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Abstract 

The Water Framework Directive (WFD) requires EU Member States to assess the 

“ecological status” of surface waters.  As a component of ecological status, many 

European countries are developing a classification scheme for chlorophyll 

concentrations as a measure of phytoplankton biomass.  The chlorophyll classification 

must be based on the degree of divergence of a water body from an appropriate 

baseline, or ‘reference condition’.  This paper describes the development of a series of 

regression models for predicting reference chlorophyll concentrations on a site-

specific basis.  For model development a large dataset of European lakes considered 

to be in reference condition, 466 lakes in total, was assembled. Data were included 

from 12 European countries, but lakes from Northern and Western Europe dominated 

and made up 92% of all reference lakes.  Data have been collated on chlorophyll 

concentration, altitude, mean depth, alkalinity, humic type, surface area, and 

geographical region.  Regression models were developed for estimating site-specific 

reference chlorophyll concentrations from significant predictor ‘typology’ variables. 

Reference chlorophyll concentrations were found to vary along a number of 

environmental gradients. Concentrations increased with colour and alkalinity, and 

decreased with lake depth and altitude.  Forward selection was used to identify 

independent explanatory variables in regression models for predicting site-specific 

reference chlorophyll concentrations.  Depth was selected as an explanatory variable 

in all models. Alkalinity was included in models for low colour and humic lakes and 

altitude was included in models for low colour and very humic lakes. Uncertainty in 

the models was quite high and arises from errors in the data used to develop the 

models (including natural temporal and spatial variability in data) and also from 

additional explanatory variables not considered in the models, particularly nutrient 

concentrations, retention time and grazing.  Despite these uncertainties, site-specific 

reference conditions are still recommended in preference to type-specific reference 

conditions, as they use the individual characteristics of a site known to influence 

phytoplankton biomass, rather than adopt standards set to generally represent a large 

population of lakes of a particular type. For this reason, site-specific reference 

conditions should result in reduced error in ecological status classifications, 

particularly for lakes close to typology boundaries. 
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Introduction 

The estimation of reference conditions is considered crucial in many ecological 

assessment programmes (e.g. Moss et al., 1996; US EPA, 2000). These provide the 

baseline from which to determine change with time, and are necessary to evaluate a 

site’s current status or potential for change.  The European Water Framework 

Directive (WFD: Directive, 2000), also prescribes the use of reference conditions in 

the ecological status assessment of surface waters. As a component of ecological 

status, many European countries are developing a classification scheme for 

chlorophyll concentrations, as a relatively simple measure of water quality, in 

response to eutrophication pressures (e.g. Søndergaard et al., 2005).  Type-specific 

chlorophyll reference concentrations have previously been established (Carvalho et 

al., 2008) and also agreed at a European level through an “Intercalibration” process 

(Poikane et al., 2009). The analysis, however, highlighted that even type-specific 

reference chlorophyll concentrations may not be ideal as the effects of certain 

typology factors, such as water colour and depth, on chlorophyll concentrations are 

continuous, and do not cause abrupt step-change differences between types (Carvalho 

et al., 2008). Sites that lie close to lake type boundaries may, therefore, be poorly 

represented by type-specific reference conditions and lead to large errors in any 

reference-based status assessment. Site-specific reference conditions may, therefore, 

be ecologically more appropriate and can be established simply from empirical 

regression models from a population of reference lakes (c.f. MEI model: Vighi & 

Chiaudani, 1985; Cardoso et al., 2007). Another advantage of developing regression 

models for deriving site-specific reference conditions is that reference conditions 

could be established for lakes that do not fall strictly into the intercalibration lake 

types for which values have been agreed. 

Furthermore a more quantitative understanding of how factors affect the natural 

background levels of phytoplankton chlorophyll in freshwater lakes is of interest to 

freshwater scientists in general.  Regression models could be of potential value in 

predicting how water quality standards may be affected by future environmental 

changes, such as decreased levels of dissolved organic carbon in lake waters 

associated with climate change (Freeman et al., 2004) or reductions in acid deposition 

(Monteith et al., 2007) 
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This paper describes the development of a series of regression models for 

predicting reference chlorophyll concentrations on a site-specific basis for lakes in 

Northern and Western Europe. 

 

Material and Methods 

 

Criteria for reference lake selection 

Reference conditions are a state corresponding to low anthropogenic pressure on the 

whole water body.  Reference lakes are not necessarily pristine, but must demonstrate 

only very minor effects of major industrialisation, urbanisation and intensification of 

agriculture in their catchment (CIS, 2003).  What constitutes very minor pressure is 

open to debate.  The selection of reference sites for this analysis was, however, 

carried out by individual Member States using agreed criteria laid down in WFD 

guidance (CIS, 2003).  Further details of the criteria used and the comparability 

between Member States are documented in Carvalho et al. (2008).  Additionally for 

this analysis, a threshold mean TP concentration of 100 µg l-1 was used as a final 

criterion, above which sites were removed from the analysis.  This resulted in 5 sites 

(all with TP concentrations >150µg l-1) being excluded out of a total of 545 sites.  The 

TP concentrations in the remaining dataset of 540 reference lakes were all lower than 

70 µg l-1, with only three sites having concentrations >50 µg l-1.   

 

 

Data 

Data from reference sites were collated on chlorophyll concentration, altitude, surface 

area, mean depth, alkalinity, colour and humic type.  Lake data were gathered from 

national datasets from individual Member States through partners in the EC 

REBECCA Project (see http://www.environment.fi/syke/rebecca) and from EC and 

MS representatives involved in the Intercalibration process.  Inevitably with such a 

large dataset of lakes from many countries there are questions over the quality of the 

data.  To minimise sources of error in the dataset, lakes were only included in the 

analysis if they had three or more samples from different months between the period 

April to September (a ‘growing period’ in all lakes in the dataset).  This is because 

previous analysis has shown that a single monthly sample is not sufficiently 

representative of an annual chlorophyll mean whereas bi-monthly or monthly 
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sampling results in much less variable estimates (Clarke et al., 2006).  If data from 

several years were provided for an individual lake, these growth season means were 

averaged over the years.  If data from several sites within a lake were provided, these 

site means were averaged to give a whole lake mean, to ensure no bias was given to 

any particular lake in the model development.  Additionally, sites were only included 

in the analysis for model building if measured depth and alkalinity data were available 

and at least information on humic type (low colour, humic or very humic) using 

colour criteria outlined in Van de Bund et al. (2004). 

This resulted in a large dataset of 510 European lakes considered to be in 

reference condition, with 466 lakes having typology information suitable for 

developing the regression models. Data were included from 12 European countries, 

but lakes from Norway and Finland dominated and made up 82% of all reference 

lakes (Table 1).  Despite the bias towards Northern and Western Europe (92% of 

lakes), the dataset provides extensive coverage across a number of environmental 

gradients thought to be influential in determining background chlorophyll 

concentrations.  High alkalinity lakes, were, however, poorly represented in the 

dataset, particularly deep or very shallow ones (Figure 1). 

 

 

Statistical analysis 

The relationships between chlorophyll concentrations and potential predictor variables 

(e.g. alkalinity, depth, altitude, area) were initially examined using simple boxplots 

and descriptive statistics by lake type.  Lake types followed common agreed 

typologies in the intercalibration process (Van de Bund et al., 2004) 

To derive models for estimating site-specific reference chlorophyll 

concentrations, we ran a General Linear Model (GLM) to estimate the best model to 

predict mean chlorophyll from several predictor variables. Altitude, alkalinity, mean 

depth, surface area and chlorophyll were all log transformed to normalize the data.  

Prior to the GLM, Pearson correlations were computed for each pair of variables to 

select the potential predictor variables. Lake area had a highly significant correlation 

with lake depth (r2 = 0.36, p <0.001, n = 502) and so was not considered further in the 

analysis in order to minimise the variance inflation factor. All the statistical analysis 

were performed with the statistics software SPSS (version 12, 2003) or Minitab (v14, 

2005) 
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Data on colour was provided in two forms: humic type (low, high or very high) 

or as measured colour data (Platinum units).  Due to limitation of colour data from 

only 298 of the 540 lakes, regression models were developed for lakes of different 

humic type.  Following development of these type-specific regression models, an F-

test was applied to examine whether type-specific regression lines were significantly 

different from each other and/or a global model. 

Data were not generally available on analytical methods used for measuring 

chlorophyll.  Of the five Member States providing information, all used 

spectrophotometric methods for routine monitoring. Extraction solvents and 

extraction time, however, varied both within, and between, Member States (ethanol, 

methanol or acetone extraction for 4-24 hours).  Similarly, no information was 

available on whether or not an acidification step was used to correct for chlorophyll 

degradation products (pheophytin) and what equations were used to convert 

absorbance values to pigment concentrations. Of the two countries providing detailed 

methodologies (Estonia and Scotland), equations developed by Lorenzen (1967) and 

Jeffrey & Humphrey (1975) were used, indicating an acidification step was 

incorporated. 

 

Results 

 

Responses along environmental gradients 

Correlation analysis revealed significant relationships between log chlorophyll and 

log depth (r2 = -0.494, p <0.001, n= 505), log colour (r2 = 0.481, p <0.001, n= 298) 

and log alkalinity (r2 = 0.213, p <0.001, n= 497). 

The strongest gradients were observed for depth and humic type.  In terms of 

depth only, deep lakes generally had the lowest chlorophyll concentrations (median 

1.9 µg l-1) and also showed the least variability, shallow lakes were intermediate 

(median 2.8 µg l-1) whilst very shallow lakes had the highest concentrations (median 

7.3 µg l-1) and were also most variable (Figure 2).  In terms of humic type, low colour 

waters had the lowest chlorophyll concentrations and showed the least variability 

(median 2.1 µg l-1), humic lakes were intermediate (median 4.1 µg l-1) whilst very 

humic lakes had the highest concentrations and were also most variable (median 11.6 

µg l-1) (Figure 3).  Chlorophyll concentrations generally increased with increasing 

alkalinity although there were only slight differences in median values (and little 
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difference in variability between alkalinity types (low alkalinity lakes: median 2.4 µg 

l-1; medium alkalinity lakes: median 3.2 µg l-1; high alkalinity lakes: median 3.4 µg l-

1).  One exception of this pattern was for high alkalinity deep lakes, which showed 

lower chlorophyll concentrations than low and medium alkalinity lakes of this depth 

type (Figure 4) 

Figure 5 illustrates for depth, how chlorophyll concentrations are a continuous 

response along this gradient and do not show any threshold response at type 

boundaries.  Similar continuous responses were observed for colour and alkalinity. 

 

Regression analysis 

Approximately 200 of the 500 reference lakes were missing colour data, yet colour 

appeared to be a strong factor in determining reference chlorophyll concentrations.  

Of the 294 sites with colour data, 53% were classified by member states as humic or 

very humic lakes.  Of the 246 lakes with no available colour data, a very large 

proportion (71%) was classified as low colour lakes.  For this reason, it was decided 

to develop separate regression models for predicting site-specific chlorophyll 

reference conditions for lakes of different humic types and without using colour data 

as a predictor variable for low-humic waters. 

Depth had a negative coefficient in all the regression models (Table 2).  The 

other predictor variables selected differed between different lake types, although 

when selected had the same general effect (i.e. alkalinity was positive, altitude was 

negative).  The best predictive model was produced for very humic lakes, although 

with an r2 of 0.358 was still not high (Table 2). 

 

 

 

Discussion 

 

Responses along Environmental Gradients 

Observations of chlorophyll concentrations in a large population of reference lakes, 

indicate that background or reference concentrations show a continuous response to a 

number of environmental gradients.  No threshold responses, or step changes were 

apparent in scatterplots (e.g. Figure 5).  This indicates that site-specific chlorophyll 

reference conditions, based on significant explanatory variables, are more appropriate 
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than type-specific standards and should lead to less error in ecological status 

assessments. 

Higher chlorophyll concentrations observed with decreasing depth were as 

expected, reflecting the well established positive relationship between algal biomass 

and light availability throughout the year (Sakamoto, 1966; Scheffer, 1998) and 

probably also due to the fact that deeper lakes generally have a higher water residence 

time and a lower nutrient loading per volume of water.  Similarly, the increasing 

variability, or unpredictability, with decreasing depth presumably highlights the 

potential for much greater internal biotic control on phytoplankton production due to 

macrophyte and grazer control of phytoplankton in shallow lakes compared with deep 

lakes (Jeppesen et al., 1998).  Very shallow lakes not only have very high potential for 

phytoplankton growth throughout the year, they also have the greatest potential for 

top-down limitation by zooplankton grazers and competition for light and nutrients 

with macrophytes.  This may also be the explanation for the very shallow, high 

alkalinity lakes having lower chlorophyll concentrations than shallow and deep lakes 

of this same alkalinity type.  The generally positive relationship between chlorophyll 

and alkalinity was, however, as expected, as it is well established that background 

nutrient availability is generally greater with increasing alkalinity (Dillon & Kirchner 

1975; Vighi & Chaudani 1985; Cardoso et al., 2007). 

Shifts in phytoplankton composition could be responsible for some of the 

gradients observed in chlorophyll.  Chlorophyll content of cells varies between 

different algal taxa, for example cyanobacteria and diatoms have more accessory 

pigments and less chlorophylla per unit biovolume compared with Chlorophyta 

(Reynolds, 2006). Higher chlorophyll concentrations observed with increasing colour 

or humic type were not as originally expected, as it was envisaged that the reduced 

light availability in deeply coloured waters would reduce the potential for 

phytoplankton production.  One reason for the observation may be because of 

compositional shifts in phytoplankton in very humic waters, with recognised shifts to 

large mixotrophic species, such as Gonyostomum semen (Arvola et al., 1999; Salonen 

et al., 2002).  Additionally, phytoplankton have been shown become adapted to low 

light availability by producing more chlorophyll per unit biomass (Reynolds, 2006; 

Greisberger & Teubner, 2007). 
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Regressions 

The regression equations incorporated coefficients that reflect the patterns observed 

along the environmental gradients, i.e increasing chlorophyll with increasing colour, 

decreasing depth and increasing alkalinity.  Altitude was also a significant additional 

predictor in low humic lakes and borderline significant and included in model for very 

humic lakes. Increasing altitude being related to reduced chlorophyll concentrations, 

presumably due to lower temperatures and possibly also less nutrient availability in 

upland regions. 

None of the regression models developed have a particularly strong predictive 

ability.  This uncertainty may arise from two main sources: 

1) Error / uncertainty in data used to develop regression models 

2) Additional explanatory variables not considered in models 

In terms of error in data used to develop the regression models, some of this 

may be due to sources of error associated with variable methods.  It is widely 

recognised in particular that different solvents used for extraction of chlorophyll, for 

example acetone, ethanol or HPLC, all have variable extraction efficiencies, as does 

the timing, temperature and manner of extraction (Jacobsen & Rai, 1990). To ensure 

comparable chlorophyll data across Europe, we strongly recommend standardised 

sampling, storage and analytical methods.  Methods for measuring water colour and 

alkalinity for WFD typology purposes may also benefit from standardisation. 

The variability in the data used to develop the models may, however, also have 

arisen from spatial and temporal variability in the water quality data.  Strong seasonal, 

horizontal and, in deep lakes, vertical gradients in chlorophyll concentrations are 

typical in freshwater lakes (Small, 1963; Fee, 1976).  Temporal variability was partly 

overcome by only considering lakes with three or more samples from different 

months in the period April to September only.  It has, however, been shown that even 

regular monthly sampling (i.e. 6 samples from April to September) still produces an 

estimate of a mean chlorophyll concentration with a percentage SE of 14% for a 

shallow lake and 13% for a deep lake (Clarke et al., 2007). 

Uncertainty in the regression models may also be due to the fact that other 

important predictor variables were not considered in the models.  Colour data were 

clearly lacking for many low humic lakes and water temperature was also not 

available.  More importantly, however, key phytoplankton loss processes were not 

represented in particular no data were readily available on retention time, grazing and 
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macrophyte coverage.  We strongly recommend that retention time and water 

temperature are considered in future model developments.  Both may help future-

proof models for setting chlorophyll reference conditions under changing climatic 

regimes.  Retention time has also long been recognised as one of the key variables in 

determining both nutrient availability and chlorophyll concentrations in lakes 

(Vollenweider & Kerekes, 1982; Dillon, 1974).  Another widely recognised driver of 

chlorophyll concentrations is nutrient availability. Despite the fact that the lakes were 

all considered as reference lakes, there was still variation in phosphorus and nitrogen 

concentrations and these are likely to be responsible for some of the variation 

observed.  Whether this variation was due to slight differences in criteria used for 

reference site selection or differences in underlying geology, both result in varying 

levels of background nutrient concentrations. 

Because of the bias in the dataset towards Northern and Western European low 

and medium alkalinity lakes, the models are not currently recommended for 

application to lakes in Central and Mediterranean regions of Europe where drivers of 

background productivity could be different.  Further development of models for these 

regions is greatly limited by the lack of lakes in these regions that qualify as suitable 

reference lakes. 

Despite these uncertainties, the analysis has revealed that site-specific reference 

conditions are generally recommended in preference to type-specific reference 

conditions, as they should result in reduced error in ecological status classifications, 

particularly for lakes close to typology boundaries; sites in the middle of the type 

range should be relatively unaffected.  The approach may also be useful for Member 

States setting reference values for lakes that do not fall within agreed Intercalibration 

types, or Member States who have adopted more discrete typologies than some of the 

broad Intercalibration types. 
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Figure Legends 

 

Figure 1: 

Scatter plot of reference lakes by depth and alkalinity gradients.  Depth and alkalinity 

typology boundaries adopted by Intercalibration are indicated.  [Depth types include 

very shallow (<3 m mean depth), shallow (3-15 m) and deep (>15 m) lakes.  

Alkalinity types include low (<0.2 m. equiv. l-1), medium (0.2 - 1.0) and high (>1.0) 

alkalinity lakes] 

 

Figure 2.  Boxplots comparing chlorophyll reference conditions for very shallow 

(n=59), shallow (n=290) and deep (n=156) lakes.  See Figure 1 legend for definition 

of depth classes. 

 

Figure 3.  Boxplots comparing chlorophyll reference conditions for different humic 

classes of lakes (Low, n=311; Humic n=154; Very Humic n=41). 

 

Figure 4.  Boxplots comparing chlorophyll reference conditions for different depth 

and alkalinity classes of lakes.  Based on data from 475 reference lakes. 

 

Figure 5: Scatterplot of log Chlorophyll response against log mean depth 
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Table 1: Numbers of reference lakes in dataset, by country  
Country No. of lakes % of dataset
Norway 229 49.1%
Finland 152 32.6%
Sweden 31 6.7%
UK 23 4.9%
Ireland 10 2.1%
Poland 7 1.5%
Netherlands 4 0.9%
Estonia 3 0.6%
Lithuania 3 0.6%
Denmark 2 0.4%
Germany 1 0.2%
Italy 1 0.2%  
 

 

 

 

 

 

Table 2. Equation coefficients for predicting chlorophyll reference concentrations in 

European lakes. 

Lake Type N Constant log_Depth log_Alkalinity log_Altitude log_Colour r2 (adj)
Low Colour 282 0.855 -0.165 0.131 -0.111 27.2%
Humic 137 1.193 -0.317 0.336 27.9%
Very Humic 30 -0.304 -0.646 -0.476 1.295 35.8%
Humic & Very Humic 167 1.205 -0.442 0.176 25.3%  
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