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The file includes Appendix A and Appendix B. We first present some technical tools in Appendix
A.1, which will be repeatedly used in the development. We next consider estimation and inference
of structural impulse responses for time-varying VARMA models in Appendix A.2. We provide the
proofs of main results in Appendix A.3. We provide several preliminary lemmas in Appendix B.1 as
well as some secondary lemmas in Appendix B.2, and then present the proofs of preliminary lemmas in
Appendix B.3. Appendix B.4 discusses several computational issues of the local linear ML estimation.
Appendix B.5 reports some additional simulation results.

In what follows, M and O(1) always stand for some bounded constants, and may be different at
each appearance.

Appendix A
A.1 Technical Tools

Projection Operator: Define the projection operator
Pi() = E[ | F] = E[- | F1-l,
where % = o(&4,€1-1,...). By the Jensen’s inequality and the stationarity of x;(7), for { > 0, we have

1P G () = 1B () | Fici] = E[Ze(7) | Fecia]llr
() | Fici] = EX 0 (0) | Foca]llr
= |ERi(r) - %" (r) | Facillls
) =% ()] = 8O0,

where igt_l’*)(T) is a coupled version of X;(7) with ,_; replaced by €f_,;.

The Class #Z(C,x, M):

Recall that we have defined ®,. in Assumption 1. Let x = {x;}32, be a sequence of nonnegative real numbers
with [x[1 := 3272, xj < oo and M > 0 be some finite constant. Let [z|y := >272, x;|z,| for any z € (R™)> and
C > 1, where z; is the j* column of z. A function g(z,9) : (R™)* x ©, — R is in class #(C, x, M) if

sup |g(0,9)| < M,
I€O,
sup sup |g(z719) B g(z,ﬂ/)|
2 oz [0 —9|(1+]2[()

sup sup |g(Z,’l9) _g(zl?lﬁ”
0 aza |2 — 2 x(1+ |23 "+ |2/|57)

<M,

< M.

If g is vector- or matrix-valued, g € #(C, x, M) means that every component of g is in Z(C, x, M).

Analytical Gradient:
Let

(0, 29) = — 5 (x— (s 9) "M (29) (x — pa: 9)) — 3 log et (Mi(z: 9)

where M(z;9) = H(z;9)H(z;9)". Then the first partial derivative is as follows:

= (x = plas 9) M () A2

0¢ (x,2z;9)
oY,



1 ) oM~ (z;9)
*i(x — (% ﬁ))TT

1 “1y,. 9y IM(z:9)
_2tr<M (z;9) a9, ),

(x — p(z;9))
(A.1.1)
where ¥; is the it" element of 9.
By (A.1.1), the second partial derivative of £(x,z; ) is given by

0%¢(x,z;9)
00;00;

9 p(z;9)
99,00,
1 T M (z;9) '
—i(X—N(Z’ﬁ)) W(X—N(Zﬂ))
OM~1(z;9) Ou(z;9)  OM~(z;9) Ou(z;9)
_ . T bl ) 9 )
H+x — iz 9) ( 99, 99, v, 99, >
op(z 9\, o Oz )
_< v, ) M= (29) =55,
PM(z;9)\ 1 (IM ! (z;9) IM(z;9)
00,00, 2" v, o0, )

= (x— pu(:9)) M (2 9)

—%tr <M1(z;19) (A.12)

A.2 Impulse Responses for Time-varying VARMA Models
Let 2(7) = w(7)w ' (7). Note that (2.6) can be rewritten as
xX¢ =V + P ++Py e+

where éo,t = (.U(’Tt), Qj,t = EH:T::l() E(thm)sw('rtfj% E= [Im7 Omxm(pqtqfl)]v S= [ImaOme(pfl)a I, Omxm(qfl)]—rv
vy = a(r) + Z;’il E H:,::lo E(T¢—m)Sa(r—;) and

[ AL(T) o Apa(T) Ap(r) Bi(r) - Bgoa(7) Bg(r)
Im e Om Om Om e Om Om
—_ Om e Im Om O’H'L e Om Om
‘:(T> - Om e Om Om
0 Im . Om Om

L 0. e | P (U |

It can be shown that ®;; = ®,;(r) + O(1/T) with ®,(7) = EE’(7)Sw(7). Hence, the estimator of ®;; is given
by </I\>j(7') = B2 (1)S&(7), where é(T) is obtained from Z(7) by replacing the A;(7) and B;(7) by estimators
A;(7) and B;(7).

We next discuss how to estimate w(7). Note that we cannot infer the elements in w(7) unless certain
identification restrictions are imposed. Here, we study the impulse response subject to both short-run timing

and long-run restrictions.
Under the short-run timing restrictions, w(-) is a lower-triangular matrix. Thus, @(7) is chosen as the lower

~

triangular matrix from the Cholesky decomposition of €(7), i.e., Q(r) = @(r)@T (). Alternatively, one can
impose the conditions on the long—run impacts of the shocks (i.e., ®(7) defined below). Specifically, define

®(1):= Y ®;(r) = A7 (1)B(Lw(7),
§=0

where the last equality follows in an obvious matter. Thus, the elements of ®(7) may be recovered from
(1)@ (1) = AZH DB (1)Q(7) [A‘l(l)BT(l)]T. It is then convenient to assume that ®(7) is a lower—

T R T R R R ~ R -
triangular matrix, so ®(7) can be obtained from the Cholesky decomposition of A=*(1)B,(1)€2(7) [A;l (1)B,(1)

Under the long—run restrictions, @(7) = BZ1(1)A,(1)®(r). We then have the following proposition.



Proposition A.1. Suppose the conditions of Theorem 2.1 hold. For any fized integer j > 0 and any T € (0,1),
=~ 1
VThvec («ﬁj(T) —®(r) - 2h252<1>§2>(7)> —p N (0,2, (1)),

where the C; (1) matrices, involved in Xg, (1) = [Cj1(7), Cj2(7)] Lo(7) [Cj,1(7), Cj72(7')]T, are specified below
accordingly.

1. Under the short-run timing restrictions,

Co’l(T) = 07

CjJ(T) = ( )@ Ly) <Z ST =’ J 1= EEi(T)ET> [Omz(p+q)xm, Im2(p+q)] , g > 1
Cja(r) = (I © BE (1)S)L, (LmN1<T>L?n)*1 WEL
in which N1(7) = (I2 + Koy ) (w(7) ® L), the elimination matriz Ly, satisfies that vech(F) = Ly, vec(F)

for any m x m matriz F, and the commutation matriz K, ,, satisfies K, nvec(G) = vec(GT) for any
m X n matriz G.

2. Under the long—run restrictions,
Co.1(7) = (L @ ®o(7)) (N] (1)Ni(7) + NI (r)Na (7))~ N3 (r)Ds(7),
Cji(r)=(w' (1) ®1L,) (H STE ()1 Esi(T)ET> (0,2 (ptq)ms Im2(pty ] + (I ® EZ7 (1)8S)
X (NT ()N (1) + N3 (1)N2(7)) " N (1)Da(7) [0y gy soms I ey ]+ 5> 1,
C;a(7) = (L, @ E& (1)S)L], (N] (r)Ny(r) + NJ (1)Na(7)) " N{ (7)Dy, j >0,
where No(17) = Q [I,, ® A7 (1)B,(1)],
(1) = Q{[@T (1) ® AT (1)]Va(nAr(1) — [w (1) © ATH(1)]Va(nB-(1)}

Va(,,-)AT(l) =[-In2, .., —L2,0,,2, ..., 02] (m2 X mz(p—I— q)),
v01(7—)]—3’7(]-) = [0m2a R USET R ~~~7Im2] (m2 X m2(p + Q))a

the duplication matriz Dy satisfies vec ((7)) = Divech (Q(7)), and Q is a m(m — 1)/2 x m? selection
matriz of 0 and 1 such that Qvec (®(7)) = 0.

It is easy to see that é(r) —p E(7) and &(7) —p w(7) by Theorem 2.1. As a result, f]q,j (1) =p Ba, (1),

where i@]. (7) has a form identical to X, (7) but replacing Z(7) and w(r) with their estimators, respectively.

A.3 Proofs of the Main Results

Proof of Proposition 2.1.

(1). In order to construct a solution to X;(7), we consider for each fixed p > 0 and ¢ > 0, the approximated
p-Markov process {Xp 4.4(7)}+>0 defined by X, 4.(7) = 0 for t < —¢ and the recurrence equation

Xp,gt(T) = 1 Xp,g,t=1(T)s -, Xp g t—p(7),0,..;0(7)) + H (Xp,q,6—1(T)s - - -, Xp g1—p(7),0,...;0(T)) &

for t > —q. By Assumption 1, we have

||§p,q+1,0 (r) — i707(170(7') [l

Z% ) + lleollr Zﬁj %p,q1,—5(T) — Kp.g—i (T)I:

<p(r )pr q+1— JO( ) — Xp,q*j,O(T)Hr’ (A.3.1)

where the last inequality follows from the definition of X, 4, —;(7) and X, q—;,0(7). Note that these two quantities
have the same distribution for each triplet of positive integers (p, q, 7).



Now, let up = ||Xp k+1,0(T) — Xpk,0(T)||r and v; = maxp>sup. Using (A.3.1) and the fact that v, is a
nonincreasing sequence, we have v; < p(7)v;_, for all ¢ > 1. Then recursively v; < p(r)~L=/7] Vpgp|—t/p|- Since
Verpl—t/p) < uo and —|=t/p| > t/p, we have uy < vy < p(7)"Puo, i, [Xpns1,6(T) = Xpon(7)ll, = O(p(7)"/7).
Hence, for each p, {X, n,0(7)}nen is a Cauchy sequence in the L" space; it converges to some X, o( ) € L" since
this space is complete. From its construction, it is clear that X, , o(7) is measurable with respect to the o-field
generated by {e;}:+<o. The L"-convergence implies that this is also true for X, o(7). Hence, there exists some
measurable function J,(-) such that X, o(7) = J,(7,€0,€_1,...) and shifting the lag ¢t € R leads to the equality
Xp (7)) = Jp(T, 80,8021, -..)-

Let i (7) = [Rpe (), and Ay () = [Fps1.4(7) — Fps (7)1, we then have

pp,r(T) < [%p,e(T) = Ko, (7) [l + 120,0(7)

ZO‘] )+ lleall Zﬁ] Hp,r(T) + po,r(7),

where the second inequality follows from Assumption 1.
Recall that we have defined p(1) := 3272, ;(0(7)) + [let|l- 3°72, B;(8(7)) in the body of this proposition.
As 0 < p(7) < 1 by Assumption 1, we have

sup ppr(7) < (1= (7))~ 1o, (7) < 00.

Similarly, we have

P

Z )+ el Zﬁg Apr(T)

Jj=

+(ap1(0(7 ))+H€1llrﬁp+1( (D 1%pt1,6-p-1 (7)1, -

Hence,

Ay (1) < (apr1(8(r) + el Bp1(0(7)) (1 = p(7)) " por(7) = 0

as p — oo.

According to the above development, we are readily to conclude that X, .(7) — X;(7) as p — oo in the L"
space. As a limit of strictly stationary process in ", x;(7) is a stationary process and sup,¢jo 17 [|X:(7)|,. < oo,
and X(7) = J(7, &4, 84-1, ...) is the limit in L" of X, +(7) = I, (7, &4, €41, ...).

(2). Let {e;} be an independent copy of {€;}. Define the process {x} ;(7)}, in which the difference is that we
use &; when t # 0, and use €; when ¢ = 0. In addition, define the process {X;(7)} as {X;(r )} in Which again the

difference is that we use e; when t # 0, and use €; when ¢ = 0. Further define u; = Hi;; T) — Xp( H
By construction, u; = 0 for ¢ < 0, and ug = ||X}; () *gp,0(7)|}r = O (|lej — &oll,) = O(1). For t > 0,
Assumption 1 gives that
P
%6 () = %5 ()], < D (i (O(r) + leellB5(0(T) [Kpua—i (7) = Ky oy ()], - (A.3.2)
j=1

Since Z§=1 (0 (O(7)) + |lee|l»B;(0(7))) < p(T) < 1, by a recursion argument, we have u; < ug for all ¢.

Now, let vy = maxy>¢ up. Using (A.3.2) and the fact that v, is a nonincreasing sequence, we have v; < p(7)vi—p
for all ¢ > 1. Then recursively v, < p(7)~L="/Ply, 1 /). Since vyyy—¢/p) < uo and —[—t/p| > t/p, we have
up < vy < p(1)Pug, e, |[Xp (1) = X5, (7). = O(p(r)"/).

The proof of the first result gives

5:) =Sl < 30 TS (a0 + el B2 (0(7)).

The same bound holds for the quantity ||x;(7) — X}, ,(7)l|,. Thus,
1% (7) = X (D)l < 1%6(T) = Xp,e (D)l + 1%, (7) = X (D)l + 1% (7) = 35, (D]

—0 (o1 3 (00 + el B0 |

Jj=p+1



which completes the proof. O

Proof of Proposition 2.2.
(1). Write

[1%e(7) = %e(T) e < [l RKeer(7), -3 0(7)) = p (XK1 (7). 0(7)) I
Fllello[IH (Xe-1(7), .. -:0(7)) = H(Xea (7). .:0(7)) |Ir

< Z (0 (7) + llexll 85 (7)) %t (7) = X (7))l

(oo}
+MIT =71 X 1Ko ()l

j=1

where the second inequality follows from Assumption 1 and Assumption 2. In view of the stationarity of X;(7),
rearranging the terms in the above inequality yields that

[%0(7) = (™)l < ML= p(r) 7 = 7| D2 x5 %y ()] = O = ]
j=1

(2). Write

lIxe — Xe(7e) I < [l (ke—1,Xe—25 -5 0(7)) — p (Xe—1(70), Xe—2(72), - - -5 0(72)) |
Hledlr B (xe-1,%t—2, .. .;0(7¢)) — H (Xe—1(7¢), Xe—2(7e), ... 0(7¢)) ||

<> () + lleellBi (7)) 1xe—j = Raj (1),

j=1
<> (a(m) + llec 85 (1)) I1xe—y — Kemy(ry V O,
j=1
> (g () + el () IR (=g V 0) = Kuy (7). -
j=1

As ||x;—j — X4—j(1¢—; VO)|,. = 0 for j > t, by the first result of this proposition, we have

3¢ — X¢(7¢) | < i (aj(7e) + lleellBs (7)) lIxe—5 — e (e—3) I,
j=1
+M - T_1 Z_] (Oéj(Tt) + ||€t‘|r5j(7—t)) :

j=1

In addition, as ||x1 — Xy ()], = O(T~') and sup;>, Z;;ll (o (1) + |leell»B(me)) < 1, we have

t—1
et = %e(e) 1 < D (o () + el B (7)) O(T ™)
j=1
+M T () + el B5(m)) = O(T ™).
j=1
The proof is now complete. O

Proof of Theorem 2.1.

(1). First, we introduce a few notations to facilitate the development. Let 7(7) := [§(T)T,§*(7)T]T, n(T) =

[O()T,h0D (1) T]T, and Z,(n) := Z-(m,m2) for n = [n],m)]". Recall that we have defined Vg, and let V,,
be defined similarly with respect to the elements of 7.
By the Taylor expansion, we have

N(r) =n(r) = =(V3.Z:(@) " Vo Zr(n(r)),



with 7j between 7)(7) and n(7). By Lemma B.3.4, we have
V0 Zr(n(7)) = Vo Zr(n(7))| = Op((Th) ™),

where Z (1(7) = T71 2, £(@i(72), Z1-1(1); 0(7) + 00 (r) (7 — 7)) K (e — 7).

Then we consider Vncéf (n(7)). Since each element of (7) is in C3[0, 1], we have 8(r;) = 0(1) + 0 (7)(7; —
7) + r(7), where r(r;) = 303 (1) (1, — T) 19 )(7)(1y — 7)% with 7 between 7y and 7. Let K((r; — 7)/h) =
[K((r: —7)/h), (s — 7)/RK ((1: — T)/h)] T By the Mean Value Theorem, we have

VaZr(n TLZ (1 = 7)/h) @ Vol (x4(71), Zt—1(7:); O(72))

T
L Z K((1: = 7)/h) ® [V (@e(1), Ze—1(72); 0(7¢) — ur(re))r(7)]

with some u € [0, 1]. Since V37 is in class #(3,x, M) by Lemma B.2, using Lemma B.8 and |7, — 7| < h yields
IV (@e(72), Ze-1(72); 0(72) — ur(me)) — VHE (@4(7), Ze-1(7);8(7)) 1 = O(h).

The above analyses plus Lemma B.5 reveal that

T
Vo Zr —~ TLZ ((re = 7)/h) @ Vol (Tu(12), Ze—1(7); 0(71))
1 & ) T —T 2 :
h2 ZK 7 —1)/h) @ |V3E(Z4(T), Ze—1(7);0(7)) - 0D (1) <h> +Op(h?)
1 (1— 'r)/h
= 5 K2, Tdu® (—2(7)(9(2)(7)) +Op(h?).
—7/h

By Lemmas B.4 and B.5, we have

VaZ,(n(r) =p 0 and  sup |V, % (n) - E(V3Z(n))| —p 0.
n
Hence, we have V2 .Z,(7) —p X(7) and thus for any 7 € [h,1 — h], as Th” — 0, we have

VTh (5(7) —0(r) - 1h2520(2)(7)>

1
\/7

In addition, by Lemma B.1, we have E (VgZ(X:(7),2i—1(7);0(7))) = 0. To prove this theorem, by the
Cramer-Wold device, it suffices to show that for any unit vector d,

=-2"1(7) ZK 7 = 7)/h) Vol (Ze(1e), 2e-1(72); 0(71)) + op(1).

T
\/% ZK((Tt — T)/h)dTVﬁf(it(Tt),gt_l(Tt); O(Tt)) —p N (0760dTQ(T)d) '

Note that {Vg&(Z+(1t), zt—1(7); 0(7¢)) }+ is a sequence of martingale differences, we prove the asymptotic nor-
mality by using the martingale central limit theorem (Hall and Heyde, 1980). We first consider the convergence

of conditional variance. Let w¢(u) = ﬁK((Tt —7)/h)d" Vot (Zs(u), Z4—1(u); O(u)). By Lemma B.8, we have

T

D lwe(r)® = wi(7)?s
t=1

< % ZK((Tt — 7))Vl (Ee(7), Ze-1(7e); 0(71)) — Vol (Te(7), Z-1(7); 0(7)) |2
X2 Slip Vol (xi(u), 2t—1(u); O(u))|l2
— O(h) = o(1).



In addition, by Proposition 2.1, {E [(dT V¢ (Z¢(u), Zi—1(u); 8(u)))? | F1—1]}{—, is a sequence of stationary vari-
ables and thus we have

T

> E(wi(r)? | Fia)

t=1
= % > K ((r—7)/h)’E (A" Vot (&1(u), Ze1(u); 0(u))? | Fo1]
—p Tpd " Q(7)d.

We next verify the Lindeberg condition. The sum Zle E (w(m)I(|we(r¢)| > v)) is bounded by
ME (sup Vol (Z4(7), Ze_1(7); 0(7)) |21 (sup | Vol (Z4(7), Ze—1(7); 0(7))| > \/Thv)> ,

which converges to zero since || sup, |V ((7), Z:—1(7); 0(7))]|||]2 < co by Lemma B.8.3. The asymptotic nor-
mality is then obtained.
The proof of the first result is now complete.

(2). For notation simplicity, we abbreviate £(x,z;9), u(x,2;9), M(z;9) to £, u, M in what follows. Note
that
1 1
dZ = (x —p) "M tdp — §(X —p) T dM(x — ) — §tr{M_1dM}
Ovec(M)

=(x— u)TM‘l%dﬂ + %((x ) M@ (x— u)TM‘l)Wdﬂ

f%vec(Mfl)Tav%Q/I)dﬁ.
Hence, we have
O O O N e ) gy M Lty 2D

BN 1 e ) ) M M o )T M)

O N = ) M (g 2D

_%%M’l(x - u)vec(Mfl)TL;‘;@)

O e ) M M (e ) g v 2D

LM gt gy M e e T 2

M)t e gy T

—iiave‘;y)Tvec(Mfl)[(x —w) M @ (x — u)TM*l]L;;(y). (A.3.3)

In addition, if &; is normal distributed, we have E(eie, ®@ee] ) = 2N, +vec(L,,)vec(L,,) " and E(ce] ®ese] ) =
0, where c is independent of ¢, 2N,,, = L,z + K,,,,, and K,,,,,, is a commutation matrix. By (A.3.3), if &; is
normal distributed, we have

Q(r)=F (ng(it(T),Et_l(T); 1)) - Vol (Xe(7),2e—1(7); ﬁ(T))T)

%) 2-1(r); D Mz 7 Xe(7), Ze—1(7);9(T
_E<8u( (7) 819( SO N-1(%,(7), 71 (7); 91(r)) PR >am( ) 9( )))
L. (Ovee(M(Z (), 21 (7);9(7))) |
+2E( 59

" Ovec(M(X¢(7),2t—1(7); 0(7)))) '

M (Ri(7), 21 (7);9(7)) © M (e (7), 21 (7); 9(7))]

o097



Next, consider the Hessian matrix.

¢ = _dﬁT%Mfl%dﬂ - dﬁT%(M’l(x Nk M”)%dﬁ
+d¢9TaveC(;i;fi;)T(M1(x —p)® Im)%dﬁ
T

+%d19T 78%;(119\/1) M M—l]L;fﬁV” 49

.
%dm avec(a?;:g(ﬂwf (vee((M™ )T @ 1,)do
—%dﬁ*av‘ﬂ%ﬁm—l(x —p)(x—p) M1 M—l]avgchdeﬂ
—%dﬁTaau—;(M‘l(x —w)® M—I)LSZ(?@ 49
—%dfﬁ%(lvr1 @M Hx — u))%ﬂ\%a
a0 2D gt oM g g M 2 M g

-
+%d19T avec(a;e:g(ﬂm)T (vee(M~L(x — p)(x — ) TM™1) @ 1) do. (A.3.4)

By (A.3.4), if &4 is normal distributed, we have
(1) = E (Ve (Xe(7), 2e-1(7);9(7)))
%:(1),Ze 1 (7);9(T) T ~ X¢(7), Ze—1(7); 9(7
i (EDIACEOON \ ok 1) 5,1yt 2D I 000D

—EE <8vec(M()~<t(T),Et—1 (1);9(1) "
2

59 M (X (7), Ze-1(7);9(7)) © MTH (X (7), Z4-1(7); 9(7))]

ovec(M (X¢(7),2¢—1(7); (T
SreoME () Fear )

Then we have Q(7) = —X(7) if & is normal distributed. The proof is now complete. O

Proof of Corollary 2.1.

We first consider £ = 1. Note that since the coefficient functions 6(-) is Lipschitz continuous, then @(774%) —
0(1) = O(1/T) for any bounded k. By Assumption 2.1, Theorem 2.1.1 and Assumption 4.2, we have

X7 41T — XT41|T = (XT, e X1,0,000 9(1)) — (X7, X7-1, ... 30(T741))
<16(1) = 8(rr+)| D Ajlxra—s| + 77O Y jAjIxrsa—;
J=1 j=T+1

= Op(h? +1/VTh) + op(1)T) = Op(h?® + 1/V'Th).

Similarly, we have ﬁT+1|T —Mrpiqr =0p (h2 +1/v Th).

The case of k > 1 can be proved in a similar way by using a recursive argument and using Assumption 1.2,
Assumption 2.1, Assumption 4.2 and Theorem 2.1.1. O

Proof of Corollary 2.2.
By Lemma B.5 (2) and the proof of Theorem 2.1, we have

sup _[7)(7) —n(r)| = Op((Th)"/*h~"/*(log T)'/?).
T€[0,1]

In addition, applying Lemma B.3 (4), Lemma B.5 (2) and Lemma B.3 (2) to g = V3¢, we have

sup |2(7) — B(r)| = Op((Th)"Y2h=2(og T)"/? + h) = 0p(1)
T€[0,1]

as h(logT)* — 0 and V3¢ € % (3,x, M).



For ﬁ(T), as Vot (Vel)T € %(6,x, M), here we use a different argument to prove the result, which leads
to weaker moment conditions.
By Lemma B.3.4 and Lemma B.8.2, we have

T
1)~ (Th) ™ 3 Vot () Fooa (7): 7)) Vi (i) ()i 6() K (757 )

= Op«Th)*l“h*;“(logT)”Q +(Th)™) = 0p(1),

where K (75:7) = K ("57) / ( A (Tth7>)
Define g(y:(7),0(7)) := Vol (X(7),2-1(7); 0(7)) Vol (X4(7),2:—1(7); 8(7)) . By Lemma B.4.1, we have
supyg |g(¥:(7),9)] 0(j —(3/2—‘,—5))
+(7

SUP-¢[0,1) Oy /2 (7) = A
Define S7() = 3/, [9(F:(7), 0()) — E(g(F¢(r),0()))] K (=) and

Skt =Y 19(3:(12),0(7)) = E(9(3:(7:),0(7)))] -

t=1

By partial summation, we have

-1
S (T —T S Tig1 — T ~(1—-71
- £ [6(257) - (5o ()
P h h h

Hence, we have sup, ¢ 1) [S7(7)] < M max; [S;r|. Note that {P:_;g(y:(7),9)}: forms a sequence of martin-
gale differences. By the Doob’s LY maximal inequality, Burkholder inequality and the elementary inequality
(> lai])? <3, la;|? for 0 < ¢ < 1, we obtain that

!

o0

I max|Serllly/2 < Z max |Z% 19(¥s(75), 0(7)lll/2

<y 1 q/2 = Zg’s 19(Ys(75),0(7))llq/2
—  q/2 - "
<y =17 |F <; (%zg(is(n)ﬁ(ﬂ)f)

T 2/q
Z H‘@sflg(ys(’rs)’ 0(7-)) ”Z?§>

q/2 2/ supg |9(F+(1),9)]
< 7T a sup 6 ,5° l
@2 - 17 Z[ ) Yur ©

which shows that sup, ¢ | 2=S7(7)| = Op(T* 97 h=1) = op(1). The result then follows directly by Lemma
B.3.2. O

Proof of Theorem 2.2.

We prove this theorem by applying Lemma B.10 to the weak Bahadur representation of é(r) given in Lemma
B.7.
By Lemma B.7, we have

sup ’0((3(7) —0(7) — %h%gca(?) (7)
T€[h,1—h]

—— Z —CX 7 (7))Vl (Xe(7), 2t —1(72); 0(72) ) Kp (16 — 7)

= OP(W’T + Brh® + 1+ (Th)™") = op((Thlog T)~/?) (A.3.5)



as Th"log T — 0 and Th?/(log T)* — co. In addition, by Lemmas B.8, B.4.2 and B.10, we have

T
: Th —1/2 1 ~ .
Jim Pr (,/ 707631?%1 T; 7)) Vol (Xe(11), Ze—1(72); 0(70)) K (10 — T)
u
—B(1/h) £ ———= ] = exp(—2exp(—u)). A.3.6
(1/h) < 210g(1/h)> xp(—2 exp(—u)) (A.3.6)
By (A.3.5) and (A.3.6), the proof is complete. O

Proof of Corollary 2.3.
By the proof of Lemma B.7, we have

sup |A(r) —m(r) — %1# Fovh(” Elvh(ﬂ} - F“ET;] % 60(7)

T€[0,1] Cl,h(T) C2,h(7') Cc3,h(T
1¢ e @n@] [ 1 e o .
T;Kh(n ™) {El,h(T) EZ,h(T):| [”;T} @ (=27 (7)) Vol (®:(1e), 2t-1(72); 0(71))
= Op((Th)~Y2h3/2(log T)/?) + O(h?).
Hence, we have
sup §(T) —-0(r) — thb (1) lzT: NV ol (Z(1t), Ze—1(71); 0(7¢) )we 1 (T)
T€[0,1] 2 h T po 9 t\Tt), Zt—1(Tt); t))Wt h

= Op((Th)~Y2h3/2(log T)'/?) + O(h3).

By Lemma B.9, there exists i.i.d. k-dimensional standard normal variables v, ..., vy such that

w Zwth N(Vol (T1(1t), Z—1(72); 0(70)) — QY2 (1) ve)
T€[0,1
o T%(logT)W o (log T)2 (hT T F5=2)~1/2
- r Th - r (Th)'/2(1og T)1/2
(log T)*(hT") "'/
= OP
(ThlogT)'/2

with v = (1(2%212. Since €(7) is Lipschitz continuous and {v;}_; is a sequence of i.i.d. normal variables, we
have

I Tthth )(@2(r) - Q2 (m)ve
TGOl

h(log T)'/? hlogT
=0p| —75— | =0P| 75775 | -
(Th)1/2 (ThlogT)'/?
Combining the above analyses, we then complete the proof.

Proof of Proposition 2.3.
Note that in this case £, V#, V3¢ is in class #(2,x, M) as H(z;0) = H(0;0) by Lemma B.2. Hence, we only
need that the innovation process has 4 + s moments for some s > 0 compared to 6 + s moments needed in

Theorem 2.2.
Consider Assumptions 1-2 first. For notation simplicity, we ignore the time-varying intercept, and rewrite

model (2.11) as
yi(7) =L(7)yi-1(7) + (1),
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where yt(T) = [ﬁ;r(T)v "'7ﬁth+l(7—)a§:(7—)7 -~~7§;[p+1(7)]—r7 ut(T) [X:( )7Oq—er(q_l)Xpi;r(T)vO;yrl(p_l)xl]—r and

[ =Bi(r) -+ —Bgoa(r) —Be(r) —Aw(r) o —Apa(r) —Ay(7) ]
w(r) = O 0, 0,
0 I, 0 0,

L Om Im Om p

Let E = [Ima Omx(m(p-i-q—l))] and S = [Ima Omxm(q—l)a I, Omxm(p—l)}—rv we have
(1) = Xe(7) + Y (B®I(1)S)X;;(7)
j=1

Z S)Xs—j(7) + e (7)

and thus T';(7) = —EW/(7)S. Then Assumption 1 is automatically met if Z;’il IT';(7)] < 1. By using the
property of block matrix determinants and det(B,(L)) # 0 for all |L| < 1 (this implies the maximum eigenvalue
of left upper mgxmgq matrix in I'(7) is less than 1), it can be shown that the maximum eigenvalue of T'(7), denoted
by p, is less than 1 uniformly over 7 € [0,1]. Hence, we have a;(68(7)) = |T';(7)| = O(p’) and 3;(8(7)) = 0. In
addition, |®/ — @] = | S WH(® — $)BJ 17| = |& — B'|O(p/~!). Then Assumption 2 is met.

However, by using technlques which are more specific to the VARMA models, the condition Z;’;l IT';(7)] <
1 can be weakened to det(A,(L)) # 0 for all |[L|] < 1. Similar to the above analysis, we have X;(7) =
dieo @i (1) (1) with |®;(7)| = O(p’) as det(A,(L)) # 0 for all |L| < 1, which implies that [|X;(7)||, < oo
and 657 (k) = O(pk).

For the identification conditions stated in Assumption 3, it is well known that the final form or echelon form
is enough to ensure the uniqueness of the VARMA representation.

For verifying Assumption 4, one need the derivatives of I';. Define o = —vec(By,...,Bg, A1, ..., A}). Note
that dvec(®) = (Iy(ptq) ® ET)da and dvec(¥7) = (€7 @ L, (p1¢))dvec(¥I 1) + (L (prg) @ ¥IET )da, it is
easy to show that

9 =
M ZST \I;T)J 1- Z®E\Il]( )E

daT —
Hence, we have \OVL(F)\ = O(p71) and |0V§C£ i) _ a\ge:,T | = |¥ — ¥'|O(p’~?). Similarly, we can verify the

conditions imposed on second order derivatives.

The proof is now complete.
O

Proof of Proposition A.1.

Let A(0) be a real, differentiable, m x n matrix function of real p x 1 vector 8. Define VoA = 8V§;(TA), and thus

vec(dA) = VgAdS.
Let a(7) = vec (A1(7), ... Ap(7),B1(7), ..., B4(7)), o(7) = vech (Q(7)) and ¢(7) = [@' (7),0 " (1)]". Given
the joint distribution of a(7) and o (7) in Theorem 2.1, Proposition A.1 can be obtained by using the Delta

method. By the first-order approximation of vec ($J(T)) around vec (®,(7)), we have

VThvee (;(7) = 8;(7) ) = Ty @5 ()VTH ($() — $(7))

To complete the proof, we have to derive an analytic form for the derivative V4, ®;(7) under each of the
identification restrictions. We have two sets of restrictions: (a) m(m + 1)/2 restrictions implied by (7) =
w(T)w T (1) and (b) additional m(m — 1)/2 structural restrictions based on short-run or long-run restrictions.

Consider type (a) restrictions. We begin by considering dQ2(7) = dw(7) - w' (1) + w(7) - dw " (7). Let B and
C be n x ¢ and ¢ X 7 matrices, respectively. By vec(ABC) = [CT ® A] vec(B), vec(AT) = K, ,vec(A) and
K, ,(A®C) = (C®A)K,, ,, we have Ny (7)vec(dw(7)) = vec(dQ(7)), where N1 (7) = (L2 + K ) (w(7) ®L,,).
Let D; be the duplication matrix such that vec[Q(7)] = Djvech[Q(7)], which follows that Ny (7)vec(dw(7)) =

11



D;deo(7) and
Nl(T)VO.(,,-)w(T) =D;. (A37)

We then illustrate how to combine equation (A.3.7) with gradient equations from type (b) restrictions in order
to compute Vg w(T).

In the case of short-run timing restrictions, because types (a) and (b) restrictions do not involve o, Vg w(7)
has the form [0, V4 (;yw(7)]. Let L, be the elimination matrix defined by vech[w(7)] = Ly,vec[w(7)]. Because
w(7) is lower triangular subject to short-run restrictions, L) is a duplication matrix such that veclw(7)] =
L, vech[w(7)]. Write

N (7)vec(dw(r)) = Dido(7),
L,,Ni (1)L vech(dw(r)) = L,,D do (1) = do(7)
vech(dw (7)) = (L,Ny ()LL) ™ do(7),
vee(dw (7)) = L, (L, Ny (1)LT) ™ do(7).

(L N1 (TL) 7 Recall that V() ®;(7) = [V @5 (7), Vo(r)®;(7)]. For Vo ®;(7),

m

Hence, Vo(ryw(7) =L

dvec [EEY (1)Sw(7)]

Vain®i(r) = =g = (@ () @) =
= (1) ®L,)(ST @ E) Z_:(ET(T))NZ‘ @ (T)> 5;‘3& [Eé)”
=(w'(r)®L,) <J_ZS STE (M) Eai(T)ET> :
For V(1) ®;(7),
Vo(n)®;(7) = il acE:T((TT))S ol _ (L ® EEj(T)S)w

— (L, ® BE/(nS)L], (LN (r)L]) ™

In the case of long-run restrictions, type (b) restrictions involve c(7), so that Vgyw(7) has the form
[Va@@)w(T), Vomw(r)]. First, equation (A.3.7) must be extended in the form NV 4 yw(7) = [0,D ] Second,
long-run restrictions can be expressed as Qvec [A7!(1)B,(1)w(7)] = 0, where Q is a m(m —1)/2 x m? selection
matrix of 0 and 1, A, (1) =L, — > %  A;(r) and B, (1) =I,, + >.7  B;(7). By dA=! = —A~! ~dA AL we
have

Qvec [A7'(1)B,(1)w()] =0,

Qvec [d(A7H(1)B-(Dw(r) + AZH(1)d(B(1))w(r) + A7 H(1)B,(1)dw(r)] = 0,

Qvec [-A7(1)d(A,(1)AT (1)B,(Dw(7) + AT (1)d(B-(1)w(r) + A7 (1)B, (1)dw(r)] =0,

Q [L, @ A7 (1)B(1)] vec [dw(7)] = Q[® " (1) @ A (1)]vec[dA,(1)] = Qw (1) ® A (1)]vec[dB-(1)],

Q L, ® A7 (1)B(1)] vee [dw ()] = Q{[@ (7) © A7 (1] Va(nAr(1) — [0 (1) @ A7 (1)]Ta( By (1)} da()
N2 (7)Vg(ryw(r) = [D2(7),0],

where N (7) = ?[ m ® A1 (1B, ()], Da(r) = Q{[21(1) @ A (D]VanAr(1) — [wT(1) @ AL (D] Vo) Br (1)},

VQ(T)AT(l) = Imz,...,—Imz,Omz,...,Omz} (m? x m (p+ q)) and VQ(T)BT(I) = [02, .0, 002, 1,02, .0, 12
(m? x m2(p + q)). Hence,

V(nw(T) = [Vamnw(T), Vornw(T)]

For VQ(T)q)j (7')7

dvec [EZ7 (1)Sw(7)]
da’ (1)

Var)®;(1) =

12



dvec [EZ7 (1)S] : Ovec
daT (1)

=(w' (ZST (2T (r)I "t~ 1®E5i(7)ET>

+(I, @ EEI(1)8) (N] ()N (7) + Nj (1)Na(r)) ' NJ (7)Da(r).

= (w' (1) @ Ln)

For Ve(r) <I>j (7‘)7

= (L, ® EE/(1)S)L,, (N{ (1)N1(7) + N3 (1)Na(7)) -
The proof is now completed. O
Proof of Proposition 2.4.
Since H(z; 0) is a positive and diagonal matrix, we have

|H(z; 0) — H(z';0)| = |(H*(z;0) — H*(2';0)) - (H(2;0) + H(z';0)) "'
gfj Y2y )

Then Assumption 1 is automatically met if |7, (1) 2272, [®; (7 )|Y/2 < 1. In addition, as [¥;(7)| converges

to zero with exponential rate and 8h1/2/69 = %hl tl/QZ')hz +/00;, similar to the proof of Proposition 2.3 we can
easily verify Assumptions 2 and 4. For the identification conditions of the GARCH process, we refer readers to
Proposition 3.4 of Jeantheau (1998), who proves that assuming the minimal representation is enough for ensuring
Assumption 3 holds.

However, by using techniques which are more specific to the GARCH models, the condition

17 (7 IIZ\‘I’ )IV2 <

can be weaken to ||[7;(7)||? Z]O‘;l |¥;(7)| < 1. Define y(7) = X:(7) ©%(7) and vV, (1) = diag (:(7) @ (7). We
first prove the existence of |y;(7),/2 (which implies the existence of ||x;(7)||;) as well as its weak dependence
property by means of a chaotic expansion. Since y4(7) = Vi (r)a(7) + Py \~7t(7')\Ilj (17)¥¢—;(7), by substitute
¥i—;(T) recursively, we have

yi(T) = Vt ) + Z Z ‘Iljl Vt Jl( ) v, (T)\N,t—jl—"'—jk (T)a(r)

k=1j1,...5k=1

To prove the boundedness of ||y;(7)]|,. ,, since {V(7)} are independent random variables, it suffices to show that

i i H‘I’jl (T)vt7j1 (1) v, (T)thjlf...fjk (Ma(r)

< 00.
B - r/2
k=1j1,., k=1
By using sup, ¢ 1) lee(7)| < oo and \|\~7t(7)||r/2 > ey [®5(7)] < 1, we have
> Y [TV Vi @al)|

k=1j1,..,jk=1

< sup |a(r IZ Z . |‘I’jk(T)H|‘~7t(T)||5f/2

T€[0.1] k=1j1,.,jk=1
k
oo S
< sup Ja@ S (192 S 12,0 | < oo
T€[0,1] h—1 =1
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Hence, we have ||z.(7)||, < co. Next, we show that 55(7)(@ = O(p") for some 0 < p < 1. Write
yi(7) = diag | (7 +Z‘I’ 7)Y () | (1:(7) © 7 (7))

By using the same arguments as in the proof of Proposition 2.1, we have 5™ (k) = O(p*) since ||7:(7)]|? Z;}; @, ()] <
1 and B;(0(7)) = |¥,;(1)| = O(p?). Since |a — b| < |a® — b?|'/? for @ > 0,b > 0 and H(-) is a positive diagonal
matrix, for t > 1, we have

[@.(7) = & (Dl < 32 12O 1505 ) = Fi s (D)5 - 17

= Y- 0(0 ) = 0"

Jj=

[

—

for some 0 < p/ < 1.
The proof is now completed. O

Proof of Proposition 2.5.

Proposition 2.5 can be verified in a similar manner as Propositions 2.3 and 2.4. Note that by the proof of
Proposition 2.3, we have a;;(0(7)) = O(p’) for some 0 < p < 1 and ||X;(7)||, < oo provided that ||v¢(7)[, < oo.
In addition, by the proof of Proposition 2.3, we have ||v;(7)|, < oo and 3;(0(7)) = O(p’) for some 0 < p < 1
since [[Q1/2(r)e2 2% [ (r)] < 1.

O

Appendix B

B.1 Preliminary Lemmas

First, we define a few notations for better presentation. First, let n = (n{,7n, )", where 1; and 7, are the same

generic vectors as in (2.4). Let K(-) be a a kernel function being Lipschitz continuous and bounded on [—1, 1].
For 7 € [0,1] and € Ex(r) = ©, x (h- ©W), define

T
Gr(n) = % ;ff (Tt - T) lg(ye.m +m2 - (1o = 7)/h) = E(g(ye,m +m2 - (1 — ) /)], (B.1)

where g(-) € Z(C,x, M) and y; = (xt,2:—1). Let G<(n), éT(n) denote the same quantity but with y; replaced

by y§ = (x¢,2f_1) or y¢(7¢) = (X¢(72),Ze—1(71))-
In addition, let

~ l e (=T
Beln) = g S (P ot e )

m? (u,7) == K (T ; “) 9(Fe(w), () — vd(u, 7)) - d(u, T), (B.2)
where d(u,7) := 0(u) — 0(1) — (u — 7)8M) (1) and some v € [0, 1].

Lemma B.1. Suppose Assumptions 1 and 3 hold. Then, E (¢ (X1(7),20(7); 1)) is uniquely maximized at 0(T).

Lemma B.2. Suppose Assumptions 34 hold. Then, £,V¢,V?*¢ € % (3,x, M) for some M > 0 and x =
{x;}i=1.2... with x; = O(i=®*)) and s > 0. In addition, if H(z;9) = H(0;9), £,V¢, V¢ € #(2,x, M).
Lemma B.3. Suppose Assumptions 1-2 hold with r > C. Then

|G- (m) =G (n)

, , . gl : |G- (n) =G (1) —2.
1. bupTE[O’l] Hbupn;ﬁn/ In_in,lHl < M and HbupT¢7_/7n¢H/ m“l < Mh s

28U, (o 1) mewy (r) [BBr(m) = [0 K () E(g(Fo(r), m + maw)dul = O((Th) ™" + h);
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3. ||sup, e BREEL| < M2 with T(r) = () L [mf (7, 7) = B(mf® (7. 7))]

[7—77]
In addition, suppose Xx; = O(j=+) for some s > 0, then
4o 59D o,1) mern () [Gr(m) = GEM)|l = O((Th)™Y).

Lemma B.4. Let g(-) € Z(C,x, M), where x; = O(j~ (@+9)) for some s > 0 and a > 1. Suppose Assumptions
1-2 hold with ¢ =r/C > 1, and

sup [o(6(7)) + 5;(8(r))] = O(j~H1+9).

T€[0,1]
Then we obtain
1 supcpoy 07T (G) = O )

2. SUP,c(o,1] SUPy,p 6;n(7’"’u) () = O(j~(@*9)) and SUP-¢[o,1] G P m(rm, u)l(j) = O(j=@+9)), where my(1,m, u) :=
K () 9(3e(),m +m2 - (7 —u)/h);

()(

Su 2 u,T . .
3. 8P, yeo ) O 7)) = O(h2~(@9) and sup,epo.y 5377 ™ () = O(h2j- (@),

Lemma B.5. Under the conditions of Lemma B.4 with ¢ =r/C > 1, then
1. |G- (m)llg = O ((T)~@=D/4") with ¢ = min(2,q),

2 SUPpepy () [Gr(m)] = op(1);
Suppose further g =r/C > 2 and a > 3/2. Then
3. SUD.cio.) SUDper () |G ()] = Op((logT)M/2(Th)~1/2h-1/2),

Lemma B.6. Suppose Assumptions 1-5 hold with r > 6, and

sup [a;(8(7)) + B;(8(7))] = O(j~(a+1+9))

7€[0,1]

for a > 3/2 and some s > 0. Then

Sup ]vg (1), 0V (7)) — E[VZ,(0(r), 8D (7))]
T€[0,1]

T
TLZ ’Tt — T /h ®V19Lﬂ($t(’7't) Zt 1(7}) 0(’7})) :Op(hzﬂT),

where
/BT _ (10gT)1/2(Th)71/2h71/2,
K((r—7)/h) = K((rs = 7)/W)[1, (e = 7) /D],

T
Lo(0(7),h0M (7)) =T £(@i(m1), Z1-1(m); 0(7) + 01 (7) (r — 7)) K (e — 7).

t=1

Lemma B.7. Under the conditions of Theorem 2.2,

Ry 2 =S()(0(r) ~ 6(r)) = Vo Z,(8(r), iV ()| = Op(rr),
@ s wwem,ho(”(r))+§h2622<7>e(2><7>
T€[h,1—h]

—% Z Vf)f(;(t(Tt),’it_l(Tt); Q(Tt))Kh(Tt — 7') = OP(ﬁTh2 =+ h3 + (Th)il),
t=1

where Bp = (Th)~Y2h="2(log T)'/? and vr = (Br + h)((Th)=*/?1log T + h?).
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B.2 Secondary Lemmas

Before proceeding further, we introduce some extra notations. Assume that there exists some measurable function
H(-, ) such that for V7 € [0,1], hy(7) = H(7, %) € R? is well defined, where %; = o (e, &¢_1,...). Let

(oo}

T
D ()= (Th)™ Y hy(r)K((re —7)/h) and ()= Y Elho(r)h] ()].
t=1

j=—o00

Assume that X4 (7) is Lipschitz continuous and its smallest eigenvalue is bounded away from 0 uniformly over
7 € [0,1]. In what follows, we let hg ;(7) stand for the i*" component of h;(7).

Lemma B.8. Letq > 0. Let g € Z(C,x, M). Lety = (y0,¥1,¥2,---) andy’ = (¥},¥1,¥5,--.) be two sequences
of random variables. Assume that max;>o||y;llqc < M and max;>o [y;llqc < M. Then, we have

L |lsupgee, l9(y.9) — g(y", 9)|||, < M 3720 x5y — ¥illge:

9)—g(y,9')
2. HSUPQ#W oty |13 f9)|' ‘H < M;

3. ||supgee, l9(y, ® ||| <M.

Lemma B.9. Assume that fori=1,...,d
1. sup,¢jo 1] ||E07i(7')||q < oo with some 2 < g <4,
2. sup,ps hoi(7) = hoi(7)|l2/I7 — 7| < o0,
3. Sup,cpo 1] 5104 () = O(j~@+9) for some s > 0.

Let Sg(t) = S, (7). Then on a richer probability space, there exists i.i.d. k-dimensional standard normal

variables vi,va, ... and a process S%(t) = 22:1 E%/Q(TS)VS such that

(Sa(t)izy =p (Sg(t){=y and max [S () — Sk ()| = Op(mr),

q(s+3)—4 2(s+1)(q+1)
where wp = T2aZ+9-1 (log T') a@F9-2

Lemma B.9 is from Theorem 1 and Corollary 2 of Wu and Zhou (2011).

Lemma B.10. Assume that fori=1,...,d
1. sup,¢o ] ||E0,i(7')||q < 0o with some 2 < q < 4,
2. sup, s [[ho,s(7) = hoo(7) |2/ |7 — '] < o0,

8. Sup,¢o ] 5h° o )(]) = 0(j=@+%)) for some s > 0.

In addition, assume that hlogT — 0 and T<Sq+2()l/°(g2£);q,2>h — 0. Then
Th ~
lim Pr(4/= sup ’Z 1/2 ‘ - L = exp(—2exp(—u)),
T—o0 Vo re[h,1—h] 2log(m*)

log(Ck) + (k/2 — 1/2) log(log(m*)) — log(2)
2log(m*)

where

B(m™*) = +/2log(m*) +

)

{2 KD () Pdu/Tom} /2
I'(k/2)

CK s m*=1/h,

and T'(+) is the Gamma function.
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B.3 Proofs of Preliminary Lemmas

Proof of Lemma B.1.
Let

My (9,0(7)) = (H(Zy—1(7); 9)H(Ze—1(7);9) ") /2 H(Ze—1(7); 0(7))H(Z—1(7); 0(7)) T
X (H(Z—1 (7); 9)H(Z_1 (7);9) )"/

By Assumption 1.1 and the construction of X;(7), we write
E(2(x¢(7),2t-1(7); 9))
1 ~ ~
= —EElog det {H(z—1(7); 9)H(z;—1(7); 19)T}

— S Bt { (B ()0 (1 (79) ) () — i a(r); ][Rl — (e (79

:—%Elogdet{H('zvt,l(T);ﬂ)H(zt ()9} - L Bt (ML (9, 0(1)))
—%E (1(Ze-1(7); (7)) — w(Ze—1(7); )] (H(Ze—1(7); 9)H(Z—1 (7);9) )~

X [p(Ze—1(7); 0(7)) — 1(Ze—1(7); 9)])
= —% [—Flog det (My(3,0(7))) + Etr {M,(9,0(7))}]

_% Elog det (F,(r, (7)) H (. 6(7)) ")

—%Eﬂu@ﬁiﬁ%9ﬁﬂ—ﬂdﬁfﬂT%0HTGﬂ%7MT%ﬂﬂﬂ%7MTﬁﬁfﬁq

X[1(2e-1(7);0(7)) — p(z-1(7); 9))) -
For any positive definite matrix M with eigenvalues A1, ..., A\, > 0, we have

m

f(M) := —logdet (M) + tr {M} = Z(Az —logA;)) >m

i=1
where the equality holds if A\;y = -+ = A,,, = 1 in which case M = I,,. Thus, f(M) is uniquely minimized
at M = I,,, which implies that E[f(Mt( 0 )))] is uniquely minimized at ¥ = 6(7) by Assumption 3.2. In

addition, since H(z;_1(7);9)H(z;_1(7);9)" is a positive definite matrix, then

B ([1(Z-1(7); 0(7)) = p(@e—1(7); 9)] " (H(Ze-1(7); 9)H(Ze—1(7);9) ")~
X[1(2-1(7);0(7)) — w(z-1(7); 9)]) = 0

is uniquely minimized at ¥ = 0(7) by Assumption 3.2. Hence, F (¢(X:(7),Zt—1(7); 1)) is uniquely maximized at
o(7). O

Proof of Lemma B.2.
We first consider £(-). Write

t(x,2;9) — £(x',2';9)

= [ Bl 9) M 50— (s ) — (¥ plal59) M (59X el 9))
% [log det (M(z;9)) — log det (M(z';19))]
%(Il + 1),

where the definitions of I; and I5 should be obvious, and M(z;9) = H(z;9)H(z;9) .

For Iy, we have

M(29) — M(2/;9)| < [H(z: ) — H(z/; )| (H(z; 9)| + [H(2'; 9))
< M|z — Zl|x(2 + |zlx + ‘z/|x)7
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where the second inequality follows from the facts that

[H(z;9) — H(z';9)| = O(|z — 2'[),
[H(z; 9)| < [H(z: 9) — H(0;9)| + [H(0;9)| = O(1 + |2
by using Assumption 1.2 twice.

By Assumption 3, it is easy to know that det(M(z;)) > H > 0, which in connection with the fact log(-) is
Lipschitz continuous on [H, 00) yields that

I, < M|det (M(z;9)) — det (M(z";9)) |-

In addition, for an invertible matrix A, det(A + B) = det(A) + tr(A~%TB) + o(|B|), and for a positive definite
matrix A and symmetric matrix B, [tr(A~1TB)| < |[B|tr(A~!). Hence, we have
I, < M|det (M(z;9)) — det (M(z";9)) |
< Mur(M~}(2;9)) - [M(2;9) — M(/; 9)|
=0(|z — 2'|x (1 + |z]x + 12[x))-
Note that if H(z;9) = H(0;9), I, = 0.
For I, since |H™!(z;49)| is bounded by Assumption 3, we can obtain that
I < [ (9) (x — u(: 9)) — HL (3 9) (' — (s 9))|
(7 (29)(x — pu(z;9))] + [H™H (25 9) (x" — p(259))])
=0(ly —¥'lx - L+ Iyl +1¥'R):
where y = (x,z). Similarly, if H(z;9) = H(0;9), I = O(ly —¥'lx - (1 + [¥|x + 1¥'|x))-
For ¢(x,z;9) — £(x,2;9"), write
?(x,2z;9) — £(x,2;9)

= 5 [ 9) TV (i 9) o — la9)) — (x — palas 9) M (550) (x — (0]

~ L log det (Mi(z: 9)) — log det (M(z; 9))]

— DN

= —5(13 + I4).
Similar to the development for I; and I5, we can obtain that
L=0(9 -1 +yly) and Iy =0(9 —9'|(1+]z[3)),
where we again let y = (x,z). Also if H(z;9) = H(0;9),
L=0(9 - 9|(1+Iy2) and Ij=O(|9 - ).

Combing the above analysis, we have shown ¢ € Z(3,x,M). In addition, if H(z;9) = H(0;9), ¢ €
x(2,x, M).

Similar to the development for #, we can show VZ, V¢ € #(3,x,M) and V¢,V?¢ € %(2,x, M) if
H(z;9) = H(0;9).
The proof is now complete. O

Proof of Lemma B.3.
(1). By Proposition 2.1.1, we have sup,¢(g 11 [|X¢(7)||[c < o0. Since g € Z(C, x, M), we have

éT - é‘r ! _ - Tt — T . -
sup 16 = G oy, 1ZK( t ) 2+ [5:()IS + 1F:(r)ICI]
n#n’ In— ' =1 h
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Using (Th)~ Zt 1 (

) < 00, we have

sup ‘é‘r(n) - é‘r(nl)‘

< M max |||y ()5 [l < oc.
n#n’ |"7*"7/| t x

1

In addition, by using the Lipschitz property of K (+), we have

~ (T —T ~ (T —T1
()5 (57)

+Th) YR < 0 ) Ng(Felm)sms + ma(me — 7)/B) — 9(F4 (), ml + M (i — ) /)|

-s%p(lg(it(ﬁ), )|+ [lg(¥e(re), 9)1)

T
<M (W2 =7+ b7 =0/ + h72|mo| - | = 7)) - Z 2+ [Fe(re)ly + IFe(re) 5 ]10)-

Combing the above analyses, the first result follows.

(2). By Lemma B.8.1 and Proposition 2.2, for |1 — 7| < h, we have
lg(¥e(re),m +m2- (1o = 7)/h) = g(ye(7),m +m2 - (1o — 7)/B)[lx

<MY xR (1) = Kej (T 0 = O(h).

Jj=0

Hence, we have

=~ NS
B-(n) - ZK< th >g(yt( )m+m2 (e —7)/h)

1

) S R () = Ty ()l = O(h)

J=0

and

T
LK (h) Elgu(r),m +m2 - (= 7)/h)]

1
(a-m)/h _ N )
= [ R@EGm)m +maw)du+O(Tm) ™)
by the definition of Riemann integral and the stationarity of y;(7).
(3). Write
mi? (u,7) —my? (u, )|
T—u ~ (7 —u ~
<IR(T)-& ( . ) 193, 07) — vl(u, )] - I, 7)

+|f( ( ) 0(t) —vd(u, 7)) — g(Fe(u), 0(7") — vd(u,7"))| - |d(u, 7)|
+|K ( ) (7") —vd(u, )| - |d(u, 7) — d(u, 7")|
=10 + I+ Is.

By the Lipschitz continuity of K(-) and ||supg |g(¥¢(u),9)||1 = O(1) (by Lemma B.8.3), we have

E(I) = O(h™ Y7 — 7).
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Similarly, by Lemma B.8.2 and |d(u, 7)| = O(1), we have
E(Iy) = O(|r — 7'|).

By the Lipschitz continuity of d(u,-), we have E(I3) = O(|7 — 7’|). Hence,

T T
1
7 2 (o) — i )| < Elmtfn ~mf (7', 7)| = O(h 27 — 7).

The proof is now complete.

(4). By Propositions 2.1.1 and 2.2.2, we have sup ¢jo 1] [|X¢(7)[|¢ < oo and maxy [[x; — X¢(7¢) [l = o(r—1
Hence, we have max; ||x¢||, < M.
By Lemma B.8 and the definitions of y; and y{, we have

oo
| sup l9(ve,9) = g(7, D)l < MZXJHXt ile=01{>"x
r j=t

j=t
In addition, by Proposition 2.2.1 and x; = O(j=+9)) for some s > 0, we have
| Sup 9y, 9) = 9(Fe(7), 9l < MY xsllxiy — Xy (7)o
€ :
3 j=0

<MD xllxi—j = FKij(r—)lle + MY x5lFe—i(r) — Kej(ri—j)llc
j=0 j=0

=00 _xi/T)+0(> _ix;/T) =0(T™").
=0 =0

Hence, we have

| sup  sup |G-(n) — GE(m)l
7€[0,1] GET(r)

< M(Th)~ Zsup l9(¥e,9) — 9(y5, 9|11

ZZXJ < M(Th)~ Z]Xj =O((Th)™).

t=1 j=t Jj=1
The proof of the fourth result is now complete.

Proof of Lemma B.4.
(1). Let y;(7) be a coupled version of y;(7) with &g replaced by €j. By Lemma B.8, we have

gupe 195D (1) = | sup 9(y+(7), B)| = sup g (¥: (7), D)4

< lIsuplg(¥e(r), ) = 93¢ (r), 9l

<MY xlIRi—i(1) = %5 (D)lgc
j=0

t
=M x5 (- ).

=0

By Proposition 2.1.2 and the conditions on «;(8(7)) and £;(6(7)) in the body of this lemma, we have 5T (j) =
O(j~(@*9)) for some s > 0. Hence, we have

t
DG < Y a0 =0+ Y eI -))
7=0

i>t/2 0<j<t/2
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< (#/2)7 ) 3T SOy (/27 3y

i>t/2 0<j<t/2
= Ot~

The proof of the first result of this lemma is now complete.
(2)—(3). Since

‘ sup ‘m(Tv n, ’U,)| — sup |m*(7-a n, U)H < sSup |m(7—7 n, u) - m*(Ta n, ’LL)|
u,m u,m u,m

< Msup 9(¥e(7),9) — g(y7 (7), I)l,
the second result follows directly from the first result.
Since d(u,7) = O(h?) when |7 — u| < h, for each element of mEQ)(u, 7), we have

[sup ) (u, 7)| — sup [m{” (r,u)|| < sup my; ) (r,u) — m{?) (r,u)|

< Mn? S%p |g(§t(7)v‘9) - g(?:(T),ﬁ)‘,

where mii) (7,u) is yielded by the coupled version.

The proof is now complete. O

Proof of Lemma B.5.
(1). Note that

g(¥e(re),m +m2- (e —7)/h) — E(g(¥e(7e),m +m2 - (12 — 7)/R))

Ze@t 19(ye(re),m +m2 - (re —7)/h),
=0

~

in which {2 _;(g(y¢(re),m +m2 - (1 — 7)/h))}L_; is a sequence of martingale differences.
If 1 < g <2, by the Burkholder inequality, |Z?:1 a;|" < Zle la;|" for r € (0,1] and Lemma B.4.1, we have

~ 1 T —T ~
G-l < 3|3 7K ("5 ) Proralalrhom + e (= 7))

q
q/2y M

<T1hf( (Tt l; T> Pr1g(Ye(me)sm +ma - (1 — T)/h)>2]

> T g1 M4
1 ~(m—71 ~
<O(1)Z B Z(T;LK( th >=@tl9(Yt(Tt)ﬂ71 +772'(Tt—7')/h)) ]}
1=0 t=1
> 1 X a\ /¢
<O (Th —(g—1)/q sup §5uPs [9(¥e(e),9)] l L l’(\v <Tt — T)
DTk 1—o T€l0,1] K @) Th; h

= O((Th)~t=0/m).

Similarly, for ¢ > 2, by the Burkholder inequality and the Minkowski inequality, we have

I1G(m)ll, =

11 2K ("5 ) S P @rm 4 e (- 1)/

=0

q

(Tt - T) Po1gFo(r),m + 2 - (1o — 1) /R)

>

q

T
=00 g {E i (Tlhf( (Tt ; T) Pra1g(ye(re),m +m2 - (7 — T)/h))j e
=00 i {ET: [E <T1hf( (Tt f; T) Prag(ye(re),m +m2 - (1 — T)/h)>q] 2/q}1/2

21



= O()(Th)™/?Y " sup §;re lsGODNq) = O((Th)~1/?).
1—0 7€[0,1]
The proof of the first result is now complete.

(2). For any fixed v > 0, let s > 0 and E%.(r) be a discretization of E¢(r) such that for each n € Er(r) one can
find 0’ € Ef(r) satisfying |n — 1| < k. Let #E%.(r) denote the numbers of sets in Ef(r). Write

Pr< sup |éT<n>|>v>s#E5z<r> sup_ Pr(|G-(m)] > v/2)

ne€Er(r) neEr(r)

+Pr< sup |éT(n)—éT(n’)|>v/2>.

[n—n'|<k

By the Markov inequality, we have

= IG ()8
P ( . 2) < g
(Gt > v/2) < ST
Note that {P:_;g(y¢(7), m +n2- (¢ —7)/h)}+ forms a sequence of martingale differences. By the Burkholder
inequality and Lemma B.4.1, we have

0o T
G-l < () IR (T ) Pecsgalem + (= )/l

o] T 2 a
<(q—1)7HTh)T Y <| YK (Tt ; T) P i9Fi(r),m+ma - (1 — T)/M%)

0

< M(Th)*(q’l)/qz sup 5P l9(3¢(). 91 () = O((Th)~(a=V/9),
=0 T€[0,1]

which in connection with the fact #Ef.(r) is independent of T yields that

#E}(1) sup )Pr(\@(nn > 0/2) = o(1).

In addition, by Lemma B.3.1, we have

Pr( sup IéT(n)—éT(?’],)|>1)/2>SMH—>O

[n—n'|<k

by choosing x small enough. Hence, Pr (supneET(r) G, (n)| > v) —0asT — oo.

(3). Let By := (log T)Y/?(Th)~'/2h=1/2 for short. Let further Ep . (r) be a discretization of Ex(r) such that for
each ) € Er(r) one can find ' € Er . (r) satisfying |np — n/| < k;'. Define Ir, = {t/kr : t = 1,2,...,k7} as a
discretization of [0, 1]. For some constant M > 0, we have

Pr( sup  sup |C~¥T(77)| > MﬁT)

T€[0,1] n€Er(r)

< Pr( sup  sup  |Gr(n)] > ﬁTM/2>

TegT,m "IeET,m(r)

+PI‘< sup |é7(n) - ér’ (77/)| > 5TM/2> :

|r—7/|<tzt In—n'|<kg'

Let my(r,m,u) == K (752) g(3:(r),m +n2 - (7 — ) /h), we have sup, cjg1)Sup,,, 05" (j) = O(j~@+*)) and
SUP,¢(0,1] b P lm(T’n’u)‘(j) = O(57(@+9)) for some a > 3/2 by Lemma B.4.2. Let o = 1/2, we have

_ o o~ <SPy [m(rm)] (a—8/213)
W, o :=max(k +1 sup goPum J §Mmaxk:( < 00
o = max(h 1) H; y () < Mm;
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and
oo

W3 o := max(k + 1)¢ sup supZégn(T’"’u)(j) < Mmax k~(073/2+9) < o0,
k>0 T€[0,1] wn 7o k

Note that | = min{1,log(#Er . (r) x I7.,)} < 3(2d + 1)log(T) and MBrTh = MT?(logT)/? > VTIWy,, +
Tl/ql?’/qua > T2(log T)'/? 4 T/9(log T)3/? for some M large enough. By using Theorem 6.2 of Zhang and
Wu (2017) (the proof therein also works for the uniform functional dependence measure) with ¢ > 2 and o = 1/2
to {mt<7',’I’],Tt)}TGgT'mTIGET)K(T), we have

Pr( sup  sup |G.(n)| > BTM/2>

TEIT,k neET (T)

MTI19/? M(BrTh)?
< Gy Moo (HOF)

<M (T_(q_Q)/2 + exp(— logT)) -0

In addition, by the Markov inequality and Lemma B.3.1, we have
Pr( sup G, (n) — G (n)] > BTM/2> =0T 3/Bp) =0
[T/ |<hpt ln—n'|<ng!
The proof is now complete. 0

Proof of Lemma B.6.
For notational simplicity, we let n(7) = [8(7), 0™ (7)] in what follows, and define

L(7) = VZ:(n(7)) — E[VZ:(n(7))]
1 T

77 ((re = 7)/h) @ Vol (Te(71), Ze—1(72); O(72)).

Due to E(VyZ(Z:(7¢), 2t—1(7¢); 0(7¢))) = 0 by Lemma B.1, we have

= % ZE((H —7)/h) @ [Vl (@(1t), Zt—1(72); O(T) + 0(1)(7_)(7_t — )
t=1
_Vﬂf(~( 1), Ze—1(1¢); 0(71))]
T
Z Tt -7 /h) & E[Vﬁf(wt(n) Zt 1(7}) 0(7’) —+ 0(1)(7—)(Tt _ 7_))

*Vﬁf( t(7¢), Zt—1(72); 0(72)].

By the Mean Value Theorem, we have

T
WY IMEY (7,m) — EME (),
t=1

where
M§2) (1,u) := f(\((Tt — T)/h) ® V3L(xs(u), Zi—1(u); O(T) — vr(u))r(u) for some v € [0,1],

r(u) = %0(2) (1) (u— 7') + 9(3 (7)(u — T) with 7 between v and 7.

We then use a similar argument as in the proof of Lemma B.5 to prove

Pr( sup |I(7)| > MBTh2> — 0.

T€[0,1]

Define ky = T° and I, = {t/kr : t = 1,2,...,kr} as a discretization of [0,1]. For some constant M > 0, we
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have

Pr( sup |T(7)| > MﬂTh2> < Pr< sup |T'(7)| > BThQM/2>

TEIT x

—|—Pr< sup |I(r)-T(7)| > ﬂTth/2>.

1
‘T—T’lSnT

By Lemma B.3.3 and the Markov inequality, we have

h=2k5t
_ / 2 - T
Pr<7_j}12n;1 IT(r) —T(r")| > Brh M/2> 0 <,3Th2M/2> — 0.

By Lemma B.4.3, we have

sup 5(|1M(2>('r,u)|(j) — O(th*(tH»s)) and sup 52upu |M(2)('r,u)|(j) — O(h2j7(a+s))
u,7€[0,1] T€[0,1]

for some a > 3/2 . Let o = 1/2, we have

— et = up,, M® U S\ 2
Wya = I’?fxx(k + 1)* sup 2(52 Pu MWl (5) = O(R?)

20 Te[oal]j:k
and
N > @ (ra)], .
Wa,o = max(k+1)% sup Y o0t TWl() = o).
k>0 T,uE[O,l]j:k

Using Theorem 6.2 of Zhang and Wu (2017) with ¢ > 2, a = 1/2 and | = min{1,log(#97.)} < 5log(T) to
{MgQ) (7,7¢) }regy.,.,» we have

Pr( sup |I'(7)| > h25TM/2>
TEIT K

MTI9/?Wg,,

— + M exp (

- M(Brh2Th)?
= (Brh?Th)a

W2,
<M (T*@f*?)/2 + exp(— log T)) 0.
The proof is now complete. O

Proof of Lemma B.7.
(1). Let (7)== [0(r)7,0%(7)7]T and n(r) := [0(r)T, k0D (7)7]T. By Lemma B.5 and the proof of Theorem
2.1, we have

sup [0(7) —n(7)[ = op(1).
7€[0,1]

By the Taylor expansion, we have
() = n(7) = =(2(7) + R (7)) "' VL (n(7)),

1 0

where Ry (7) := V2Z,(7) — £(7) and (1) := {0 = ] ® X (1) with 77 between 7(7) and (7). By Lemma B.3
2

and Lemma B.5, we have
sup [V, () — Z(r,m)|
7€[0,1],n€ET (r)

= sup V2, (n) — 2(r,m)| + Op((Th) ™)
7€[0,1],m€Er(r)

= sup  |E[V:Z(n)] - Z(r,n)|+Op(Th)~" + Br)
7€[0,1],m€Er(r)
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= Op(Br + (Th)™") + O(h),

where 2 (r,m) f(lT/,:)/h E ng] ® X(7,m + neu)du and

(1, m +mpu) == E (VL (Xe(7), Ze—1(7); 1 +m2u)) -
By Lemma B.4.3 and the condition

sup [a;(0(7)) + B;(0(7))] = O(j~5))

7€[0,1]

¢

v
for some s > 0, we have sup, ¢ 1) dq "17(j) = O(j~+%)) for some s > 0. By Lemma B.9, we have

T
51[1p] T ZKh(Tt — 1)Vl (Xy(11),Ze-1(12); 0(10))| = Op((Th) "1/ 1og T).
T€(0,1 —1

Since E (V9?(X¢(7),2t—1(7);0(7))) = 0, we further obtain that

s IVZ:(n(r)) = E[VZ:(n(r))]

< swp [VF(n(r)) = BIVZ(n(r)

T
_ih STK((re = 7)/h) ® Vot (#(11), Zeo1(7); 0(71))]

T

+ s TN Ku(r — )Vl (Re(70), Ze—1(72); 0(72))
T€[0,1 t=1

= Op(h*By + (Th)~/?1og T)

using Lemma B.6.
Hence, by Lemma B.3.4, we have

sup |VZ:(n(7))|

T7€[0,1]
< sup VL, (n(7) = VL (n(7)] + sup IVZ:(n(7)) = E(VZ:(n(7)))]
+ sup |E(VZ:(n(7)))]
= 51[10p1] |E(VZ:(n(1)))| + Op(h*Br + (Th) /2 log T + (Th)™1).
Since
E |VZ:(n(r)) - TLZ ((re = 7)/h) @ Vol (®4(7e), Ze—1(7e); 9(Tt))]
_ Ll Tf(\ e |EVAeG ). 5oy 00 (2T | + o
= 5 g 2 Kl =)/ & | EIVhe(E ) Fea 0 I0 ) (57 ) | + 0
1 (1-7)/h B
= o /_ RO (-2(me@ () +0(Th) ™ + 1),
we have

sup |V, Zr(n(7))| = Op(h*Br + (Th) "2 log T + (Th)~' + h' ).
T€[0,1]

for j = 1,2. Hence, we have sup, c(o 1) |7;(1) — n;(7)| = Op(h*Br + (Th)~ Y2logT + (Th)~' + h'*7) and
sup,¢(o.1] Rz (7)| = Op(Br + h + (Th)~"), where nj( 7) and n;(7) are corresponding to the j* part in their
definitions given in the beginning of this proof.
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Write

=3(r)(#(r) — n()) = VL (n(1))
< |[Tza + S7HP)Rp(7)] T = L |- [VZ(n(7))]
< |M2q + 7 () Re(7)] 7 - |E7H DR (7)] - [ VL (n(7)]
= Op(7r)-

The proof of the first result is now complete.
(2). By Lemma B.3 and Lemma B.6, we have

1 oo
sup Vo2 (0(r), h0W) (1) + 5h*6E ()0 (7)
T€[h,1—h]

_% > Vot (%alr1), 71 (7); 0(r) K (e = 7)

< sup |V, Z(n(7) = Vi, Zr(n(7))|
T€[h,1—h]

+ sup |Vn1gf(77(7))*E(Vm
T€[h,1—h]

H \

T
Z (Xe(1¢), 2¢—1(74); 0(1¢) ) K (1 — 7))

1,
+ sup  |BE(Vp,Zr(n(7)) + sh*6X(r)8P (7))
r€[h,1—h] 2
~ 1 _
= sup |E(Vy,Z(n(1)+ §h2022(7)0(2)(7)| +Op((Th)™* + Brh?).
T€[h,1—h]

In addition, by the proof of the first result of this lemma, we have

sup  |E(Vy, Zr(n(7))) + %thQE(T)O(Q) (M) = O(h* +(Th)™").
T€[h,1—h]

The proof is now complete. O

Proof of Lemma B.S.
(1). By the definition of class #(C, x, M) and using Holder’s inequality, we have

<M |lly =¥+ lyly + 15
q

sup |g(y,9) — g(y’,9)|
9€O,.

q

< My = ¥'lxllge (1+ 1yhel$E + Iy 115
< Mly = ¥'l,c

provided that [[|y|x[lqc < 32520 Xjlly,llec = O(1).
(2)—(3). Parts (2) and (3) can be proved in a similar manner as part (1).

Proof of Lemma B.10.

(log T)*
T(sa+2)/(2sq+3a—2) p,

By using the summation-by-parts formula, Gaussian approximation results in Lemma B.9 and —

0, we have

T
Dy(r) — (Th)™! Z B2 (r)viK (= 7)/h)

sup
T€[0,1]
T
= sup |(Th)~ 1K ((rr —7)/h) Z =~ (Tt)Vt)_
T€[0,1] =1
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T-1

(Th)™ Y (K ((re41 = 7)/h) = K (7 = 7) /1)) > (h L2 m)vs)

t=1 j=1

- 12&157" Z h (Tj)vj) =Op ((Th)"'nr) = op((Th log T)™/?),

where 7p is defined in Lemma B.9 and {v;} is a sequence of i.i.d. normal vectors. In addition, by the Lipschitz
property of X (-), we have

Mﬂ

() = B2 WK (= 7)/) ~ N (0, V(7))
t:l

and |[V7(7)| = O(T~th). Hence, we have

T
WY (2 () = B2 )VeK (7 = 7)/h)| = Op(T 2R (10g T)!/?) = 0p(Thlog T)*/?)

sup
76[0,1] =1
if hlogT — 0.
Finally, by Lemma 1 in Zhou and Wu (2010), we have
lim Pr( /20 (Th)~ XT: )/h)| — B(m*) < 4 exp(—2exp(—u))
im Pr — su (e —7 m*) < ———— | = exp(—2exp(—u)).
T—o00 o Te[h,F h] P ' 2log(m*) P ’
Combining the above analyses, we have proved Lemma B.10. O

B.4 Computation of the Local Linear ML Estimates

In our numerical studies, we use the function fminunc in programming language MATLAB to minimize the
negative of log-likelihood function. The initial guess is important when using optimization functions because
these optimizers are trying to find a local minimum, i.e. the one closest to the initial guess that can be achieved
using derivatives. In this section, we give a possible choice of initial estimates.

We could estimate the coefficients of time-varying VARMA (p, ¢) model

14

q
xi =Y Aj(m)xe+m+ Y Bi(m)m; with n =w(n)e,
j=1 j=1

by kernel-weighted least squares method if the lagged 1, were given. To obtain a preliminary estimator, we first
fit a long VAR model and then use estimated residuals in place of true residuals. Consider the VAR(pr) model

pr
X = er(Tt)Xt—j + Mt
j=1
where pr is set to be 2(Th)/3 in our numerical studies. Then, we compute 7; = x; — Z?; f‘j(Tt)Xt_j, where

{fj (1)} are the local linear least squares estimators. Given 7};, we are able to estimate {A;(7)}, {B,(7)} and
Q(7) as well as their derivatives by local linear least squares method.

In order to achieve identifications, certain restrictions should be imposed on the coefficients of the VARMA
model. Suppose there exists a known matrix R and a vector ~(7) satisfying

VeC(Al(T)a s AP(T)v Bl(T)ﬂ -~~,Bq(7—)) = R7(T)7

which follows that
x ~ (2 @ L) RIy(r) + vV (1) (7 — 7)] + me,

where z, = [x/,...x/ 1,0/ ,...n 7. Then the local linear estimator of (y(7), ~M (7)) is given by

~ T -1
T * * *
(h:;/((l)()T)> = (Z RTthlzt;rlRKh(Tt — T)) Z RTthlxtKh(Tt — 7—),

t=1 t=1

27



where Z7 =z, ®1,, ® [1, “="]T. Similarly, the local linear estimator of (vech(€(r)), vech(2)(r))) is given by

vech(Q(r T -l o
(hvech((ﬁ(g)()j-))> - (Z 7.7} Kp(r — T)) Z Zivech(nyn, VK (1e — 1),

t=1 t=1

where Z; = [1, 21T @ L1y /2-
We next c0n51der the preliminary estimation of Multivariate GARCH Models. Define y; = x; ® x; and
vi =y — hy. We can rewrite model (1.4) as

max(p,q)

ye = co(1y) + Z (1) + Dy (7)) ye— ]+Vt+z (T¢))Vi—j
j=1 j=1

with E(v;|%—1) = 0. Similar to the VARMA model, we are able to estimate co(7), {C;(7)} and {D,(7)} as
well as their derivatives by local linear least squares method. Consider the VAR (pr) model

pT

ye=>_ ®(m)ye; + v,
Jj=1
where pr is set to be 2(Th)'/3 in our numerical studies. Then, we compute v; = y; — ?21 ‘/I;j (Te)Pe—j,
h, =y, — ¥, and 7, = diag™"/? (ﬁt)xt. Hence, the local linear estimator of (vechl(£2(7)), vechl(Q™)(7))) is given

by

O T -1
vechl(Q2(7 L
(hvechl((ﬁ(g)()l))> = (; Z:Z) Kn(mi - T)> ; Zvechl(77l ) Kn (7 — 7),

where Z; = [1, %] T @ L, (m—1)/2 and vechl(-) stacks the lower triangular part of a square matrix excluding the
diagonal.

Finally, we consider the preliminary estimation of time-varying VARMA-GARCH models. In this case, we
first estimate the VARMA part and then use estimated residuals to estimate the GARCH part. Consider the
VAR(pr) model with GARCH-type errors

prT
Xy = Zl"j(n)xt_j —+ Vi,
j=1

where py is set to be 2(Th)'/* in our numerical studies. Then, we compute v, = x; — Y77, T, ()%, where

{fj (1)} are the local linear least squares estimators. Given 7, we are able to estimate {A;(7)} and {B,(7)} as
well as their derivatives by local linear least squares method as stated above. In addition, based on estimated
residuals v, we are able to estimate the GARCH part in a similar manner as above.

B.5 Additional Simulation Results

In this appendix we report some additional simulation results for time-varying GARCH models. The data
generating process is specified as follows:

DGP 3:x; = diag(hy/}, ..., hil ),

m,t

where m = 91/2(7t>5t ht = Co(Tt) + Cl( ) (Xt,1 O) Xt,1> + D1<7't)ht,17 {Et} are i.i.d. draws from N(ngl,Ig),
co(7) = [2exp{0.57 — 0.5},3 + 0.2 cos(7)] T,

Ci(r) = [0.4+0.05cos(7)  0.05(7 —0.5)2
W= 1 0.05(r — 0.5)2 0.4+ 0.05sin(7) |
0.4 —0.1cos(7) 0
Di(7) = I 0 0.3—0.1 sin(T)} :
- 1 0.3sin(1)
QA7) = 10.3sin(7) 1 ] '

We set the order of GARCH process to be (1,1) since GARCH(1, 1) models are typically used in practice and
higher order GARCH models are unnecessary (cf., Andreou and Werker, 2015).
We present the empirical coverage probabilities associated with the UCB in Table B.1. Again, we find that
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the conditional variance model requires more data than the conditional mean model to achieve a reasonable finite
sample performance.

Table B.1: Empirical Coverage Probabilities of the UCB for DGP 3

h co() Ci() Di() Q)
0.55  0.869 0.876 0.838 0.945
0.60  0.882 0.866 0.843 0.945

T'=1000 0.65 0.889 0.872 0.859 0.945
0.70 0.892 0.881 0.871 0.950
0.50 0.897 0.881 0.901 0.950
0.55 0.892 0.881 0.903 0.940
T'=2000 0.60 0.900 0.888 0.910 0.950
0.65 0.907 0.889 0.910 0.950
0.35 0.929 0.932 0.943 0.920
T — 4000 0.4 0.950 0.944 0.943 0.919

0.45 0.950 0.947 0.946 0.950
0.50 0.929 0.944 0.946 0.960
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