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Abstract

The volume of unstructured textual information continues to grow due to recent techno-

logical advancements. This resulted in an exponential growth of information generated in

various formats, including blogs, posts, social networking, and enterprise documents. Nu-

merous Enterprise Architecture (EA) documents are also created daily, such as reports, con-

tracts, agreements, frameworks, architecture requirements, designs, and operational guides.

The processing and computation of this massive amount of unstructured information neces-

sitate substantial computing capabilities and the implementation of new techniques.

It is critical to manage this unstructured information through a centralized knowledge

management platform. Knowledge management is the process of managing information

within an organization. This involves creating, collecting, organizing, and storing infor-

mation in a way that makes it easily accessible and usable. The research involved the

development textual knowledge management system and two use cases were considered for

extracting textual knowledge from documents.

The first case study focused on the safety-critical documents of a railway enterprise.

Safety is of paramount importance in the railway industry. There are several EA documents

including manuals, operational procedures, and technical guidelines that contain critical

information. Digitalization of these documents is essential for analysing vast amounts of

textual knowledge that exist in these documents to improve the safety and security of rail-

way operations. A case study was conducted between the University of Huddersfield and

the Railway Safety Standard Board (RSSB) to analyse EA safety documents using Natural

language processing (NLP). A graphical user interface was developed that includes various

document processing features such as semantic search, document mapping, text summariza-

tion, and visualization of key trends.

For the second case study, open-source data was utilized and textual knowledge was

extracted. Several features were also developed, including kernel distribution, analysis of

key trends, and sentiment analysis of words (such as unique, positive, and negative) within

the documents. Additionally, a heterogeneous framework was designed using CPU/GPU and

FPGAs to analyse the computational performance of document mapping.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The exponential increase in data generated by computing devices has become a prominent

trend in recent years. The amount of data generated reached approximately 2.5 quintillion

bytes (Namjoshi and Rawat, 2022). According to International Data Corporation (IDC),

it is expected to grow twice every two years (Hariri et al., 2019). According to a statistic

published in 2021, Google processes 228 million searches per hour or 5.6 billion per day (Skai,

2021). IDC predicts the growth of digital data to 175 zettabytes by 2025 from 33 zettabytes

in 2018 (Rydning et al., 2018).

Data can be generated in various formats including structured, semi-structured, and

unstructured formats. It is essential to organise and understand the data generated from

various sources in an unstructured manner (AlNuaimi et al., 2020). The figure 1.1 provided

showcases the five key attributes that define big data, which are Volume, Value, Veracity,

Variety, and Velocity. Volume, Velocity, and Variety pertain to aspects of data generation,

acquisition, and storage. Veracity and Value, on the other hand, are concerned with the

quality and utility of the data (Sarangi and Sharma, 2019).

Advanced data analysis techniques can transform unstructured data into valuable knowl-

edge that can be utilized to support processes and methods. Technology advancements have

led to a significant improvement in the field of Natural Language Processing (NLP). It is de-

fined as the branch of AI (Artificial Intelligence) that helps machines understand, interpret,

and derive meaning from human language. It provides machines with the ability to read and

interpret vast amounts of text and speech data, bridging the communication gap between

humans and computers.

Since the 1950s, NLP research has been focused on tasks such as machine translation,

information retrieval, semantic similarity, text generation and summarisation, topic mod-
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elling, and information extraction. Early research on NLP was mainly focused on syntax

due to syntax-driven processing. However, right in the beginning semantic challenges were

also identified that need to be addressed and resolved (Cambria and White, 2014). Typi-

cally, a sequence of steps was involved in the traditional methodology for NLP. Conventional

NLP learning techniques involve small sub-tasks such as pre-processing, feature engineering,

learning algorithms, and output prediction as illustrated in figure 1.2. Initially, a large text

corpus requires pre-processing, which includes operations like reducing vocabulary, eliminat-

ing punctuation, stemming, and removing stop-words. Stop-words are the most occurred

words in all the text corpus, such as "of", "an", "the", and "is", which reduce algorithm

efficiency and thus must be eliminated (Sarica and Luo, 2021). In the second step, a large

corpus is converted into small entities or tokens (for example, words or sentences). This

process of converting large text into tokens of words or sentences is known as tokenization

(A. Mullen et al., 2018). It is a simple but key process in any NLP task, as most of the

processing of the raw text happens at the token level. In the third step, several feature engi-

neering stages are involved to extract key features and facilitate learning for the algorithms.

These feature engineering steps are mostly hand-engineered, meaning that domain experts

will analyse the processed text and extract the features based on their understanding of the

language and specific task. In the fourth step, learning algorithms operate on this featured

data with the help of external resources that enable better performance. Finally, in the

prediction phase, new input is fed to the system, and the result is obtained by forwarding

the input through the learning model. There are many drawbacks of the traditional NLP

approach, such as reducing the dimensionality of the data and pre-processing of the text

leading to the removal of important information that can be useful.

The process of feature engineering is carried out manually by domain experts, which often

results in a laborious and challenging task, with outcomes heavily reliant on the knowledge

and understanding of the expert. To achieve better performance from the model, external

resources are often necessary, and the creation of large databases is a common approach to

acquiring such resources. However, this requires a significant amount of time and effort to

obtain the necessary task-specific resources (Ganegedara, 2018).

In recent years due to the advancement in AI algorithms and hardware computation, the
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Figure 1.1: 5V’s for Big Data

use of NLP has expanded across a wide range of fields and applications. NLP techniques have

facilitated Optical Character Recognition (OCR) in the healthcare domain, where handwrit-

ten text or documents are automatically converted to digital formats by computers, such

as scanned documents to PDFs. The extracted data can be further processed and fed into

NLP models for additional analysis (Nguyen et al., 2021). Amazon Comprehend Medical is

a service that leverages NLP to extract information from unstructured medical text, such

as doctor notes, clinical reports, and other electronic documents (Amazon, 2014). Virtual

assistants such as Amazon Alexa, Google Assistant, Microsoft Cortana, and Apple Siri are

great examples of NLP applications. Recently, OpenAI introduced ChatGPT which can un-

derstand and respond to user input in a conversational manner and is capable of performing

many NLP tasks such as summarization, language generation, and question-answering (Ab-

dullah et al., 2022). Google also introduced its own virtual chatbot assistant named BARD

AI that generates responses based on the user input (Rahaman et al., 2023). All of these

chatbots are beneficial in daily tasks and providing users with the correct information but

they are limited as they are only trained on open-source information.

NLP can also be beneficial in capturing knowledge in enterprise architectural (EA) doc-

uments. EA documents are composed of a business requirement that encompasses strategic
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thinking, goals, objectives, capabilities, organizational structure, processes, and functions.

Furthermore, they also contain information about applications and infrastructure (Buschle

et al., 2012). The data domain primarily focuses on the system layer, while the applications

domain encompasses the services it provides to the business. The infrastructure domain

concentrates mainly on the hardware and platforms that support all of the system software

(Buckl et al., 2011). Multiple EA documents are created to understand business require-

ments, data integration, and applications. These documents are stored in the organization’s

platform and are not utilized in future projects or decisions for the business. There will

be numerous EA documents present in an organization that can provide insights and es-

sential information about the decisions. An organization can significantly benefit from the

knowledge present in these EA documents. To obtain the relevant information, an employee

will have to go through these documents. NLP can help in comprehending the textual data

contained in these EA documents and performing data analysis to extract the necessary

information. This would be highly beneficial in providing information for future projects or

for new employees to access relevant information.

Figure 1.2: Traditional approach for NLP problems
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1.2 Motivation

There is an exponential growth of unstructured digital data originating from multiple

sources, such as social media, news articles, and websites in multiple formats (Villars et al.,

2011). In 2020, it is estimated that the amount of digital data created, replicated, and

consumed in the world was approximately 59 zettabytes (Nti et al., 2022). A large part of

this data or information is in textual format. It’s crucial to arrange and comprehend this

textual information generated in an organization during an engineering project life-cycle or

any general documentation for a process and convert it into valuable insights.

It is important to store this information and make it available in an organization. This

research was mainly focused on developing a textual knowledge management system for

Enterprise Architectural safety critical documents that store important information about

any organization. The School of Computing and Engineering, along with the Institute of

Railway Research (IRR) at the University of Huddersfield, partnered with the Rail Safety

and Standards Board (RSSB) for this case study.

Documents produced by EA are essential in ensuring the safety of railways. To prevent

any duplication or errors, it’s crucial to carefully review and handle all manuals and safety

documents in the railway industry. These documents contain a vast amount of knowledge

that can enhance the railway safety system and identify responsible persons in case of haz-

ards. Another case study was performed on an open-source dataset that further validates the

novelty of the framework. A web-based tool was also developed to perform different docu-

ment processing tasks such as document mapping, semantic search, text summarization, and

visualization. This platform also provides visual insight and key trends in the documents.

Over the past few years, there has been an increasing focus on specialized hardware ac-

celerators for specific fields, which significantly enhance the energy efficiency of demanding

computational processes. Document processing in NLP is one of the target domains that

require accelerators to improve the accuracy and computational efficiency (Tandon et al.,

2013). Hardware accelerators used for document processing tasks are of different types, such

as Central Processing Unit (CPU), Graphical Processing Unit (GPU), Field Programmable

Gate Array (FPGA), and Heterogeneous systems. These hardware accelerator’s performance
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varies based on the complexity of the NLP tasks. GPUs perform better in document pro-

cessing, but they consume high energy. On the other hand, FPGAs are energy efficient but

lack accuracy due to the limitation of resources. A heterogeneous CPU/GPU-FPGA-based

framework was developed to bridge this gap.

1.3 Aim and Objectives

This research aims to develop a novel Knowledge management system (KMS) frame-

work that can effectively process textual knowledge present in documents. This framework

is designed to include various features, such as document mapping, semantic search, sum-

marization, identification of actors, and key data trends and insights using visualization

techniques. To ensure optimal performance, all the features were implemented on CPU and

GPU hardware accelerators, and a heterogeneous framework for document mapping was also

developed. To achieve these aims, the following objectives were identified:

• Investigate existing tools and frameworks for document processing.

• Develop a novel KMS framework that can process textual knowledge present in docu-
ments, implementing features such as document mapping, semantic search, text sum-
marization, identification of actors, and visualization of key trends and insights from
documents.

• Evaluate the textual KMS framework performance by conducting experiments on
industry-specific railway EA documents and an open-source dataset.

• Develop a heterogeneous CPU/GPU-FPGA system that can perform document map-
ping efficiently.

1.4 Novelty of the work and contribution

This research addresses various research questions. What type of knowledge can be ex-

tracted from documents? What are the NLP techniques and document processing algorithms

and how effective are they in processing textual knowledge present in documents? Is it feasi-

ble to develop a text-based KMS for enterprises that contain documents in various formats?

What is the performance of the textual KMS framework when evaluated on industry-specific
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railway EA safety critical documents and on open-source datasets? How efficient are the

textual KMS system features when implemented and optimized on CPU and GPU? Further-

more, this research seeks to investigate how efficient the heterogeneous CPU/GPU-FPGA

system is in performing document mapping compared to stand-alone hardware accelerators.

This research aims to develop a knowledge management framework for textual knowledge

that exists in documents. A web-based tool was developed that includes various key features

for document processing such as document mapping, document similarity, text summariza-

tion, actor identification, and visualization of insights based on the information in documents.

In order to evaluate the performance all the features were optimized to implement on differ-

ent hardware accelerators (CPU and GPU). A heterogeneous framework was also developed

for document mapping using multiple similarity metrics. Here are the novel contributions of

this research work:

• Develop a KMS framework for Railway Enterprise safety documents using NLP.

• Design a web-based tool for EA documents that provides insightful information about
documents such as document mapping, semantic search, text summarization, and vi-
sualization of trends in the documents including actors/responsible person frequency
and most used word in the documents.

• Implemented the framework on open-source data for further validations.

• Implemented and optimized all the document processing features on CPU and GPU.

• Purposed a heterogeneous CPU/GPU-FPGA-based system for document mapping.

• Implemented document similarity algorithms such as Extended Jaccard similarity and
Cosine Similarity on FPGA using VHDL.

1.5 Thesis structure

This thesis is composed of six chapters that are organized as follows:

• Chapter I introduces the purpose and objectives of the research. It also discusses the
motivation and novelty of the research.
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• Chapter II presents a literature review of AI, ML, and NLP. The chapter also discusses
various embedding methods, and software and hardware tools for NLP, and compares
different hardware accelerators.

• Chapter III explores the correlation between data, information, knowledge, and wis-
dom with a specific focus on textual knowledge management. It mainly focuses on
enterprise architecture (EA) documents and how NLP can be utilized in extracting
textual knowledge from EA documents. It also explains the dataset along with its
format and structure used in the research.

• Chapter IV elaborates the process of design and implementation of a system to
capture textual knowledge from documents and explains the graphical user interface
(GUI) features.

• Chapter V presents the results and discussion of two use cases RSSB and SICK
datasets; including document mapping, summarization, semantic search, and visual-
ization of key insights and trends in the documents. It also discusses the implementa-
tion of document mapping on different hardware accelerators and the time profiling of
different features designed in this study.

• Chapter VII summarizes the main conclusions of the research and suggests avenues
for future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

The amount of data and information available before the rise of the internet was lim-

ited and mostly based on structured formats. In the late 1990’s due to technological ad-

vancements, internet users increased dramatically, resulting in a significant increase in data

generation. By 2010, the number of internet users reached approximately 1.97 billion, a

marked increase from 361 million in the 2000’s (Neema, 2021). This dramatic increase in

internet usage has led to an increase in the speed at which information is gathered. Some of

the key factors responsible for this exponential growth of data are (1) new applications and

platforms such as documents, blogs, social media platforms, and other basic utility apps; (2)

improvements in hardware that facilitate storage and processing; (3) advancements in Ma-

chine Learning (ML) and Natural Language Processing (NLP) enable better understanding

of knowledge from this unstructured data.

Big data is generated from various sources, including websites, email, text messages,

medical records, and invoice documents in multiple formats. In April 2022, approximately

5 billion people worldwide are connected to the internet, representing 63% of the world’s

population. According to estimates, social media is used by 93% of the total population,

which is 4.65 billion. A large amount of unstructured data is generated by numerous social

media platforms such as Facebook, Snapchat, TikTok, Twitter, Linkedin, and Instagram.

The data generated falls under different formats, such as tweets, retweets, statuses, likes,

and comments. Every day, there are 32 billion Facebook users who actively use the plat-

form. Furthermore, every minute, there are 510,000 comments posted and 293,000 status

updates shared on the platform. The data generated through social media platforms provide

qualitative and quantitative insights. Mobile phone texts, blogs, and e-commerce sites also

generate large quantities of data. Estimates show an increase of 13% from the last ten years,
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approaching 273 million emails by 2022 (Cowen, 2022).

An organization typically possesses an abundance of enterprise architectural documents,

each of which comprises a vast amount of valuable information. The design and development

of an organization’s essential components, their interrelationships with each other and the

surrounding environment, and the rules that guide the establishment process of that orga-

nization are overseen by Enterprise Architecture (Gampfer et al., 2018). In an organization,

data generated from various sources come in structured, semi-structured, and unstructured

formats. Efficiently analysing unstructured and semi-structured data is a challenging task

that requires acquisition, storing, and cleaning (Ularu et al., 2012).

The majority of tasks in AI or NLP require high levels of computational power on large

dimensional data. One of the essential layers for an AI-based technology stack is the hard-

ware layer which consists of memory, logic and network. This hardware layer orchestrates

and coordinates computations among accelerators and serves as a key element in the perfor-

mance of AI applications. There are various types of hardware exist, such as CPUs (Central

Processing Units), GPUs (Graphical Processing Units), FPGAs (Field Programmable Gate

Arrays), HPCs (High-performance Computing Systems), and Heterogeneous systems. CPU

is suitable for performing serial computational tasks due to its scalar architecture. It is

used for basic AI applications such as data analysis and pre-processing. GPUs, on the other

hand, are made of thousands of small cores. It outperforms the CPU in parallel computa-

tional utilizing its vector architecture. It offers better performance and higher bandwidth as

it takes advantage of SIMD (Single Instruction Multiple Data) and SIMT (Single Instruc-

tion Multiple Threads) style parallelism (Shepovalov and Akella, 2020). Hence, FPGAs are

only used for real-time processing with low power consumption(Azari and Vrudhula, 2019).

Heterogeneous computing is another fast-growing trend, focusing on distributing tasks to

specialized hardware.

By utilizing advanced data analysis techniques and hardware accelerators, textual data

can be transformed into valuable knowledge that will support a process or method (Iafrate,

2014). NLP techniques have recently improved considerably. NLP, a specialized area within

the field of AI, facilitates the comprehension and handling of vast amounts of unorganized

text-based information by computer systems (Eisenstein, 2019). DL (deep learning) is also
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widely used for many NLP tasks due to its exceptional performance in various tasks such

as image classification, speech recognition, and text generation. NLP has a variety of real-

world applications, including document similarity, sentence classification, language genera-

tion, question answering, semantic analysis, and named entity recognition (NER). Multiple

intuitive frameworks, tools, and libraries such as TensorFlow, NLTK (Natural Language

Processing Toolkit), and SpaCy are also present. NLP applications are computationally ex-

pensive, which makes them difficult to implement directly on larger scales (Tu et al., 2019).

An effective NLP solution requires a coordinated solution of computation, storage, and data

representation (Plale, 2013).

2.2 Relationship between AI, ML, NLP, and DL

Technology has transformed every industry and continues to evolve rapidly, especially in

the field of Artificial Intelligence (AI), Machine Learning (ML), Natural Language Processing

(NLP), and Deep Learning (DL). These fields and algorithms have been around since 1950

when Alan Turing proposed the Turing test, which aimed to test the level of intelligence of

an artificial entity. During this test, an interrogator communicates with two entities, one

human and the other artificial, and tries to distinguish between them. If the interrogator

cannot identify the artificial entity, it is considered intelligent. This experiment sparked a

lot of interest in the research community (Neapolitan and Jiang, 2018).

Initially, researchers focused on developing model neurons based on the human brain.

These artificial neurons were considered binary variables with values of either zero or one.

In 1961, Newell and Simon developed a program called General Problem Solver (GPS),

intended to solve all universal problems by using means-end analysis, similar to how humans

handle goals and sub-goals while solving problems (Simon, 1961). However, early AI efforts

were focused on developing versatile systems that worked in limited domains and solved only

simple problems, failing to handle complex problems. Consequently, researchers shifted their

focus towards developing domain-specific knowledge-based systems such as DENDRAL, a

mass spectrogram analysis system for chemistry (Lindsay et al., 1993), and VAX computers

for vision support systems (Devereux et al., 1984).
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Machine Learning (ML) is a sub-field of AI that involves systematically extracting pat-

terns from data and predicting outcomes. In ML, model parameters are refined to optimize

algorithm performance. There are four main types of ML: Supervised Learning, Unsuper-

vised Learning, Semi-supervised Learning, and Reinforcement Learning (Zhou, 2021). Deep

Learning (DL) is a subset of ML and a specific class of AI that differs from conventional ma-

chine learning through the use of different datasets and learning techniques. DL algorithms

use artificial neural networks (ANNs) inspired by the functioning of neurons in the human

brain. These networks comprise multiple neuron-based layers that are interconnected, in-

corporating components such as data input, weights, bias, and other elements. ANNs help

computers build complex concepts out of simpler concepts. DL is widely used in various ap-

plications, including healthcare, law enforcement, customer service, and autonomous driving

(Deng et al., 2014).

Like ML and DL, NLP is also a branch of artificial intelligence as illustrated in figure 2.1.

It helps machines understand, interpret, and derive meaning from human language. This

facilitates communication between machines and humans through the use of human lan-

guage. Additionally, it enables machines to analyse vast amounts of text corpus and speech

data and comprehend their meaning. The main purpose of NLP is to facilitate communi-

cation between humans and computers (Ganegedara, 2018). NLP has multiple real-world

applications. For example, if someone searches on Google "What’s the weather like today"

or "Famous restaurants nearby" in the Chinese language. Multiple NLP tasks need to be

performed before the user will get a response. A few of the NLP tasks that are processed

for these requests are listed below:

• Tokenization: It is a technique that involves breaking down large texts or documents
into smaller segments known as tokens.

• Word-sense Disambiguation (WSD): The responsibility is to identify the accurate
meaning and setting in which a word is being utilized. For example, the system should
be able to identify the difference between a coal mine and a land mine. In WSD,
contextual understanding is critical for understanding the text.

• Name Entity Recognition: NER extracts key data features from a large corpus,
such as a person’s name, location, and organization.
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• Part of Speech Tagging: Classify the vocabulary in a collection of texts by assigning
them into different categories based on their grammatical functions, such as identify-
ing whether a word is a noun, pronoun, verb, preposition, adjective, conjunction, or
interjection.

• Sentence classification: This task involves categorizing text based on its content.
For example spam detection, news article classification, and product reviews.

• Language generation: This approach involves training an ML model by feeding and
training it with a vast collection of text data and predicting text based on the patterns
it has learned from the corpus.

• Question Answering: It is a process of creating a system that will be able to answer
the questions asked to the machines by humans such as chatbots, the virtual assistant
from Apple and Google.

• Machine Translation: This process converts texts from one language into another.
It is a complex task as some languages are complicated structures.

Figure 2.1: Relation between AI, ML, DL and NLP; reproduced from (Vajjala et al., 2020)
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2.3 Document/Word embedding techniques and
pre-trained models

It is a technique used to convert words into a vectorized form that retains the funda-

mental linguistic connections between the words (Schnabel et al., 2015). One Hot Encoding,

Term Frequency, and Inverse Term Frequency (TF-IDF), Word2vec, Globvec, fastText, and

Transformer-based embeddings are some of the techniques used to compute these vectors.

Depending on the type of data, size, and intention of the processing, one of these methods

will be preferred and employed as explained below:

2.3.1 One Hot Encoding

It is a simple technique in NLP that is used to convert categorical data variables, such

as words or labels, and express them into numerical vectors (Stevens, 1946). A vector of

length V is created, which represents the entire vocabulary, where each ith word wth will be

represented by a V dimensional vector [0,0,0,1,0,0]. For example, consider this sentence.

Railway is of great importance.

Each word will be represented using a one-hot encoding technique:

Railway: [1,0,0,0,0]

is: [0,1,0,0,0]

of: [0,0,1,0,0]

great: [0,0,0,1,0]

importance: [0,0,0,0,1]

This method is quite simple but doesn’t encode any similarity or context between the

words. In order to measure similarity, let’s consider the dot product between two vectors.

If two words are similar, the dot product will be higher and vice versa. Furthermore, this

method is ineffective when dealing with a large vocabulary, since a typical NLP task typically

requires over 50,000 words (Rodríguez et al., 2018).
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2.3.2 Term Frequency and Inverse Term Frequency (TF-IDF)

It measures the mathematical significance of the occurrence of words in documents or

corpus (Aizawa, 2003). It is a useful search technique to count the frequency of words in a

document but it does not offer any meaningful insights in terms of similarity between words.

• Term Frequency - TF: It is defined as the frequency of a word in a particular
document compared to the frequency of all the words in the documents.

• Inverse Term Frequency - IDF: It measures the importance of terms in different
documents. This can be calculated mathematically as the logarithm of the ratio be-
tween the number of documents containing the target term and the total number of
documents in the corpus.

TF-IDF is obtained by multiplying TF and IDF values. Mathematically both can be repre-

sented with equation 2.1 and 2.2 (Vajjala et al., 2020):

TF (t, d) =
(Number of occurrences of term t in document d)

(Total number of terms in the document d)
(2.1)

IDF (t) = log
(Total number of documents in the corpus)
(Number of documents with term t in them)

(2.2)

To explain this in more detail let’s consider two separate documents:

• Document 1: Separation of Trains. Movement authority for a train.

• Document 2: Level crossings and infrastructure work for workers.

Calculating TF and IDF:

TF − IDF (train, doc1) = (
2

8
)× log(

2

1
) = 0.075 (2.3)

TF − IDF (for, doc2) = (
1

7
)× log(

2

2
) = 0.0 (2.4)

From the above equation, it is concluded that train is informative while for is not. This

is how the importance of words in a corpus can be measured.
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2.3.3 Word2vec

Word2Vec refers to a set of powerful predictive models that can be utilized to obtain word

embeddings from a text corpus (Bhardwaj et al., 2018). These models were introduced by

Thomas Mikolov of Google in 2013 and rely on neural network-based training to generate the

embeddings. Two model architectures are available for creating distributed representations

of words using this approach.

• Continuous Bag of Words - CBOW: This model creates word embeddings by
predicting a particular word using the surrounding words, also known as context words.

• Skip-gram: This model structure estimates the neighbouring words in a sentence or
document, without considering their position, using a reverse approach compared to
CBOW. The context words are the basis of learning for both models and their range
is limited by a parameter known as the "window size," which can be modified. The
window size is a crucial factor in determining vector similarity. Figure 2.2 illustrates
the CBOW and Skip-gram model architectures.

Figure 2.2: Skip-gram and CBOW models, (A) Skip-gram inputs center word and
predicts context words (B) Continuous Bag of Words (CBOW) takes input words
and predicts center word. Reproduced from (Ay Karakuş et al., 2018)

The Word2vec pre-trained model is an essential tool in NLP, developed on a vast dataset

of Google News. The dataset includes 3 million words and phrases, and it was trained on

a massive amount of data containing 100 billion words (McCormick, 2022). The model is

considered to be the standard of pre-trained word embedding, and it is widely used for various

NLP tasks such as text classification (Lilleberg et al., 2015), semantic similarity (Al-Saqqa
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and Awajan, 2019), and text summarization (Chengzhang and Dan, 2018). These models are

designed to reduce the computation complexity of previous models. In this manner, millions

of word vectors can be learned from a vast dataset containing billions of words (Mikolov

et al., 2013).

2.3.4 GloVe: Global Vectors for Word Representation

The research team at Stanford University created an unsupervised learning algorithm

known as GloVe which stands for Global Vectors for Word Representation. Based on the

underlying corpus, it creates a matrix of global word co-occurrences. In order to estimate

similarity, the method assumes that words that are similar to each other occur together. In

order to assign occurrence values to the co-occurrence matrix, the entire corpus is processed

to gather statistical data. GloVe was trained on the five different corpora of varying size,

Wikipedia, Common Crawl, and Twitter tweets (Pennington et al., 2014).

2.3.5 fastText

Facebook researchers utilized Skip-gram models to create a new word-embedding model.

This model groups each word into a set of character n-grams (Bojanowski et al., 2017). Using

n-gram will increase the processing time of the model but it will also provide the ability to

predict variations of words such as Hello is composed of [He, Hel, Hello]. The model generates

vector representations for words that are not in the dictionary and is primarily used for word

representations (Mikolov et al., 2017) and text classification (Zhou et al., 2003).

2.3.6 BERT (Bidirectional Encoder Representations of
Transformers)

Google developed a language model called Bidirectional Encoder Representation from

Transformers (BERT) in 2018, which integrates a multi-layer transformer encoder with a

self-attention layer on both sides (Devlin et al., 2018). BERT comes in two main versions:

BERT Base and BERT Large. BERT Base consists of 12 transformer layers with 768 hid-

den units and 12 self-attenuation heads in its feed-forward networks, whereas BERT Large

contains 24 transformer layers, 1024 hidden units, and 16 self-attenuation heads. BERT
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was pre-trained using two unsupervised tasks: Masked Language Modelling (MLM) and

Next Sentence Prediction (NSP) to enhance its language abilities. MLM hides some tokens

from the input embedding and models try to predict those tokens, resulting in a deeper

understanding of the language. NSP focuses on recognizing the relationship between two

sentences, where BERT is fed pairs of sentences labelled as "IsNext" if they are the next log-

ical sentence and "NotNext" if they are random sentences. This pre-training is particularly

useful for applications such as Question Answering and Natural Language Interfaces.

DistilBERT (Distillation Bidirectional Encoder Representations from Transformers) is a

smaller version of BERT that can be used for various tasks, and it has a similar architecture

to BERT, but with fewer layers and without token embedding and pools (Jiang et al., 2021).

Electra is another BERT-based model that can be used for clustering or semantic search by

mapping sentences to a 256-dimensional dense vector space (Zhang et al., 2022).

2.3.7 Document2vec

Document2vec is a model that was inspired by the Word2vec approach. Word2vec is

utilized for various NLP tasks like web search, sentiment analysis, and spam filtering because

it can capture the semantic and lexical relationships between words. Typically, the algorithm

generates vectors of a constant length by making use of textual data. The most common

techniques to generate fixed-length vectors are the bag of words and skip-gram methods.

However, these methods have a disadvantage, which is that the order of the words is ignored.

As a result, different sentences that contain the same words end up having the same vector

representation (Le and Mikolov, 2014).

A new approach called distributed representation is used to create vector representations

of sentences and documents. Vector representations of sentences, paragraphs, and documents

are continuously learned by this method. The paragraph ID is represented as a new vector

"D" in Document2vec, as shown in figure 2.3. During training, the Paragraph ID is also

learned to represent the document numerically. By combining the Paragraph ID with the

paragraph vector, a dense vector representation of the document is obtained. It is possible

to utilize this to anticipate the forthcoming words based on the provided contextual words.
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Figure 2.3: Document2vector with a first layer consisting of paragraph id and
paragraph converted into a vector, both vectors are concatenated in the second
layer, in the last layer classification of text. Reproduced from (Le and Mikolov,
2014)

2.4 Document processing methods

2.4.1 Knowledge-based methods

This is a semantic similarity method that is based on knowledge measuring the similar-

ity between two concepts or words by using a semantic network (Oussalah and Mohamed,

2022). These networks are created using large lexical databases like WordNet, Wiktionary,

Wikipedia, and BabelNet as a source of knowledge. This method represents concepts or

terms by using semantic relationships, which allows for accurate and unambiguous measure-

ment of similarity (Tian et al., 2017). There are four distinct types of knowledge-based

semantic similarity methods that assess the likeness between words as explained below:

2.4.1.1 Edge-counting methods. This is a technique that assesses the degree of

semantic resemblance by analysing the shortest path between two sets of synonymous words

or ideas. A smaller path between the sysets or concepts represents more similarity and vice

versa. Rada devised a technique named "path" that establishes a correlation between the

similarity of two concepts and the length of the shortest path between them, in which the

similarity decreases as the path length increases (Rada et al., 1989). Mathematically it is
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represented as:

Sim(A,B) = no of edges in the shortest path (2.5)

The edge-counting method doesn’t count the length of ontologies and considers all equal in

length. To overcome the issue, a feature-based semantic method was introduced.

2.4.1.2 Feature-based methods. This technique aims to address the constraint of

a fixed-length taxonomical link in an ontology that is associated with the edge-counting

approach. In feature-based methods, the similarity is calculated by considering word prop-

erties, such as gloss, synsets, etc (Sánchez et al., 2012). When referring to a dictionary, the

term "gloss" pertains to the definition or explanation of a word. On the other hand, a "glos-

sary" is a compilation of these glosses, typically arranged in alphabetical order. Words with

similar meanings in their gloss are exploited in the semantic gloss-based similarity methods.

Leak measure introduced a feature-based method that relies on the overlapping of words in

the gloss of a dictionary such as WordNet (Banerjee et al., 2003). Using Wikipedia glosses,

another method was developed to measure semantic similarity (Jiang et al., 2015). Feature-

based methods take into account characteristics that are shared as well as those that are

not shared between two terms. The major limitations of these methods are that they only

consider glosses and synsets, not taxonomies relationships (Sánchez et al., 2012).

2.4.1.3 Information-Content (IC) based methods. The methods refer to the

amount of information a concept provides in context when appearing in a document (Sánchez

and Batet, 2013). The IC value is higher when a word’s meaning is clear and specific, while it

is lower when the meaning is vague and abstract (Zhu and Iglesias, 2016). Inverse document

frequency (IDF) is used to determine the specificity of the word. IDF is a metric used in

natural language processing to measure the significance of a word in a document. To compute

this, the entire documents in a corpus are divided by the number of documents containing

the specific word.(Nguyen, 2013). IC method is based on the IC value associated with each

word in a corpus. Semantic similarity between the words is measured based on the IC value.

Resnik, D.Lin (Resnik, 1995) and Jiang (Lin et al., 1998) proposed extensions of Information

content (IC) methods that take the Least Common Subsumer (LCS) into consideration. The

provided ontology states that LCS is the shared ancestor of both concepts. A new method
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was introduced that uses IC to measure the semantic similarity of concepts. This method

utilizes Wikipedia’s organized taxonomy and corpus for evaluation (Jiang et al., 2017).

2.4.1.4 Combined Knowledge-based methods. There are various knowledge-based

methods proposed by researchers to find semantic similarities. WordNet ontology-based se-

mantic similarity method was introduced by Goa (Gao et al., 2015), which uses three differ-

ent techniques to assign weights to the edges and shortest path.The first technique involves

weighing the shortest path between two concepts based on the depths of all the WordNet

concepts along that path. As part of the second technique, the depth of the LCS of the

concepts was taken into account as a weighting factor and for the third technique, only the

concept IC value was taken into consideration. To determine semantic similarity, the shortest

weighted path length is non-linearly transformed. This model is driven by knowledge bases,

which are simple and easy to compute. This knowledge-based method can efficiently handle

synonyms, idioms, and phrases that pose major ambiguity problems. Its applications can

easily be extended to measure semantic relatedness between sentences by using WordNet

ontology to create embeddings (Lee, 2011).

2.4.2 Corpus based methods

It refers to the measurement of semantic similarity between concepts in large collections

of documents. This technique identifies word combinations that occur frequently, based on

a distributional hypothesis, without taking into account the meaning of the words (Gorman

and Curran, 2006). Several embedded techniques were created based on the distributional

hypothesis, and a few of them are explained below:

2.4.2.1 Latent Semantic Analysis - LSA. It is a widely used technique in distri-

butional semantic analysis and measures semantic similarity using corpus-based techniques.

A document term matrix is created in which words are represented as columns, documents

as rows, and vector cells are filled with the frequency of words in each document. A large

matrix is formed with underlying features of the corpus and its dimensional is reduced using

Singular Value Decomposition (SVD) (Landauer and Dumais, 1997). The SVD technique is

used to simplify computations involving a matrix by breaking it down into its components

21



(Landauer et al., 1998). By applying this method, the matrix’s column count decreases while

preserving the rows, ensuring that the similarity structure of the words is maintained. The

matrix’s rows represent words in an embedded format, and the similarity between the em-

bedded vectors can be calculated using cosine similarity. This method is commonly utilized

in different applications, including document clustering, text analysis, and visualization.

2.4.2.2 Hyperspace Analogue to Language - HAL. The term "HAL" refers to

Hyperspace Analogue to Language, which is a semantic space model (Yan et al., 2010).

It captures statistical relationships between words by analysing their co-occurrences in a

sliding text window. A sliding window of varied size moves across the large corpus of words.

A co-occurrence is defined as two words that occur together in a single window; with a

weight inversely proportional to their distance from each other. The matrix is constructed

by accumulating co-occurrence information across a corpus. The columns with low entropy

values in a vector matrix are removed to reduce their dimension. Euclidean or Manhattan

distance are the similarity metrics utilized to measure the semantic relatedness between the

embedded terms.

2.4.2.3 Explicit Semantic Analysis - ESA. In this technique (Gabrilovich et al.,

2007), the text is represented in vector format using a large Wikipedia corpus. Wikipedia

is a versatile corpus that is updated continuously, making the proposed method applied to

multiple domains and languages. In the TF-IDF matrix, every word in the text corpus is

shown as a column vector, and each document is represented as the average of the vectors

that represent its words. To determine the co-occurrence strength of each word, the TF-IDF

technique is utilized, and words with low strength values are removed. Cosine similarity is

utilized to measure the semantic similarity between the vectorized text.

2.4.2.4 Word-alignment models. The word alignment model maps two similar

words or sentences to the same meaning within a particular context. A large labelled text

corpus is required in order to align text to each other. There are multiple techniques that were

introduced to measure semantic similarity using Word alignment. In 2013, Juri and Benjamin

introduced a word alignment model that was based on the paraphrase database (Ganitkevitch

et al., 2013). This paraphrase database consists of 220 million English paraphrase pairs and
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196 million Spanish paraphrases. All of the sentences in the corpus were mapped using

the Word-alignment model. In 2015, another unsupervised method was introduced that

measures the sentence semantics based on the vector composition to construct an embedded

vector for sentences and measure the similarity using cosine metrics (Sultan et al., 2015).

Both of these methods have given outstanding results in SemEval tasks 2015.

2.4.2.5 Latent Dirichlet Allocation - LDA. It is a method used for topic mod-

elling that operates in an unsupervised manner and is designed to assess the semantic simi-

larity between different entities (Sinoara et al., 2019). Topic modelling refers to the process of

organizing, understanding, searching, and summarizing information. In addition, it will en-

able the discovery of patterns in the documents and the classification of patterns in different

topics. A vector for document representation is generated by LDA, where the probability of

words is represented in columns and the topic from which words can belong is represented in

rows. Words are sorted into different topics based on their probability score. This technique

is very useful as it reduces the dimensionality of documents and clusters the large corpus

into different topics. Using context semantic analysis, a novel approach was introduced to

measure the inter-document similarity by representing documents as vectors and measuring

their similarity (Benedetti et al., 2019).

2.4.2.6 Normalized Google Distance - NGD. NGD is a way to determine how

similar two terms are by looking at how frequently they appear together on web pages.

It utilizes information from worldwide databases and Google search engines to count the

frequency of appearance of particular keywords. (Cilibrasi and Vitanyi, 2007). This method

relies on the idea that words that have similar meanings frequently appear together on web

pages. The calculation of NGD involves counting the number of hits for two specific terms.

The more frequently they appear together, the lower the NGD value, indicating a higher

degree of semantic similarity. NGD for two terms is calculated as

NGD(S1, S2) =
max{log f(S1), log f(S2)} − log f(S1, S2)

−min{log f(S1), log f(S2)}
(2.6)

here f(S1) and f(S2) are the functions that represent a count of a successful search for

a given word, function f(S1, S2) returns a successful hit of given words search together in
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google search. Finally, the variable G indicates the total count of pages within the complete

search outcomes. NGD is commonly utilized to establish the semantic correlation between

words, as it relies on the co-occurrence of words in the results generated by the search engine.

2.4.2.7 Dependency-based models. This model relies on dependencies that use

neighbouring words within a defined window to establish the context of a word or phrase

(Nivre, 2006). Dependency-based word embeddings were created using arbitrary words from

the corpus to get the context (Levy and Goldberg, 2014). This model was tested to rank

similar words and showed better results for similarity rankings over the Bag of words. In

2022 Chengwei introduced the two techniques for task-specific dependency-based word em-

beddings (Wei et al., 2022). In the first method, the dependency parsing model captures the

structural information of a sentence and embeds words known as dependency-based word

embedding (DWE). The second method learns from the context of the words and word

co-occurrences are known as class-enhanced dependency-based word embedding (CEDWE).

Both these methods demonstrated effective results for text classification.

2.4.2.8 Kernel-based models. This approach detected similarities between text

snippets by finding patterns in text data. There are two main types of kernels: sequence

kernel and tree kernel. Word Sequence kernel measures the sequences of words rather than

characters (Cancedda et al., 2003). Word sequence kernel is used in multiple NLP applica-

tions such as sentence clustering (Andrés-Ferrer et al., 2010) and text classification (Trindade

et al., 2011). The introduction of the Tree Kernel for Semantic Role Labelling in 2008 (Mos-

chitti, 2008) included three sub-structures: SubTree (ST), Subset Tree (SST), and Partial

Tree (PT) (Moschitti et al., 2008). ST refers to any node and its corresponding child nodes.

SST is a more generalized tree structure that may exclude some child nodes. PT is a sub-

structure that is more general than SST but does not strictly adhere to all of the grammatical

rules of the SST method (Nguyen et al., 2010).

2.4.3 Deep Neural Networks (DNNs) based methods

Recent advancements in deep neural network architectures have created opportunities

for NLP applications. There are a number of techniques that are commonly used, such as
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Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM), Bidirectional Long

Short Term Memory (Bi-LSTM), and Convolutional Neural Networks (CNNs). All these

techniques are explained below in detail:

2.4.3.1 Recurrent Neural Networks - RNNs. A Recurrent Neural Network (RNN)

is a unique type of neural network that is specifically designed to remember the output of

the previous layer and use it to forecast the output of the next layer (Medsker and Jain,

2001). There are different types of RNNs models such as One-to-One RNNs, One-to-many

RNNs, Many-to-One RNNs and Many-to-Many RNNs. RNNs are mostly used in processing

sequence data such as variable-length text, image captioning, stock prediction and machine

translation. While text processing and understanding the semantic context it is essential to

remember the previous words in a sentence, and RNNs have the capability to capture the

previous word context. The significance of the words in the previous context is not equal

when considering the next word. As a result, recurrent neural network (RNN) models have

to take into account this long-term dependence between the words to accurately predict the

next word. A fully connected RNNs layer network is illustrated in figure 2.4.

Figure 2.4: Fully connected Recurrent Neural Network layer. Reproduced from
(Biswal, 2022)

h(t) = fc(h(t− 1) + x(t)) (2.7)
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The equation 2.7 consists of four variables: h(t) represents the new state, fc is a function

that has a parameter c, h(t − 1) represents the old state, and x(t) is the input vector at a

particular time step t.

2.4.3.2 Long Short-Term Memory Networks - LSTMs. The Long Short-Term

Memory Network (LSTM) is a type of Recurrent Neural Network (RNN) capable of han-

dling long-term dependency by solving the vanishing gradient problem. These networks are

specifically designed to account for long-term dependencies when measuring the contextual

similarity of text (Shewalkar et al., 2019). LSTMs utilize a memory cell architecture that

includes three gates to regulate the state of memory cells, which can be visualized in the

accompanying figure 2.5. LSTM technique is used for numerous NLP tasks such as sentiment

Figure 2.5: LSTM Unit

analysis (Priyantina and Sarno, 2019), machine translation (Cui et al., 2015) and language

modelling (Wang and Cho, 2015).

2.4.3.3 Bi-directional Long Short-Term Memory Units - BiLSTM. A bidirec-

tional LSTM network, also known as BiLSTM, is a type of neural network that extends the

traditional LSTM network approach. Unlike traditional LSTM networks, BiLSTM networks

are trained on input sequences from both directions. This means that the input is processed

by the first LSTM layer in a left-to-right manner, while the second layer processes it from
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right to left. This additional context provides the neural network with more information and

improves its accuracy (Schuster and Paliwal, 1997). BiLSTM networks are commonly used

in machine translation tasks, where a sentence in one language needs to be translated into

another language. BiLSTM networks are particularly effective in these tasks because they

do not rely on a specific alignment between the two languages and can take into account the

previous and future input to understand the context of each sentence. Studies have shown

that BiLSTM networks perform well due to their bi-directional architecture (Zhou et al.,

2019).

Figure 2.6: Bidirectional LSTM

2.4.3.4 Convolutional Neural Networks - CNNs. In 1988, Yann LeCun intro-

duced Convolutional Neural Networks (CNNs) with the LeNet model, which was initially

designed to recognize characters and digits (LeCun et al., 1998). These neural networks

can handle both image and text data, and they utilize convolution and pooling operations

as their fundamental building blocks. For text data, convolution is executed by taking the

element-wise sum of a sentence vector and a weight matrix to identify relevant features, while

pooling is a downsampling process that removes irrelevant features and preserves essential

ones. Two popular pooling methods are Max pooling and Average pooling, with Max pooling

choosing the maximum feature value from a chosen area.
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Yang Shao has proposed a semantic similarity algorithm based on CNN. First, the text

is pre-processed by removing punctuations, tokenizing, and removing stopwords. Next, the

GloVe word embedding technique is utilized to transform the text into high-dimensional

vectors. These vectors are then fed into a CNN that has 30 filters and a max-pooling

layer, resulting in sentence vectors. Element-wise absolute difference and multiplication of

these vectors are used to measure the semantic similarity between the vectorized text. The

performance of this model was evaluated using SemEval datasets (Shao, 2017).

2.4.3.5 Transformers based models. In 2017, Vaswani presented a revolutionary

network structure that employed a transformer-based model to grasp the semantic meaning

of words through an attention mechanism (Vaswani et al., 2017). The transformer model

comprises an encoder and a decoder. Initially, the encoder uses self-attention to comprehend

the input sentence, taking into account each word. Next, multi-head attention layers are

integrated into a feed-forward neural network to establish the encoder. The decoder is

similar to the encoder but incorporates multi-head attention layers that capture the attention

weights of the encoder.

Initially, the transformer model was primarily used for machine translation. However,

later versions of transformer-based models were developed for other applications. Devlin

created a BERT word embedding using the transformer model (Devlin et al., 2019). Multiple

BERT models were proposed that used different corpora for training and were optimized

for computational resources. Several variations of the BERT model also use transformers,

including ALBERT (Lan et al., 2019), TinyBERT (Jiao et al., 2019), RoBERTa (Liu et al.,

2019), and DistilBERT (Sanh et al., 2019).

2.4.4 Hybrid methods

Each of the methods previously discussed has its advantages and disadvantages. Knowledge-

based techniques interpret synonyms using the underlying ontologies while corpus-based tech-

niques can handle linguistic diversity. Deep neural network-based techniques outperform the

other methods in terms of accuracy but require more computational resources for process-

ing. To achieve better performance with fewer computational resources, different models are
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combined together to form hybrid techniques. We will describe a few methodologies that are

used in hybrid models:

• Novel Approach to a Semantically Aware Representation of Items (NASARI) was in-
troduced by Camacho Collados where knowledge was built on BableNet corpus to
create embeddings for words or sentences (Camacho-Collados et al., 2015). It creates
embedding for BabelNet synset and Wikipedia pages in multiple languages. Currently,
it provides three types of embeddings: lexical, unified, and embedded. NASARI is
used for many NLP tasks such as semantic similarity in multiple languages and word
clustering.

• Most Suitable Sense Annotation (MSSA) is another hybrid technique that clarifies and
annotates words based on their specific sense, taking into consideration the seman-
tic effects of their context (Ruas et al., 2019). There are three different techniques
in semantic text representation: (a) an unsupervised method for disambiguation and
annotation of words according to their senses, (b) an algorithm for a multi-sense em-
bedding, which can be applied to any word embedding algorithm, and (c) recurrent
methods that enable the reuse of our models as well as refine our representations.
MSSA shows great results and outperforms several complex techniques.

• Unsupervised Ensemble Semantic Textual Similarity Methods (UESTS) is a seman-
tic similarity method that is fundamentally based on unsupervised word alignment
techniques (Hassan et al., 2019). It calculates the similarity by summing four semantic
similarity measures between sentences. These four measures are word alignment-based,
surface-based, corpus-based and edit distance. This technique shows promising results
as compared to other unsupervised approaches.

2.5 Document Processing algorithms

Search engines utilize text similarity to rank search results based on a user’s query. In

business, text similarity is used to analyse documents to find similarities with previous rules,

contracts, and other documents. A commonly used approach for retrieving information is

the vector space model, which evaluates documents based on how well they match a given

query and arranges them in order of relevance (Mihalcea et al., 2006).

Text relatedness or text similarity can be measured using two techniques: lexical similar-

ity and semantic similarity. Lexical similarity measures the similarity of strings of characters
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(Jimenez et al., 2019), while semantic similarity considers the context of words (Pradhan

et al., 2015). Based on this lexical and semantic similarity method various text similarity

metrics were introduced as explained below.

2.5.1 Euclidean Distance

The Euclidean distance is a way of determining the similarity between two points in a

two-dimensional space or between two embedded texts by measuring the shortest distance

between them (Faisal et al., 2020). It is also known as the L2 norm and is frequently used in

K-nearest neighbours classification (Hu et al., 2016) and text categorization through Support

Vector Machine (SVM) (Lee et al., 2012). Mathematically Euclidean distance between the

two embedded sentences (S1 and S2) can be calculated using the equation 2.8.

E.d =

√
(S1′ − S1)2 + (S2′ − S2)2 (2.8)

2.5.2 Manhattan Distance

The Manhattan distance is a measurement technique that calculates the absolute differ-

ence between two vectors that contain real numbers and does so by taking into account all

of the dimensions in the vectors. This technique is sometimes referred to as the L1 norm or

L1 distance. It is used in contextual feature extraction in duplicate bug reports detection

(Neysiani and Morteza Babamir, 2019) and regression analysis in data mining (Bakar et al.,

2006). Mathematically it is expressed as

M.d = |(S1′ − S1)|+|(S2′ − S2)| (2.9)

2.5.3 Hamming Distance

It is a metric to measure the difference between two integer numbers in which the two

bits are different. The method is used to compare binary strings that are of equal length.

Additionally, it can be used to compare strings in a text and determine their similarity.

Hamming distance is mostly used in error detection techniques while transmitting data

(Wang and Dong, 2020).
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Figure 2.7: Similarity metrics algorithms. Reproduced from (Grootendorst, 2021)

2.5.4 Chebyshev Distance

It is described as the highest variance between two vectors along any of their coordinate

dimensions. Chebyshev distance is used in text classification and information retrieval using
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k-nearest neighbours (Eminagaoglu, 2022). Mathematically it is expressed as

C.d(S1, S2) = maxi(|S1i − S2i|) (2.10)

2.5.5 Minkowski Distance

The Minkowski Distance is a mathematical concept used to measure the similarity be-

tween two points in a vector space, and it is named after the German mathematician Her-

mann Minkowski. It is a normalized metric that is considered to be an extension of the

Euclidean and Manhattan distances (Thant et al., 2020). Minkowski distance can be used

for text classification (Viriyavisuthisakul et al., 2015). It is represented by the following

equation n (2.11):

M.d(S1, S2) = (
n∑

i=1

|S1i − S2i|p)1/p (2.11)

Here "p" is a parameter used to manipulate the distance metric to resemble the others.

There are three most common values for parameter "p"

• p=1 Manhattan Distance

• p=2 Euclidean Distance

• p=∞ Chebyshev Distance

2.5.6 Haversine

It is the method to compute the distance between two points on a sphere by utilizing

their latitudes and longitudes as inputs (Sharmila and Sabarish, 2021). It is possible to

calculate the distance separating two points by utilizing the subsequent equation:

H.d(ϕ, λ) = 2r sin−1

√
sin2(

ϕ2 − ϕ1

2
) + cos(ϕ1) cos(ϕ2) sin

2(
λ2 − λ1

2
) (2.12)

In this equation 2.12, the variables "r" indicate the sphere’s radius, while ϕ1 and ϕ2

represent the points of latitude, and λ1 and λ2 represent the points of longitude.
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2.5.7 Jaccard similarity or Extended Jaccard similarity

The Jaccard similarity is also known as the Jaccard distance. It is a technique that

measures the similarity between two documents or texts based on their lexical similarity. It

evaluates the extent of commonality between the two sets of words by dividing the size of

their shared words by the size of their combined words (Zahrotun, 2016). To calculate the

Jaccard distance, the Jaccard index is subtracted from 1, which can be represented by a

mathematical formula:

J(S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

(2.13)

J(S1, S2) =
(
∑n

i=1 S1iS2i)∑n
i=1 (S1i)

2
∑n

i=1 (S2i)
2 −

∑n
i=1 (S1iS2i)

(2.14)

In equation 2.13 ′∩′ represent intersection and ′∪′ indicate union sign and ′|′ represent

mode. Equation 2.14 without the square root was used in the implementation of Jaccard

similarity metrics on FPGA.

2.5.8 Sorensen-Dice

The term refers to a statistical measure that determines the likeness between strings or

words. Mathematically, it can be defined as the ratio of two times the overlapping portion

of two sets to the mode of each sentence individually (Annathurai and Angamuthu, 2022).

S.d(S1, S2) =
2|S1 ∩ S2|
|S1|+ |S2|

(2.15)

2.5.9 Cosine Similarity

Cosine similarity is a method employed to measure the likeness between two vectors or

embedded sentences by calculating the cosine angle among them (Rahutomo et al., 2012).

The similarity between the embedded vectors will be higher if they have the same orientation.

Cosine similarity will be represented as 1 for these two embedded sentences. On the other

hand, if both embedded sentences are in the opposite direction they will have a cosine

similarity of -1. It is important to note that in cosine similarity magnitude of the embedded
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sentences is not important as it is based on the orientation of the embedded sentences. The

formula used to measure the cosine similarity is as follows:

cos(S1,S2) =
S1.S2

∥S1∥∥S2∥
=

∑n
i=1 S1iS2i√∑n

i=1 (S1i)2
√∑n

i=1 (S2i)2
(2.16)

cos (S1,S2)2 =
(
∑n

i=1 S1iS2i)
2∑n

i=1 (S1i)2
∑n

i=1 (S2i)2
(2.17)

The term S1.S2 represents the dot product of the two sentences that are embedded,

divided by the product magnitude of the two embedded sentences, which is represented as

||S1|| and ||S2||. Equation 2.17 without the square root was used in the implementation

of Cosine similarity metrics on FPGA.

2.6 Framework and tools

NLP is a branch of Artificial Intelligence that has grown very quickly over the last decade.

NLP requires multiple frameworks and tools to process this huge unstructured data. There

are a wide variety of NLP tools that are used. Python is used as the main programming

language for computation and data analysis. Different other NLP libraries such as NLTK,

Gensim, re, WordCloud, and many more are used. VDHL is used as a hardware accelerator

to process all the information on FPGA. In this research, a wide variety of tools are utilized

are explained below:

2.6.1 Anaconda

It is an open-source data science platform that supports multiple applications (Kadiyala

and Kumar, 2017). It comes with multiple pre-installed packages and libraries. Anaconda

distribution is suitable for Windows, Linux, and MacOS. All the package versions and li-

braries are managed by a package management system called Conda. Anaconda also allows

you to create separate environments in a single machine. These environments can support

CPU or GPU-based hardware.
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2.6.2 Python

It is an open-source, high-level, versatile, and dynamically typed language. It is a simple

programming language with great functionality to work with huge amounts of unstructured

data (Bird et al., 2009). Furthermore, it supports cross-platform operating systems, making

it convenient for developers. It is used in a wide variety of applications such as data analysis,

data visualization, and machine learning.

2.6.3 Gensim

Gensim is an open-source Python-based library. It is an autonomous and rapid platform

that enables data streaming for a large collection of texts. This library offers various topic

modelling techniques, including Latent Dirichlet Allocation (LDA) and Latent Semantic

Indexing (LSI). In addition, it allows you to train large-scale semantic NLP models, represent

text semantically, and identify semantic similarities between documents (Řehůřek, 2022).

2.6.4 WordCloud

A WordCloud is a type of visualization that displays the most commonly occurring words

in a collection of documents or a corpus. Based on the frequency of text the words are rep-

resented in various sizes and colours. It helps to provide insights and a better understanding

of the corpus. This makes it an effective tool for analysing text data and identifying the

most significant themes and ideas present within the documents (Filatova, 2016).

2.6.5 NLTK

Natural Language Toolkit (NLTK) is a Python-based open-source library. It provides

access to 50 corpora and other resources for processing linguistic data and text analytics.

Initially, it was designed for teaching but due to its versatility and advantages, it is now

adopted as a standard in the data science and software development industry. The NLTK

provides libraries for semantic reasoning, tokenization, parsing, tagging, classification, and

many other tasks (Perkins, 2014).
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2.6.6 Re

In 1940, it started as a regular language but it started to show up in programming

languages in the 1970s. Ken Thompson first introduced it in a QED text editor. A regular

expression (re) is defined as an encoded sequence of characters that matches a specific pattern

in a text (Fitzgerald, 2012). It is powerful and flexible and can be considered a mini-

programming language for efficient text processing. A regular expression can add, isolate,

remove, replace, and find patterns in text or data (Friedl, 2006).

2.6.7 Comma-Separated Values - CSV

CSV is a file format used for storing tabular data in plain text format. The data is

arranged in rows, with each row representing a record and each record containing one or more

fields separated by commas. The format is named for the use of commas as field separators.

Python, a widely used programming language, offers a built-in module specifically designed

for handling CSV files. This module enables users to read from or write to any file formatted

as a CSV file (Shafranovich, 2005).

2.6.8 Bubble

A bubble is a graphical user platform for building web-based applications. Traditionally,

web applications require managing coding and setting up deployment procedures. Bubble

offers to create interactive and responsive applications for mobile and desktop platforms.

Hosting and deployment are handled by Bubble. In terms of users, traffic volume, or data

storage, there are no strict restrictions. It also provides a collaborative environment for

individuals and teams to work on the same project (bub, 2022).

2.6.9 VHDL

VHDL (VHSIC Hardware Description Language) is a hardware description language that

models the behaviour of digital electronic systems. It was created by the US government’s

Very High-Speed Integrated Circuits (VHISC) program. Consequently, it became clear that

standardized hardware languages are necessary for Integrated circuits (ICs). In 1987, the

Institute of Electrical and Electronics Engineers (IEEE) standardized the VHDL language in
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the form of IEEE Standard 1076. VHDL allow multiple design processes such as the descrip-

tion of system structure, subsystems and interconnectivity between them, specifications of

the system function and run-time simulation to test the equipment (Ashenden, 2010). It is

one of the main languages used by digital designers to describe their electronic circuits. It is

also used to design and develop FPGA and ASICs (application-specific integrated circuits).

2.6.10 Google News Dataset

Google has released an open-source, pre-trained word2vec model that incorporates a

dataset of 3 million words and phrases. This model was trained on a corpus of 100 billion

words and uses a continuous bag-of-words and skip-gram architecture for fast and efficient

computation of word vector representations (Mikolov et al., 2013). The text embeddings

produced by this model can be utilized to perform a variety of NLP and ML tasks. In this

research, these embedded representations were utilized in combination with other cutting-

edge pre-trained models to embed text.

2.6.11 T5: Text-to-Text Transfer Transformer

T5 is an acronym for Text-to-Text Transfer Transformer, a cutting-edge language model

developed by Google in 2019. It is an advanced transformer-based architecture pre-trained

on a vast amount of text data utilizing a text-to-text approach. In this approach, the model

is trained to convert one type of text input into another type of text output. For text

summarization, T5 can be fine-tuned on a summarization task where a lengthy piece of text

serves as the input, and a shorter summary of that text is the output (Ramesh et al., 2022).

The model can be trained on a massive dataset of input-output pairs where the input consists

of a long article or document, and the output is a concise summary. During the fine-tuning

phase, the model learns to generate high-quality summaries by mapping the input text to

the corresponding output summary.

T5 is well-suited for text summarization due to its ability to produce coherent and fluent

summaries that resemble human-written summaries. Additionally, T5’s capacity to gener-

alize to novel inputs is noteworthy, allowing for the creation of accurate and informative
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summaries even for complicated and technical texts. In this study, T5 was employed to map

detailed OCD (Operational Concept Document) rules/clauses to the EA document.

2.7 Hardware accelerator for NLP

The use of big data as input facilitates the development of NLP algorithms across a

variety of domains. To process this large and unstructured data a lot of processing power is

required. There are different hardware architectures present currently such as CPU, GPU,

FPGA, and HPC. Most of this hardware is also available for processing or task scheduling

using different cloud platforms such as Microsoft Azure, Google Cloud and Amazon AWS. In

order to achieve optimal results, it is crucial to choose the right hardware. Different hardware

accelerators based on their efficiency, implementation complexity, and power consumption

are discussed below:

2.7.1 Central Processing Unit - CPU

A central processing unit (CPU) serves as the brain of a computer, executing instructions

from computer programs. By specifying instructions in the program, it can perform multiple

operations such as arithmetic, logic, controlling, and input and output. CPU is a scalar-

based architecture as it processes the instruction in a serial manner. A scalar architecture-

based CPU processor can execute one instruction per clock cycle. With the advancement in

technology, better CPUs with multi-threaded cores can perform parallel programming tasks.

There are multiple advantages of using a CPU as compared to GPU and FPGA. There are no

overheads of data transfer or data offloading. Moreover, it provides automatic parallelization

on sequential tasks and ease of development (Jawandhiya, 2018). Today, computers are used

as a standard for all machine learning and data analysis tasks.

2.7.2 Graphic Processing Unit - GPU

Graphic Processing Unit (GPU) processors are made up of massively parallel and spe-

cialized cores that can perform computational tasks. Initially, it was designed and optimized

for rendering. Recently it has been used dominant platform for many Deep learning, Natural
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language Processing and computational tasks. GPU processors are vector-based architec-

tures and are useful in efficiently processing arrays or vectors. The Arithmetic Logic Unit

(ALU) is the basic programmable unit in GPU. More silicon space is dedicated to computing

on GPUs and less to cache and control on CPUs (McClanahan, 2010). This allow GPU to

accelerate efficiently based on software-level parallelism. In high-throughput applications,

GPUs consume a significant amount of power. On the other hand, it facilitates efficient

parallel task execution and high memory bandwidth (Bridges et al., 2016).

2.7.3 Field Programmable Gate Array - FPGA

Field Programmable Gate Array (FPGA) is a silicon-based integrated circuit that is

a re-configurable platform. FPGA consists of configurable logic blocks (CLBs), memory,

programmable interconnects and configurable I/O blocks (Yang et al., 2014). This means

a designer can utilize all those hardware resources and configure them into any desired

circuit or application based on the requirement. FPGAs are mostly programmed using

Hardware Description languages(HDL) such as Verilog and VHSIC Hardware Description

Language (VHDL). With the advancement in semiconductor technology, performance, power

consumption, and system integration have dramatically improved (Kuon et al., 2008). This

leads to the usage of FPGA in different new areas such as Deep Learning and Big data

analysis.

2.7.4 Heterogeneous Systems

Heterogeneous systems refer to computing systems containing more than one type of

processor, such as CPUs, GPUs, FPGAs, or HPCs. Different processors have their own

unique processing capabilities and the application load is distributed between the proces-

sors. Therefore, the processing is efficient, and also the load is balanced by preventing idea

time on both processors (Mittal and Vetter, 2015). The process of heterogeneous computing

consists of three phases: parallelism detection, parallelism characterization, and resource

allocation (Ekmecic et al., 1996). In parallelism detection, tasks in heterogeneous applica-

tions are identified. Parallelism characterization identifies the computation requirement and

adequate processors to perform the processing. Finally, the resource allocation phase deter-
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Figure 2.8: FPGA basic architecture

mines where and when to execute based on throughput, cost, and time criteria to optimize

performance. Heterogeneous computing is used in different ML and NLP applications such

as heterogeneous GPU-FPGA accelerations for ML applications (Liu et al., 2020), energy-

efficient heterogeneous FPGA clusters for DL implementation (Hu et al., 2021), and scalable

and flexible systems NLP Fast architecture for heterogeneous NLP models (Kim et al., 2021).

2.7.5 Hardware architecture comparison and metrics

There are different types of hardware architecture used for DL and NLP. Most of them

consist of one or a combination of multiple architectures such as FPFA, CPU, GPU, and

ASIC. Each architecture has its advantages and disadvantages, depending on the type of

application it is required for. The efficiency and flexibility of the different hardware archi-

tectures can be best explained in figure 2.9. CPU is more flexible as compared to GPU,

FPGA, and ASIC whilst ASIC is considered the most efficient in terms of efficiency. In our

research, the performance of different hardware architectures can be measured on the basis
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of multiple metrics such as:

• Computational Capacity

• Energy-Efficiency

• Cost

• Ease of development

Computational Capacity or throughput is the ability and speed of the hardware to per-

form a certain operation with respect to time. Energy efficiency is the amount of energy

required to perform a certain task. It can also be defined as computation per joule. Cost

is the computational capacity per dollar. Optimization of DL can be performed with joint

algorithm and hardware design, specifically focusing on reducing computation, data move-

ment, and storage requirements. In terms of exploiting algorithm and hardware architectures

precision reduction, pruning, compression of data, and mixed-signal circuits are considered

(Jawandhiya, 2018).

Figure 2.9: Hardware accelerator efficiency and flexibility based on the architecture

When training, the standard size for programmable platforms like CPU and GPU is

usually 32 or 64 bits, utilizing a floating-point representation. To reduce interference, fixed-

point representation can be used to decrease the bit-width, such as setting the input feature
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vector to 4 bits and weights to 6 bits. This will save energy and area and this process is called

precision reduction. Pruning is defined as the removal of additional weights with minimal

impact on output for deep neural networks. Feature extraction and pruning can result in

sparse data. Compression is applied to reduce data movement and the cost of storage. The

movement of data is mostly in between memory, processing elements, and sensors. The cost

of computation can be reduced by utilizing the movement of mixed-signal circuits. Mixed-

signal circuits are composed of both analogue-to-digital and digital-to-analogue (Sze et al.,

2017).

2.8 Summary

This chapter provides a brief introduction to AI, ML, NLP, and DL and how they are

interlinked with each other. It also elaborated on different embedding techniques such as

One Hot Encoding, TF-IDF, Word2vec, GloVe, fastText, BERT, and Document2vec. Fur-

thermore, it discusses document processing methods, similarity metric algorithms, and NLP

frameworks and tools. Finally, it compares different hardware architectures that can be used

for NLP processing.
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CHAPTER 3

TEXTUAL KNOWLEDGE IN DOCUMENTS

3.1 Overview

This chapter presents an overview of textual knowledge that exists in documents. It also

defines basic concepts such as data, information, and knowledge and their relationship. In

addition, it discusses understanding and analysing the knowledge that is present in a textual

format using natural language processing techniques. Additionally, this chapter provides an

in-depth explanation of two distinct datasets considered for this research, namely the RSSB

datasets (for safety critical enterprise architecture documents) and the SICK open source

datasets.

3.2 Relationship between data, information, knowledge
and wisdom

Knowledge is an abstract and broad term with no clear definition. Since the ancient

Greek era, many researchers and experts have attempted to define knowledge, yet it remains

unclear. Nonaka and Huber define knowledge as a justifiable personal belief that enhances an

individual’s ability to take effective action, which may involve a combination of physical and

intellectual skills (Jayakrishnan et al., 2020). According to this definition, the action becomes

a combination of physical skills/experience, intellectual skills, or possibly a combination of

both. Separating knowledge from data and information is a challenging task. Throughout

history, various definitions of knowledge have distinguished it from information and data.

Maglitta argued that Data is raw facts and numbers, information is a refined version of data,

knowledge is an understanding of the data that can be used to take the next steps and wisdom

is the higher level of understanding and ability to apply knowledge and experience (Malhotra,

1997). Vance argues information as data that is structured and arranged in a meaningful

manner, while knowledge is information that has been verified and accepted (Vance, 1997).
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The hierarchy between data, information, knowledge, and wisdom is explained in figure 3.1.

It also explains how data, information, knowledge and wisdom provide context and purpose.

Figure 3.1: Hierarchy between data, information, knowledge and wisdom; repro-
duced from (Obaide, 2004)

Although these concepts are useful in distinguishing between these terminologies, they do

not offer a detailed explanation of how information is transformed into knowledge. Knowl-

edge is contextual information that is specific to a particular situation. The process of con-

verting information into knowledge is to attach information to a situation, such as a cheat

sheet of instructions that appears on the screen exactly when you need that information. In

general, knowledge can be classified into three main categories.

• Tactic Knowledge

• Implicit Knowledge

• Explicit Knowledge

Tacit knowledge is a type of knowledge that is acquired through experience and is inherently

understood without conscious effort (King, 2009). Humans possess tacit knowledge in their

minds which is difficult to articulate or document. This knowledge is initially tacit and is

44



gained gradually through trial and error, such as in the development of a business process

that involves multiple members of an organization. It is challenging to codify and record the

whole process (Jeremy, 1996). The second type of knowledge is known as Implicit knowledge.

It is a kind of familiarity with something that has yet to be documented or written down.

Implicit knowledge may not seem obvious, but with the right tools and processes, it can be

captured. It is usually possible to codify implicit knowledge as opposed to tactic knowledge

(Frappaolo, 2008). Explicit knowledge refers to the information that can be captured, stored,

and shared across people. It is a type of knowledge that is well-defined and typically stored in

databases. It is saved in various formats such as reports, enterprise architecture documents,

statements of work, guidelines, and other similar documents. Maintaining and providing

access to explicit knowledge is critical to ensure successful knowledge transfer (Smith, 2001).

3.3 Knowledge management

Knowledge management is critical for any business organization. Nowadays, organiza-

tions have thousands of staff members spread across different locations and departments.

This poses a significant challenge to managing and maintaining knowledge within such large

organizations. Moreover, facilitating access to the knowledge, skills, and resources possessed

by the rest of the staff to each member is a daunting task. It necessitates the availability of all

organizational knowledge and best practices through a centralized knowledge management

system (KMS). The process of creating, gathering, organizing, and storing information, and

making it easily accessible within an organization is known as knowledge management (Alavi

and Leidner, 1999). Failure to ensure easy access to knowledge can result in substantial costs

for a business. To tackle this, KMS is employed to develop organizational memory, enhance

operational efficiencies, foster collaboration, and aid in document version control.

3.4 Knowledge in documents

In today’s information age, businesses and organizations are constantly inundated with a

plethora of data and information. As such, knowledge management has become increasingly
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critical to ensure that organizations can make informed decisions that are based on accu-

rate and relevant information. One critical aspect of knowledge management is the use of

documents to store and manage knowledge. Knowledge in documents refers to the informa-

tion that is contained within written/textual format or electronic materials, such as reports,

manuals, policies, and procedures. These documents provide a way to store and organize

knowledge in a structured manner, making it easier for organizations to access, share, and

reuse this knowledge in the future (Awad et al., 2007).

Effective knowledge management through documents requires a systematic approach that

includes the following steps: identification, creation, storage, retrieval, and maintenance.

Documents should be regularly updated to ensure that the knowledge they contain remains

accurate and relevant. This requires a process for reviewing and revising documents on a

regular basis. The benefits of effective knowledge management through documents include

increased efficiency, improved decision-making, and reduced errors and duplication. Orga-

nizations can make better decisions by gathering and organizing knowledge in a structured

way. This ensures that the information used is accurate and relevant.

3.5 Importance of enterprise architectural documents

The enterprise architecture documents describe the structures and behaviours of an or-

ganization. Furthermore, it encompasses various components such as strategic direction, or-

ganization processes and practices, resources, data flow, security infrastructure, integration

details, and the use of information within an organization (Bernard, 2012). EA documents

mainly consist of strategic objectives, organizational goals, and requirements. EA is also

defined by the following equation:

EnterpriseArchitecture = Strategy +Business+ Technology (3.1)

It helps to identify the resources that will be key in any organization. The process of design-

ing both the present and future versions of the enterprise architecture facilitates a seamless

transition from the current operational state to the desired future state. Another key ad-

vantage of developing enterprise architectural documents is the enhancement of coherence

in the formulation and execution of any project in line with business requirements.
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Figure 3.2: An overview of enterprise architecture document (Bernard, 2006)

There are various frameworks and tools available for designing enterprise architecture.

EA documents may be created in several formats, including PDF, XLS, PPT, DOCX, UML,

and XML to meet specific business requirements. In some cases, a single document may

be designed in multiple formats. Multiple iterations of the same document may also be

required, making it challenging to maintain coherence in the information in multiple versions

and formats. Despite this, EA documents contain a wealth of organizational knowledge in

the form of text, diagrams, and statistical insights that are valuable to an organization.

Leveraging this disparate knowledge in EA documents can provide integration and inform

decision-making.

3.6 Knowledge in railway enterprise architectural safety
documents

In most countries, the railway is considered an effective method of mass transportation.

Within the railway industry, safety is paramount, as railway infrastructure management al-

ways involves risks to safety. Due to the enormous amount of people utilizing this means of

transportation, it is crucial to manage these risks properly to ensure the safety of passengers,

employees, and other members of the public who may be impacted. Delays, malfunctions,

crashes, and accidents can lead to significant impacts and affect the lives of passengers.

47



Therefore, safety assurance is an integral part of safety management systems. Safety assur-

ance systems are intended to ensure passenger safety and to identify the responsible parties.

Operators of public transportation firms are required to have a comprehensive understanding

of crisis management, risk registers, hazard and risk mitigation, safety management, acci-

dent and incident management, and other critical factors to ensure a safe, comfortable, and

reliable experience for the public (Cheung et al., 2007).

Rail transport companies must also comply with regulatory requirements to guarantee

the safe operation of trains and other railroad services. These safety-critical and compliance

requirement documents are designed by an enterprise architect that will identify key risks,

actions, responsible persons, and principles. These documents are designed in various formats

and consistent updating of these documents is required as new rules or responsibilities are

assigned to staff members.

It is very difficult to update and consolidate these documents and ensure consistency

in the different formats. In addition, if a new employee joins the organization, updating all

documentation may be required. Depending on their experience, the employee may require a

considerable amount of time to understand the document format and multiple versions. It is

critical that employees understand all of the documentation and formatting used by previous

employees. Failure to do so can cause delays and duplication of rules and responsibilities.

Further, in case of an accident or hazard, it can lead to severe a mix of responsibilities that

needs to be addressed by different personnel.

Extracting the knowledge contained in these safety-critical (EA) documents can help

address the above-described issues. This will help to understand the knowledge in documents,

addressing all the above issues. It will play a critical role in sharing, maintaining, and

repurposing knowledge, particularly knowledge that exists in text or documents. There

is a wealth of valuable knowledge within organizations that are often overlooked or unused.

However, all of this knowledge will be lost if users are unable to read all of the documents and

comprehend them. It is possible to gather all of this information and put it in a centralized

platform where users can find it according to their needs.
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3.7 NLP for knowledge exist in documents

The concept of natural language processing and document processing has existed for

many years. Researchers and professionals have been using these technologies for years. In

terms of textual knowledge, NLP and document processing techniques share the same goal.

It aims to provide insights and textual knowledge that exist in documents readily available

for all the organization. Yet many organizations have failed to deploy it effectively and

understand knowledge exists in documents in textual format.

Over the last decade, the primary challenge was the technology as it was not mature to

handle large unstructured textual data and understand the context. Considering the risks,

most organizations did not see the value of adopting new technology. Data generation by

organizations, specifically textual data is increasing dramatically. By 2025, it is expected

that data generated will be around 25 zettabytes per year (Stephens et al., 2015). Moreover,

given the massive amounts of textual data that organizations generate today, it is impossible

for an individual in any organization to understand all the textual information and draw

meaningful insights from it. This is where NLP will play an important role.

NLP encompasses a range of techniques that help understand the large unstructured text

and extract relevant information. It enables machines to comprehend the semantic context

of the text, which offers a better understanding of knowledge embedded in documents or

text (Kang et al., 2020). Furthermore, it facilitates better information insights and data

visualization, enabling organizations to make informed decisions. In this work, NLP was

used to analyse safety critical documents from the railway and open-source sick dataset that

consist of pairs of sentences with relevance scores and entitlement judgment labels. These

documents consist of a large amount of information in various formats. Multiple software

and techniques were utilized to analyse these documents and extract valuable information.

3.8 Existing state of the art in textual KMS and
limitations

Textual knowledge management system tools play an important role in modern information-

driven landscapes. It enables individuals and organizations to efficiently manage, compare,
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and collaborate on textual content. These software/tools encompass a wide array of ap-

plications and platforms, each tailored to specific needs and preferences. These solutions

cater to the ever-growing demand for efficient document comparison, version control, and

collaborative content development. A few of these tools are listed below:

• Draftable: It is an open-source document comparing websites. It allows users to
upload two versions of a document, such as PDFs or Word documents, and see the
differences highlighted side by side (Draftable, 2012).

• Beyondcompare: It is a powerful file and folder comparison software developed by
Scooter Software. It provides the following features such as file comparison, folder
comparison, 3-way merge and synchronization (Eidelman, 1992).

• Winmerge: It is a free software tool for data comparison and merging of text-like
files (Paviotti et al., 1998).

• Github: It is a web-based platform used for version control and collaborative software
development (Feliciano et al., 2016).

• Difflib: Python’s difflib module provides utilities for comparing sequences, including
files. In this research, this tool was utilised for initial document comparison (Wołk and
Marasek, 2014).

• BlueSpice: A web-based enterprise wiki software based on MediaWiki, the same
software that powers Wikipedia. It is designed to enhance and extend the capabilities
of MediaWiki to meet the needs of businesses, organizations, and teams. BlueSpice
provides additional features, tools, and functionalities that make it more suitable for
collaborative knowledge management, documentation, and content creation within an
organization (Eckenfels, 2012).

• Google BARD: Bard, a powerful tool developed by Google AI, is a large language
model that has been trained on an extensive collection of text and code. This model
has the capability of producing text, translating languages, creating various types of
imaginative content, and providing informative responses to the user’s queries. Bard
demonstrated its effectiveness in several scientific fields such as data analysis, code
writing, support in designing experiments, and writing scientific content (Siad, 2023).

• ChatGPT In the year 2022, a new large language model was introduced into the
field of AI. This AI-based chatbot known as ChatGPT, was developed and released by
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OpenAI. It was designed on GPT3.5 architecture and responds to queries in a human-
like conversational manner. It can perform different tasks such as text summarization,
language generation, and question answering (Bishop, 2023). In 2023, Microsoft part-
nered with OpenAI and introduced an AI-powered copilot tool for the web. They
integrated ChatGPT with Microsoft Bing which is a search engine and Microsoft Edge
browser (Campello de Souza et al., 2023). The collaboration between ChatGPT and
Microsoft enhances search results, assists in answering user queries, and enables chat-
ting with web results through an AI-powered chatbot. Additionally, it aids in the
efficient generation of content.

3.8.1 Limitation

All of the above-mentioned tools have limitations in terms of knowledge management, as

they primarily focus on specific tasks like document comparison (Draftable, Beyondcompare,

Winmerge, Difflib, Meld), version control and collaborative software development (Github),

or language model-based text generation and response (Chatbots, Google BARD, Chat-

GPT). It’s important to mention that these chatbots are unable to ingest information in

multiple formats that are generated in any organization during daily tasks. Additionally,

these models have some training limitations since they depend on open-source and public

data. The use of these tools in organizational settings may be difficult due to concerns about

data privacy and security. A survey by BlackBerry showed that 74% of IT professionals are

concerned about the cybersecurity risks associated with ChatGPT. It was also discovered

that hackers were using ChatGPT to create realistic phishing attacks. Furthermore, it pro-

vides an opportunity for inexperienced hackers to improve their technical proficiency and

utilize it for malicious purposes (O’Rourke, 2023).

While they excel in their respective domains, they may not provide comprehensive so-

lutions for holistic knowledge management, such as organizing, categorizing, and curating

knowledge, establishing structured repositories, or facilitating seamless collaboration and

knowledge sharing across diverse formats and sources. Additionally, these tools may not

address the unique needs of organizations for knowledge management, documentation, and

content creation, which can require tailored features and functionalities, as offered by Blue-

Spice. Effective knowledge management within an organization requires a combination of
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tools or integration with dedicated knowledge management platforms to meet all knowledge-

related needs.

3.9 Datasets

In this research, two datasets were selected in order to extract textual knowledge from

documents as explained below:

3.9.1 RSSB datasets

During this research, the School of Computing and Engineering and the Institute of

Railway Research (IRR) at the University of Huddersfield collaborated with the RSSB.

Detailed project information and datasets were provided by RSSB.

Multiple documents were provided that are in different formats such as CSV, XML,

and UML. These documents consist of safety-critical documents that contain rules, clauses,

principles, procedures, modules, and responsibility indicators. One of the key documents

was "RSSB Information Model and Authoring Guideline" which incorporated guidelines

for designing an RSSB Information model architecture. This document was useful in un-

derstanding the whole model architecture and techniques to design model architecture for

Railway safety. There were two more documents named "Operational Concept Document

(OCD) Mapping" and Enterprise Architecture (EA) documents. EA document was in UML

(Unified Model Language) format as shown in the figure 3.3. In UML format, notations and

rules are used to describe business and software systems. In our case, UML was used to

design a safety-related enterprise architecture, which incorporated concise rules, principles,

and responsibility actors/ indicators. OCD document was in CSV (Comma Separate format)

that consisted of detailed rules and principles related to the safety critical system in railways

as shown in the figure 3.4.

3.9.2 SICK datasets

SICK stands for Sentences Involving Compositional Knowledge and is an open-source

dataset. It consists of 10,000 pairs of sentences along with relatedness score and entitlement
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Figure 3.3: EA document viewed using Enterprise Architecture Sparx Systems software

Figure 3.4: Operational Concept Document (OCD) document in CSV format

judgment labels. Relatedness score ranges from 1 to 5 whereas judgement labels contain

three labels: Neutral, Entailment, and Contradiction. These labels are defined as follows:

• Neutral: The two sentences are logically not related to each other.

• Entailment: The two sentences are logically related to each other.

• Contradiction: The pair of two sentences are opposite in meaning and both are not
true at the same time.
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In this research, this dataset is utilized for many NLP tasks such as document mapping,

semantic search, and extracting types of words based on the entitlement judgement.

Figure 3.5: SICK dataset in CSV format with pair of sentences, relatedness score,
and entailment judgment label

3.10 Summary

This chapter provides an overview of key terminologies such as data, information, knowl-

edge, and knowledge management system. It explains the enterprise architecture and knowl-

edge that exist in documents in textual format. Additionally, it discusses the use of NLP

techniques to extract knowledge from documents (particularly from enterprise architectural

documents). It also elaborates on datasets used to conduct research. It provides details

about the collaboration between the University of Huddersfield and RSSB and explains the

datasets in detail. Furthermore, it discusses the SICK dataset that is used for multiple NLP

tasks.
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CHAPTER 4

RESEARCH METHODOLOGY

4.1 Introduction

This chapter focuses on the design and implementation of a novel documents analysis

framework for documents. It provides a detailed overview of the architecture to capture

knowledge that exists in documents. It explains the key steps involved in designing the

architectures such as pre-processing, importing documents, databases, tokenization, and

embedding. It also focuses on the features that are designed to understand the knowledge

that exists in documents. Additionally, it also discusses the implementation and optimization

of features on different hardware accelerators such as CPU, GPU, and heterogeneous systems.

4.2 Methodology and research approach

The figure 4.1 explains the architecture framework for capturing text-based knowledge

from documents. The users will be able to interact with the Graphical User Interface (GUI)

that was designed on the bubble platform. The backend of the bubble platform is connected

with the API services that were running in the AWS cloud instances. All the Python scripts

along with the documents were uploaded to the EC2 Linux-based instance that provides

easy access to the data.

4.3 Framework design and features

The section is focused on features designed to extract textual knowledge from documents.

Various steps were involved in order to process the documents and analyse them as illustrated

in the figure 4.2. All the key features of the design are explained below:

• Dataset: The dataset was provided by RSSB and consists of EA documents for the
railway critical systems. Secondly, the open-source SICK dataset was used to under-
stand textual knowledge in documents.
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Figure 4.1: Simindex architecture to extract textual knowledge from documents

• Pre-processing of data: It includes analysing the multiple documents provided by
RSSB. Converting EA UML format document in CSV format. The SICK dataset was
organized and required no pre-processing.

• Importing documents: Documents are imported using the Jupyter Notebook and
Python programming language library named pandas.

• Database: All the documents that are imported are saved in Pandas data frame and
can easily be visualized.

• Tokenization of text: Tokenization is a method that involves breaking down large
texts or corpus into smaller segments known as tokens.

• Data cleaning: It involves removing unwanted text and stop-words such as "a",
"the", and "am" that don’t add any value and decrease the efficiency of the models.

• Clean database: After cleaning the text, a database of cleaned documents is created
that allows us to perform further analysis.

• Embedding text: Embedding is a process of converting text into a vectorized for-
mat. Multiple text embedding approach such as word2vec and BERT is used for this
research.

• FastAPI: Customized APIs were developed that provide a response to the user queries
as explained in the figure 4.1.

• Bubble: It is a web development platform used to design GUI for the framework and
it allows users to easily interact with the platform and provide insights.
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• AWS: Linux-based instance was deployed on Amazon cloud, allowing easy deployment
and open access to the application via public interface.

Figure 4.2: Overview of the framework design and process of features extraction
from documents

4.4 Simindex- Dashboard features

This section will explore the graphical user interface (GUI) of Simindex, which allow users

(specifically enterprise architect and other railway personnel) to interact with the features

that were developed and enable them to visualize the key insights of the knowledge extracted

from the railway documents. The main dashboard also allows users to search through the

documents.

4.4.1 Document mapping

In order to integrate multiple systems, it is imperative for an organization to exchange

data. When transferring data between systems, it is necessary for the data to either be

in a common format or mapped between systems in a way that allows for effective sharing

between them.

In the first case study, railway EA documents were analysed that consisted of safety

critical documents. The documents analysed for this task were in EA.UML format, and

OCD.CSV format. EA document was viewed using an Enterprise Architecture software
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Figure 4.3: Simindex main dashboard

called Sparx System and the OCD document was visualised using Microsoft Excel. These

documents were designed using various techniques and software. Both documents contain

principles, rules, clauses, and responsible persons/actors. EA documents contain brief rules

and clauses, whereas OCD documents provide detailed information about the roles and

responsibilities necessary in case of an emergency/accident. When data or information is

needed to be exchanged between these documents, ensuring uniformity between versions is

challenging and tedious. It was necessary to semantically map these documents to ensure

the presence of rules and actors in both documents. In this study, each rule or clause from

EA documents was mapped to the full OCD documents and a semantically similar score was

calculated.

For the second use case, an open-source SICK dataset was analysed to perform document

mapping. It consists of pair of sentences with a relatedness score and entitlement judgement
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label. All the pairs consist of two sentences ( "Sentences A" and "Sentence B") and each

sentence from "Sentences A" was compared with "Sentences B" to compute document map-

ping.

Figure 4.4: Simindex - mapping the rules and clauses using different embedding techniques

4.4.2 Semantic search system

It is important for an organization to have some knowledge management system where

all the employees will be able to search through the existing documents. This research

developed a critical feature that allows searching through all records in a database and

identifying similar rules or clauses. Initially, documents were pre-processed and converted

into CSV format. Then, a database was created by importing these documents using the

pandas (python) library. Further documents were tokenized into sentences, and text was

cleaned from stop-words to improve the matching result. These tokenized sentences were

then embedded into a vectorized format using various embedding approaches. Afterwards, a
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search query function was created that allows users to search through every document in the

database and display relevant match rules, clauses, and principles, along with their similarity

scores. This will provide the user with the information that this rule already exists in the

relevant document. Furthermore, the process will give a consistent check whenever new EA

rules are added. It also includes information on existing rail infrastructure rules used today.

For the SICK dataset, the same steps were followed as explained above. In this use case,

users will be able to search through the whole dataset and will be able to find the relevant

sentence pair, column name, and similarity score.

Figure 4.5: Simindex - semantic search feature

4.4.3 Text summarziation

Text summarization is a process of converting large text or data into smaller and more

concise information. The abstractive text summarization method is utilized to map the

document rules and clauses. As it is already explained in section 4.4.1 railway documents

were in a different format. The OCD document consists of comprehensive and detailed

rules and clauses as compared to the EA document. The OCD document rules and clauses

were summarized and mapped to the EA document in this study. Additionally, the OCD

document summarized rules were semantically compared with the EA document to measure
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the similarity. A rule or clause that exists in the OCD document can be added to the EA

document. For the SICK dataset, the summarization feature was not designed as the pair

of sentences was small and concise. It was not possible to summarize these sentences.

Figure 4.6: Simindex - text summarization page

4.4.4 Trend visualization

Data visualization is the method of presenting data and information in a visual format.

It enhances the understanding of data by presenting trends, outliers, and patterns more

clearly through visual aids like charts, graphs, and maps. Data visualization is very useful

in understanding knowledge that exists in documents. A database of documents was created

and data was visualized utilizing multiple techniques. WordCloud was used as a tool that

displays the most frequently used words in a document in a visual format. The larger size of

the word indicates greater word frequency and vice versa. Different other tools and libraries

were used to calculate the number of actors in documents as illustrated in the figure 4.7.
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Different other key features were also visualized such as kernel distribution showing the

number of words based on the entailment judgement; common position, negative, neutral,

and unique words in the documents.

Figure 4.7: Simindex - Visualization of number of words in documents and Ac-
tors/Responsible persons

4.4.5 Hardware layer

Different hardware architectures such as (CPU, GPU, FPGA, and Hybrid) were tested

for document mapping to find the relevance between safety-critical documents as explained

below:

4.4.5.1 CPU/GPU for document mapping. A document mapping model for the

railway safety critical documents is illustrated in figure 4.8. All the processes, such as pre-
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processing, importing documents, tokenization, data cleaning, and text embedding, will be

implemented on a CPU/GPU-based stand-alone machine. Different similarity metric models

measure the similarity between rules and clauses.

Figure 4.8: Document mapping model on CPU/GPU hardware

4.4.5.2 Heterogeneous CPU/GPU-FPGA model for document mapping. A

heterogeneous model for railway safety document analysis is outlined in figure 4.9. It is an

efficient heterogeneous model platform that can be applied to multiple document analysis

tasks with adjustments to the design as per requirement. In this research, importing NLP li-

braries, pre-processing, cleaning of the dataset, and training using Google pre-trained model

and Gensim to perform embedding was implemented on the CPU/GPU. Embedded sen-

tences manually fed to FPGA-based Xilinx Vivado software. Extended Jaccard and Cosine

similarity metrics were implemented on FPGA using VHDL (VHSIC Hardware Description

Language).

4.5 Summary

This chapter discusses the design and implementation of a novel document analysis frame-

work for extracting textual knowledge from documents. Initially, a dataset was selected,
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Figure 4.9: Heterogeneous model for document similarity

pre-processed, imported into the system, tokenized, and cleaned by removing stopwords.

Then, the text is converted into the embedded format, and different NLP-based tasks were

performed. Additionally, this chapter covers the summarization of rules and clauses, doc-

ument mapping, the formulation of search queries to identify any pre-existing rules within

the database and visualization of key insights. Document analysis on different hardware

architectures such as CPU, GPU, and FPGA were also presented to test the performance

and computational efficiency.

64



CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Introduction

This study presents details of the development of a text-based knowledge management

system. Various technologies, including Natural Language Processing (NLP), Python pro-

gramming language, Visualization tools, Amazon Web Services (AWS), Application Pro-

gramming Interface (API), and Bubble for the front-end interface were employed. The sub-

sequent section of the research report outlines two use cases that were considered to evaluate

the performance of the proposed system, as described below:

5.2 Use Case 1: Knowledge exists in railway (RSSB)
documents

This use case primarily focused on the textual knowledge present in railway safety critical

enterprise documents. Initially, the documents were pre-processed, analysis, cleaning, and

NLP techniques were employed to understand the knowledge present in them. Subsequently,

document mapping, semantic search feature, summarization, identification of actors, and

visualization were executed as explained below:

5.2.1 Pre-processing

Pre-processing of data is one of the most critical and time-consuming tasks. Initially,

multiple documents were provided by RSSB, as shown in the appendix table A.2. After a

discussion with the technical team at RSSB, two documents were identified for further study.

In order to perform further analysis, both documents need to be in the same format. From

the RSSB-GBMR-OC lss.uml document, data is exported into the EA rulebook.csv file. Brief

rules, principles, and responsible persons/actors for the command and safety of the railway

are included in this document. Data from OCD Mapping (Draft WIP).xlsx is extracted into
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OCD rulebook.csv file that contains detailed rules, principles, and responsible person. The

Jupyter Notebook environment and Python were used to import both documents to perform

further analysis.

5.2.2 Database creation

In a database, information is gathered within a centralized environment that is capable

of being updated, managed, and accessed with ease. There are multiple methods to create

a database in Python. Pandas library was used due to its simplicity and flexibility. A

Pandas library allows users to work with structured data and perform data analysis. This

research created a small database of two CSV-format documents using a Python library

called Pandas. The documents were stored within a data frame format that contains both

the document name and its contents. Further analysis was subsequently performed on the

documents using the Pandas data frame.

5.2.3 Tokenization

Tokenization is fundamental in NLP and text analysis and it involves dividing a text

into smaller units called tokens, which can be words, phrases, symbols, or even subwords.

The purpose of tokenization is to identify the tokens’ boundaries and convert the text into

a format that is easier to work with. The NLTK (Natural Language Toolkit) library is a

popular tool for working with text in Python. It provides a wide range of functionality for

tasks such as tokenization, stemming, and lemmatization. For example, the word_tokenize

function in the NLTK library enables the division of a given text into individual words,

while the sent_tokenize function facilitates the segmentation of a text into sentences. Both

documents were tokenized into words and sentences and saved in the Pandas data frame

format before cleaning the documents.

5.2.4 Data cleaning

Both documents were visually inspected, and it was revealed that the index numbers for

the corresponding rules in the EA rulebook and OCD rulebook documents are the same,

providing the basis for further document analysis. Different embedding techniques were
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used to convert the sentence into a vector. For word2vec embedding, data was cleaned, and

sentences (consisting of rules/clauses) not starting from a numerical sequence were removed

from both documents (EA rulebook and OCD rulebook). Python library "re" was used to

perform data cleaning. It includes functions for compiling regular expressions, searching

for patterns in strings, and replacing patterns with different text. By concatenating regular

expressions, you can create more complex patterns that can be used to identify specific strings

in a document. In this case, regular expressions were used to identify sentences that do not

start with a sequence of numbers in both documents. For BERT and other transformer-

based embedding models, less data cleaning was required due to the density and improved

accuracy of the model. Additionally, sentences starting from the sequences were also kept.

Additionally, stop-words were also removed from both documents for all the embeddings.

Stop-words are commonly used words in a language that are typically filtered out when

performing NLP tasks. These words generally are considered insignificant or irrelevant to the

overall meaning of a text and are often removed to improve the efficiency and effectiveness of

NLP algorithms. Some common examples of stop-words in English include "a", "an", "the",

and "is".

5.2.5 Document mapping for railway documents

5.2.5.1 Document mapping using difflib. The process of document mapping in-

volves comparing two or more documents to determine their similarities or dissimilarities. In

this study, a selected section "Separation of trains" from the EA rulebook and OCD rulebook

was extracted and analysed using the Python library "difflib". When a section from each

document was compared, an HTML file was generated, which displays the differences be-

tween the texts using a colour legend. This method is particularly useful when dealing with

large documents that would otherwise require a time-consuming manual comparison. The

results obtained using this technique were promising, as shown in the appendix figure B.2

and B.3, making it a good starting point for mapping the entire texts of both documents

(EA rulebook and OCD rulebook). This process was repeated for two additional sections,

and the results demonstrated that the entire document could be mapped using this method.
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5.2.5.2 Pre-trained embedding model for document mapping. "Difflib" is a

good method for document mapping, but more sophisticated tools and techniques were

required to map clauses and compute the similarity between them. Particularly, it was

necessary to determine differences in clauses observed during a close examination. In order

to fully comprehend the context of the documents and map the rules/clauses effectively, it

is crucial to employ an appropriate methodology.

Initially, document sentences (rules, principles, and clauses) were converted into a vector-

ized format using Word2vec, Electra Small, DistilBERT base, BERT base and Mpnet base

pre-trained models. The models are trained on a large corpus of text and provide unique

embedding for each word/sentence in the document. The similarity threshold was set at

greater than 60% to measure the similarity between the EA rulebook and the OCD rule-

book. The similarity threshold level is a variable number and can be modified based on the

requirement.

5.2.5.3 Visualization of embedding text. There are several ways to visualize text

embeddings, depending on the specific algorithm and the type of data being analysed. Some

common approaches include Dimensionality reduction, Heatmaps, and Interactive visualiza-

tion tools such as TensorBoard or Embedding Projector. In this research, the vectorized

shape of the embedding text is visualized using a pre-trained BERT model as shown in the

figure 5.1. This figure 5.1 shows both the vector’s dimension, 6x768 cross-section, and the

numerical value generated by the BERT model to represent text as vectors.

5.2.5.4 Discussion on the document mapping results. In this study, various

embedding techniques were employed to embed the text, as discussed in section 5.2.5.2.

Jaccard and Cosine similarity metrics were utilized to measure lexical and semantic similarity.

The similarity score ranged between 0 and 1, where a score of zero indicated no similarity

and a score of one indicated a completely similar rule or clause. The positive and negative

signs, along with the similarity score, denoted a correct or incorrect match, respectively. In

some instances, the proposed system was unable to identify the correct/incorrect mapping

of the sentence, which was denoted as "No match" (Qurashi et al., 2020).

Each rule, clause, and principle from the EA document was mapped onto the entire OCD
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Figure 5.1: Vectorized representation of the "2.1.3 rule" using a pre-trained BERT
embedding model

document rules/clauses, and the results were compared as shown in the appendix figure B.4.

The top five similar results displayed for EA rule "2.1.2.7" using Mpnet base are illustrated

in figure 5.2. For EA rule "2.1.1.5" lexical similarity using the Jaccard similarity metric

with OCD rule "2.1.1.5" shows a positive similarity score of 0.92. For semantic similarity

(using Cosine similarity metrics), all the pre-trained models Word2vec, Electra, DistillBERT

base, BERT base and Mpnet base shows positive similarity match with a similarity score

of 0.85, 0.94, 0.87, 0.93 and 0.94 respectively. For EA rule "2.1.2.3", Jaccard similarity

was unable to identify the correct matching clause from the OCD rulebook, whereas Electra

exhibited the most accurate results with a positive similarity score of 0.97. When comparing

EA rule "2.5.2.5", Jaccard similarity metrics indicated a negative match, whereas Word2vec,

DistillBERT base, BERT base, and Mpnet base indicated positive matches, with a similarity

score of 0.80, 0.77, 0.79, and 0.79, respectively. For EA "2.7.1.4" Jaccard similarity was

unable to find the correct match, and the Electra pre-trained model also shows a negative

match. However, the DistillBERT base, BERT base, and Mpnet base indicated positive

matches, with a similarity score of 0.72, 0.66, and 0.63, respectively.

In conclusion, Jaccard’s similarity results were not satisfactory as it only provides good
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matching results when rules/clauses from both consist of common words. For semantic

similarity using Cosine similarity as a similarity metric, the results were excellent. All the

pre-trained models show great results but the BERT base and Mpnet base outperform other

models as it was able to correctly map the rule/clauses in most cases. Even in cases, when the

EA rule rules "2.7.1.4" and "2.7.1.5" were short and brief whereas OCD rules were detailed

and explained the whole requirement.

Figure 5.2: Document mapping for EA rule "2.1.2.7", showing top 5 similar results
using Mpnet base embedding technique

5.2.6 Document semantic search for railway documents

After embedding the entire database documents into the vectorized format, a semantic

search feature was designed and developed. Both documents were saved in the Pandas data

frame. The appendix figure B.1 displays a Pandas data frame that contains the document

name, document content, cleaned data, and tokenized sentences in both word and sentence

format.

Multiple embedding models were utilized to test the performance, such as Electra Small,

DistilBERT base, BERT base, and Mpnet base pre-trained models. These pre-trained em-

bedded models helped to search rules/clauses from railway documents. To measure the

similarity between embedded sentences, cosine similarity metrics were used along with other

NLP tools and techniques. The similarity score ranges between 0-1, with 1 being the most

similar and 0 showing no similarity. The threshold (for similarity score) was set to zero for

maximum results, but it can be altered based on requirements. To evaluate the semantic

search performance, four queries were conducted using different embedding models. The
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results for each query using different pre-trained embedding models are shown in the ap-

pendix section B.4. When "degraded conditions" was inputted as a search query, the result

showed that the Electra Small was unable to find the correct match, DistilBERT base, BERT

base and Mpnet base show the positive match "2.1.3 control - operations under degraded

conditions". For the second search query only clause number "2.8.3" was searched, Electra,

DistilBERT base and BERT base show the correct match with the document name EA rule-

book, whereas Mpnet base failed to map it to any correct rule in both documents. For the

third search query, "2.6.2.4 Operating rules must include a) the means of informing train

drivers of permissible speeds" was inputted, Electra Small, DistilBert base, and BERT base

find the match with the correct clause number from the "2.6.2.4 rule" in the OCD document.

On the other hand, the Mpnet base model was able to search for the correct semantically

similar and detailed rule/clause "2.6.2.4 rule" from the OCD rulebook and "2.6.2.4 rule"

from the EA rulebook as well. For the last search query, "2.5.3.5 Mitigate the risk of an

incident for dangerous goods", DistilBERT base, BERT base, and Mpnet base models found

the right match from the EA rulebook. The results show that the Mpnet base model outper-

forms all the pre-trained models in terms of accuracy and finding the semantically correct

match for railway enterprise safety documents rules/clauses (Qurashi et al., 2023).

The semantic search analysis focuses on extracting knowledge that exists in the docu-

ments (OCD rulebook and EA rulebook) in textual format. It is also essential for railway

personnel to access this knowledge that exists in the form of rules, clauses, principles, and

responsible actors. This provides railway personnel with relevant information about existing

rules and the responsible person to avoid duplication of rules or responsibilities.

5.2.7 Summarization for railway rules/clauses

Summarization refers to the process of transforming lengthy and comprehensive textual

content into a brief and condensed version while retaining crucial information. As explained

in section A.2, the OCD rulebook consists of detailed rules and clauses. In order to integrate

the OCD rulebook rules/clauses into the EA architecture, it is necessary to transform them

into brief, concise rules/clauses. Summarization of OCD rules/clauses was performed using

the T5 large summarization model. Initially, all the text is tokenized, and additional spaces
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are removed from the text. A function was created to generate a concise summary of the

input text (rules/clauses). This function also displays the number of characters in the input

and summarized output.

Multiple rules/clauses from OCD documents were summarized, and it captured the se-

mantic context of the input rule/clause and converted it into a brief format. The detailed

code for summarizing railway rules/clauses and its results are presented in appendix B.5.

When summarizing the OCD rule "2.1.3.2," the model captures the semantic context and

produces a brief version of the rule. However, the proposed model missed capturing sub-

section "c" of the OCD rule. The number of input characters for the OCD rule was ap-

proximately 569, whereas, for the summarized rule, it was approximately 211, as shown in

appendix figure B.21. For OCD rules "2.4.2.4" and "2.5.3.6", the model captured all the

context in the summarized rule, but it still requires some addition or manual editing to add

this to the EA document. Finally, for rules "2.9.2.3" and "2.8.10.1", the T5 model cannot

summarize the rule since these rules are already brief and concise. This shows that the

summarization model requires long and detailed text in order to generate a concise and com-

prehensive summarized output. A visual comparison of these summarized OCD rules with

the EA documents indicates that it is a promising starting point for mapping summarized

OCD rulebook clauses/rules onto the EA architecture. However, further manual changes

will be required from the Enterprise Architect before inputting the rules/clauses into the EA

documents.

5.2.8 Identification of responsible person/actors

In addition to mapping rules and procedures for both documents, it is important to

identify the individuals responsible for railway safety. To achieve this, two documents were

compared and analysed to see if there was consistency in the identification of these respon-

sible persons, referred to as "actors" in the UML version of the EA document and "respon-

sible persons" in the OCD document. All the actors and responsible persons were manually

exported and stored in separate documents (named EA_responsible_person.csv and OCD-

lookup_responsible_person.csv). A Python counter function was designed to count the

frequency of these terms in each document and the top twenty most occurrence responsible
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persons/actors were plotted using the seaborn library. In figure 5.3 and 5.4 x-axis represents

the number of occurrences of responsible persons/actors and the y-axis indicates the number

of occurrences. Based on the result, it is evident that the OCD document contains hundreds

of responsible persons whereas the EA document only contains a limited number of actors.

Both documents were also compared to check whether there was a match or difference in

their occurrences. All the occurrences are unique in each document and there is no match

in both documents as shown in the appendix figure B.28 and B.29.

Figure 5.3: Identification of "Actors" in EA document

5.2.9 Visualization for railway documents using WordCloud

A WordCloud displays the most commonly used words in a document or text in a visual

format. It typically displays the words in different sizes, with the size of each word propor-

tional to its frequency in the text. WordCloud is often used to visualize a document’s overall

theme or content, as the most frequent words tend to be the most important.

To create the WordCloud, clean word-tokenized text from both documents is fed as input.

This will generate a cloud of words, as shown in the figure 5.5. "Train", "Movement", and

"Control" are the most frequent word that occurs in both documents. The incorporation of

WordCloud in KMS and document analysis provides valuable insights and reveals key trends

in documents.
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Figure 5.4: Identification of "Responsible Persons" in OCD document

Figure 5.5: WordCloud for most frequent words in both documents

5.2.10 Training the model on RSSB dataset

To train the model on the RSSB dataset, it is necessary to have labelled data with each

EA rule/clause correctly mapped to OCD rule/clauses with a relevance score. The Mpnet

base model outperforms all other embedding techniques for document mapping. Results

from document mapping have been extracted in a CSV format, with each EA rule mapped
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to the top relevant OCD rule/clause, as shown in appendix figure B.7.

Initially, data was split into the train, validation, and test sets in the ratios of 60:20:20,

respectively. After splitting the dataset, the sentences in each set were tokenized using the

BERT tokenizer, and the sequences were truncated and padded to ensure equal length for

each sentence. The tokenized data is then converted to PyTorch tensors for use in training

the model. The data is loaded into data loaders for training, validation, and testing. The

data loaders are responsible for loading the data in batches during training, shuffling the data

randomly during training, and ensuring the data is loaded sequentially during validation and

testing. The batch size to train the model on the RSSB dataset was set to 15.

During training, the dataset was further divided into smaller sets called batches and

each batch was used to update the model’s parameters. Adam optimizer was used with a

learning rate of lr=2e-5 along with the MSE (Mean squared error) loss function. The Adam

optimizer is an extension of stochastic gradient descent (SGD), and it sets the learning rate

of each parameter based on the historical gradients of that parameter. The mean squared

error (MSE) is a metric to evaluate the closeness of the model’s predicted values to match

the actual target values and calculate the average of the squared differences between the

predicted and target values.

Figure 5.6: Training the BERT model on RSSB dataset
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The model was trained with an epoch size of 30. Epoch refers to a complete pass through

the entire dataset during the training phase. The results show that loss decreased on the

training dataset as the number of epochs increased. For the test dataset, the loss started

with a small value and remained almost consistent over the iterations. This training of

the model on the RSSB mapping dataset helps to understand the patterns and improve

prediction accuracy on new unseen data.

5.3 Use Case 2: SICK dataset

In this use case, an open-source dataset was selected to extract textual knowledge. Python

and different other libraries such as Matplotlib, Pandas, and Seaborn were used to analyse

the information and extract text-based knowledge from the dataset.

5.3.1 Data ingestion and cleaning

SICK is an open-source and well-organized dataset that is in .CSV format, containing

4500 related sentences. There are five main columns, including two columns containing re-

lated sentences (named sentences A and B), a relatedness score, and an entailment judgment.

The whole SICK dataset was ingested using the Pandas library into the Jupyter Notebook

for further analysis. Each sentence in columns "sentence A" and "sentence B" is labelled

with relatedness score and entailment judgment. Entailment judgment refers to determining

whether a given sentence A (the hypothesis) can be logically inferred from another sentence

B (the premise). From a total of 4500 sentences, Neutral, Entailment, and contradiction la-

belled pairs are 2536,1299 and 665 respectively. Data were cleaned for further analysis using

stop-words and custom functions to remove extra punctuations and exclamation marks as

shown in the appendix C.1.

5.3.2 Text embedding

For this study, various embedding techniques such as Electra Small, DistilBERT base,

BERT base, and Mpnet base pre-trained models were employed to convert all text into a

vectorized format.
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5.3.3 Text mapping the SICK dataset

After the text is embedded using different pre-trained models, each sentence from column

"Sentence A" is compared with all the sentences from column "Sentence B" in the SICK

dataset as shown in the appendix figure C.2. Two similarity metrics, namely Jaccard and

Cosine, are utilized to compute the lexical and semantic similarity. The similarity score lies

within the range of 0 to 1, where 0 signifies no similarity and 1 indicates complete similarity

between two sentences.

For Jaccard similarity, pair 1 was able to map correctly with a positive similarity score

of 0.75. However, for pair 2 it shows no match that shows both sentences are lexically not

similar to each other. For pairs 4 and 5, Jaccard shows a similarity match of 0.64 and 0.57

respectively. On the other hand, using the cosine similarity metric for semantic similarity,

all sentences map correctly with a 100% match for each pair. This observation demonstrates

that the SICK dataset pairs of sentences are not dense and that embedding accurately maps

sentences with the correct sentences from column "sentence A" to "sentence B".

5.3.4 Semantic search similarity

A similar semantic search feature for the SICK dataset was developed. The whole

database was embedded into the vectorized format as explained in the section 5.2.5.2. In this

use case, both pairs of sentences were saved in the Pandas data frame and this includes the

document name (column label), the content of the document, cleaned data, and tokenized

sentences in word and sentence format as shown in the appendix figure C.1.

Different pre-trained models were utilized to test the performance, such as Electra Small,

DistilBERT base, Marco-MiniLM-L-6-v2, and BERT base. These models helped search for

the document’s similarity and produced the results. Cosine similarity metrics were used

along with other NLP tools and techniques to measure the similarity between the embedded

sentences. The similarity score ranges between 0-1, with "1" being the most similar and

"0" showing no similarity. For maximum results, the threshold is set to zero, but it can be

changed based on requirements. Four queries were performed to test the semantic search

performance using different embedding models. The results for each query using different

pre-trained embedding models are shown in the appendix section C.3.
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5.3.5 Knowledge Insights

Different insights were extracted to understand the context and knowledge that exist in

the SICK dataset.

5.3.5.1 Kernel Distribution. In Natural Language Processing (NLP), a kernel dis-

tribution (KDE) is a probability distribution that is used to model the similarity between

two texts, such as two sentences or two words. In this research, the number of words in

columns ("Sentences A" and "Sentence B") was represented on the y-axis, while the density

was plotted on the x-axis. In a KDE plot, the density corresponds to the relative probability

of observing a data point at a particular value on the x-axis. The height of the curve at a

given point on the x-axis indicates the density of data points in that region. Higher density

denotes a greater number of data points in that region, while lower density signifies a smaller

number of data points in that region.

Figure 5.7: Kernel Distribution of number of words in sentence A and B

The results presented in figure 5.7 demonstrate that both sentences exhibit similar word

count characteristics for the "Sentence A" and "Sentence B" columns. Furthermore, sen-

tences were compared based on the entailment judgment label, red colour represents "Con-
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Figure 5.8: Kernel Distribution in difference in the number of words based on
entailment judgement

tradiction" whereas blue and green represent "Entailment" and "Neutral" respectively. In

figure 5.8, it can be observed that the density of the number of words is the highest for sen-

tences labelled as "Contradiction." Conversely, for sentences labelled as "Entailment" and

"Neutral," the plot exhibits a lower number of words in each sentence, respectively.

5.3.5.2 Positive, Negative Neutral and Unique words based on entailment

judgement. In the given dataset, it was feasible to detect positive, negative, and unique

words, as enumerated in the list below. Most common positive and negative words were also

identified from columns "sentences A" and "sentence B" as shown in figure 5.9 and 5.10.

These words were separated on the bases of the "Entitlement judgement" label which was

presented in each pair of sentences in the SICK dataset. The most prevalent positive words

in the dataset are "man", "women", "playing", "dog", and "person", while the common neg-

ative words are "women", "playing", "dog", "person", and "guitar". The most common neu-

tral words were "women", "dog", "playing", "two", and "standing". The above comparison

of most common words was similar irrespective of the different entailment judgement labels

("Entitlement", "Contradiction" and "Neutral"). Unique positive words were extracted from
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the "Entitlement" labels sentence and the most common words were "hiking", "airplane",

"tiredly", "absently" and "handstand". On the other hand, unique negative words were ex-

tracted from "Contradiction" labelled sentences and the most common words were "parrot",

"fitting", "pistol", "meal" and "faucet". Finally, unique neutral words were extracted from

"Neutral" labelled sentences and the most common words were "swim", "baseball", "shirts",

"far" and "climber".

• Common Positive words in sentences A and B

• Common Negative words in sentences A and B

• Common Neutral words in sentences A and B

• Unique words in Entailment labelled sentences

• Unique words in Contradiction labelled sentences

• Unique words in Neutral labelled sentences

Figure 5.9: Top most common Positive words based on Entitlement judgement
"Entitlement" label
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Figure 5.10: Top most common Negative words in "Sentence A" and "Sentence B"
based on Entitlement judgement "Contradiction" label

Figure 5.11: Top common words based on Entitlement judgement "Neutral" label
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Figure 5.12: Top unique words based on Entitlement judgement "Entitlement" label

Figure 5.13: Top unique words based on Entitlement judgement "Contradicting" label

Figure 5.14: Top unique words based on Entitlement judgement "Neutral" label
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5.3.6 Training the model on SICK dataset

The SICK dataset was utilized to assess the performance of the embedding model. The

training of the model involved the consideration of three primary columns, namely "sentence

A," "sentence B," and "relatedness score." The data was divided into three sets in the ratio

of 60:20:20, which were the train, validation, and test sets, respectively. Following the

separation of the dataset, the BERT tokenizer was employed to tokenize the sentences in

each set, and the sequences were truncated and padded to ensure they had an equal length.

The tokenized data was then converted to PyTorch tensors for use in training the model.

The data was loaded into data loaders that were responsible for loading the data in batches

during training, randomly shuffling the data during training, and guaranteeing that the data

was loaded sequentially during validation and testing. All parameters, such as epoch size,

batch size, loss function, and learning parameters, were set to the same values as those in

the RSSB use-case, as explained in section 5.2.10.

The results indicate that the loss function decreased during the training dataset with an

increase in the number of epochs, while on the test dataset, the loss initially had a low value

and remained relatively stable across the iterations.

Figure 5.15: Training the BERT model on sick dataset
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5.4 Heterogeneous model for document mapping

For RSSB railway safety critical documents a heterogeneous or hybrid system was de-

signed that consists of CPU and FPGA. The main purpose of this system was to provide

a roadmap of how documents can be analysed on hybrid hardware platforms and compare

their performance with stand-alone hardware accelerators. It is an efficient hybrid model

platform that can be applied to multiple document analysis tasks with adjustments to the

design as per requirement.

This study utilized NLP libraries, conducted pre-processing and dataset cleaning, and

employed pre-trained models such as Word2vec, Electra Small, DistilBERT base, BERT

base, and Mpnet base to perform embedding. All of these tasks were carried out on the

CPU. Embedded sentences manually fed to FPGA-based Xilinx Vivado software. Extended

Jaccard and Cosine similarity metrics were implemented on FPGA using VHDL.

5.4.1 Implementation of similarity metrics on FPGA

The hardware implementation block diagram of the Cosine similarity and Extended Jac-

card similarity metric on FPGA is shown in the figures 5.16 and 5.17. Initially, three MAC

(Multiply and Accumulate operators) blocks execute in parallel. MAC operator consists of

a multiplier followed by an adder and accumulator register as shown in figure 5.18. Both

similarity metrics algorithms, Cosine and Extended Jaccard Similarity consist of three MAC

blocks in each implementation. These blocks execute in parallel, which increases the ef-

ficiency of the designs. Following the MACs, two multiply and divide blocks that result

in similarity output between 0 to 1. In Extended Jaccard similarity, three MAC execute

in parallel, followed by add, subtract and divide operators, respectively, as shown in fig-

ure 5.17. VHDL RTL(Register Transfer Level) synthesis implementation is performed to

validate hardware design implementation. Figure 5.19 and 5.20 represent the RTL design of

Cosine similarity and Extended Jaccard similarity metric with an array size of 4 .

For testing, initially embedded sentences of a cross-section of 4 in integer format were

fed into the similarity metrics model and similarity was calculated. Embedded sentences

of cross-section 300 in integer format, fed as input (S1 and S2) as text, are converted into
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vectorize format as shown in figure 5.1 on CPU-based system.

Figure 5.16: Implementation of Cosine similarity on FPGA

Figure 5.17: Implementation of Extended Jaccard similarity on FPGA

Figure 5.18: MAC: Multiplier and Accumulator Design

5.5 Time profiling of various hardware acclerators

Time profiling was performed on three different hardware accelerators such as CPU,

GPU, and Heterogeneous/Hybrid systems. This research was conducted on a stand-alone

machine with an Intel Xeon W-10885M CPU processor, 64GB RAM, and Quadro T200

85



Figure 5.19: RTL design of Cosine similarity

Figure 5.20: RTL design of Extended Jaccard similarity

GPU. For FPGA, the Xilinx Artix-7 35T Evaluation kit with 256MB DDR3 SDRAM was

utilized along with the Vivado Design Suite. Time profiling was performed for CPU, GPU

and Hybrid system as explained below:

5.5.1 Time profiling of CPU and GPU

Python has a module that can measure the performance of the code in terms of time and

is called a time module. It is a non-deterministic profiler that measures the overall execution

time of a piece of code. It simply records the start and end times of the code and calculates

the time difference. The output of the time module is a single value indicating the total time

86



Table 5.1: Time Profiling comparison for RSSB dataset on CPU, and GPU for
different document analysis techniques

Code Profiling

Hardware
Accelerator

CPU time
(sec)

GPU time
(sec)

Document Mapping (BERT embedding model and cosine
with square root similarity metrics)

10.53 5.86

Document Mapping (Word2vec embedding model and cosine
similarity metrics)

62.76 35.40

Search Similarity 40.81 24.5
Text Summarization 10.01 4.2

taken to execute the code.

All the features of the framework such as document mapping using different embedding

models and similarity metrics, search similarity and text summarization were time profiled

on the CPU and GPU of a stand-alone machine as illustrated in the table 5.1. Document

mapping using BERT embedding took approximately 10.53 s. When optimized for GPU

usage with the PyTorch library, the runtime was reduced to 5.86 s, which is nearly half the

time required for CPU usage. For search similarity, the code was optimized for both CPU

and GPU usage, with runtimes of 40.81 s and 24.5 s, respectively. Text summarization was

also faster on GPU hardware, with a runtime of 4.2 s compared to 10.01 s on CPU. Overall,

all features were found to perform better when optimized for GPU usage.

5.5.2 Time Profiling for heterogeneous/hybrid system

A heterogeneous system was compared with a CPU-based standalone system for time

profiling and a single clause from the RSSB dataset was utilized. Importing of libraries

and embedding was performed along with similarity metrics computation on a CPU-based

stand-alone machine that takes around 0.55 s and 0.03 s respectively. Embedding text re-

sults in a floating-point value that is converted into integer format. Extended Jaccard and

Cosine similarity metrics models were designed and implemented in VHDL (Xilinx Vivado).

Embedding vectors of 300 cross-sections were fed to the similarity metrics model test bench
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to compute the similarity score.

To compute the time on FPGA simulation, clock period was set to 1µs or frequency set

to 1MHz, the similarity metric results in the output on the third and fourth rising edge of

the clock cycle for Cosine similarity and Extended Jaccard similarity metrics respectively

as shown in figures 5.21 and 5.22. This makes it evident that it requires 3 µs and 4 µs

respectively to compare one rule from the EA rulebook to OCD Mapping. Comparing the

similarity metrics computational time on CPU stand-alone machine with the heterogeneous

system. A heterogeneous system outperforms the CPU-based stand-alone machine as the

time taken on CPU for Cosine similarity (without square root) metrics is 0.03 s and 3 µs on

the hybrid system as shown in the table 5.2.

Figure 5.21: Cosine similarity result in Vivado simulation software for clause "2.1.1"

Figure 5.22: Extended Jaccard similarity result in Vivado simulation software for
clause "2.3.2"
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Table 5.2: Time profiling comparison of CPU and Hybrid (CPU+FPGA) acceler-
ator for document mapping

Code Profiling

Hardware
Accelerator

CPU time
(sec)

Hybrid time (sec)

Document Mapping (BERT embedding
model and Cosine without square root sim-
ilarity metrics)

0.55+0.03=0.58 0.55+0.000003=0.550003

Document Mapping (BERT embedding
model and Extended Jaccard without
square root similarity metrics)

0.55+0.03=0.58 0.55+0.000004=0.550004

5.6 Summary

In conclusion, this chapter centres on the extraction of knowledge from documents in di-

verse formats. The research undertook two use cases, namely the RSSB and SICK datasets.

The initial use case concentrated on the extraction of textual knowledge from railway safety

critical documents. The process involved pre-processing, data cleaning, database creation,

tokenization, text embedding, and document mapping, utilizing multiple techniques. Addi-

tionally, the semantic similarity was measured, actors/responsible persons were identified,

and visualization of textual knowledge using WordCloud was undertaken. The accuracy of

the model was tested on RSSB safety critical documents. The second use case utilized the

open-source SICK dataset, where similar features were designed such as text mapping, and

semantic search similarity and the model was trained to test the accuracy of the unseen

dataset. The focus was on identifying the type of knowledge insights that could be extracted

from text-based documents. Results show that it is possible to extract kernel distribution

of sentences; positive, negative and neutral words based on the entailment judgement labels

present in this dataset. Lastly, document analysis features were optimized on CPU and GPU

hardware. A heterogeneous system was developed to perform document mapping on hybrid

hardware accelerators (CPU and FPGA).
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In today’s world, there is an abundance of information in every industry. The exponential

growth of information is attributed to various factors such as new devices, advancements in

hardware and software, and improvement in the field of ML and NLP. Data is generated

from various sources including social media platforms, emails, text messages, and enterprise

architectural documents. Social media platforms like Facebook, Twitter, WhatsApp, and

Tiktok generate vast amounts of unstructured data from users, providing qualitative and

quantitative insights. Mobile phones, blogs, and e-commerce sites also contribute to the

growing data.

Recent advancements in NLP have greatly improved the capabilities to understand and

analyse unstructured information. It helps extract meaningful insights from large amounts

of text data, which is often unstructured. It enables sentiment analysis, topic modelling,

and other advanced text analytical techniques. NLP can help identify patterns and relation-

ships in unstructured data, leading to valuable business insights. It can also help structure

unstructured data, making it easier to analyse and visualize.

To process all unstructured information, a knowledge management system is required.

Knowledge is defined as a personal belief that enhances an individual’s ability to take effective

action by combining physical and intellectual skills. It is challenging to separate knowledge

from information and data, but knowledge is contextual information that is specific to a

particular situation. Knowledge management is critical for any business organization as it

enables the conversion of unstructured information into useful information. The process

of creating, gathering, organizing, and storing information, and making it easily accessi-

ble within an organization is known as knowledge management. KMS improve efficiency,

productivity and innovation in any organization. It also enables collaboration, informed de-
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cisions and redundancy. Knowledge can be found in various documents such as employees,

customers, suppliers, partners, policies, enterprise architectures, project documentation and

engineering processors.

Intuitive frameworks and tools, like Python, TensorFlow and SpaCy, are also available

to assist in NLP implementations. NLP applications are computationally expensive and

require a combination of computation, storage, and data representation for effective solutions.

The hardware layer consisting of memory, logic, and network, plays a crucial role in the

performance of AI and NLP applications. Different types of hardware exist, including CPUs,

GPUs, FPGAs, HPCs, and heterogeneous systems, each with its advantages and limitations.

The use of hardware in NLP applications requires coordination and organization.

In this research, two case studies were performed to extract textual knowledge from doc-

uments. In the first case study, railway enterprise architectural documents were considered

whereas in the second case study, an open-source SICK dataset was considered.

In the railway industry, digitalizing is crucial for Enterprise Architecture (EA) documents.

For enhanced railway safety and security, EA documents contain critical information. In

this research, the School of Computing and Institute of Railway (IRR) at the University of

Huddersfield collaborated with the Railway Safety Standard Board (RSSB). This research

involved analysing multiple documents (EA and OCD) to create a novel framework for

extracting valuable insights from them. It mainly focuses on extracting text-based knowledge

from railway safety critical documents.

Initially, multiple documents were analysed and then two documents were considered to

perform further analysis. After visual inspection, it was determined that both documents

contain similar clauses and rules. To perform this inspection automatically, the documents

were first pre-processed and converted to CSV format. These documents were then imported

into the Jupyter Notebook to further analyse the documents. Both documents were stored

in a pandas data frame, containing the document’s name and its content. These documents

were further cleaned by removing stop-words and tokenized into words and sentences. These

tokenized words and sentences were stored in the same Pandas data frame. These tokenized

sentences were embedded into the vectorized format. The process of embedding documents
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into a vectorized format enables the design of key features to gain insight into the textual

knowledge contained within safety-critical documents.

Document mapping was performed to map documents based on semantic similarity. This

will allow the enterprise architecture or railway personnel to ensure no rule is duplicated in

other documents. The second key feature was the semantic search functionality that allows

users to find similar rules or clauses that exist in the documents. It will also provide the

document’s name along with the similarity score of the respective rule/clause. As discussed

in the section 4.4.1 OCD document contains detailed rules/clauses whereas the EA docu-

ment consists of the same rules/clauses in brief and short format. The third feature was the

summarization of long and detailed rules/clauses of the OCD document and the mapping of

them into the EA document. It was very useful as it allowed to reduce time and increase the

productivity of the railway personnel if they needed to add new rules in the EA document.

The research also provides insightful information about the most frequently occurring words

in both documents using frequency counter and Wordcloud. Document mapping was also

performed on a heterogeneous system using CPU/GPU and FPGAs to improve the com-

putational performance of document processing. The model was trained to compute the

similarity and test the accuracy of the model on the test dataset and also time profile all

the key features designed in this research. A web-based tool named Simindex was devel-

oped that allows multiple features such as Semantic Search, Document/Sentence Mapping,

Summarization, Actor identifications and visualisation of key insights for the railway.

An open-source SICK dataset was used to analyse and further validate the performance

of the proposed framework, demonstrating its potential to provide valuable insights. This

study included all of the above key features, including document mapping, semantic search,

kernel distribution of words, and identifying unique, positive, negative, and neutral words.

In conclusion, NLP plays a vital role in document processing. This research illustrated

that the proposed framework enables analysis for railway enterprises and other organizations,

providing valuable insights for safety and critical operations. Railway organizations benefit

from NLP by automating the process of extracting and analysing important information

from large quantities of unstructured data, improving operations efficiency, and ensuring

passenger and employee safety.
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6.2 Future work

The work presented in this research serves as a preliminary effort towards extracting

textual knowledge from documents and conducting data analysis. This study has identified

potential paths for future research, which are summarized below:

• This research can be expanded to include the capture of knowledge from both implicit
and explicit sources. A centralized platform can be created to utilize various sources
of information, including Scope of work documents, Reports, legal documents, and
meeting notes. Such an approach has the potential to provide significant benefits.

• Future investigations may concentrate on the particular use cases for the engineering
life cycle, enabling the organization to develop technology and support the specific
knowledge requirements.

• Furthermore, additional research could concentrate on language generation techniques
based on existing documents, which could pave the way for the development of AI-
based chatbots capable of responding to user queries. Such research has the potential
to enhance organizational communication processes and improve the efficiency of em-
ployees.

• Future research could also be focused on the improvement of search results for large-
scale usage using improved language models and efficient NLP algorithms.

• Further research can be directed towards enhancing knowledge visualization and lever-
aging interactive techniques and tools such as Graph Neural Networks (GNNs) and
Neural Graph Databases. These techniques enable users to engage with information
more effectively.

• Additional research could be carried out on document analysis tasks utilizing various
hardware accelerators, with particular emphasis on Heterogeneous computing.

We are currently working on two additional journal paper submissions in order to extend

our research beyond the scope presented in this thesis. The first paper will concentrate on

the development of a Textual Knowledge Management system designed for organizational

use. The second paper will focus on the hardware results presented within this thesis and ex-

plore potential optimizations for enhancing efficiency and energy performance across various

hardware platforms.
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APPENDIX A

WORKFLOW AND DATASETS DETAILS

A.1 Hierarchy for the code implementation

NLP or AI-based design analysis requires a specified environment based on the hard-

ware architectures. A stand-alone machine that consists of an Intel Xeon(R) W-10885M

processor, 64GB RAM and Quadro T2000 GPU card was used. Anaconda is a distribu-

tion for scientific computation based on Python and R programming language installed on a

stand-alone machine. It facilitates the development, distribution, installation, update, and

management of cross-platform software. It also allows creating of multiple environments

based on hardware and software requirements. Jupyter Notebook was used in this study,

which is an open-source web application that allows the creation and editing of documents

containing codes, equations, graphs, and text. The hierarchy of code implementation on a

stand-alone machine is shown in the following figure A.1.

Figure A.1: Hierarchy for the implementation of code on stand-alone machine
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A.2 RSSB and SICK dataset details

Table A.1: Dataset details (including document name and file type)

Dataset Document Name

RSSB OCD Mapping (Draft WIP).xlsx
RSSB-GBMR-OC lss.uml
RSSB_info_model_4_6_rule_book-working
draft.docx
Source rules or OCD rulebook.csv
Target Rules or EA rulebook.csv

SICK (open-source) SICK.csv

A.3 Research source code and dashboard demo

The complete source code for the research is readily accessible on GitHub. Furthermore,

a demonstration video of the platform has been uploaded, and a link to it is provided below:

• Github: https://github.com/abdulwahabqurashi/simindex

• Demo link: https://shorturl.at/cpquP
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APPENDIX B

RSSB DATASETS RESULTS

B.1 Database structure

Figure B.1: Database in data frame format with each column representing the
document name, content, cleaned data, and tokenized word and sentence

B.2 Document mapping result using difflib

Figure B.2: Difflib results for "Separation of train" section
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Figure B.3: Difflib results for "Obstruction of the line: level crossings and infras-
tructure work" section

B.3 Document mapping results using pre-trained
embedding model
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Figure B.4: Document mapping result using two similarity metrics (Jaccard and
Cosines) and multiple embedding techniques

B.4 Semantic search results
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Figure B.5: Search result using Electra pre-trained embedding model for the search
query "degraded conditions"

Figure B.6: Search result using DistilBERT-Base pre-trained embedding model for
the search query "degraded conditions"
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Figure B.7: Search result using Bert-Base pre-trained embedding model for the
search query "degraded conditions"

Figure B.8: Search result using Mpnet-Base pre-trained embedding model for the
search query "degraded conditions"
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Figure B.9: Search result using Electra pre-trained embedding model for the search
query "2.8.3"

Figure B.10: Search result using DistilBERT-Base pre-trained embedding model
for the search query "2.8.3"
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Figure B.11: Search result using Bert-Base pre-trained embedding model for the
search query "2.8.3"

Figure B.12: Search result using Mpnet-Base pre-trained embedding model for the
search query "2.8.3"
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Figure B.13: Search result using Electra pre-trained embedding model for the search
query "2.6.2.4 Operating rules must include: a) the means of informing
train drivers of permissible speeds"

Figure B.14: Search result using DistilBERT-Base pre-trained embedding model
for the search query "2.6.2.4 Operating rules must include: a) the means
of informing train drivers of permissible speeds"
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Figure B.15: Search result using Bert-Base pre-trained embedding model for the
search query "2.6.2.4 Operating rules must include: a) the means of in-
forming train drivers of permissible speeds"

Figure B.16: Search result using Mpnet-Base pre-trained embedding model for
the search query "2.6.2.4 Operating rules must include: a) the means of
informing train drivers of permissible speeds"
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Figure B.17: Search result using Electra pre-trained embedding model for the search
query "2.5.3.5 Mitigate risk of an incident for dangerous goods"

Figure B.18: Search result using DistilBERT-Base pre-trained embedding model for
the search query "2.5.3.5 Mitigate risk of an incident for dangerous goods"
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Figure B.19: Search result using BERT-Base pre-trained embedding model for the
search query "2.5.3.5 Mitigate risk of an incident for dangerous goods"

Figure B.20: Search result using Mpnet-Base pre-trained embedding model for the
search query "2.5.3.5 Mitigate risk of an incident for dangerous goods"
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B.5 Summarization results

Figure B.21: Summarization result for OCD rulebook input clause/rule "2.1.3.2"

Figure B.22: Summarization result for OCD rulebook input clause/rule "2.4.1.4"
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Figure B.23: Summarization result for OCD rulebook input clause/rule "2.5.3.6"

Figure B.24: Summarization result for OCD rulebook input clause/rule "2.9.2.3"

Figure B.25: Summarization result for OCD rulebook input clause/rule "2.9.2.1"
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B.6 Identification of Responsible Person/Actors counter
function result

Figure B.26: Full list of actors in the EA rulebook document

Figure B.27: Full list of responsible persons in the OCD rulebook document
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Figure B.28: Difference between OCD and EA rulebook documents Responsible
Person/Actors

Figure B.29: Match between OCD and EA rulebook documents Responsible Per-
son/Actors
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B.7 Training model on the RSSB dataset

Figure B.30: RSSB dataset for training the model
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APPENDIX C

SICK - OPEN-SOURCE RESULTS

C.1 Database structure

Figure C.1: SICK open source database in data frame format with each column
representing the document name, content, cleaned data, and tokenized word and
sentence
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C.2 Document mapping results

Figure C.2: Document mapping result using two similarity metrics (Jaccard and
Cosines) and multiple embedding techniques for SICK dataset

C.3 Semantic search results

Figure C.3: Search result using Electra pre-trained embedding model for the search
query "standing close"
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Figure C.4: Search result using BERT Base pre-trained embedding model for the
search query "playing harp"

Figure C.5: Search result using DistilBERT-Base pre-trained embedding model for
the search query "A lone biker is jumping in the air"
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Figure C.6: Search result using Mpnet-Base pre-trained embedding model for the
search query "basketball game"
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