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Abstract: In systems biology, material balances, kinetic models, and thermodynamic boundary
conditions are increasingly used for metabolic network analysis. It is remarkable that the reversibility
of enzyme-catalyzed reactions and the influence of cytosolic conditions are often neglected in kinetic
models. In fact, enzyme-catalyzed reactions in numerous metabolic pathways such as in glycolysis are
often reversible, i.e., they only proceed until an equilibrium state is reached and not until the substrate
is completely consumed. Here, we propose the use of irreversible thermodynamics to describe
the kinetic approximation to the equilibrium state in a consistent way with very few adjustable
parameters. Using a flux-force approach allowed describing the influence of cytosolic conditions
on the kinetics by only one single parameter. The approach was applied to reaction steps 2 and
9 of glycolysis (i.e., the phosphoglucose isomerase reaction from glucose 6-phosphate to fructose
6-phosphate and the enolase-catalyzed reaction from 2-phosphoglycerate to phosphoenolpyruvate
and water). The temperature dependence of the kinetic parameter fulfills the Arrhenius relation
and the derived activation energies are plausible. All the data obtained in this work were measured
efficiently and accurately by means of isothermal titration calorimetry (ITC). The combination of
calorimetric monitoring with simple flux-force relations has the potential for adequate consideration
of cytosolic conditions in a simple manner.

Keywords: biothermodynamics; glycolysis; isothermal titration calorimetry; systems biology

1. Introduction

In systems biology, models are expected to describe enzyme kinetics with high precision at
relatively low metabolite concentrations (in the lower micro- to millimolar range). Since all metabolic
fluxes decay when reaching a thermodynamic equilibrium, the approximation to the state of equilibrium
must also be well described. Often, only the kinetic data of enzyme-catalyzed reactions are published.
Based on such data, various kinetic models for data analysis of enzyme-catalyzed reactions have
been developed in the literature. Figure 1 compares several of such kinetic models with regard to
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the validity range (A) and the required adjustable parameters (B). The most common approach is
Michaelis-Menten kinetics, which is based on the publications of Brown [1] and Henri [2,3]. Leonor
Michaelis and Maud Menten studied the kinetics of the invertase reaction in 1913 [4]. They defined the
initial velocity of a reaction r (in mol L−1 s−1) (Equation (1)) as a function of the concentrations of the
substrate cS, the product cP, and the enzyme cE (all in mol L−1). Note that the product formation rate
corresponds to the substrate consumption rate with an inverted sign:

r =
d cP

dt
= −

d cS

dt
=

rmax·cS

KS+cS
(1)

with:
rmax= kcat·cE (2)

kcat (in s−1) is a kinetic constant of first order. rmax stands for the maximum reaction rate
(in mol L−1 s−1). KS is called Michaelis constant and is the substrate concentration at which the reaction
rate is half of rmax. The Michaelis-Menten equation is based on the following reaction mechanism
(Equation (3)):

E + S
k1
−→
←−
k−1

ES
kcat
−→ E + P (3)

Here, an enzyme (E) binds reversibly to a substrate (S) and forms an enzyme-substrate-complex
(ES) that releases the enzyme and the product (P) in an irreversible step. k1 and k−1 are the reaction rate
constants for the association and the dissociation of the enzyme-substrate-complex, respectively and kcat

describes the dissociation of the enzyme-substrate-complex to the product and the enzyme. However,
this model representation for enzyme kinetics is only valid for irreversible reactions. In reversible
enzymatic reactions, the substrate is only consumed until the equilibrium is reached and the reaction
mechanism has to be extended (Equation (4)) for the backward reaction, which is characterized by the
kinetic parameter k−cat [5]:

E + S
k1
−→
←−
k−1

ES
k cat
−−→
←−−
k−cat

E + P (4)

For simplicity, the majority of published research focused on the initial steady state of reactions
(no product formation), so that the backward reaction could be neglected [6]. This simplification
allows applying the irreversible Michaelis-Menten model also to reversible reactions. However,
many enzymatic reactions are highly reversible [7–11], and the complete reaction progress cannot be
represented if the backward reaction is neglected [12,13]. There are some models which incorporate
the reaction equilibrium into Equation (1), such as the equilibrium-based model of Hoh and
Cord-Ruwisch [14] and the reversible Michaelis-Menten mechanism [6,11–13,15–17]. The reversible
Michaelis-Menten mechanism relies on a complicated system of kinetic equations. It requires a high
number of kinetic constants, which are not independent of each other (e.g., for an isomerization
mechanism, four parameters are obtained and five independent measurements are needed to determine
them) [14,16,18]. Furthermore, the high number of parameters makes it difficult to predict or even
describe the influence of the cytosolic conditions on reaction kinetics as changes to the individual
parameters could cancel each other out. Therefore, alternative ways for data analysis of reversible
reactions with a focus on determining the influence of cytosolic conditions on reaction kinetics are
required. Simple linear flux-force relations derived from irreversible thermodynamics need only one
parameter (called the phenomenological coefficient) to describe the approximation to the state of
equilibrium. Note that linear relations are only to be expected in relative proximity to the equilibrium.
In order to validate this approach, we have chosen two reactions from glycolysis as an example because
glycolysis is among the best-understood pathways. Thus, in the present work, we will show the
usefulness of the flux-force relations from irreversible thermodynamics to describe the reaction behavior
of both glycolytic reactions, and we will validate the results by a series of new reaction data. The chosen
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glycolytic reactions under investigation in this work are catalyzed by glucose-6-phosphate isomerase
(reaction 2 of glycolysis, Equation (5)) and by phosphopyruvate hydratase (enolase) (reaction 9,
Equation (6)). Both reactions are reversible and end in thermodynamic equilibrium. The first reaction
is the conversion of glucose-6-phosphate (G6P) into fructose-6-phosphate (F6P) and the second reaction
is the transformation of 2-phosphoglycerate (2PG) into phosphoenolpyruvate (PEP) and water:

G6P� F6P (5)

2PG� PEP + H2O (6)

Systematic analyses of the published thermodynamic and kinetic studies of both reactions reveal
two shortcomings. First, the kinetic data are mainly evaluated using the irreversible Michaelis-Menten
model and therefore, disregard the reversibility of the reaction [19–25]. Second, the measurement
conditions chosen by the researchers often considerably deviate from the environment inside biological
cells. However, numerous studies show that environmental conditions (e.g., the solvent) have a
considerable influence on both the equilibrium and the kinetics of reversible enzyme reactions [26–30].
Thus, cell-mimicking conditions should be taken into account for a realistic thermodynamic and kinetic
investigation of metabolic pathways [31,32]. One aim of this work was to examine to what extent
models derived from irreversible thermodynamics allow a satisfactory description of the full reaction
progress and especially the approximation to the equilibrium state. This is important because in
metabolic reaction sequences, such as glycolysis, many reactions occur at metabolome concentrations
in the milli- and micromolar range and close to the equilibrium (Figure 1A). Two models will be
applied in the present work. The first model was suggested by Noor 2013 and is called ‘separable
rate law’ [9]. It breaks down the reversible Michaelis-Menten rate law into a product of three factors:
(i) The maximum possible conversion rate, (ii) the enzyme saturation level, and (iii) the thermodynamic
driving force. The second model (a flux-force model) was published by Beard and relates fluxes
with the thermodynamic driving force [9,33]. The temperature dependence of the rate constants
until deactivation of the enzyme is best described with models (e.g., Arrhenius equation). Therefore,
the temperature dependence in addition to the exact description of the reaction process was used to
check the plausibility of the tested kinetic models (Figure 1C).
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Figure 1. Scheme of the investigations within the present work. (A) Shows exemplarily the validity
range of the various kinetic models used to describe the reaction progress, (B) shows the number of
adjustable parameters required by the models, and (C) shows the most important cytosolic conditions,
highlighting the temperature as the one used to test the models.

Any of the above-described model still needs experimental data. Thus, new data are presented in
this work. Calorimetry provides real time information about the investigated reaction, requiring neither
sampling nor interacting with the reaction partners [34]. Therefore, isothermal titration calorimetry (ITC)
in combination with thermokinetic data evaluation, developed by Todd and Gomez [35], was used to
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monitor the reaction progress and its dependency on the temperature. Our final goal is to develop a
model that allows describing the influence of cytosolic conditions on the kinetics of enzymatic reactions.

2. Results

2.1. Definitions and Specifications

In the following, all concentrations are given as molality (mol kg−1) instead of molarity (mol L−1).
The latter is more common in biochemistry and bioengineering but the use of molality is important for
the link to thermodynamics. Molality only depends on the masses of solute and solvent, which are
unaffected by variations in temperature, pressure, and density. From a practical point of view,
the differences between molality and molarity under cytosolic conditions are small. For instance,
the density of water decreases by only 0.6% in the temperature range between 25 and 40 ◦C. Table 1
shows a list of all symbols used, their properties and units.

Table 1. Symbols.

Symbol Property Unit

A pre-exponential factor s−1

ai activity of component i -

ci concentration of component i mol kg−1

c0
i concentration of component i at time 0 mol kg−1

ceq
i equilibrium concentration of component i mol kg−1

cP product concentration mol kg−1

cS substrate concentration mol kg−1

Ea activation energy J mol−1

∆RG Gibbs energy of biochemical reaction J mol−1

∆RGo standard Gibbs energy of biochemical reaction J mol−1

∆RH enthalpy of biochemical reaction J mol−1

J flux mol L−1 s−1

Ka thermodynamic equilibrium constant of biochemical reaction -

Kc apparent equilibrium-molality ratio of biochemical reaction −/mol kg−1

kcat kinetic constant of reaction s−1

KS/P Michaelis constant for substrate/product mol kg−1

Kγ activity-coefficient ratio of biochemical reaction −/mol kg−1

L phenomenological coefficient/kinetic parameter s−1

m mass kg

P heat production rate W

Q heat J

R universal gas constant (8.314 J mol−1 K−1) J mol−1 K−1

r reaction rate mol L−1 s−1

rmax maximum reaction rate mol L−1 s−1

T temperature K

α correlation factor mol kg−1 s−1

Λ kinetic parameter Λ = rmax
KS

s−1

ι thermodynamic driving force -

γ∗,mi rational activity coefficient of component i on molality base -
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2.2. Application of Irreversible Thermodynamics for Kinetic Evaluation

Irreversible thermodynamics postulates a linear relation between flux or reaction rate r (mol kg−1 s−1)
and the “conjugate” thermodynamic driving force ι if the system is not too far from the equilibrium
(Equation (7)). ι is zero at equilibrium, positive for the forward reaction, and negative for the
backward reaction [36]:

r = ∝ ·ι (7)

with
ι = 1− e∆RG/RT (8)

and

∆RG =∆RGo+R·T· ln

∏
i

aνi
i

 (9)

α, the correlation factor, links the substrate consumption rate r with the thermodynamic driving
force. ∆RG, ∆RGo, ai, and νi are the Gibbs energy and the standard Gibbs energy of the reaction (both in
J mol−1), the activity and the stoichiometric coefficients, respectively. R and T are the universal gas
constant and the temperature. In both investigated reactions we evaluated the opposite direction of
the glycolysis; that is, F6P is considered as a substrate and G6P as a product of reaction 2, while PEP
is considered as a substrate and 2PG as a product of reaction 9. Taking the equilibrium condition
(∆RGo = −R·T·ln(Ka)) and assuming that the activities of the solvent during the reaction and at
equilibrium are identical, leads to the following result for the Gibbs energy (Equation (10)) and for the
thermodynamic driving force (Equation (11)):

∆RG′ = R·T· ln

aeq
S ·aP

aS·a
eq
P

 (10)

ι =
aS·a

eq
P −aeq

S ·aP

aS·a
eq
P

(11)

where aeq
S , aP, aS, and aeq

P stand for the equilibrium activity of the substrate, the activity of the product,
the activity of the substrate, and the equilibrium activity of the product, respectively.

This model was refined by Noor in 2013 [9] who expressed α by the product of the maximum rate
called the capacity term V+ and the enzyme fractional saturation term level κ (Equation (12)):

r = ∝ ·ι = V+
·κ·ι (12)

V+= cE·k+
cat (13)

κ =
cS/KS

1 + cS/KS + cP/KP
(14)

k+cat (in s−1), cS, cP, KS, and KP (in mol kg−1) denote the kinetic constant of the forward reaction,
the substrate concentration at any time of the reaction, the product concentration at any time of the
reaction, and the Michaelis constants for the substrate and product, respectively. Using Equations (10)
and (12)–(14), the mass balance (cP = c0

S − cS) and neglecting the activity coefficient Equation (15)
can be formulated for the description of the enzymatic reactions.

r = cE·k+
cat·

cS

KS

1+
cS

KS
+

(
c0

S−cS

)
KP

·(1−
ceq

S ·
(
c0

S−cS

)(
c0

S−ceq
S

)
·cS

) (15)
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Here, c0
S is the concentration of the substrate at time 0. In the original concept of Noor, an enzyme

saturation by (i) the substrate, (ii) the product, or (iii) by both is allowed. We found the Noor equation
suitable to describe our data with only two adjustable parameters assuming a single saturation of either
the substrate or the product. For reaction 2, we investigated an enzyme saturation by the substrate
and the adjustable parameters are rmax and KF6P. For reaction 9, an enzyme saturation by the product

was investigated and the adjustable parameters are Λ = cE ·
k+cat

KPEP
and K2PG by excluding the double

saturation (Equations (16) and (17)). The determination of rmax for reaction 9 was not possible because
k+cat is not independent from KPEP. The parameters were obtained by a non-linear regression of r vs. cS.

For reaction 2 : r = rmax·

cF6P
KF6P

1+ cF6P
KF6P

·(1−
ceq

F6P·
(
c0

F6P−cF6P

)(
c0

F6P−ceq
F6P

)
·cF6P

) (16)

For reaction 9 : r = Λ·
cPEP

1+
(c0

PEP−cPEP)
K2PG

·(1−
ceq

PEP·
(
c0

PEP−cPEP

)(
c0

PEP−ceq
PEP

)
·cPEP

) (17)

The second model we tested was introduced by Westerhoff and Beard and is called the flux-force
relationship [9,33]. They combined ∆RG with fluxes for the forward J+ and the backward reaction
J− and Noor substituted the fluxes by the respective rates [9] (Equation (18)). A neatly deduction of
Equation (18), can be found in the publication by Beard and Qian [33]:

∆RG = −R·T·ln(J+/J−) = −R·T· ln
(

r+

r−

)
(18)

The net reaction rate r is the difference between reaction rates of the forward r+ and backward
reaction r−. This can be related to the Gibbs energy (Equation (19)) and the thermodynamic driving
force ı:

r
r+

=
r+ − r−

r+
= 1− exp(∆RG/R·T) = ι (19)

Both, forward and backward reaction use the same catalytic center of the enzyme and it is
justified to assume a proportionality between the sum of r+ and r− and the amount of enzyme cE [9,37].
Thus, the ratio between the net rate and the sum of r+ and r− needs to be evaluated (Equation (20)).

r
r++r−

=
r+−r−

r++r−
=

1− r−
r+

1+ r−
r+

=
1− e∆RG/RT

1 + e∆RG/RT
=

ι

2− ι
(20)

Now, we introduce that the sum of r+ and r− is proportional to cE into Equation (20), an expression
for the rate dependency on the thermodynamic driving force results (Equation (21)). The proportionality
factor L is called a phenomenological coefficient or kinetic parameter in the following:

r =
(
r++r−

)
·

ι

2− ι
= L·cE·

ι

2− ι
(21)

The great biggest advantage of this model is that it correlates the rate with the substrate
concentration as the frequently used Michaelis-Menten model does, but contains only one fit parameter
L, which is a kinetic parameter that can be very suitable for further investigations aiming at comparing the
influence of cytosolic conditions on the kinetics. Furthermore, it perfectly describes the approximation
to the equilibrium state. For data analysis, a plot of the rate against ι

2−ι is used and the slope of a linear
regression of the measured data provides (at known enzyme concentration) the value for L. Since the
measured heat flow data at the beginning of the reactions are disturbed by the inertia of the ITC and
the heat of dilution, this part of the curve will not be used for kinetic evaluation. This corresponds to
ι

2−ι > 0.6 for both reactions.



Int. J. Mol. Sci. 2020, 21, 8341 7 of 20

Typically, the Arrhenius equation (Equation (22)) describes the temperature dependence of the
kinetic constants below the optimal temperature very well. Therefore, it was verified whether the
parameter L of the flux-force model follows the Arrhenius relationship [38]:

L = A · e−
Ea
R·T (22)

A is the pre-exponential factor (a constant value). The activation energy Ea can be calculated from
the slope of a plot of ln k vs. 1/T. Experimental data are needed to evaluate the kinetic models and the
temperature dependency of the kinetic constant.

2.3. ITC Results

In this work, ITC was used to monitor the reaction progress as a basis to determine the kinetic
parameters. The parameters KS, KP, rmax, and Λ of the Noor model and the kinetic parameter
L were determined at different temperatures to access their influence on the kinetics of the reaction.
The reaction progress was monitored calorimetrically and the enthalpy of reaction as well as the kinetic
constants were determined. The measuring principle for reactions 2 and 9 is illustrated in Figure 2A,C.
In Figure 2A,C, the raw data from the reaction signal (green), reference signals from substrate to buffer
(Figure 2A,C, red) and from buffer to enzyme (Figure 2A,C, black) are shown. The second reference
signal was negligibly small. The net signal is the difference between the raw data and the reference
measurement. To determine the heat Q the signal was integrated (Figure 2B,D). The heat obtained
from reactions 2 and 9 is marked in gray in Figure 2B,D.
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Figure 2. Heat flow diagrams from the isothermal titration calorimetry (ITC) measurement of
reactions 2 and 9 at 310.15 K. The arrows mark the time of the two injections (black = 1st injection,
blue = 2nd injection). At the end of the reaction, when the equilibrium is reached, the signal returns to
the baseline. The concentrations were 14.3 nmol kg−1 PGI and 4.8 mmol kg−1 F6P for reaction 2 and
2 µmol kg−1 enolase and 74.8 mmol kg−1 PEP for reaction 9. (A,C) Show the heat flow curves of the
total reaction signal (green), the reference measurement without the enzyme (red), and the reference
measurement without the substrate (black). The heat of dilution causes the positive peak of the red and
green curve. (B,D) Display the net reaction (subtraction of the reference signals from the total reaction
signal). The integrated heat of the net signal (Q) is shown in gray.
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In order to exclude that the ionization of the buffer plays a role for the obtained reaction enthalpy,
the measurements were also performed in other buffers [39]. For reaction 2, a potassium phosphate
buffer and a HEPES buffer were used for this purpose. The differences in the ionic strengths of the
buffers were neglected. The reaction enthalpy values are all very similar (between 9.6 and 11.1 kJ mol−1)
(Table 2), so we concluded that the ionization of the buffer does not play a significant role for the
measured values. The small deviations of the values could be caused by the influence of the ionic
strength. The same results were previously obtained for reaction 9 [40].

Table 2. Reaction enthalpy values of reaction 2 for different buffer systems.

Buffer ∆RH (kJ mol−1)

HEPES 9.7 ± 0.3
Potassium phosphate 9.6 ± 0.2

MOPS 11.1 ± 0.5

To determine the reaction enthalpy, the heat Q from the ITC and equilibrium concentrations of the
substrates are required (Equation (23)). With the help of the Perturbed-Chain Statistical Associating
Fluid Theory (ePC-SAFT), equilibrium concentration ratios Kc can be calculated from the already known
thermodynamic equilibrium constants Ka. The parameters are listed in Table 3. It can be seen that a
temperature change in the investigated area has no influence on the calorimetrically determined heat.
The equilibrium Kc values of both reactions increase with the increasing temperature. For reaction 2,
from 0.285 (298.15 K) to 0.343 (310.15 K). For reaction 9, Kc increases from 239.4 (298.15 K) to 251.3 (310.15 K).

Table 3. Measured thermodynamic reaction properties.

Reaction 2 Reaction 9 [40]

Temperature
(K)

Q
(mJ)

Kc
(–)

∆RH
(kJ mol−1)

Q
(mJ)

Kc
(mol·kg−1)

∆RH
(kJ mol−1)

298.15 7.63 ± 0.14 0.285 10.3 ± 0.2 8.15 ± 0.72 239.4 2.4 ± 0.2
305.15 7.63 ± 0.07 0.318 10.6 ± 0.1 7.85 ± 0.17 245.9 2.4 ± 0.1
310.15 7.86 ± 0.33 0.343 11.1 ± 0.5 7.64 ± 0.22 251.3 2.4 ± 0.1

The error bars result from the standard deviation of the triple determinations. Results for reaction 9 are adapted
from [40].

2.4. Kinetic Analyses

The net heat flow values for both investigated reactions have been transformed into reaction
rates and substrate concentrations using the Todd and Gomez concept Equations (29) and (30) [35].
Surprisingly, the reaction rate does not show the typical saturation behavior of Michaelis-Menten
kinetics (Figure 3). Furthermore, the reaction rate approaches zero when the equilibrium concentration
of the substrates are reached. Additionally, the curve of reaction 9 (Figure 3B) shows a convex curvature,
which Michaelis-Menten cannot describe. The convex behavior comes from the enzyme saturation by
the product.

The first model that we have tested was published in 2013 by Noor et al. [9]. The Noor-model
seems to be much better suited than the Michaelis-Menten because it is equilibrium based. For both,
reactions 2 and 9, the Noor model (red) fits very well to our measured data (black dots) (Figure 4).
The initial phase of the measurements, which was affected by the heat of dilution and inertia of the
ITC, was not used for data analysis. As shown in Figure 2, the curves of both reactions have a different
curvature. The Noor model can fit both of these curvatures. Reaction 2 has a concave curvature
(Figure 4A), for which the Noor assumption of an enzyme saturation by the substrate F6P applies [9].
In this case, Equation (16) was used for the fit. Reaction 9 has a convex curvature (Figure 4B), for which
a different Noor assumption of enzyme saturation by the product 2PG [9] was used. Equation (17)
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was applied in this case. This results in two fit parameters for both reactions: For reaction 2, we obtain
rmax and KF6P and for reaction 9, we obtain Λ and K2PG.
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Figure 4. Fitting of the kinetic data (scatter) with the Noor model (red solid line). Both panels show a
single example reaction. (A) Shows the data of reaction 2 with concentrations of 14.3 nmol kg−1 PGI and
4.8 mmol kg−1 F6P (R2 = 0.99972). (B) Shows the data of reaction 9 with concentrations of 2 µmol kg−1

enolase and 74.8 mmol kg−1 PEP (R2 = 0.99903). Both were measured at 310.15 K. The adjustable
parameters are rmax and KF6P in A and Λ and K2PG in B.
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The results of the Noor analysis are presented in Table 4. In reaction 2 of glycolysis, an increase of
rmax can be seen with the increasing temperature, whereas the KF6P value shows a decrease. In contrast,
in reaction 9 both, Λ and K2PG, increase with the increasing temperature.

Table 4. Obtained Noor parameters for reactions 2 and 9 at different temperatures. The error bars
correspond to the standard deviations of the triple determinations.

Temperature (K)
Reaction 2 Reaction 9

rmax
(µmol kg−1s−1)

KF6P
(mmol kg−1)

Λ

(ms−1)
K2PG

(mmol kg−1)

298.15 7.03 ± 0.58 4.35 ± 0.64 0.34 ± 0.01 10.2 ± 0.92
305.15 10.30 ± 0.88 3.41 ± 0.39 0.44 ± 0.13 13.8 ± 3.35
310.15 13.21 ± 1.20 3.26 ± 0.09 0.57 ± 0.03 16.5 ± 0.48

Additionally, the one-parameter flux-force relationship model of Beard [33] was applied in this
work. In Figure 5, the linearized flux-force model is presented, and the slope corresponds to the
product of the enzyme concentration and the kinetic parameter L (Equation (21)).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 20 
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Figure 5. Verification of the suitability of the flux-force model to describe the reaction kinetics at
310.15 K. Both panels show a single example reaction. (A) Shows the result of one chosen condition of
reaction 2 (14.3 nmol kg−1 PGI and 4.8 mmol kg−1 F6P) with R2 = 0.99921 and (B) of reaction 9 with
concentrations of 2 µmol kg−1 enolase and 74.8 mmol kg−1 PEP (R2 = 0.99892).

Figure 5 demonstrates that the flux-force model fits the data well. With flux-force the range that
cannot be used for data evaluation ( ι

2−ι > 0.6) is larger than with Noor. The reason for this is that
the flux-force model can best reproduce the data near the equilibrium. The data generated for both
reactions can be found in Table 5. In both reactions a strong increase of the L value can be seen with the
increasing temperature.
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Table 5. Results from the flux-force model for reactions 2 and 9 and the two glycolytic reactions at
different temperatures. The flux-force model provides values for L from the slope of the plot (Figure 5).
The error bars correspond to the standard deviations of the triple determinations.

Temperature (K)
Reaction 2 Reaction 9

L Value (s−1) L Value (s−1)

298.15 217.18 ± 14.27 10.13 ± 0.65
305.15 358.80 ± 17.29 14.57 ± 3.20
310.15 518.44 ± 43.84 20.37 ± 1.03

Both of the investigated models are able to reproduce the calorimetrically measured data well.
The next question is, whether the kinetic parameters from the flux-force model fulfill the Arrhenius
equation. For the Arrhenius equation, the natural logarithm of the respective rate constant is plotted
against the reciprocal temperature in Kelvin [38]. The activation energy can then be determined from
the slope of the linear fit (Equation (22)). Figure 6 shows that the obtained kinetic parameter L can be
described by the Arrhenius model for both reactions. Under the measuring condition, an activation
energy of 55.4 ± 1.2 kJ mol−1 was calculated for reactions 2 and 9 the value was 44.8 ± 1.4 kJ mol−1.
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Figure 6. The Arrhenius plot of the kinetic parameter L (flux-force model) for both reactions.
(A) Shows results for reaction 2 (14.3 nmol kg−1 PGI and 4.8 mmol kg−1 F6P) with a p-value of
the slope of 0.01389 (slope is significantly different from 0) and R2 = 0.99952 and (B) for reaction 9 with
concentrations of 2 µmol kg−1 enolase and 74.8 mmol kg−1 PEP (p-value = 0.01922 (slope is significantly
different from 0), R2 = 0.99909). The error bars correspond to the standard deviations of the triple
determinations. The activation energy Ea was calculated from the slope of the fit. For reaction 2, it is
Ea = 55.4 ± 1.2 kJ mol−1 and for reaction 9, it is Ea = 44.8 ± 1.4 kJ mol−1.
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3. Discussion

Our aim was to evaluate whether different kinetic models are able to reproduce the kinetics of
reversible reactions close to the equilibrium. Therefore, we tested two models, Noor and flux-force,
and determined whether these models can reflect the temperature dependence using an Arrhenius
equation. We analyzed and tested the models by comparing them to new kinetic reaction data for the
glycolytic reactions 2 and 9 (PGI and enolase), respectively.

3.1. Thermodynamic Data for Reaction 2

The data obtained can be found in Table 3 and Figure 2. At 310.15 K, a reaction enthalpy
of ∆RH = 11.1 ± 0.5 kJ mol−1 was obtained for the considered conditions. Comparable values can
be found in the literature. In 1968, standard reaction enthalpies of 10.8 kJ mol−1 (273.15–308.15 K)
and 15.2 kJ mol−1 (308.15–322.15 K) were received from Dyson et al. [24]. Three explanations for the
deviations from our data are possible: (i) ∆RH might be strongly temperature dependent (the reaction
heat capacity is not zero), (ii) an insufficient consideration of the physical environment (activity
coefficients), which is the reason that ∆RH might be strongly dependent on the reaction conditions
(substrate concentrations, solvent, and cosolvents), and (iii) the different origins of the enzyme
(Dyson: Rabbit skeletal muscle), which might also contain impurities that further influence ∆RH.
In 1988 Tewari published a calorimetric standard reaction enthalpy ∆RH0 = of 11.7 ± 0.2 kJ mol−1 at
298.15 K [41]. A more recent calorimetric value of ∆RH0 = 12.05 ± 0.2 kJ mol−1 and a van ‘t Hoff value
for ∆RH0 = 12.25 ± 0.3 kJ mol−1 were published in 2014 by Hoffmann et al. [42]. Most literature values
are standard reaction enthalpies. As explained in [40], these ∆RH0 values cannot be equated with the
buffer-dependent values measured in the present work, as ∆RH0 denotes the standard state at infinite
dilution and zero ionic strength. Therefore, a reaction enthalpy ∆RH was calculated using van ‘t Hoff and
the Kc values were calculated using ePC-SAFT at exactly the conditions for the calorimetric experiments
in this work. This amounts to ∆RH = 11.9 kJ/mol, which perfectly agrees with the calorimetrically
measured ∆RH0 value. This is an excellent result considering that the ePC-SAFT parameters for 2PG
were inherited from 3PG (due to the inaccessibility to thermodynamic data for 2PG). The reaction
enthalpy does not show any temperature dependence. This result does not fit to the measurements
of Tewari who found a slight decrease of the reaction enthalpy with the increasing temperature [41]:
∆RH decreased from −9.025 ± 0.0331 kJ mol−1 at 304.95 K to −9.144 ± 0.0052 kJ mol−1 at 316.15 K.
The experimental uncertainty of the values from Tewari are very small, therefore, the experimentally
observed small temperature dependency of ∆RH from Tewari is hidden by the uncertainty of our
calorimetric experiments.

3.2. Validation of Kinetic Models by the New Calorimetric Data

The heat production rates of reactions 2 and 9 of glycolysis were calorimetrically monitored
to determine the kinetic parameters. In the literature, various kinetic models have been tested to
describe the experimental data. The most common approach is the irreversible Michaelis-Menten
model. For this purpose, initial reaction rates are investigated at which product formation is so low
that it can be neglected. Indeed, reaction 2 [24,25,43–45] and reaction 9 [20–22,46–48] have already
been kinetically investigated in previous works using Michaelis-Menten kinetics. In our investigations
we are interested in the kinetics up to near the equilibrium. For that purpose, the irreversible
Michaelis-Menten model is not useful. Further, the number of the required kinetic parameters using
the reversible Michaelis-Menten kinetics is too high, i.e., it either requires a lot of experimental data
or is underdetermined with the number of data available. Furthermore, our final goal is to develop
a model that allows describing the influence of cytosolic conditions on the kinetics of enzymatic
reactions. However, if several kinetic parameters are obtained for each condition under investigation,
there may be problems in evaluating them, so that the influence of cytosolic conditions cannot be
clearly identified from the data. Noor combined a kinetic approach with irreversible thermodynamics.
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The approach simplifies the total equation and the number of required parameters by discussing
four different special cases which are characterized by different saturation effects [9]. We adapted
all these cases to our data, and we found the following: For reaction 2, the case of saturation by the
substrate and for reaction 9, the saturation by the product are most suitable to describe our data
(Figure 4). This provides two fit parameters for both reactions: rmax and KF6P for reaction 2, and Λ
and K2PG for reaction 9. Thus, the Noor model reflects well our measured data (data are given in
Table 4). As two parameters are required in that model, problems might arise with the transferability
of these parameters to reaction conditions that cause different behaviors than those used in the fit
(rmax increases with the increasing temperature but the KF6P value decreases). Models with only a
single parameter allow clearly allocating the influence of temperature or other conditions. Further,
the Noor model has another disadvantage: The obtained parameter Λ is not a kinetic constant in the

conventional sense (Λ = cE ·
k+cat

KPEP
) since it contains KPEP. In the Arrhenius plot (ln Λ vs. 1/T) we indeed

found a linear temperature dependence (data not shown), but this argument might be too weak in
favor of the Noor model. Thus, we analyzed whether the flux-force relationship is able to describe the
experiments. In 2007, Beard suggested a relation between the rate of a reaction to its thermodynamic
driving force, called the flux-force relationship (Equation (21)) [9,33]. This model describes our data
with similar accuracy compared to the Noor model (Figure 5). A slight deviation is observed for
high rates (directly after the start of the reaction) where the signal is potentially influenced by the
thermal inertia of the calorimeter. Unfortunately, the flux-force model allows describing a smaller
range of conditions than the Noor model (see Figure 1). The reason behind this is that the flux-force
model can best reproduce the data near the equilibrium, and the beginning of the measurement was
far away from the equilibrium. Therefore, the data at the beginning are neglected in the evaluation
using the flux-force relationship. In sum, the big advantage of the flux-force relation is that only a
single parameter is required to describe the kinetics. Such a single parameter can be compared very
easily and the influence of the individual cytosolic conditions can be attributed to the changes in the
parameter L directly.

3.3. Temperature Dependency of the Kinetics of Reaction 2

The temperature dependency of the kinetic parameter L can be described using the Arrhenius
model (Figure 6). According to Equation (22), the activation energy can be calculated from the slope of
the linear fit. Figure 6A shows that the data of reaction 2 fulfill the Arrhenius equation and an activation
energy of Ea = 55.4 ± 1.2 kJ mol−1 was obtained. Following the van ‘t Hoff rule that a temperature
rise of 10 K doubles the reaction rate [49], an activation energy of Ea = 52.9 kJ mol−1 is estimated for
the temperature rise from 298.15 to 308.15 K supporting our finding. In the investigated temperature
range (between 298.15 and 310.15 K) we did not observe any deactivation, while measurements at
315.15 K showed a deactivation (data not shown). An analysis can only be performed in a temperature
range where the enzyme is not deactivated. A comparable result was published by Dyson et al.,
which has determined a maximum reaction rate at 313.15 K followed by a reduction in the kinetic
constant [24]. Two different values for the activation energy can be found in the paper from Dyson:
Ea = 42.0 kJ mol−1 (288.15–303.15 K) and Ea = 22.5 kJ mol−1 (303.15–320.15 K) [24]. The values of Dyson
were determined using rmax with the already above-discussed problems. Since our parameter L is
not the same as rmax, we get a slightly different value but still in the same order of magnitude for the
activation energy. In addition, the investigations from Dyson were carried out with PGI from the
rabbit skeletal muscle, which can also lead to different values for the activation energy. Another value
was published by Sangwan with 31.2 kJ mol−1 (from rmax) for the enzyme in amyloplasts of immature
wheat endosperm [50].

3.4. Temperature Dependency of Reaction 9

For reaction 9, an activation energy of Ea = 44.8 ± 1.4 kJ mol−1 was obtained. This value is also
in the same range as the value of the van‘t Hoff rule. In 1957, Westhead published slightly higher
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activation energies for yeast enolase in a phosphate buffer (pH 6.8) of Ea = 61.1 kJ mol−1 and in a
Tris/HCl buffer (pH 7.8) of Ea = 59.7 kJ mol−1 [22]. The deviations from our value can be explained
by the different measuring conditions (e.g., pH and buffer). With both models (Noor and flux-force),
we observed an increase of Λ and L with the increasing temperature. Our observed temperature
dependency is consistent with a further study from Westhead, who only investigated a temperature
range up to 305 K [51]. From this data, the activation energy can be calculated to be Ea = 55.5 kJ mol−1.
Another work also reports a similar temperature behavior at elevated temperatures for an octameric
thermophilic enolase [52].

4. Materials and Methods

4.1. Chemicals

Yeast enolase, monosodium phosphoenolpyruvate, and phosphoglucose isomerase type III from
the baker’s yeast were purchased from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Steinheim,
Germany), fructose 6-phosphate disodium salt were from Alfa Aesar (Thermo Fisher (Kandel) GmbH,
Kandel, Germany), MOPS was from AppliChem (AppliChem GmbH, Darmstadt, Germany), sodium
chloride was from CHEMSOLUTE (Th. Geyer GmbH & Co. KG, Renningen, Germany), and magnesium
chloride hexahydrate and sodium hydroxide were from Roth (Bernd Kraft, Duisburg, Germany).
An overview about all the used chemicals, the CAS-numbers, and purity is given in Table S1 in the
Supplementary Materials (SM).

4.2. Sample Preparation for ITC Measurement

For every investigated reaction, two solutions, titrand and titrant, had to be prepared for the ITC
measurements. The reaction buffer used for both investigated reactions consists of a 0.2 mol kg−1 MOPS
buffer with 0.15 mol kg−1 Na+-ions (from sodium hydroxide and sodium chloride), 0.001 mol kg−1

MgCl2 at pH 7. The measurements were carried out at different temperatures to test whether the
results obtained were in accordance with the Arrhenius equation. For reaction 2 of the glycolysis,
the enzyme phosphoglucose isomerase (PGI) was obtained as a solution with 3 M ammonium sulfate.
In order to avoid possible errors caused by the high ammonium sulfate concentration, the ammonium
sulfate was removed. For this purpose, the sample was centrifuged at 10,000× g for 10 min at 2 ◦C.
The obtained pellet contains the enzyme, while the supernatant containing the ammonium sulfate was
removed. The pellet was dissolved in a reaction buffer that was adjusted to an enzyme concentration
of 15 nmol kg−1. The substrate solution was prepared by dissolving F6P in the buffer to a concentration
of 100 mmol kg−1. For reaction 9 of the glycolysis, the solutions were prepared as described in [40].
The enzyme solution had a concentration of 12 µmol kg−1 enolase and the substrate solution had a
concentration of 89.5 mmol kg−1 PEP. Since PEP is a weak acid, the used MOPS-buffer could not keep
the pH at 7. Therefore, an adjustment of the pH of the PEP with a 10 mol kg−1 sodium hydroxide
solution was necessary. To not alter the buffer concentrations of the PEP solution, sodium hydroxide
was also dissolved in the reaction buffer.

4.3. ITC Measurements

4.3.1. Reaction 2 (Phosphoglucose Isomerase Reaction)

The determination of the enthalpy of reaction ∆RH and kinetic parameters was done using ITC.
The MicroCal PEAQ ITC from Malvern Panalytical (Malvern, UK) was used. For reaction 2 of the
glycolysis, single measurements were performed with the F6P solution in the syringe and the PGI
solution in the reaction cell. The reference cell was filled with water. The setup of the PEAQ-ITC was set
to high feedback, reference power of 40 µW, stirrer speed of 750 rpm, and a titration speed of 0.5 µL s−1.
To prevent the heat signal from being affected by premature diffusion of the substrate solution,
two injections were performed, the first injection with 0.4 µL and a baseline of 10 min, which was
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not included in the evaluation, and the second injection as a main injection with 10 µL. This results
in concentrations of 14.3 nmol kg−1 PGI and 4.8 mmol kg−1 F6P in the cell. The measurements were
terminated when the heat signal returned to the baseline indicating the end of the reaction. Triplicate
measurements were performed. It was impossible to perform the more common multiple injection
measurements because the reaction was too fast and no plateau as required could be reached between
the individual injections. The use of less enzyme to slow down the reaction was not an option either,
as this would have made the instrumental thermal power change too small to obtain valuable kinetic
data. In addition, multiple injection measurements only provide the initial rates of the reactions and
do not take into account the near equilibrium that is the subject of this work. In order to calculate
the influence of the heat of dilution, reference experiments were carried out and subtracted from the
measurement curves. Two reference measurements were performed in which the enzyme or substrate
solution were exchanged for buffers (Figure 2A) [53]. It was found that the titration of F6P to the buffer
provides a large heat of dilution, whereas the titration of the buffer to PGI is negligible. The reference
signal was then subtracted from the heat signal and the net signal of the reaction was received.

4.3.2. Reaction 9 (Enolase Reaction)

For reaction 9 of the glycolysis, single injection measurements were performed, with an enolase
solution in the titration syringe and a PEP solution in the sample cell. Since the heat measured during
the reaction was very low, the highly concentrated PEP solution was added to the titration cell in order
to allow the enzyme to convert a larger amount of PEP. Therefore, it was also impossible to do multiple
injection measurements because a second injection of the enzyme does not change the equilibrium.
The reference cell was filled with water. The setup of the PEAQ-ITC was set to high feedback, reference
power of 41.9 µW, stirrer speed of 750 rpm, titration speed of 0.5 µL s−1, baseline recording of 15 min,
and an injection volume of 39.2 µL. This means that the cell contains concentrations of 2 µmol kg−1

enolase and 74.8 mmol kg−1 PEP. The signal was recorded until it reached the baseline. The reference
measurement was done with a buffer in the titration syringe and a PEP solution in the sample cell to
measure the heat of dilution [53] (Figure S1 in SM). The reference signal was then subtracted from the
signal of the reaction. Triplicate measurements were performed.

4.4. Determination of Reaction Enthalpy and Equilibrium Constant Kc

The initial range of the measurements were influenced by the thermal inertia of the instrument
and the heat of dilution and was, therefore, not included in the evaluation. The reaction enthalpy ∆RH
was calculated (Equation (23)) from the observed heat production rate P (see also Figure 2B) [35]:

∆RH =

∫
∞

0 P(t)dt(
c0

S−ceq
S

)
∗m

(23)

where c0
S is the substrate concentration (in mol kg−1) after the injection and m is the mass of the

reaction volume in the calorimetric vessel (in kg). ceq
S is the substrate concentration at the equilibrium

(in mol kg−1) and was calculated from the apparent concentration-based equilibrium constant Kc. Kc is
defined in Equation (24):

Kc =
ceq

P

ceq
S

(24)

for reaction 2 : Kc=
ceq

F6P

ceq
G6P

(25)

for reaction 9 : Kc=
ceq

PEP·c
eq
H2O

ceq
2PG

(26)
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with the equilibrium concentration of product ceq
P (in mol kg−1), the equilibrium concentration of F6P ceq

F6P
(in mol kg−1), the equilibrium concentration of G6P ceq

G6P (in mol kg−1), the equilibrium concentration of
PEP ceq

PEP (in mol kg−1), the equilibrium concentration of water ceq
H20 (in mol kg−1), and the equilibrium

concentration of 2PG ceq
2PG (in mol kg−1). In this work, Kc values were not determined experimentally

for two reasons. On the one hand, the reaction volume of approximately 250 µL is very small and
would require a high dilution of the sample, which would lead to a large dilution error. On the other
hand, it is necessary to keep the sample at a constant measuring temperature after the measurement to
prevent a bias by the temperature dependency of the Kc value. Therefore, Kc was calculated from the
thermodynamic equilibrium constant Ka from previous works [40,42]. The ePC-SAFT parameters were
fitted to the reaction-independent equilibrium data from large reaction volumes:

Ka = Kc· Kγ (27)

In contrast to Kc and Kγ, which for example depend on the substrate and product concentrations,
Ka is a constant that only depends on temperature, pressure, and pH. To determine Kc at different
reaction conditions, ePC-SAFT was applied. A brief description of ePC-SAFT can be found in the SM
(Tables S2 and S3, Equations (S1)–(S5)). Starting with the initial substrate concentration, the progression
of the PGI reaction was simulated by stepwise decreasing the substrate and increasing the product
concentration. For each step, Kγ was predicted with ePC-SAFT from the activity coefficients of
the substrate and the product. All substances present in the reaction solution, except the enzyme,
were considered for the determination of the activity coefficients. The Ka values of each step, calculated
from the respective Kc and Kγ were compared to the known Ka value and the iteration was continued
until both were the same. Rational activity coefficients γ∗i were used for the reacting agents because they
are highly diluted in water. Thus, the activity-coefficient ratio Kγ is calculated according to Equation (28):

Kγ =
γ
∗,m,eq
P

γ
∗,m,eq
S

(28)

In this work, the hypothetical ideal solution is defined as a solution of 1 mol kg−1 of the substance
diluted in water and an activity coefficient equal to that of the substance infinitely diluted in water
(i.e., γ∗i = 1).

4.5. Kinetic Investigations

In our work, the opposite direction of the glycolysis was investigated for practical reasons.
For reaction 2, the backward reaction from F6P to G6P was measured, as it was evident from literature
data that the reaction equilibrium is on the side of G6P [42]. For reaction 9, the backward reaction from
PEP to 2PG was investigated because 2PG was only available as barium salt, which could influence the
kinetic parameters obtained due to the high concentrations used. However, backward reactions are
frequently investigated in the literature [21,24,43] since the direction is irrelevant for the determination
of reaction rates (Equation (29)).

For testing kinetic models, reaction rates as a function of the substrate concentration are required.
The concentration of the substrate at each single measuring point was calculated with Equation (29)
using the concept of Todd and Gomez [35]:

cS(t) = c0
S −

∫ t
0 P(t)·dt(
∆

R
H·m)

(29)
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where P(t) represents the heat production rate (in W). The corresponding rate rS correlates to the heat
production rate according to Equation (30):

rS(t) =
P (t)

∆
R

H∗m
(30)

The concentration of the substrate and the rate of the substrate consumption were plotted against
each other. The first seconds before the heat flow reaches its maximum were not included in the data
evaluation because initially both the inertia of the ITC and the heat of dilution influence the signal.

4.6. Statistics

For the data evaluation and statistics we used OriginPro, Version 2019 OriginLab Corporation,
Northampton, MA, USA. A statistical evaluation was carried out for all the measurements.
Measurements at every temperature were performed as triplicates. For each parameter the mean and
the standard deviation were reported. Noor′s fit parameters provided an R2 value above 0.98 (except for
one experiment). For the flux-force model, both an R2 and a p-value could be determined. The p-value
is given as zero by Origin and at a 0.05 level slope is significantly different from 0. In every flux-force
measurement the R2 value was greater than 0.993. The exact values can be found in Tables S4 and S5
in the SM.

5. Conclusions

Systems biology approaches aim for the simplest possible kinetic approaches with as few adjustable
parameters as possible, while maintaining a good representation of the kinetics at different cytosolic
conditions. The conventional irreversible Michaelis-Menten model has only two parameters but does
not take the backward reaction into account. The reversible Michaelis-Menten equation and models
derived from it capture the equilibrium correctly, but often have too many parameters to describe
the influence of the cytosolic conditions in a simple manner. The Noor model and the one-parameter
flux-force relations seem to be perfectly suited for this purpose and to describe the time course of at
least reactions 2 and 9 of glycolysis. An advantage of flux-force approaches is, that they combine the
thermodynamics and kinetics of metabolic processes in a single equation in order to quantitatively
describe the approximation to the equilibrium perfectly. Both models tested, Noor and flux-force,
show similar dependencies of the reaction rate on the temperature. The flux-force model could also be
verified using an Arrhenius plot. Further work will be done to verify these statements under cytosolic
conditions. In other glycolytic reactions or initial conditions at an equilibrium distance with very large
thermodynamic driving forces, deviations from the observed linear flux-force relationship may occur.
For reaction cascades with complex interactions even oscillations are described. This will be further
investigated in future work.

The ITC is well suited for a fast and easy quantitative analysis. Especially in the non-linear range
with the possibility of oscillations, the heat production rate as a real time signal could be very useful.
Time-consuming and failure-prone sampling is no longer necessary. However, the reaction time should
be chosen long enough to assure that the kinetics of the reaction rather than the thermal inertia of
the instrument determine the signal. This can be achieved by wisely selecting a suitable enzyme
concentration, for example.
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ITC isothermal titration calorimetry
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