 −
√

4 − 2ηC = ηC

2
+ η2

C

16
+ O

(
η3

C

)
(B19)

used in the main text. The corresponding expansion for the

Curzohn-Ahlborn efficiency, ηCA ≈ ηC

2 + 2η2
C

16 , has an identical
linear term and a twice larger quadratic term.

Last but not least, with respect to α, the output power

Wout/tp using Eq. (B16) develops a peak at α = α∗ =
√

λ−
λ+

< 1.

This also contradicts the situation with constrained σ , where
maximum power is attained when the durations of the
isotherms are equal (α = α∗ = 1) [24].

APPENDIX C: OPTIMAL DRIVING FOR SYSTEMS
CLOSE TO EQUILIBRIUM

In this Appendix, we consider optimization of a slowly
driven heat engine based on an overdamped Brownian par-
ticle trapped in the power-law potential H = λ(t )xn/n with
n = 2, 4, . . . . We use the temperature protocol from Eq. (3)
and impose fixed values of the response σ (or, in the slow
driving limit equivalently also the control λ) at the ends of the
two isotherms. Dynamics of the particle position is described
by the Langevin equation

ẋ = −μλ(t )xn−1 +
√

2D(t )ξ (t ), (C1)

where D(t ) = μkBT (t ) denotes the diffusion coefficient.
From Eq. (C1) and its formal solution

x(t ) = −μ

∫
dt λ(t )xn−1(t ) +

√
2D(t )

∫
dt ξ (t ), (C2)

we find that 〈x(t )ξ (t )〉 = √
D/2 and thus

d

dt
〈x2(t )〉 = −2μλ(t )〈xn(t )〉 + 2D. (C3)

Let us now assume that the control parameters {T (t ), λ(t )}
vary slowly with respect to the relaxation time of the system,
such that, during the limit cycle, the system is always close
to equilibrium, and solve this equation up to the first order
in λ̇(t ). To this end, we consider the ansatz 〈x2(t )〉 = 〈x2(t )〉0

and 〈xn(t )〉 = 〈xn(t )〉0 + 〈xn(t )〉λ̇, where

〈xm(t )〉0 =
∫ ∞

−∞
dx xm exp

( − μλxn

nD

)
Z

, (C4)

with the partition function Z = 2[nD/μλ(t )]1/n
(1 + 1/n),
is the value of the moment 〈xm(t )〉 corresponding to the
infinitely slow driving, and 〈xn(t )〉λ̇ is the correction propor-
tional to λ̇. We find that

〈xn(t )〉0 = D(t )

μλ(t )
, (C5)

〈x2(t )〉0 =
[

nD(t )

μλ(t )

]2/n

(3/n)


(1/n)
, (C6)

and

〈xn(t )〉λ̇ = − 1

2μλ(t )

d

dt
〈x2(t )〉0. (C7)

We reiterate that this solution is valid only for protocols
{T (t ), λ(t )} which are changing slowly with respect to the
relaxation time of the system so that the system is, during
the whole cycle, close to equilibrium. However, as we know
from the previous discussion, both the piecewise constant
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maximum-efficiency protocol for constrained control and the
optimal protocol (D1) for the constrained response contain
discontinuities, where {T (t ), λ(t )} changes abruptly. To be
able to use the slow driving approximation for the derivation
of optimal cyclic protocols, we thus need to additionally as-
sume that during these jumps the system is not driven far from
equilibrium. To this end, we assume that the ratio λ(t )/T (t )
in the Boltzmann factor is during the jumps at the ends of
the isotherms constant. This additional assumption fixes the
state of the system σ at the ends of the isotherms and thus the
present optimization scheme is only suitable for the optimiza-
tion under the constrained response. Let us now proceed with
the optimization.

Work done on the system during the time interval ti � t � tf
for the given Hamiltonian reads

W = 1

n

∫ tf

ti

dt λ̇(t )〈xn(t )〉 ≡ W (ti, tf ). (C8)

Having fixed the state of the system at the ends of the
isotherms, it is enough to maximize the work during these
branches. For an isothermal process, the work Eq. (C8) can
be written as W = �F + Wirr , where the first term, denoting
the nonequilibrium free energy difference [24], comes from
〈xn(t )〉0, and the second term reads

Wirr = 1

n

∫ tf

ti

dt λ̇(t )〈xn(t )〉λ̇ = 1

n2μ

(
nD

μ

)2/n

× 
(3/n)


(1/n)

∫ tf

ti

dt λ̇(t )2λ(t )−2(1+n)/n. (C9)

As �F is fixed by the imposed boundary conditions on the
state of the system σ , to maximize the output work −W means
to minimize the irreversible work Wirr as a functional of λ(t ).
This leads to the Euler-Lagrange equation

λ̈(t )λ(t ) − 1 + n

n
λ̇(t )2 = 0, (C10)

which has the general solution

λslow(t ) = a

(1 + bt )n
. (C11)

We thus come to an interesting conclusion that the optimal
slow protocol for the constrained response scales with the
same exponent as the potential. The values of a and b can be
expressed in terms of the boundary conditions for λslow(t ), i.e.,
λslow(ti ) ≡ λi and λslow(tf ) ≡ λf . The optimal slow protocol
(C11) then reads

λslow(t ) = λ(ti )[
1 +

(
n

√
λ(ti )
λ(tf ) − 1

)
t−ti
tf −ti

]n . (C12)

And the corresponding irreversible work and input work are
given by

Wirr =

(3/n)

(1/n)

[
nD
μλi

]2/n(
n
√

λi
λf

−1
)2

μ(tf−ti )
, (C13)

W =

(3/n)

(1/n)

[
nD
μλi

]2/n(
n
√

λi
λf

−1
)2

μ(tf −ti )
− D

nμ
ln λi

λf
. (C14)

These results are valid for the individual isothermal branches
of the cycle. Importantly, the obtained optimized values of
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1
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FIG. 7. Optimal performance for fixed boundary values of the
response: σ− ≡ σ (0) = σ (tp) and σ+ ≡ σ (t+) = 0.5. (a) Maximum
power (in units of the ultimate maximum power P∗

λpwl
for λpwl) and

(b) maximum efficiency as functions of σ−/σ+. Lines corresponding
to λS (orange solid) and λslow (blue dotted) perfectly overlap. The
maximum-efficiency protocol (3) and the piecewise constant proto-
col λpwc are in this case equal. We used the same parameters as in
Fig. 2.

the irreversible work are correct up to the order 1/(tf − ti ),
which is their exact dependence on the process duration
[24]. These results are thus exact even though they were
obtained from the approximate optimal protocol. According
to Refs. [24,73], these irreversible works determine the op-
timal performance of the engine under the constrains on σ ,
i.e., they give the maximum output work Wout = −W (0, t+) −
W (t+, tp) and efficiency η = Wout/[Th�S − Wirr (0, t+)] (�S
is the increase in entropy of the system during the hot
isotherm). Also this performance is thus from the ap-
proximate analysis based on the slow driving obtained
exactly.

APPENDIX D: CONSTRAINED RESPONSE

To test our numerical procedure, in this Appendix we check
numerically that the protocol λS obtained from Ref. [24]
is indeed optimal for both power and efficiency under the
constraints on σ . When the values of the response (po-
sition variance) σ at the ends of the two isotherms are
fixed, i.e., σ− ≡ σ (0) = σ (tp) and σ+ ≡ σ (t+), the pro-
tocol which yields both maximum efficiency and power
reads [24]

λS =
{

T+
2σS

−
√

σ+−√
σ−

μt+
√

σS
, 0 < t < t+,

T−
2σS

+
√

σ+−√
σ−

μt−
√

σS
, t+ < t < tp,

(D1)

with

σS =

⎧⎪⎪⎨
⎪⎪⎩

σ−
2

[
1 +

(√
σ+
σ−

− 1

)
t

t+

]2

, 0 < t < t+,

σ+
2

[
1 +

(√
σ−
σ+

− 1

)
t−t+

t−

]2

, t+ < t < tp.

(D2)

However, this protocol is no longer optimal when one imposes
just maximum and minimum values on the response, i.e.,
σ (t ) ∈ [σ−, σ+]. Then, our analysis shows that the maximum-
efficiency and maximum-power protocol is still of the above
form, but with σ− < σ (0) = σ (tp) < σ (t+) < σ+.

In Fig. 7, we show the maximum power (a) and maxi-
mum efficiency (b) for the trial protocols under the constraint
σ− ≡ σ (0) = σ (tp) and σ+ ≡ σ (t+). As expected, power and
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efficiency corresponding to the protocol λS are largest from all
the protocols. In particular, the figure demonstrates that the
linear protocol, which was found to maximize output power
for constrained λ, yields smaller output power than λS. And
the piecewise constant protocol yields smaller efficiency than
λS. Nevertheless, it is interesting to note that the performance

of the protocol λslow(t ), which optimizes both output power
and efficiency for slow driving (see Sec. C for details), is
for the chosen parameters indistinguishable from that of λS.
This means that the chosen cycle is slow enough. Finally, for
small enough cycles (small σ−/σ+) performances of all the
protocols are equal.
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Abstract
Wecharacterize finite-time thermodynamic processes ofmultidimensional quadratic overdamped
systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the
system covariancematrix. The Bures-Wassersteinmetric between covariancematrices naturally
emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools
to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we showhow
these results can be used to analyze cases inwhich the experimental control over the system is partial.

1. Introduction

Theminimisation of dissipation is a central goal infinite-time thermodynamics [1–3]. Inmost applications, one
is interested infinding the optimal time variation of some control parameters, e.g., magnetic or electricfields, in
order to achieve a desired taskwhileminimising the amount of energy dissipated to the environment. Such tasks
could range from the design of a cycle for a thermal engine [4, 5] to the erasure of information in an information
processing device [6–8]. Finding optimal protocols in finite time is however often a very challenging task, as it
requires a functional optimisation over all possible paths in the control parameter space, as well as a perfect
understanding of the non-equilibriumdynamics resulting from such control. In the regime of smallmesoscopic
systems, remarkable progress on this topic has been achieved in the last decades with the development of the
field of stochastic thermodynamics [4, 9–14]. Optimal drivings are nowadays known for overdamped [15–20]
and underdamped systems [21–23], as well as driven single-level quantumdots [24]. However, such explicit
solutions only exist for one-dimensional systems and are, in general, computationally hard to scale up.

Other solutions are known for situations inwhich the control parameter varies slowly compared to the
system relaxation time, as the optimisation admits a geometric formulation [25–32] and the problem
considerably simplifies. Indeed, the space of control parameters can be endowedwith a Riemannianmetric in
such away that geodesic paths correspond tominimally dissipative thermodynamic processes.While the
geodesic equationsmight be hard to solve, the important realisation is that the number of coupled equations is
given by the number of control parameters, and independent of the size of the systemof interest (by comparison,
a full out-of-equilibrium solution of the dynamics needs a number of equations that scales exponentially with
the number of components of the system). This has enabled finding optimal driving protocols in such regime for
complex systems such as a two dimensional Isingmodel [33, 34], nanomagnets [35], and quantum spin chains
[36]. Optimal protocols for different classes of slowly driven heat engines have also been developed by such a
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geometric approach [32, 37–44]. Besides the slow driving regime, the optimization problem can also be
simplified in the opposite, fast-driving, regime [45–48].

Beyond the slow or fast driving limits, a general connection has been established between optimal transport
andminimally-dissipative thermodynamic protocols in the overdamped limit [49, 50]. This connectionwas
recently exploited to show that theminimal dissipation in any process governed by a Langevin equation is
directly related to the L2-Wasserstein distance between initial and final states [51, 52] (see also [53–55]).
However in general full control on the system’sHamiltonian is needed to saturate this bound. To address the
relevant case of partial experimental control, one therefore requires a different approach, that is able to quantify
dissipation on non-optimal trajectories.

In this paper, we study thermodynamic transformations formany-body quadratic overdamped systems.We
derive general expressions for the flux ofwork and heat, andwe show that the dissipation is governed by the
Bures-Wasserstein (BW) distance between covariancematrices, which coincides with the L2-Wasserstein
distance betweenGaussian distributions of [51–55]. Our derivation allows for a direct generalisation of thewell-
known single-body case, studied by Schmiedl and Seifert for a single-particle overdamped system [15], as well as
new insights on the formof optimal drivings. In particular, we provide an integral analytic expression for the
dissipation valid for any response trajectory of the system, not necessarilyminimally dissipating. This also
naturally enables the study of partial control. That is, the situationwhere the limited number of control
parameters does not allow for exploring thewhole space of states, so that the fundamental lower bounds of
[49, 51]might not be reachable. This is a common scenario in complex systems, where experimentally only a few
degrees of freedom are controllable. In order to illustrate the applicability of our results, and to show the
difference between partial and global control, we analyse a systemof two interacting particles and a particle
confined in a 2-dimensional squeezing potential with different control limitations.

2.Model:Many-body overdamped spring

Weconsider a systemofN overdamped Brownian particles described by the position vector x andmutually
interacting via the time-dependent potential

= x x xV t K t,
1

2
, 1( ) ( ) ( )

or, equivalently, via the force field F(x)=−∇V(x)=− Kx (when possible, we omit writing the time argument
fromnowon). Each particle i= 1,K,Nmight have a different number of degrees of freedom di, i.e., Î x M ,
where = å =M di

N
i1 . The potential (1) accounts for both self-energy of the individual particles and interactions

between the particles. The stiffnessmatrixK is symmetric and positive definiteK� 0 (that is, the potential is
confining). Assuming that all the particles have the same friction coefficient γ, the systemdynamics obeys the set
of Langevin equations [56]

hg g= - +x xK k T2 , 2B ( )
where theGaussian noiseη obeys há ñ = 0, its components h h d dá ¢ ñ = - ¢t t t ti j ij( ) ( ) ( ), andT is the
temperature of the thermal environment, whichwe assume isfixed throughout (isothermal). Fromnowon, we
will use natural units inwhich γ= 1, kB= 1. For the general case inwhich different particles have different
friction coefficients, see section 4.

Departing from an arbitrary normalized initial distribution, the state of the system at time t is represented by
aGaussian probability density function (PDF) [56]8.

p
=

S
-

S-
x

x x
p t

t
,

1

2 det
exp

2
. 3

N

1
⎜ ⎟⎛⎝ ⎞⎠( ) ( )

( ) ( )

HereS = á ñxxt t( ) ( ) denotes the covariancematrix at time t. The PDF (3)has zeromean á ñ =x t 0( ) (see
section 4 and appendix B for themore general case).

The distribution p(x, t) is therefore defined by its covariancematrix, whose dynamicsS = á ñ + á ñ xx xx  
can be obtained from equation (2) and reads [56]

S = - S - S +t K t t t K t T2 , 4 ( ) ( ) ( ) ( ) ( ) ( )
where implicitlyT= T1. In case the response dynamicsΣ(t) is given, and onewants to drive the potentialK(t)
accordingly (i.e.,K(t) is the control protocol generating the response dynamicsΣ(t)), the above equation has to
be solved forK(t). This is a standard Lyapunov equation that is commonly used in the context of quantum

8
ThePDFdescribing the state under the dynamics (2) is always Gaussian givenGaussian initial conditions, or after an initial transient (of

order γ/|K|) [56]which is negligible for standard time-asymptotic cycling scenarios, or in the regime of slowdriving.
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metrology (see e.g., [57]), having solution

ò òn n= - S = S - Sn n n n
¥

- S - S -
¥

- S - SK e T e T e ed 2 d . 5
0

1

0

 ( ) ( )

Notice that instantaneous quenches ofK(t) can be added at the beginning and at the end of the protocol, without
affecting the dynamics ofΣ(t). For example, to end the transformation in equilibrium, one can add a final
quench toK= TΣ−1.

Remark.We stress here that the explicit evaluation of equation (5) can be performed analytically. To be

consistent with the notation, throughout the text we use the operator ò n= n n¥ - - A B e Be, d A A
0

( ) expressed

in its integralmatrix form; at the same time, in the basis that diagonalizesA, i.e.,Aij= δijai, the components of

this operator can be easily expressed as =
+

 A B, ij
B

a a

ij

i j
( ) .

3. Thermodynamics of quadratic systems

The average energy of a systemdescribed by amultidimensional probability distribution (3) in the potential (1)
reads

ò= = å á ñ =
S

x x xE t d p t V t K t x x t
K t t

, ,
1

2

Tr

2
, 6ij ij i j( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )

where = åAB A BTr ij ij ji[ ] . The variation of energy is split canonically in awork contribution, originating in the
variation of the external potential, and a heat contribution, stemming from the evolution of the system induced
by the dissipative environment [4, 58]. I.e. thework (W) and heat (Q)fluxes entering the system are defined as

=
S

=
S

W
K

Q
KTr

2
,

Tr

2
. 7   [ ] [ ] ( )

In a similar fashion to the seminal work by Schmiedl and Seifert [15]we canwrite thework input of afinite
time transformation of duration τ as

ò

ò ò n

= S

= S - S + S S

t

t
t t

n n
¥

- S - S

W dt K

K
T

dt d e e

1

2
Tr

1

2
Tr

2
logdet

1

2
Tr , 8

0

0
0 0 0



 ⎡⎣ ⎤⎦
[ ]

[ ] ( )

where in the second equality we integrated by parts and used equation (5). In the followingwewill indicate as
t - D  0( ) ( ) ≔ the variation of any quantity during a transformation. Given that

òS = - = Dt txd p p Slogdet ln1

2 0 0∣ ∣ is the variation of VonNeumann entropy of the system (3), it is possible to
rewrite equation (8) as

ò ò n- D - D = S S º
t

n n
¥

- S - SW E T S dt d e e W
1

2
Tr . 9

0 0
irr

 ⎡⎣ ⎤⎦( ) ( )
This expression identifies the dissipatedwork,Wirr, of an arbitrary response trajectoryΣ(t). This is our firstmain
result. The above derivation represents a naturalmultidimensional generalisation of the one-dimensional result
of [15].

The irreversible work (9) turns out to be the integral in time of a quadratic form that coincides with the

Bures-Wasserstein (BW)metric on positive-definitematrices [59, 60]. That is ò= S S
t

SW dt g ,irr 0
 ( ), where

ò n= n n
S

¥
- S - Sg A B d e Ae B,

1

2
Tr , 10

0
( ) [ ] ( )

S S º S S + SSg d d D d, , , 11BW
2( ) ( ) ( )

with the latter being the infinitesimal BWsquared distance. Thismetric has been intensely studied as it appears
in problems of statistical inference andmetrology in quantum information [57, 59, 61, 62], as well as in the
theory of optimal transport [60, 63].

For fixed endpoints, the lower bound forWirr is obtained for the response trajectoryS t¯ ( ) thatminimizes the
integral of the quadratic form in equation (9). That is

t
S SW

D ,
, 12irr

BW 1 2
2( ) ( )

where the BW-geodesic length between the initial and final pointsΣ(0)=Σ1,Σ(τ)=Σ2, is given by (see
appendix A, or [59, 60])
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S S º S + S - S S SD , Tr Tr 2 Tr . 13BW 1 2
2

1 2 1 2 1( ) [ ] [ ] [ ] ( )
The corresponding geodesic, i.e., theminimally dissipating response trajectory, is given by (cf appendix A)

tS = - S + S + - S S + S Ss s s s s1 1 , 142
1

2
2 1 2 2 1¯ ( ) ( ) ( )( ) ( )

with s= t/τ and thus 0� s� 1 independently on the total duration t of the protocol.
The appearance of the distance (13) in (12) is no coincidence: it was realised recently [51, 52] that the optimal

transport problem is connected to the irreversible entropy production in diffusive dynamics, and its value is
minimized by the L2-Wasserstein distance between the initial and final distributions [49, 51, 52, 64]. In the case
of Gaussian distributions, the L2-Wasserstein distance coincides with the above BWdistance between the
covariancematrices (13).

Besides it being straightforward, one key advantage of our derivation is that expression (9) is valid for any
response trajectory and allows to computeWirr alsowhen the transformation does not saturate the lower bound
(12). In particular, it can be used for the realistic case of partial experimental control, when the system is
constrained to explore only a subset of the distributions space (see the following paragraph and examples in
section 5).

3.1. Total control versus partial control
In experiments, the system is typically controlled by varyingK(t). The optimal control parameter protocol K̄
corresponding to the geodesic (14) is determined by substituting S̄ into (5). Perfect implementation of K̄ would
then saturate theminimal dissipation bound (13). However, this assumes that K̄ is experimentally feasible. This
might not be the case in general. Performing theminimization over a restricted region of control parameters
limits the system response to a submanifold of allowed states. In general, this results in a case-dependent
minimumvalue strictly larger than the globalminimum, t>W Dirr BW

2 , e.g., see Example 5.1 below.
In other cases, the initial and final point of the transformationmight not even befixed (e.g., when optimizing

the strokes of a thermal cycle to increase its performance as a heat engine). To show the consequences of fixed/
unfixed boundary statesΣ(0) andΣ(τ), consider that the variationS = S + Sd r

   can be divided into a diagonal
contribution and a non-diagonal, rotating contribution. That is, given the covariancematrix expressed in its
diagonal basisΣ=∑iωi|i〉〈i|, the diagonal part of its variation is wS = å ñái id i i

  ∣ ∣and the rotating part is
wS = å ñá + ñái i i ir i i

  (∣ ∣ ∣ ∣). From equations (9)and (10)we know that = S SSW g ,irr  ( ). It is easy to check that
S S =Sg , 0d r
 ( ) which implies that the irreversible work naturally decouples into a diagonal and a rotating

contribution:

= S S + S S º +S SW g g W W, , . 15d d r r
d r

irr irr irr
      ( ) ( ) ( )( ) ( )

BothW
d

irr
 ( )

andW
r

irr
 ( )

are positive, whichmeans that the dissipation generated in a non-commuting

transformation forΣ ( >W 0
r

irr
 ( ) ) is always larger than the commuting case ( =W 0

r
irr
 ( ) ). (A similar phenomenon

occurs for quantum systems, described by their densitymatrices [32]). At the same time, for any transformation
Σ(t)=∑iωi(t)|i(t)〉〈i(t)|, the change in system entropyµD Slogdet[ ]and energyµD SKTr[ [ ]] can also be
achieved by a similar transformationΣ*(t)=∑iωi(t)|i(0)〉〈i(0)| (whereωi(t) varies with time as inΣ(t), while the
basis isfixed) inwhich the covariancematrix commutes with itself at all times S S ¢ =* *t t, 0[ ( ) ( )] , and

=W 0r
irr
( ) .Moreover, it is easy to verify that such transformation has the same value ofW

d
irr
 ( )

, which leads to the
following observation:

Observation 1. If the restrictions on the control parametersK(t) allow and tS S =0 , 0[ ( ) ( )] , rotation of the
covariancematrix should be avoided in order tominimize dissipation.

In fact, it is clear that the BW-geodesic (14) is diagonal in the same basis at all times, if and only if [Σ(0),
Σ(τ)]= 0. If that is not the case, one cannot useΣ*(t) to reduce the dissipation, unless the endpoint of the
trajectory is itself unconstrained. In the fully commuting case, it is easy to see that equations (6)–(9) simplify and
we recover (K being diagonal in the same basis ofΣ, with eigenvalues ki)

ò

w w

w
w t

w t w

= å D = å D

= å å -
t



E k S

W dt

1

2
,

1

2
log ,

1

4

1
0 . 16

i i i i i

i
i

i
i i iirr

0

2
2

[ ]

( ( ) ( ) ) ( )

When reduced to a singlemode, this is exactly the result found by Schmiedl and Seifert in [15], whichwe thus see
being extensive in the eigenmodesωi ofΣ: that is, all themodes {ωi, ki} can be treated as effectively independent in
the commuting case. As an instance of a transformationwithfixed boundaries that force non-commutation, see
Example 5.2.
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Asmentioned above, controlling the potential (1) in time defines the evolution of the state via the dynamical
equation (4). Conversely, a given response trajectoryΣ(t) is translated to its generating controlK(t) through
equation (5). Thismeans that fixing the boundary values ofΣ is non-trivially related tofixing boundary controls.
The results of optimisation thus strongly depend on the imposed constraints [65, 66, 67]. At the same time, for
the purpose of typical applications to isothermal processes (cf section 5), inwhich the goal is tominimizework
dissipation, we can consider the slow-driving limit of the dynamics [68]. In this limit the potentialK(t) is
modified slowly,more precisely we assume t~K 1 with τmuch larger than the relaxation timescale of the
system τ? γ/|K|, and it is sufficient to solve the dynamical equation (4) up to thefirst order in 1/τ. The zeroth
order corresponds to the quasistatic limit τ→∞ . This allows to expand any state-dependent quantity
around its equilibrium value 0( ), keeping only the leading correction term t~  11 ( )( ) . In our specific
setting, the covariancematrix can be expanded as

tS = S + S + t t t 1 170 1 2( ) ( ) ( ) ( ) ( )( ) ( )

withΣ(0)= TK−1 and ò nS = - n n¥ - - -T d e K eK d

dt
K1

0
1( )( ) (cf equations (4) and (5)). However, the

irreversible work (9) is already of order t 1( ). To express the dissipation in the slow regime, it is therefore
sufficient to substituteΣ(0) in (9). In other words, we observe that

Observation 2. In the slow-driving limit, controlling the inverse stiffnessmatrix -TK t1( ) of the potential is
equivalent to directly steering the covariancematrixS t( ). The irreversible work in the slow-driving limit
therefore reads

ò=
t

- --W
T

dt g
d

dt
K

d

dt
K

2
, . 18Kirr

slow

0

1 1
1⎛⎝ ⎞⎠( ) ( ) ( )

4.Generalizations

In the previous section, we have focused on the paradigmatic case of the potential (1) and density distributions
(3) centered around x= 0, and a particle-independent friction coefficient. Nevertheless, the obtained results are
fully extendable alsowhen removing such assumptions.

First, in appendix Bwe solve the general case of a quadratic potential with time-dependent center z(t), i.e.,
= - -x x z x zV t t K t t, 1

2
( ) ( ( )) ( )( ( )). As the system is in general driven out of equilibrium, the center of the

potential does not necessarily coincide with the average particle position, 〈x〉≡ ξ(t)≠ z(t), and the irreversible
work gains an additional contribution (see details in appendix B). Focusing on the limit of slow driving, it can be
expressed as

ò x= + S S
t

SW dt g , . 19irr
slow

0

2  (∣ ∣ ( )) ( )
Similarly to (13), the lower bound forWirr

slow is in this case

x x
t

- + S SW D
1

, . 20BWirr
slow

1 2
2

1 2
2(∣ ∣ ( ) ) ( )

Observations 1 and 2 from section 3 remain valid: if possible, rotations of the covariancematrix thus should be
avoided; the state variables in the expression (19) can be substituted by their equilibrium values (ξ,Σ)=
(z,TK−1).Moreover, in the same limit, x t- ~ -zt t 1( ) ( ) ( )while the associated correction to quasistatic
ΔE andΔS is negligible t- 2( ) (cf appendix B). This implies thatmoving the trap x ¹ 0 only contributes to the
dissipation (20) and should therefore be avoidedwhen possible, in the same spirit asObservation 1.

Second, we comment on the generalization to systemswhere different particles have different friction
coefficients γi. In such a case, the Langevin equations (2) become, in components,

g g h= -å +x K x k T2 . 21i i j ij j i B i ( )
Notice that some of the γimight refer to different degrees of freedomof the same particle. Thewhite noises ηi are
mutually uncorrelated.We define gºy xi i i and rewrite the Langevin equations as

h= - ¢ +y yK k T2 , 22B ( )
where the transformed stiffnessmatrix ¢ =

g g
Kij

Kij

i j

is still symmetric and positive definite. At the same time, the

covariancematrix of the y variable,S¢ = á ñyy , satisfies g gS¢ = S .ij i ij i Finally the energy of the system is
given by

= S = S¢ ¢E K K
1

2
Tr

1

2
Tr , 23[ ] [ ] ( )
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and similarly = S¢ ¢Q KTr1

2
 [ ]and = S¢ ¢W KTr1

2
 [ ]. Given the formal equivalence between equations (2), (6),

(7) and (22), (23) above, we see that the problem is equivalentlymapped to the case withfixed γi= γ,∀i.
Finally, throughout the paperwe assumed afixed temperatureT. At the same time, the expressions for

energy (6), heat andwork (7), as well asD = D SS logdet1

2
do not intrinsically depend on the temperatureT.We

can therefore relax such assumption and admit a time-dependent temperatureT(t) [69, 70]. In such case the
definition of irreversible work becomes

ò ò ò= - D - = - + =
t t t

W W E dt TS Q dt TS dt TS , 24irr
0 0 0

irr  ⎛⎝ ⎞⎠ ( )
Sirr
 being the irreversible entropy production. From the derivation in section 3we get the same expression

ò= S S
t

SW dt g ,irr
1

2 0
 ( ), as well as the validity of all the above observations and generalizations.

5. Applications

Here, we present two examples of application of the formalism, results and observations introduced above.

5.1. Interacting particles in double trap
First, we showhowpartial control over a system can substantially increase the amount of dissipationwhen
compared to the optimal geodesics transformation. Consider the case of two particles on a line,Romeo and Juliet,
who are constrained to be located at two different places, separated by a distance a. That is, Romeo (Juliet) is at
position x (y) and subject to a confining harmonic potential of strength kx (ky) centered at -a a

2 2( ). At the same

time, the two particles feel a harmonic attraction of strength kint. The complete system is described by the
potential (cf figure 1)

= - + + + -V k x
a

k y
a

k x y
1

2 2

1

2 2

1

2
, 25x y

2 2

int
2⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ( ) ( )

Figure 1. (a)Twoparticles, each locally confined in a harmonic potential, with stiffnesses kx = ky, and an additional harmonic
interaction, kint, between them.A transformation is performed tomodify the local traps stiffnesses. (b)Plots show theminimum
values of the dissipatedworkWirr for transformations from kx(0) = ky(0) = k1 to kx(τ) = ky(τ) = k2 as a function of k2, and for various
values of k1. Wirr

PC is theminimumwork dissipation attainablewith partial control, i.e., whenmodifying only kx and ky between the end
points. Wirr

PC is always larger than its corresponding total control counterpart, Wirr
TC. The latter is attainable when controlling also kint

and a during the transformation, while returning them to their initial values, kint(τ) = kint(0) and a(τ) = a(0). Both k1 and k2 are given
in units of kint(0) = 1. The remaining parameters,T, a(0) and τ, are set to 1.

6

J. Phys. Commun. 6 (2022) 063001 PAbiuso et al



For two colloidal particles, such an interaction can be realized using optical tweezers [71] or an effective potential
induced by feedback control [72]. Besides, it qualitativelymimics the interaction of trapped active particles
studied in [72] or in a similarmodel [73].

Now imagine that an experimenter can operate a transformation of theHamiltonian parameters with the
goal to increase the strength of the local traps, butwith aminimal energetic cost. That is, the boundaries of the
transformation are kx(0)= ky(0)< kx(τ)= ky(τ)while a(0)= a(τ) and kint(0)= kint(τ).Wewant to know the
minimumdissipation that an experimenter can achieve for such a transformation. In the appendix C.1, we
derive and compare theminimumdissipation protocols in the slow-driving limit for two paradigmatic cases: i)
partial control inwhich the experimenter can only tune the values of kx and ky (while a and kint are both constant),
ii) total control inwhich the experimenter can control kint and a aswell. The comparison among the two
situations is presented infigure 1. As expected, the dissipation under partial control,Wirr

PC, is always larger than
that for total control,Wirr

TC. In particular we observe that having the possibility of controlling all the parameters
of the potential (25) allows, in general, substantial savings of up to; 50%of energy dissipationwith respect to
simply tuning the stiffnesses kx,y.

5.2. Rotating a 2-dimensional squeezed potential
As a second example, we consider the rotation of a two-dimensional Gaussian system in the xy plane.
Specifically, we consider aGaussian PDFwith a non-isotropic covariancematrix of the position coordinates
{x, y}

S = á ñ á ñ
á ñ á ñ

x xy

xy y
, 26

2

2⎜ ⎟⎛⎝ ⎞⎠ ( )

which is squeezedwith themajor axis and the x-axis forming an angle θ in the xy plane. Denoting the eigenvalues
ofΣ asωa andωb, it can bewritten in the form

q w q w q q w w
q q w w q w q w

S =
+ -

- +
q w w

cos sin sin cos

sin cos sin cos
. 27a b a b

a b a b
, ,

2 2

2 2a b ⎜ ⎟⎛⎝ ⎞⎠( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

Our goal is tofind aminimum-dissipation protocol that would overall rotate the system in the xy plane, by an
angle dq = p

4
.We thus consider protocols starting atS = S w w0 0, ,a b

( ) and ending at tS = S w wp , ,a b4
( ) (cffigure 2),

and compare three strategies for accomplishing this task: (i)Uniform rotation trajectory: the experimenter
simply rotates the system, i.e.,fixes the variancesωa,b inΣ and increases θ; (ii) Pseudo-commutative trajectory:
the experimenter tunesωa,b to the same value at an intermediate time, thusmaking the distribution isotropic.
Afterwards, they re-stretch the distribution in the desired direction. Such protocol satisfies
S S = "t t t, 0[ ( ) ( )] (notice however [Σ(0),Σ(τ)]≠ 0, which impliesObservation 1 cannot be applied in this
case). The intermediate point can be chosen optimally tominimize the dissipation; (iii)Optimal protocol: the
experimenter is able to control the system such that it follows the BW-geodesicS t¯ ( ) in (14) betweenS w w0, ,a b

and
S w wp ,a b4

. Details of the calculations for each of the trajectories are given in appendix C.3 and the results are
depicted infigure 2.Wefind that the pseudo-commutative strategy is strongly non-optimal, and dissipates at
least twice asmuch as the geodesics trajectory. Notice that this is not in contradiction toObservation 1, as non-
commuting boundary condition induce, in general, non-commuting optimal trajectories. At the same timewe
see that the uniform rotation of the systemΣ is close to the optimal (geodesic) trajectory in terms of dissipation,
while being simpler to implement (it corresponds to a rotation of the experimental apparatus withfixed traps’
strength). Finally, no timescale approximationwas used in this case, butwe notice that in the slow-driving limit
the above strategies are equivalently translated to the stiffnessmatrixK= TΣ−1 (cfObservation 2).

6.Discussion

In this paper, we have studied thework, heat exchange, and irreversible work dissipation of overdamped
multidimensional classical systems. Thesemay have an arbitrary number of degrees of freedomand are confined
by harmonic potentials whose parameters can be partially or totally controlled. Such systems are described by
multidimensional Gaussian probability distributions [56]. For uniform friction and non-moving trap centers,
we have derived a general analytic expression (9) for the irreversible work (proportional to the entropy
productionwhen the temperature isfixed). This expression is valid for any response trajectory, and allows
geometric optimisation based on the Bures-Wassersteinmetric for positivematrices.We also discussed
straightforward generalizations of these results to non-uniform friction values and nontrivial trap center
dynamics. Given that in the slow-driving limit there is a one-to-onemapping between the set of reachable states
Σ and the set of reachable controlsK, this further allows optimization of control protocols that incorporate
experimental constraints, i.e., partial control. Finally, we described general design principles for optimal
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parameter protocols thatminimise dissipation and illustrated them for two examples, increasing local
confinement of two interacting particles and rotating a squeezed potential.

The obtained results point towards themanageable optimization of control protocols in experimental
systemswithmany degrees of freedom [72, 73, 75–77], and they can be directly applied to optical tweezers setups
and electric circuits [71, 78, 79], that wish tominimise dissipation by choosing optimised control parameter
protocols.Moreover, ourfindings can be readily applied to the case of engines and refrigerators described in the
low-dissipation regime, characterized by the 1/τ scaling of dissipation [15, 32, 80–83]. Further extensions
include the analysis of underdamped classical systems, as well as that of quantumGaussian systems.
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Figure 2. (a) Strategies introduced in the text for the rotation of a 2-dimensional Gaussian system by the angle dq = p
4
: (i) uniform

rotation of the system (blue), (ii) commutatively squeezing the systemuntil it is isotropic and, subsequently, stretching it in the desired
direction (green), (iii) following the optimal BW-geodesics (red). (b)The continuous lines show theWirr in units ofωb/τ for the
different strategies. The dashed lines depict the normalised comparison between the different strategies. The pseudo-commutative
strategy (ii) is highly dissipative, while the rotation strategy (i) is comparable to the optimal protocol, dissipating just∼20%more
energy than (iii) formost values ofωa/ωb.
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AppendixA.On theBures-Wasserstein distance

The Bures-Wasserstein (BW) distance can be defined between positive semidefinitematricesΣ� 0, and its
infinitesimal value is given by themetrics gΣ

ò nS S + S = S S = S Sn n
S

¥
- S - SD d g d d d e d e d, ,

1

2
Tr . A.1BW

2

0
( ) ( ) [ ] ( )

When applied to complex positivematrices of unit trace (that is, states in thefield of quantum information), such
metric represents a fundamental quantifier in problems of quantum statistical inference andmetrology
[57, 59, 61, 62]. At the same time it has its own relevance as a distance quantifier between positive realmatrices or
multivariate distributions, in the context of optimal transport theory [60, 63]. The integrated geodesics length
between two pointsΣ1 andΣ2, if no constraints are imposed on the trace of thematrices, reads

S S = S + S - S S SD , Tr Tr 2 Tr A.2BW 1 2 1 2 1 2 1( ) [ ] [ ] [ ] ( )
and the corresponding geodesics is

S = - S + S + - S S + S St t t t t1 1 A.32
1

2
2 1 2 2 1( ) ( ) ( )( ) ( )

where the square root

S S = S S S S S- A.41 2 1 1 2 1 1

1
2

1
2

1
2

1
2

1
2( ) ( )

is the onlymatrixR satisfyingR2=Σ1Σ2 and having a positive spectrum (cf [60]).

Appendix B.General case and slow-driving solution

Herewe consider the case inwhich also the firstmoment of the quadratic potential can be driven.We assume
[56] that the state is Gaussianwith covariancematrixΣ(t) andfirstmoments ξ(t) (we avoid expliciting time
when possible)

x x

p
=

S
-

- S --
x

x x
p t,

1

2 det
exp

2
, B.1

N

1
⎜ ⎟⎛⎝ ⎞⎠( ) ( )

( ) ( )) ( )

while the potential is

= - -x x z x zV t t K t t,
1

2
, B.2( ) ( ( )) ( )( ( )) ( )

with ξ≠ z in general. The energy of the system is therefore

ò
x x

=

= S + - - = S

x x x

z z

E t d p t V t

K K K

, ,

1

2
Tr

1

2

1

2
Tr , B.3z

( ) ( ) ( )
[ ] ( ) ( ) [ ] ( )

whereΣz is the covariancematrix centered in z, that is

x xS = á - - ñ = S + - - x z x z z z . B.4z ( )( ) ( )( ) ( )
The Langevin equation (2) becomes accordingly h= - - +x x zK T2 ( ) in natural units, which is translated
on theGaussianmoments as

x x= - - zK , B.5 ( ) ( )
¶ S = - S - S +K K T2 , B.6t z z z ( )

where the partial derivative in time is due to the fact thatΣz depends as well on z, i.e.

x xS = ¶ S - - - - z z z z . B.7z t z
  ( ) ( ) ( )

Thework and heat can be computed by simply taking the derivative w.r.t. the driving parametersK, z (for the
work), and the dynamical parametersΣ, ξ (for the heat), i.e.
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ò

ò

ò

= S + ¶ S

= S - S - ¶ S

= S - ¶ S

t

t t

t t

z

z

W dt K K

K dt K K

K dt K

1

2
Tr Tr

1

2
Tr

1

2
Tr Tr

1

2
Tr

1

2
Tr . B.8

z

z

z z

z z z

z t z

0

0 0

0 0

 

 

( [ ] [ ] )

[ ] ( [ ] [ ] )

[ ] [ ] ( )

Using the same steps as in themain text (integration by parts and equation (B.6)), this expression translates to

ò

ò ò n

= S + S ¶ S

- ¶ S ¶ S

t t

t
n n

-

¥
- S - S

W K
T

dt

dt d e e

1

2
Tr

2
Tr

1

2
Tr , B.9

z z t z

t z t z

0 0

1

0 0

z z⎡⎣ ⎤⎦
[ ] [ ]

( )
which can be rewritten as

ò ò

- D - D S

= S S - ¶ S + ¶ S ¶ S
t t

-
S

W E
T

T
dt dt g

2
det

2
Tr , , B.10

z

z z t z t z t z
0

1

0
z

[ ( )] ( ) ( )
with the BWmetrics (10) g. Notice that in general D S ¹ D S = DSdet detz

1

2

1

2
and therefore the expression

above cannot be identified as the irreversible work. At the same time,minimizing dissipation requires using
finite time protocols inwhich the system ends in equilibriumwith the thermal bath, so that no dissipation
follows the end of the protocol. This is automatically satisfied in the case of slow-protocols (see below). For
general transformations, it is sufficient to add afinal quench of the controls, xt t t t= S-zK T, ,z

1( ( ) ( )) ( ( ) ( )).
The condition ξ(τ)= z(τ) is sufficient to rewrite (B.10) as

ò ò= S S - ¶ S + ¶ S ¶ S
t t

-
SW

T
dt dt g

2
Tr , , B.11z z t z t z t zirr

0

1

0
z

[ ( )] ( ) ( )
which can be computed explicitly using x x¶ S - S = - + - z z z zt z z

  ( ) ( ) .

B.1. The slow case
In the slow-driving regime afirst order expansion is performed around

t
01  [68]. For example in the

quasistatic limit of τ→∞ the solution for the dynamics (B.5, B.6) is clearly ξ(0)= z andS = S = -TKz
0 0 1( ) ( ) .

Thefinite time expansion leads to

x x x x x
x x

t= + + + + ~
= = -

-

-


z zK

...

, . B.12

i i0 1 2

0 1 1
( )

( )
( ) ( ) ( ) ( )

( ) ( )

As x t- = - +- -z zK 1 2 ( ), we also get
tS = S + +- -z zK , B.13z

2 3  ( ) ( )
xxt tS - ¶ S = + = +- - - -  

zz K K, , . B.14z t z
1 3 1 3    { } ( ) { } ( ) ( )

Using the above expressions, the irreversible work reads

ò x t= + S S +
t

S
-W dt g , B.15irr

0

2 2  (∣ ∣ ( )) ( ) ( )

ò t= + +
t

- - -- zdt Tg K K, . B.16K
0

2 1 1 2
1  (∣ ∣ ( )) ( ) ( )

AppendixC.Detailed and solved examples

C.1.Double trap
Consider the potential

= - + + + -V k x
a

k y
a

k x y
1

2 2

1

2 2

1

2
, C.1x y int

2 2
2⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ( ) ( )

which can be rewritten inmatrix form as

= - - + x a x a x xV K K
1

2

1

2
C.2int( ) ( ) ( )
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with

= =
-

= =
-

-
x a

x
y

a

a
K

k
k

K
k k

k k
,

2

2
,

0
0

, . C.3
x

y
int

int int

int int
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠( ) ( )

Touse equation (19), we rewrite the potential in the ‘canonical form’

= - ¢ + - ¢

- ¢ + ¢ +



 

x a x a

a a a a

V K K

K K K

1

2
1

2

1

2
, C.4

int

int

( ) ( )( )

( ) ( )

where

¢ = + -a aK K K C.5int
1( ) ( )

is the effective center of the potential. The scalar- ¢ + ¢ + a a a aK K K1

2 int
1

2
( ) is just a global shift in energy that

does not depend on the dynamics of the system and vanishes for cyclic protocols.

C.2. Confining the particles—Irreversibility parameter
Wecompute the irreversible work using the slow-driving approximation equation (19), inwhich the center of
the distribution can be substituted by the center of the potential, and the covariancematrix can be substituted by
the inverse stiffnessmatrix (cf appendix B), leading to

ò= ¢ + S S S = +
t

S
-aW dt g T K K, with . C.6irr

0

2
int

1  (∣ ∣ ( )) ( ) ( )

Suppose the experimenter wants increase the strength of the local traps to increase the confinement of the two
particles. The endpoint of the transformationwill therefore be

t t t t= = = < =a a k k k k k k0 , 0 , 0 0 . C.7x y x yint int( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Wenotice that due to the symmetry of the potential at the boundary, the eigenvectors ofK+ Kint are always (1,
1) and (1,− 1), independently of the values of kint and kx=ky. That is, [(K+ Kint)(0), (K+ Kint)(τ)]= 0 andwe
can therefore assume that it commutes with itself at all times (cfObservation 1). In such case, the contribution of

S SSg , ( ) toWirr simplifies to (cf equation (16))

ò ò n
w
w

w
w

S S = S S = +
t

n n
S

¥
- S - Sg dt d e e,
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2
Tr

1

4
, C.8

0 0

1
2

1

2
2

2

     ⎜ ⎟⎡⎣ ⎤⎦ ⎛⎝ ⎞⎠( ) ( )

whereωi are the eigenvalues ofS = + -T K Kint
1( ) , which are easily computed. In particular given kx= ky≡ k

wehave

w w= =
+

T

k

T

k k
,

2
, C.91 2

int

( )
and therefore

S S = +
+
+Sg

T k

k

k k

k k
,

4

2

2
. C.10

2

3
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2

int
3

 
  ⎜ ⎟⎛⎝ ⎞⎠( ) ( )

( ) ( )

The contribution ¢a 2∣ ∣ toWirr follows from equation (C.5):

¢ =
+ -

a
k

k k

a

2 2
1

1
C.11

int
( ) ( )

¢ =
+

+
+

a a
k

k k

d

dt

k

k

a k

k k
2

2 2 2
. C.122 2
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4
int

2 2
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2

 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎛⎝ ⎞⎠⎞⎠ ⎛⎝ ⎞⎠∣ ∣ ( )

The associated dissipation of the transformation can be computed from the expressions above for any slow
transformation.Wenow consider the partial control (PC) case inwhich the distance a and interaction strength
kint isfixed, and the experimenter can only control the local stiffnesses kx= ky≡ k. Substituting (C.10) and
(C.12)with = =a k 0int  , the irreversible work (C.6) then specifies to

= +
+

+
+

W
T

k k k
k a

k

k k
k

4

1 1

2
2

2
. C.13irr 3

int
3

2 2 int
2

int
4

2  ⎜ ⎟⎛⎝ ⎞⎠( ) ( ) ( )

Forfixed boundary values of k, it can be proven using theCauchy-Schwarz inequality that the dissipationwith
partial control (C.13) is lower-bounded by
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By comparison, in the case of total control (TC), the bound for the dissipation is given by (20), which, in our case,
reads

t
¢ - ¢ + S S a aW D

1
, , with C.15irr

TC
1 2

2
BW 1 2
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C.3. Rotating a 2-dimensional system
In this section, we consider the rotation of a covariancematrixΣ in 2 dimensions by an angle q = p

4
.We thus

impose the boundary conditions

w
w

w w w w
w w w wS = S =

+ -
- +

0
0

,
1

2
. C.18a

b

a b a b

a b a b
in fin⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ( )

Andweminimize the irreversible work (9) according to three possible strategies.

C.3.1. Simple rotation protocol. First, we consider the transformation fromΣin toΣfin to be performed by
uniformly rotating the experimental apparatus, withoutmodifying the squeezing {ωa,ωb} of the distribution.
This corresponds to an angle-parametrized protocol

q w q w q q w w
q q w w q w q w

S =
+ -

- +
q

cos sin sin cos

sin cos sin cos
C.19a b a b

a b a b

2 2

2 2
⎜ ⎟⎛⎝ ⎞⎠( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )

starting atΣ0≡Σin and ending atS º Sp fin4
. The irreversible work production (9) is in this case given by

ò ò n= S S
t n n¥ - S - SW dt d e eTrirr

1

2 0 0
 ⎡⎣ ⎤⎦. Given the rotational symmetry of the problem, it is obvious that the

optimal rotation of the systemwill have a constant speed q . Thus the integrand

ò n= S Sn n
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2
Tr C.20irr

0
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will be constant in time and can be computed, e.g., for θ= 0, which yields
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Nowwe use the fact that the operator ò n= n n¥ - - A B e Be, d A A
0

( ) can be easily expressed in components as

=
+

 A B, ij
B

a a

ij

i j
( ) , in the basis that diagonalizesA, i.e.,Aij= δijai.We therefore get
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fromwhich it is easy to compute the value of (C.20):

q
w w
w w

=
-
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Theminimumvalue of ò=
t

W Wirr 0 irr for the uniform rotation over the total angle qD = p
4
is thus given by

t
p w w

w w
=

-
+

W
1

16
. C.24a b

a b
irr

2 2( ) ( )

C.3.2. Pseudo-commutative protocol. One possible way to interpolate betweenΣin andΣfin (C.18) is to change
the values ofωa,b to reach an intermediate symmetric covariancematrix

w
w

S =
0

0
, C.25c

c
intermediate ⎛⎝ ⎞⎠ ( )

which is proportional to the identitymatrix, and later ‘re-stretch it’ in theπ/4 direction in the sameway. Such
protocol is locally commutative at all times, in the sense that S S = "t t t, 0[ ( ) ( )] , although thefinal and initial
covariancematrices do not commute. The total irreversible work for such a strategy is clearly twice the
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irreversible work obtained for the transformationΣin→Σintermediate, in a time τ/2.We therefore get, using the
commutative result (16),

t
w w w w= - + -W

4
. C.26a c b cirr

2 2(( ) ( ) ) ( )
ωc is a free parameter of the described protocol, which can be chosen tominimizeWirr. The optimal choice is

w = w w+
c 2

2
a b( ) , leading to theminimumdissipation for pseudo-commutative protocols

t
w w= -W

2
. C.27a birr

2( ) ( )

C.4.Optimal protocol
Theminimal value of dissipation for any protocol betweenΣin andΣfin is given by themain lower bound (12),
which is saturatedwhen performing the BW-geodesics (14). In our case, we obtain

t t

t
w w w w w w

S S
= S + S - S S S

= + - + - -

D , 1
Tr Tr 2 Tr
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2 2 2 . C.28a b a b a b
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4 Conclusion

We derived maximum efficiency at given power for low-dissipation refrigerators

and heat pumps as well as absorption refrigerators consisting of simultaneous op-

erating low-dissipation heat engines and refrigerators in Refs. [5–7]. We provided

simple analytical upper and lower bounds on this quantity. For low-dissipation

refrigerators [5], we showed that the infinitely fast nonlinear increase in efficiency

with decreasing power from the maximum power, routinely occurred in heat en-

gines [25, 44–51], can be observed for small irreversibility ratio only. For large

irreversibility ratio, the increase in efficiency is linear. Thus, low-dissipation refrig-

erators are for small irreversibility ratio more beneficial to operate near maximum

power than at maximum power to achieve considerably larger efficiency compared

to the efficiency at maximum power. Otherwise, they are more advantageous to

operate at maximum power. For low-dissipation heat pumps [7], the increase in

efficiency with decreasing power for large value of power is slow. Reasonably ef-

ficient heat pumps thus should operate far from the maximum power, which is

different from heat engines [45] and refrigerators [5]. We identified a special pa-

rameter regime when the expressions for maximum efficiency at given power for

low-dissipation heat pumps and endoreversible heat pumps [44, 52, 72] agree. We

pointed out that, at maximum power, the low-dissipation heat pump operates as

a pure work-to-heat converter. The corresponding power diverges and the effi-

ciency is the smallest possible (one). For absorption refrigerators [6], we showed

how their maximum efficiency at given power follows from those for the internal

engine and refrigerator. When the internal engine and refrigerator are low dissi-

pation, we analytically showed that a slight decrease in power of the absorption

refrigerator from its maximum value leads to a large nonlinear increase in effi-

ciency, as observed in heat engines [45], whenever the ratio of maximum powers

of the internal engine and refrigerator does not diverge. Otherwise, the increase

in efficiency is linear as observed in refrigerators with large irreversibility ratio [5].

Thus, in all practical situations, the efficiency of absorption refrigerators signif-

icantly increases when their power is slightly decreased from its maximum. We

93



concluded that it is more beneficial to operate actual absorption refrigerators near

maximum power than at maximum power, so that the corresponding efficiency is

much enhanced compared to the efficiency at maximum power.

We designed optimal finite-time protocols for Brownian systems under different

boundary conditions in Refs. [9, 43]. We showed that the results of optimization

strongly depend on which boundary conditions are imposed. For experimentally

motivated constraints on control parameters, we derived optimal protocols for

finite-time heat engines under constrained control [9]. When the constraints are

imposed on the system response, we showed how to generalize the paradigmatic

model [24] in stochastic thermodynamics to the multidimensional case [43], per-

haps with a limited control over some of the degrees of freedom.
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Appendix A Thermoradiative devices

Thermoradiative devices, theoretically studied by Strandberg [79] and later ex-

perimentally realized by Santhanam and Fan [80], represent a new technology that

has recently emerged for electricity generation from thermal energy. The electric

current in these devices is driven by the difference in the chemical potential for

electron populations above and below a bandgap (EG = EC − EV) (for more de-

tails see Fig. 6). The difference in chemical potential (µ = Efe − Efh < 0) arises

due to an asymmetry in the excitation and deexcitation processes of electrons

across the bandgap, exhibiting certain similarities to traditional thermophoto-

voltaic cells [97–100]. Nevertheless, there are some differences in their working

principles, even though both of them are composed of p-n junctions: As shown

in Fig. 7, while thermophotovoltaic cells accept thermal radiation from a higher-

temperature source than the cell itself, thermoradiative cells, on the other hand,

operate at elevated temperatures and release a net outflow of photons to colder

surroundings, causing the generated bias and thus electric current in the opposite

direction.

FIG. 6. A possible route for an electron going through the thermoradiative device [79].
(a) An electron-hole pair recombines radiatively over the bandgap EG = EC−EV, where
EC is the bottom level of the conduction band and EV is the top level of the valance
band. (b) The electron increases its energy by thermal excitations due to redistribution
of the electron population when electrons leave the device. (c) Electron extraction to an
external circuit via a metallic contact, leaving a hole behind. (d) The electron completes
the loop when it is reinserted to the conduction band of the device.

A thermoradiative device is a special type of heat engine and thus it allows to
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FIG. 7. For thermoradiative devices, heat Qin and radiative energy Eabs is supplied,
while work W is produced and radiative energy Erad is emitted. On the contrary, a
thermophotovoltaic cell accepts radiative energy Eabs from a heated body while gener-
ating work W and emitting radiative energy Erad. In general, heat must be removed
from the thermophotovoltaic cell to prevent its temperature from rising (Qout) [79].

attain the Carnot efficiency at vanishing power. This can be understood as follows.

The current density and the energy flux density released by the thermoradiative

device are represented by [79, 101–103]

J/e = Ṅ(TA, 0)− Ṅ(TD, µD), (29)

Q̇out = Ė(TD, µD)− Ė(TA, 0), (30)

where

Ṅ(T, µ) =
2π

c2h3

∫ ∞

EG

dε
ε2

e(ε−µ)/kBT − 1
, (31)

Ė(T, µ) =
2π

c2h3

∫ ∞

EG

dε
ε3

e(ε−µ)/kBT − 1
. (32)

Here Ṅ(T, µ) is the flux density of photons with energy ε ∈ [EG,∞] incoming

to the thermoradiative device from the surroundings (T = TA, µ = 0) and that

radiated by the thermoradiative device to the surroundings (T = TD, µ = µD), and

Ė(T, µ) is the corresponding energy flux density. e, c, h, kB, EG, T , and µ denote,

respectively, the elementary charge, speed of light, Plank constant, Boltzmann
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constant, bandgap, temperature, and chemical potential difference. The device

voltage and the chemical potential difference are related by V = µD/e, and thus

the output power density and efficiency are expressed as [79]

P = JV = µD[Ṅ(TA, 0)− Ṅ(TD, µD)], (33)

η =
P

P + Q̇out

=

[
1− 1

µD

Ė(TA, 0)− Ė(TD, µD)

Ṅ(TA, 0)− Ṅ(TD, µD)

]−1

. (34)

For large bandgap EG such that ε− µ ≫ kBT , we obtain exp[(ε− µ)/kBT ]− 1 ≈
exp[(ε− µ)/kBT ]. Then Eqs. (31) and (32) become simple,

Ṅ(T, µ) ≈ 2πkBT

c2h3
E2

G exp

[
µ− EG

kBT

]
, (35)

Ė(T, µ) ≈ 2πkBT

c2h3
E3

G exp

[
µ− EG

kBT

]
. (36)

Using the approximations (35) and (36), one readily obtains that vanishing output

power density in Eq. (33) corresponds to

µD = EG

(
1− TD

TA

)
, (37)

and thus the efficiency (34) approaches the Carnot efficiency

η ≈ µD

µD − EG

= 1− TA

TD

. (38)

This is natural because a larger bandgap EG means that only electrons with higher

energy can deexcite across the bandgap. The limited number of transitioned

electrons allows the electron population in each band to converge to Fermi–Dirac

statistic (equilibrium), and thus the efficiency reaches the Carnot efficiency, as

dictated by equilibrium thermodynamics.
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