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Adjusting for genetic confounders in 
transcriptome-wide association studies 
improves discovery of risk genes of  
complex traits

Siming Zhao    1,2,3,5  , Wesley Crouse2,5, Sheng Qian2, Kaixuan Luo2, 
Matthew Stephens    2,4   & Xin He    2 

Many methods have been developed to leverage expression quantitative trait 
loci (eQTL) data to nominate candidate genes from genome-wide association 
studies. These methods, including colocalization, transcriptome-wide 
association studies (TWAS) and Mendelian randomization-based methods; 
however, all suffer from a key problem—when assessing the role of a gene 
in a trait using its eQTLs, nearby variants and genetic components of other 
genes’ expression may be correlated with these eQTLs and have direct effects 
on the trait, acting as potential confounders. Our extensive simulations 
showed that existing methods fail to account for these ‘genetic confounders’, 
resulting in severe inflation of false positives. Our new method, causal-TWAS 
(cTWAS), borrows ideas from statistical fine-mapping and allows us to adjust 
all genetic confounders. cTWAS showed calibrated false discovery rates 
in simulations, and its application on several common traits discovered 
new candidate genes. In conclusion, cTWAS provides a robust statistical 
framework for gene discovery.

Genome-wide association studies (GWAS) have identified many loci 
associated with a range of human traits1,2. To translate these associa-
tions into knowledge of causal genes and molecular mechanisms3, 
researchers have often used expression quantitative trait loci (eQTL) 
data, which associate variants with gene expression. In the popular 
transcriptome-wide association studies (TWAS)4,5, researchers build 
predictive models of gene expression from cis-genetic variants, and 
then test for associations between predicted (‘imputed’) expression 
and a trait. TWAS thus identifies candidate genes and the likely cell/
tissue contexts, and requires only summary statistics. Because of these 
benefits, TWAS has become widely used to convert GWAS associa-
tions into candidate genes6. The framework is also applicable to other 
molecular traits, such as RNA splicing, or chromatin features, further 
broadening its utility7.

A central question in TWAS is whether the identified genes have 
causal effects on the phenotype. A simple analysis suggests this is not 
always the case (Fig. 1a). In one scenario, a noncausal gene, X, has an 
eQTL, G, that is in linkage disequilibrium (LD) with the eQTL of a nearby 
causal gene X′. This creates a noncausal association of the genetic 
component of X with the trait. In another scenario, G is in LD with a 
nearby causal variant, G′, which acts on the trait directly, for example, 
by altering the protein-coding sequence of a nearby gene, again creat-
ing a noncausal association of the genetic component of X with the 
trait. These scenarios are known as ‘horizontal pleiotropy’, a key chal-
lenge facing TWAS6.

Alternative methods to jointly analyze eQTL and GWAS data face 
similar challenges. Colocalization methods test whether gene expres-
sion and a trait are affected by the same causal variant8,9. However, 

Received: 20 December 2022

Accepted: 14 December 2023

Published online: xx xx xxxx

 Check for updates

1Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA. 2Department of Human Genetics, University of Chicago, Chicago, IL, 
USA. 3Dartmouth Cancer Center, Lebanon, NH, USA. 4Department of Statistics, University of Chicago, Chicago, IL, USA. 5These authors contributed 
equally: Siming Zhao, Wesley Crouse.  e-mail: siming.zhao@dartmouth.edu; mstephens@uchicago.edu; xinhe@uchicago.edu

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01648-9
http://orcid.org/0000-0003-3584-6279
http://orcid.org/0000-0001-5397-9257
http://orcid.org/0000-0001-9011-5212
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01648-9&domain=pdf
mailto:siming.zhao@dartmouth.edu
mailto:mstephens@uchicago.edu
mailto:xinhe@uchicago.edu


Nature Genetics

Technical Report https://doi.org/10.1038/s41588-023-01648-9

biochemical level, coregulation of genes by the same regulatory ele-
ments is common16. Third, eQTLs are pervasive in the genome. In GTEx, 
half of all common variants are eQTLs in at least one tissue17, suggesting 
that chance associations (LD) between eQTLs of noncausal genes and 
causal variants are probably common18. All this evidence points to a 
critical need for better control of false discoveries in TWAS and other 
eQTL-based analyses.

Here we propose a new statistical framework to address the limita-
tions of existing methods. Our approach can be viewed as a generaliza-
tion of TWAS, which we term ‘causal-TWAS’ (cTWAS). The fundamental 
problem of TWAS is that when assessing the association of the imputed 
expression of any gene (the ‘focal gene’) with a trait, nearby genes and 
variants may confound this relationship. We refer to them as ‘genetic 
confounders’ to distinguish them from the environmental confounders 
that are a common focus in the literature of MR. This reasoning suggests 
a conceptually simple solution—we should include the tested genes and 
all genetic confounders in the same model. In practice, implement-
ing this strategy is complicated by high correlations among all these 
variables, which creates an identifiability challenge. Our key intuition 
is that causal signals in a genomic region affecting a phenotype of 
interest, whether via gene expression or variants, are likely sparse. 
This motivates a Bayesian variable selection model, which has been 

colocalization may still report false-positive findings. This may happen 
when the eQTL variant G of a gene and a nearby causal variant G′ have 
high LD, as shown in Fig. 1a, thus effectively indistinguishable; or the 
eQTL variant G has pleiotropic effects on both expression and the trait, 
without a causal relationship between the two10. Mendelian randomiza-
tion (MR) is another strategy to nominate causal genes, treating eQTLs 
of a gene as instrumental variables (IVs)11. However, the potential pleio-
tropic effects of instruments and their LD with nearby causal variants 
violate the key assumption of MR. Several methods such as 
transcriptome-wide Mendelian randomization (TWMR)12 and 
MR-joint-tissue imputation ( JTI)13 attempted to address this issue by 
using a heterogeneity filter to remove variants that violate the MR 
assumption. However, in practice, genes often have only one or few 
cis-eQTLs (IVs), making the detection of heterogeneity difficult. Lastly, 
methods such as FOCUS14 and TWMR12 jointly analyze multiple genes 
in a region. While these methods mitigated the challenge due to nearby 
genes (Fig. 1a, left), they largely failed to account for direct effects of 
nearby variants (Fig. 1a, right).

Multiple lines of evidence suggest that the scenarios creating 
possible false-positive findings are common. First, in TWAS and colo-
calization analysis, it is common to find multiple candidate genes 
at a single locus, with most genes likely noncausal6,15. Second, at a 
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Fig. 1 | Overview of the cTWAS method. a, Two scenarios that violate the 
assumptions of TWAS and lead to false-positive findings. X is a noncausal gene of 
the trait y. X is associated with the trait, shown as dashed arrows, because of the 
LD between its eQTL and nearby causal variants. Double-headed arrows 
represent LD between variants. b, The causal diagram implicitly assumed by 
TWAS. ̃X  represents the cis-genetic component of gene expression X.  
U represents an environmental confounder. c, The model of cTWAS. Gm, the 
genotype of mth variant; ̃Xj  and Xj, imputed expression and actual expression of 
the jth gene; θm, direct effect of the mth variant on the trait y; βj, effect size of the 

jth gene; ϵ, error term; δ0, point mass at 0. πG and πV are prior probability of being 
causal for genes and variants, respectively; σ2G andσ2V  are prior variance of the 
effect sizes of causal gene and variants, respectively. d, The workflow of the 
summary statistics version of cTWAS. The main steps of cTWAS are shown in the 
red boxes. cTWAS reports PIP for all genes and variants within LD blocks. P values 
for the genes and variants from marginal association tests are shown at the top as 
a comparison. Red dashed lines from the output panel indicate the genome-wide 
significance level or the PIP threshold for genes.

http://www.nature.com/naturegenetics


Nature Genetics

Technical Report https://doi.org/10.1038/s41588-023-01648-9

widely used in statistical fine-mapping19–22. Our approach, cTWAS, 
generalizes standard fine-mapping methods by including imputed 
gene expression and genetic variants in the same regression model. 
In realistic simulations and applications to real data, cTWAS greatly 
reduces the number of false discoveries from TWAS, colocalization 
and MR-based methods, laying a foundation for the reliable discovery 
of causal genes from GWAS.

Results
Overview of the cTWAS model
We start with a formal description of standard TWAS23. We assume genetic 
variants, denoted as G, affect the expression of a gene, X, which affects 
a trait y (Fig. 1b). Both X and y could be affected by unobserved environ-
mental variable(s) U, such as diet. We introduce ̃X  to denote the cis-genetic 
component of X. Importantly, the genetic variants G act on y only through 
̃X . Under this model, the regression coefficient of ̃X , with y as the 

response, would give the causal effect of X on the trait. The confounder 
U is not a concern here because U contributes only to the nongenetic 
component of X. In a formal language, the path from ̃X  to y through U 
has a collider, X, which blocks the association. Following similar analysis, 
TWAS are also robust to ‘reverse causality’ where y affects X (Supplemen-
tary Fig. 1). In such a case, X is a collider in the paths from ̃X  to y.

Unfortunately, the key assumption underlying TWAS, which G is 
not associated with y through other paths, is often violated. In the 
example discussed in Fig. 1a, ̃X  may become correlated with y, through 
a nearby variant G′, or the genetic component of a nearby gene X′. These 
are technically known as backdoor paths, leading to possible false 
discoveries by TWAS (Supplementary Fig. 1).

To control for all potential confounders, cTWAS jointly models the 
dependence of phenotype on all imputed genes, and all variants, with 
their effect sizes denoted as βj for genes and θm for variants, respec-
tively (Fig. 1c). Joint estimation of all these parameters would then 
lead to causal effect estimates. In practice, to simplify computation, 
we partition the genome into disjoint blocks, with imputed expression 
and variants independent across blocks, and perform the analysis 
block-by-block.

The potentially high correlations among the variables in cTWAS 
pose a new challenge. To address this, we assume that in any genomic 
region, causal effects, whether they are from genes or variants, are 
sparse. The problem then becomes similar to standard fine-mapping, 
where one aims to identify a small number of likely causal variants 
among many correlated ones. Additional intuitions help explain that 
the model can potentially learn gene effects despite collinearity. While 
most variants are nonfunctional, gene expression traits should be more 
likely to have causal effects a priori. Also, a causal gene may have mul-
tiple eQTLs, each of which would be associated with the trait. Thus, a 
single gene effect would be a more parsimonious explanation of data, 
compared with several independent variant effects.

We thus fit cTWAS using the statistical machinery developed for 
fine-mapping. We assume sparse prior distributions of the gene and 
variant effects (Fig. 1c) and use an empirical Bayes strategy to estimate 
these prior parameters. With the estimated parameters, we infer likely 
causal genes and variants in each block, using SuSiE, a state-of-the-art 
fine-mapping method19,20. The results of cTWAS are expressed as poste-
rior inclusion probabilities (PIPs) of genes and variants, representing 
the probabilities that genes or variants have nonzero effects (Fig. 1d). 
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Fig. 2 | Parameter estimation and PIP calibration in simulations. a, Accuracy 
of the estimated parameters related to gene effects. Each plot shows one 
parameter: πG, prior probability for a gene being causal; enrichment (πG/πV), 
where πV is prior probability for a variant being causal, effect size for gene and 
PVE of gene. Results from two simulation settings are shown, the high and low 
gene PVE settings. Each dot represents the result from one of five simulations. 

Horizontal bars show the true parameter values. b, Gene PIP calibration. Gene 
PIPs from all simulations are grouped into bins. The plot shows the proportion of 
true causal genes (y axis) against the average PIPs (x axis) under each bin.  
A well-calibrated method should produce points along the diagonal lines 
(red). The ±s.e. is shown for each point in the vertical bars calculated over five 
independent simulations.
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While cTWAS is formulated in terms of individual-level data, we have 
also derived a version based on summary statistics (Fig. 1d; Methods).

The cTWAS model generalizes and unifies a number of existing 
methods (Discussion). We show that under a simple scenario where 
genes have only single eQTL variants, cTWAS reduces to colocalization 
methods (Supplementary Notes). Similar to TWAS, cTWAS can also be 
viewed as a two-stage MR method24, where cis-genetic expression is 
used as the IV. However, cTWAS accommodates horizontal pleiotropy 
through the inclusion of effects from variants and other genes. Lastly, 
while our primary goal is gene discovery, the learned prior parameters 
allow us to estimate the proportion of heritability attributable to gene 
expression. This application is related to several other methods25,26.

cTWAS controls false discoveries in simulation studies
We designed realistic simulations to assess the performance of 
cTWAS. Previous studies often simulate individual regions, and 
these regions usually contain causal genes. In our simulations, we 
created genome-wide data across all regions, under realistic genetic 
parameters from previous studies25. In particular, the proportion of 
heritabilities mediated through eQTLs are relatively low, so many 
regions may have causal variants, but not causal genes. Specifically, 
we used genotype data of variants with a minor allele frequency 
of >0.05 from ∼45k samples of White British ancestry from the UK 
Biobank27, and imputed gene expression using the prediction models 
from GTEx by FUSION5. We varied prior probabilities for genes and 
single-nucleotide polymorphisms (SNPs) being causal, and prior 
effect size variances, with a total of ten settings. We focused on two 
representative settings in the main results here, where the proportion 
of trait variance explained by gene expression set at 10% (high gene 
PVE setting, where PVE stands for ‘proportion of variance explained’) 
or 4% (low gene PVE).

We first assessed the accuracy of parameter estimation. cTWAS 
estimated parameters were generally close to true values (gene results 
in Fig. 2a, and variant results in Supplementary Fig. 2). In practice, what 
matters most is the ratio of prior probability of gene effects to that of 
variant effects. This ‘enrichment’ parameter determines the extent to 
which the model favors gene versus variant effects. Although cTWAS 
slightly underestimated some prior parameters under some settings, 
the estimated enrichment remains accurate (Fig. 2a). Finally, cTWAS 
accurately estimated the proportion of trait variance explained by the 
gene effects (Fig. 2a). We also found that PIPs of genes computed by 
cTWAS are well-calibrated (Fig. 2b and Supplementary Fig. 2). Good 
calibration means that at PIP > 0.9, we would expect at least 90% of 
genes above the threshold to be causal genes. Calibration is especially 
good at the high PIP range (90% or higher), which is what matters most 
in practice.

cTWAS successfully removed many noncausal genes with highly 
significant associations in standard TWAS (Fig. 3a). We systematically 
compared the performance of cTWAS with other methods, including 
the standard TWAS implemented by FUSION5, coloc28, MR-based meth-
ods (summary-data-based Mendelian randomization (SMR) with HEIDI 
filter11, MR-JTI13, PMR-Egger24 and MRLocus29 and FOCUS14, a multigene 
analysis method. Despite using stringent statistical thresholds, all these 
methods suffered from high false-positive rates (Fig. 3b). In contrast, 
cTWAS controlled the proportions of false discoveries in all settings 
(Fig. 3b). The power of cTWAS is somewhat lower, especially in the low 
gene PVE setting (Fig. 3b). This may reflect the fact that cTWAS threshold 
is somewhat conservative. Indeed, despite a threshold of PIP > 0.8, the 
actual false discovery proportions (FDPs) were well below 20% (Fig. 3b).  
We also assessed the methods using a different metric—the power 
of a method at a given FDP. cTWAS again outperformed other meth-
ods (Supplementary Fig. 3). Somewhat unexpectedly, the MR-based 
methods performed similarly or worse than other methods. We thus 
performed an additional investigation of false positives in one of these 
methods, PMR-Egger (Supplementary Notes).

We illustrated, with two examples, how cTWAS removed false 
positives. In the first example, the region has a single causal effect in 
Gene 1. However, because of LD, two noncausal genes (Genes 2 and 3) 
also showed strong associations with the trait (Fig. 3c, top). cTWAS 
correctly identified Gene 1 as the true signal, and assigned low PIPs 
to the two other genes (Fig. 3c, bottom). In contrast, coloc assigned 
a high probability of colocalization to the noncausal Gene 3 (coloc 
PP4 = 0.995). In the second example, the causal signal in the region 
is an SNP, but it is in LD with the eQTL of Gene 1, creating a significant 
association of Gene 1 with the trait (Fig. 3d, top). cTWAS was able to 
correctly identify the SNP effect as the causal signal and assigned low 
PIP to Gene 1 (Fig. 3d, bottom). Coloc again gave a high probability of 
colocalization to Gene 1 (PP4 = 0.8).

Finally, we investigated whether cTWAS is robust to different 
simulation settings. We added a setting where the trait heritability 
was considerably lower, with PVE of variants 0.1–0.2, and PVE of genes 
0.01–0.1. cTWAS was able to estimate the parameters accurately, pro-
duce calibrated PIPs and outperform other methods (Supplementary 
Figs. 4 and 5). Next, we used a different definition of LD blocks30 in 
running cTWAS. The resulting PIPs are calibrated and highly correlated 
with those from our default setting (Supplementary Fig. 6). Lastly, we 
sampled the effect sizes of causal genes and variants from mixtures of 
several normal distributions. These distributions better capture the 
‘long tails’ of effect size distributions, that is some genes or SNPs have 
especially large effect sizes. We found that the gene effect enrichment 
was still accurately estimated, and PIPs were well-calibrated (Supple-
mentary Fig. 7).

cTWAS accurately identified causal genes of LDL cholesterol
We applied cTWAS to GWAS of low-density lipoprotein (LDL) cholesterol 
from the UK Biobank31. We used the expression prediction models from 
GTEx32 liver in PredictDB4,33. After harmonizing eQTL data with the UK 
Biobank LD panel (Methods), we included 9,881 protein-coding genes 
in the analysis. Using the summary level GWAS data, cTWAS estimated 
that genes were 62 times more likely than variants to be causal for LDL 
a priori (Supplementary Fig. 8a). Genetic variants and imputed expres-
sion together explained 5.6% of the variation of LDL (total heritability), 
of which 22.7% was attributable to expression. These estimates are in 
line with the 8.3% estimate for total heritability using LD score regres-
sion34 and 33.5% of mediated heritability through expression using 
MESC25. The somewhat lower estimates of cTWAS may result from its 
assumption of sparse causal effects.

cTWAS identified 35 genes with PIP > 0.8 (Supplementary 
Table 1). In contrast, standard TWAS identified 215 genes at a 
Bonferroni-corrected threshold of 0.05. Following an earlier strategy 
to assess these results35, we used 69 known LDL-related genes as the 
positive set (‘silver standard’)13,36, and nearby ‘bystander’ genes within 
1 Mb as the negative set. We limited our analysis to 46 imputable genes 
of 69 silver standard genes and 539 imputed bystander genes (Supple-
mentary Table 2). cTWAS has a precision of 75% (6 of 8, Fig. 4a), greatly 
outperforming standard TWAS, which has a precision of 31% (19 of 61).

To illustrate how cTWAS avoided false positives, we examined two 
loci in detail. The first locus contains five genes substantially associated 
with LDL by TWAS, including HPR and four other genes. cTWAS identi-
fied a single candidate, HPR (PIP = 1.000), while giving no evidence 
(PIP < 0.01) to all other genes (Fig. 4b). Literature evidence suggests 
that HPR, a haptoglobin-related protein that binds hemoglobin and 
apolipoprotein-L37, is the likely causal gene at this locus. For compari-
son, we also ran a few other methods (Supplementary Fig. 9). Coloc 
reported modest evidence of colocalization for HPR (PP4 = 0.64). SMR 
missed HPR and reported two other genes instead. While FOCUS gave 
high PIP to HPR, it also reported additional high PIP genes. The extra 
candidate genes from SMR and FOCUS have no obvious connections 
with the biology of LDL. This example shows that cTWAS avoids false 
positives due to confounding with nearby gene expression.
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The second locus has three genes strongly associated with LDL by 
TWAS (Fig. 4c, top). A recent method, MR-JTI13, highlighted POLK, DNA 
polymerase κ, as the potential causal gene at this locus, and proposed 
a connection between DNA repair and regulation of LDL. The associa-
tions of the three genes, however, were much weaker than some nearby 
variants. Indeed, cTWAS selected several variants as causal signals while 
giving little evidence to all three genes (Fig. 4c, bottom). Other popular 
methods (coloc, SMR and FOCUS) all gave modest or strong support 
of POLK as the risk gene (Supplementary Fig. 10).

To better understand these results, we inspected the fine-mapping 
results of PolyFun, which uses functional information of variants 
to improve fine-mapping38. PolyFun identified two credible sets in 
the region, both of which are inside or close to the gene HMGCR, 
whose expression was not imputable in our data (Fig. 4d). All these 
variants are far from the three TWAS genes (>200 kb). In addition, 
promoter-capture Hi-C (PC-HiC) and the activity-by-contact score in 

the liver provided no evidence linking these variants to POLK. Instead, 
the top variant, rs12916 (PIP = 0.99) is within the 3′ UTR of HMGCR, 
and 1,310 bp away from a chromatin loop interacting with the HMGCR 
promoter (Fig. 4d). Consistent with these results, HMGCR is an enzyme 
for cholesterol synthesis and the target of statin, a key drug for reduc-
ing LDL levels39. All the evidence thus points to HMGCR, instead of 
POLK, as the causal gene in this region. This example demonstrates 
that by controlling nearby genetic variants, cTWAS is able to avoid 
false-positive genes.

We systematically evaluated the sources of false-positive find-
ings from standard TWAS. We call a gene a likely false positive if it is 
significant under TWAS (Bonferroni threshold), but PIP < 0.5 under 
cTWAS. These cases were classified into ‘confounding by genes’ or 
‘confounding by variants’ depending on whether the low PIPs of these 
genes were driven by nearby genes or variants (Methods). The majority 
of 83 false-positive genes (75%; Fig. 4e) were driven by confounding 
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indicated by the red dotted line. Top, values of PP4 (probability of colocalization) 
from coloc analysis were shown for each gene of interest.
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Fig. 4 | cTWAS avoids false discoveries of candidate genes of LDL cholesterol. 
a, Precision of cTWAS and TWAS in distinguishing LDL silver standard genes from 
nearby bystander genes. b, cTWAS results at the HPR locus. Top, −log10 P value 
of variants from GWAS and genes from TWAS. Each square represents a gene 
with position determined by its transcription start site. Each circle represents a 
variant. Colors indicate LD between the focal gene (orange) and nearby genes and 
variants: high LD (purple; R2 > 0.4) and low LD (green, R2 ≤ 0.4). The red dotted line 
indicates the transcriptome-wide significance threshold for TWAS (Bonferroni-
corrected P < 0.05). The middle track represents the positions of the eQTL for 
the focal gene. Bottom: cTWAS PIPs for variants and genes at this locus. c, cTWAS 
results at the POLK locus. Description is the same as in b. d, Fine-mapping for the 

locus around HMGCR and POLK genes. The top two tracks represent the  
−log10 P value of variants (with color representing LD with the lead variant) 
and their PIPs from fine-mapping with PolyFun-SuSiE (with color representing 
credible sets). Only variants with reported PIPs were shown in the plot. The third 
track represents liver H3K4me1 peak calls from ENCODE. The fourth track shows 
interactions identified from liver PC-HiC data. The fifth track shows interactions 
identified from liver ABC data. The links in red highlight regions looped to the 
HMGCR promoter. e, Sources of confounding for TWAS false-positive findings.  
A TWAS gene was considered a false positive if its cTWAS PIP ≤ 0.5. Only genes that 
can be assigned to a credible set were included in the analysis. ABC, activity-by-
contract.
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variants. These results show that the greatest risk of TWAS is not shared 
eQTLs among nearby genes but the correlation of genes with nearby 
variants whose effects are not manifested as eQTLs.

To seek new insights into the genetics of LDL, we evaluated the 
functions of 35 genes with cTWAS PIP > 0.8 (Fig. 5a). Only six of these 
genes were in the curated silver standard genes, and 20 were not 
the nearest genes of GWAS lead variants (Fig. 5a). The 35 genes were 
enriched for multiple cholesterol-related Gene Ontology (GO) Bio-
logical Process terms (false discovery rate (FDR) < 0.05; Fig. 5b, 13 
nonredundant terms shown; Supplementary Table 3). Compared with 
the GO enrichment results from silver standard genes (Supplementary 
Table 4) and GWAS gene set analysis using MAGMA (Supplementary 
Table 5), several GO terms from cTWAS genes were new, including 
‘peptidyl-serine phosphorylation’ and ‘activin receptor signaling path-
way’, highlighting the importance of signal transduction in LDL regu-
lation. Activin signaling, in particular, regulates metabolic processes 

including lipolysis and energy homeostasis40,41. The cTWAS genes 
associated with the two terms include well-known LDL genes, such as 
CSNK1G3, TNKS and GAS6, as well as new and promising genes such  
as ACVR1C, an activin receptor, and PRKD2 (Fig. 5c, Supplementary  
Fig. 8b and Supplementary Notes). In the cases of ACVR1C and PRKD2, 
no nearby variant reaches genome-wide significance.

While cTWAS reduced false positives and identified promising 
LDL candidate genes, its power seemed low, identifying 6 of 69 silver 
standard genes (Fig. 4a). To understand why, we categorized the out-
come of cTWAS for all 69 genes (Fig. 5d). Many silver standard genes 
had no significant GWAS association signals nearby (26.1%, 18 of 69), 
no imputable liver expression (33.3%, 23 of 69) or insignificant TWAS 
associations (13.0%, 9 of 69). These results suggest that to improve the 
power of cTWAS, and eQTL-based methods in general, it is necessary to 
improve the power of GWAS and the power of eQTL studies, and include 
more trait-related tissues/cell types (Discussion).

Cellular response to growth factor stimulus

Response to growth factor

Cellular protein modification process

Regulation of cholesterol e
lux

Activin receptor signaling pathway

Positive regulation of cyclin-dependent
protein serine/threonine kinase activity

Cholesterol metabolic process

Cholesterol homeostasis

Protein phosphorylation

Negative regulation of cholesterol storage

Cellular response to sterol depletion

Lipid transport

Peptidyl-serine phosphorylation

0 2 4 6

Gene count

0.0025

0.0020

0.0015

0.0010

P value

a

Not
imputed

Detected
(PIP > 0.8)

No GWAS
signal

Significant by TWAS
but undetected

Insignificant
by TWAS

69 silver standard genes

–l
og

10
(P

)

ACVR1C

CYTIP

ACVR1C eQTL

157.40 157.45 157.50 157.55 157.60 157.65

0

1

2

3

4

5

6

0

0.4

0.8

Chromosome 2 position (Mb)

cT
W

AS
 P

IP

Gene
SNP
Lead TWAS gene
R2 > 0.4
R2 ≤ 0.4

ACVR1C

CYTIP

CYTIP ACVR1C

b

c

d

KLHDC7A

SYTL1

USP1

PSRC1

1.0

0.8

cT
W

AS
 P

IP

Chromosome

0.6

0.4

0.2

1

CNIH4

ALLC

ABCG8 INSIG2

INHBB

ACVR1C

PELO

CSNK1G3

TRIM39

SP4

NPC1L1

DDX56

POP7

SRRT

TNKS
TTC39B

ABCA1

PKN3 C10orf88

CRACR2B

SPTY2D1

FADS1

CCND2

GAS6

HPR

STAT5B KDSR

CYP2A6

PRKD2

FUT2

PLTP

2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 22

Fig. 5 | Candidate genes and pathways for LDL discovered by cTWAS. a, PIPs of 
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genes (green); nearest genes of genome-wide significant loci but not in silver 
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terms were omitted for clarity (Methods). Gene count means the number of 
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Description is the same as in Fig. 4b,c. d, Summary of cTWAS outcomes for all 
69 silver standard genes into the following categories: detected by cTWAS at 
PIP > 0.8 (‘detected (PIP > 0.8)’); significant by TWAS (Bonferroni threshold), but 
not detected by cTWAS (‘significant by TWAS but undetected’); insignificant by 
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cTWAS discovered candidate genes of several common traits
We applied cTWAS to GWAS summary statistics of inflammatory bowel 
disease (IBD), systolic blood pressure (SBP) and schizophrenia (SCZ). 

We used the expression prediction models of protein-coding genes 
from PredictDB4,33,42 across 49 tissues in GTEx32. These models bor-
rowed information across tissues to improve prediction accuracy43. 
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(x axis) and cTWAS (y axis). Each dot represents the result from one tissue. The 
black dotted line denotes equivalence between the methods, and the blue dashed 
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b, The number of cTWAS genes detected at PIP > 0.8 in the top two tissues for 
IBD, SBP and SCZ. Top tissues per trait are determined by the number of detected 
genes. c, The number of cTWAS genes detected for IBD at PIP > 0.8 across major 
tissue groups. A gene was detected in a tissue group if it was detected in any of 
the tissues in that group. A gene was considered new if it was not a silver standard 

gene (‘known’) or if it was not the nearest gene to a genome-wide significant locus 
for IBD (‘nearest’). d, The number of tissues with cTWAS PIP > 0.5 for 56 IBD genes 
detected at PIP > 0.8 in the ‘blood/immune’ or ‘digestive’ tissue groups.  
e, Nonredundant GO terms enriched among 56 detected IBD genes in the ‘blood/
immune’ or ‘digestive’ tissue groups. These terms were found using the Weight 
Set Cover method from WebGestalt. Of 56, 29 genes were associated with at 
least one of the GO terms. f, cTWAS results for IBD at the UBE2W locus using the 
‘colon transverse’ eQTL data. Description is the same as the previous locus plots. 
Note that the P value of UBE2W from TWAS is significant using the less stringent 
Benjamini–Hochberg procedure of multiple testing corrections.
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The number of imputed genes ranged from 6,591 to 11,985 across tis-
sues (Supplementary Fig. 11). We ran cTWAS analysis in each tissue 
separately. We summarized the results below, with an emphasis on 
IBD as a representative trait.

We first assessed the parameters learned by cTWAS. The prior 
probability of a gene being causal ranged from 0.17% to 2.16% across 
tissue–trait pairs (Supplementary Fig. 12 and Supplementary Table 6). 
For example, for IBD, the top tissue is whole blood, with the percent 
of causal genes (1.54%). The estimated proportions of heritability 
explained by the genetic components of expression were generally 
small, for example, for IBD, from 4% to 15% (Fig. 6a and Supplementary 
Table 6). These estimates were in line with estimated values from MESC 
(Fig. 6a, Supplementary Fig. 13 and Supplementary Table 7).

We next assessed the number of high-confidence genes at PIP > 0.8 
(Supplementary Fig. 14). In the top two tissues per trait, cTWAS identi-
fied 13–26 genes (Fig. 6b). In general, the number of cTWAS genes was 
much smaller than those from standard TWAS (Supplementary Fig. 15).  
For instance, for IBD, while TWAS reported 68–125 genes across 49 
tissues, cTWAS identified 0–17 genes (Supplementary Fig. 15). These 
results show that only a small proportion of genes found by TWAS are 
likely causal.

To increase the power, we grouped related tissues into ‘tissue 
groups’ and took the union of genes across tissues within a group 
(Fig. 6c and Supplementary Fig. 16). The top tissue groups include 
trait-relevant tissues, such as ‘digestive’ tissue for IBD (Fig. 6c), ‘cardio-
vascular’ for SBP and ‘central nervous systems’ for SCZ (Supplementary 

Table 1 | IBD genes detected by cTWAS in the blood/immune and digestive tissue groups

Gene Position Max PIP tissue Max PIP Tissue z 
score

Other tissues detected Evidence

TNFSF15 Chr9:114784652 Esophagus muscularis 1.000 −11.16 Spleen, whole blood Nearest, known

CARD9 Chr9:136363956 Spleen 0.997 12.60 Whole blood, esophagus muscularis New

OAZ3 Chr1:151762899 Colon sigmoid 0.995 5.14 – New

RNF186 Chr1:19814029 Colon transverse 0.988 −7.27 – Known

CASC3 Chr17:40140318 Esophagus mucosa 0.981 −5.97 Colon sigmoid New

IFNGR2 Chr21:33403413 Stomach 0.981 5.80 Colon transverse Nearest

BRD7 Chr16:50313487 Whole blood 0.977 −6.86 – New

CD244 Chr1:160830160 Esophagus mucosa 0.971 −5.59 – New

CCL20 Chr2:227805739 Colon sigmoid 0.968 5.19 – New

IL1R2 Chr2:101991960 Colon transverse 0.967 6.25 – New

FOSL2 Chr2:28392448 Esophagus gastroesophageal 
junction

0.962 −7.39 – Nearest

FCGR2A Chr1:161505430 Esophagus mucosa 0.961 9.18 Colon sigmoid, small intestine terminal 
ileum

Nearest

SOCS1 Chr16:11254417 Whole blood 0.961 −5.63 – New

IRF8 Chr16:85899116 Colon transverse 0.951 6.54 – Nearest

RGS14 Chr5:177357924 Esophagus muscularis 0.948 −6.30 Colon sigmoid, esophagus 
gastroesophageal junction, small 
intestine terminal ileum

Nearest

CD200R1 Chr3:112921205 Whole blood 0.946 −4.20 – New

LSP1 Chr11:1850904 Esophagus muscularis 0.946 5.20 Spleen, colon sigmoid New

ZFP36L2 Chr2:43222402 Spleen 0.943 −6.65 – New

TYMP Chr22:50525752 Esophagus mucosa 0.942 −4.34 – New

EFEMP2 Chr11:65866441 Stomach 0.939 4.90 Colon sigmoid, esophagus 
gastroesophageal junction

New

MRPL20 Chr1:1401909 Whole blood 0.938 5.45 – New

ERRFI1 Chr1:8004404 Whole blood 0.938 6.55 – Nearest

UBE2W Chr8:73780097 Colon transverse 0.934 −4.18 – New

PRKD2 Chr19:46674275 Colon transverse 0.926 −4.48 – New

CCR5 Chr3:46370946 Whole blood 0.925 −4.54 – New

ADAM15 Chr1:155050566 Stomach 0.917 −5.56 Cells EBV-transformed lymphocytes, 
spleen, whole blood, esophagus 
muscularis, small intestine terminal ileum

New

STAT3 Chr17:42313324 Whole blood 0.916 8.20 – Nearest

RASA2 Chr3:141487027 Stomach 0.914 4.48 Esophagus gastroesophageal junction, 
esophagus muscularis

New

SBNO2 Chr19:1107637 Esophagus mucosa 0.914 4.44 – Nearest

OSER1 Chr20:44195939 Esophagus mucosa 0.911 −4.75 Spleen New

Genes detected by cTWAS at PIP > 0.9 in at least one of the tissues in the two tissue groups. The Max PIP Tissue, Max PIP and z-score columns denote the tissue with the highest PIP for each 
gene, its corresponding PIP and z score from TWAS in that tissue. The other tissue column lists any additional tissues with cTWAS PIP > 0.8. The evidence column denotes whether each gene is 
in the silver standard gene list (‘known’), the nearest gene to genome-wide significant GWAS peak for IBD (‘nearest’), or otherwise new (‘new’).
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Fig. 16). The number of discovered genes in the top tissue group per 
trait ranged from 37 (IBD) to 48 (SBP), highlighting the increased power 
of discovery from multiple tissues. We also assessed the novelty of 
the found genes. In the case of IBD, most cTWAS genes were not in the 
curated genes for IBD44, and not the nearest protein-coding genes of 
lead genome-wide significant GWAS variants (Fig. 6c).

We found that most cTWAS genes were identified in a small number 
of tissues (Supplementary Fig. 17). For instance, for 56 IBD genes found 
in the ‘blood/immune’ or ‘digestive’ tissue groups, 57% were found, 
at a relaxed threshold of PIP > 0.5, in five or fewer tissues (Fig. 6d).  
One caveat in interpreting these findings is that the power of discov-
ery is low, so cTWAS may underestimate the number of tissues for 
discovered genes.

We examined specific genes found by cTWAS (see Supplementary 
Data for all traits). We focused our analysis here on 56 IBD candidate 
genes at PIP > 0.8, in the following two biologically relevant tissue 
groups: digestive and blood/immune (Supplementary Table 8). At a 
more stringent PIP > 0.9, 30 genes were found (Table 1). The set of 56 
genes included well-known IBD genes, such as TNFSF15, CARD9, RNF186, 
ITGAL and ATG16L1. Gene set enrichment analysis revealed IBD-related 
GO terms (Supplementary Table 9). Using Weighted Set Cover45, we 
identified four nonredundant GO terms, including ‘cytokine produc-
tion’ and ‘defense response’ (Fig. 6e).

We highlight some new genes found by cTWAS. Many of these 
genes, namely, IFNGR2, FOSL2, STAT3, FCGR2A, IRF8 and ZFP36L2 (Sup-
plementary Note) are located within known IBD-associated loci and 
have immune functions. cTWAS also identified new genes in the loci 
whose associations fall below the standard GWAS cutoff. Some of these 
genes, including UBE2W (Fig. 6f), TYMP, LSP1 and CCR5 (Supplemen-
tary Fig. 18 and Supplementary Note), have IBD-related functions. For 
example, UBE2W is a ubiquitin-conjugating enzyme. Ubiquitination is  
a post-translational modification that controls multiple steps in 
autophagy, a key process implicated in IBD. Indeed, UBE2W knockdown 
mice showed mucosal injuries, and its overexpression ameliorated the 
severity of experimental colitis, a model of IBD46.

Discussion
Expression QTL data are commonly used to nominate candidate genes 
for complex traits. Existing methods for such analysis, however, are sus-
ceptible to false-positive findings. Our approach generalizes the TWAS 
model by jointly modeling the effects of all gene expression traits and 
genetic variants in a region. Through simulations and applications to 
several GWAS traits, we showed that cTWAS reduced false findings and 
discovered a number of candidate genes for these traits, highlighting 
its potential as a powerful gene discovery tool.

cTWAS is related to existing methods but has several key advan-
tages. When the gene of interest has a single causal eQTL, and the 
gene is the only causal gene in a locus, cTWAS reduces to colocaliza-
tion analysis (Supplementary Note)8,28,47. Colocalization, however, 
typically focuses on individual variants, yet cTWAS uses imputed gene 
expression, which combines the effects of multiple variants. While 
colocalization has been generalized48, it does not explicitly account 
for the combined effects of variants. cTWAS can also be viewed as a 
generalization of FOCUS, which uses a similar fine-mapping framework, 
but includes mostly gene effects, with a very simple model of variant 
effects. As our results showed (Fig. 4e), confounding by nearby vari-
ants is a much more common source of false discoveries. cTWAS is also 
related to some MR-based methods. PMR-Egger24 jointly models the 
effect of a gene on a phenotype and the potential pleiotropic effects 
of variants. This model, however, analyzes one gene at a time, and 
its treatment of pleiotropy is overly simplified, assuming all genetic 
instruments of a gene have identical pleiotropic effects. TWMR12 uses 
multivariate MR to jointly infer the causal effects of multiple genes in 
a locus. However, it does not explicitly model the pleiotropic effects 
from variants.

The power of cTWAS is somewhat limited (Fig. 5d). This probably 
reflects the fact that cis-genetic components of expression explain rela-
tively low proportions of heritability25 (Fig. 6a). One explanation is that 
most complex traits probably have genetic components from multiple 
tissues, while our analysis was limited to one tissue a time. Indeed, com-
bining results across multiple tissues increased the power of cTWAS 
(Fig. 6c). Another explanation is that regulatory variants may act in 
specific cell types, developmental stages or conditions (for example, 
stimulation), and are missed by current eQTL studies. Ongoing efforts 
to map eQTLs across various cell types and in disease-related condi-
tions would mitigate this challenge and improve the power of cTWAS. 
Lastly, we note that cTWAS can be applied to other types of molecular 
QTL data, for example, splicing or chromatin accessibility QTLs, which 
may explain a large fraction of heritability missed by eQTLs49.

We discuss possible directions for further development. First, 
it is relatively straightforward to include more tissues or cell types 
in cTWAS. This can be done by including multiple groups of imputed 
expression traits, with different priors for different groups. This may 
increase the power to detect causal genes and help identify the ‘causal 
contexts’ of these genes. Second, we treated imputed expression  
levels as given. It may be helpful to account for imputation errors in 
the model50. Third, cTWAS assumes that eQTL and GWAS samples 
are from the same population ancestry. An important direction is to 
extend cTWAS to multiple ancestries. Lastly, it would be interesting 
to generalize the model to allow joint analysis of multiple types of 
molecular QTL data.

In conclusion, by modeling genetic variants and imputed gene 
expression jointly, cTWAS accounts for pleiotropic effects and LD, 
creating a robust framework for detecting causal genes. With the large 
amount of molecular QTL datasets available and being generated, 
cTWAS promises to translate genetic associations of diseases into 
knowledge of risk genes, disease mechanisms and potential thera-
peutic targets.
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Methods
Model of individual-level data
Let y be the quantitative phenotype, assumed to be standardized, of 
an individual. We assume that y depends on imputed gene expressions 
and variant genotypes of the individual. We denote Xj the expression 
of the gene j, ̃Xj, as its cis-genetic component, and Gm the genotype of 
the variant m. We assume that ̃Xj is given, imputed from a pretrained 
expression prediction model, and the imputation errors/uncertainty 
would be ignored. We have the following regression model:

y = ∑
j
βj ̃Xj +∑

m
θmGm + ϵ, (1)

where βj and θm are the effect sizes of gene expression j and the  
variant m, respectively. ϵ is a normally distributed error term, that is, 
ϵ ∼ N(0, σ2), and is assumed to be independent across individuals.  
In practice, we standardize both ̃Xj and Gm to make the variance equal 
to 1 for all the genes and variants.

To obtain the imputed expressions, we use existing expression 
prediction models. Specifically, the imputed expression of a gene j 
is defined as ∑lwjlGl, where Gl is the genotype of variant l, and wjl is the 
weight of the lth variant in gene j’s expression prediction model. We 
assume that these weights are given at the standardized scale, that is, 
the weights were derived using standardized variant genotypes. This 
is the case for the FUSION expression models (http://gusevlab.org/
projects/fusion/). When the provided weights are not on the standard-
ized scale, for example, from PredictDB (https://predictdb.org/), these 
weights must be scaled. This can be done by multiplying the weights 
by genotype variances from the LD reference.

We specify different prior distributions of gene effects βj’s, and 
variant effects θm’s. To describe these priors, we note that our model is 
a special case of a more general regression model, where explanatory 
variables come from multiple groups with different distributions of 
effect sizes.

We write the general model with K groups of explanatory vari-
ables as

y =
K
∑
k=1

∑
j∈Mk

βjXj + ϵ, (2)

where Xj is jth explanatory variable and j ∈ Mk denotes that it belongs 
to group k. In our case, the model has two groups of variables, imputed 
gene expressions and genetic variants. For simplicity of notation, we 
will use this general model in our following discussions. We assign 
a spike-and-slab prior distribution for the effect of variable j, with 
group-specific prior parameters. Specifically, when j ∈ Mk, we denote 
γj an indicator of whether Xj has nonzero effect

γj ∼ Bernoulli (πk)

βj|γj = 1 ∼ N(0,σ2k)

βj|γj = 0 ∼ δ0.

(3)

Here δ0 is the Dirac’s delta function, πk = P(γj = 1∣j ∈ Mk) is the prior 
probability of the jth variable from group k being casual to the trait 
(nonzero effect) and σ2k  is the prior variance of the effect size of causal 
variables in the group k.

Inference of the individual-level model
The inference has two main steps. In the first step, we estimate the prior 
parameters θ = {πk,σ2k , k ∈ {1, 2}}  for the two groups, gene effects and 
variants effects. In the second step, we use the estimated θ, and com-
pute the PIP of each variable, defined as the posterior probability of 
γj = 1 given all the data and parameters.

The parameter estimation is done by maximum likelihood. Let 
yn×1 be the data of the response variable, where n is the sample size. 

Let Xn×p = [X1X2…Xp] be the data of all the p explanatory variables. The 
likelihood of our model is given by

L(θ;X,y,σ) = P(y|X,θ,σ) = ∑
Γ
P(y|X,Γ,θ,σ)P(Γ|θ), (4)

where Γ = [γ1, γ2, …, γp] represents the ‘configuration’ of the causal 
(nonzero effect) status of all variables. We note that σ is the standard 
deviation of the phenotypic variance, and is assumed to be given  
(see below). To maximize the likelihood, we use the expectation- 
maximization (EM) algorithm. In the E-step, we obtain the expectation 
of log-likelihood over Γ, 𝔼𝔼Γ logP(X,y,Γ|θ(t),σ), where θ(t) is the parameter 
value in the t-th iteration. In the M-step, we update θ(t) using the  
following rules to maximize the expectation from the E-step (Supple-
mentary Note):

π(t+1)k = 1
|Mk|

∑
j∈Mk

α(t)j (5)

σ2,(t+1)k =
∑j∈Mk

α(t)j ⋅ τ2,(t)j

∑j∈Mk
α(t)j

, (6)

where ∣Mk∣ is the number of variables in group k, α(t)j = P(γj = 1|X,y,θ(t),σ) 
is the PIP of variable j given data and current parameter values θ(t) and 
τ2,(t)j = 𝔼𝔼(β2

j |γj = 1,X,y,θ(t),σ)  is the second moment of the posterior 
effect size of variable j, given that it is a causal variable. The updated 
rules have simple interpretations. The new parameter π(t+1)k  is simply 
the average PIP of all variables in the group k and the new σ2,(t+1)k  is the 
weighted average of the second moment of the posterior effect sizes.

Computing αj and τ2j  at the t-th iteration (we removed superscript 
t from now on for simplicity) using all variables in the genome is com-
putationally challenging. To reduce the computational burden, we 
divide the genome into LD blocks using LDetect51 with variants approxi-
mately independent between blocks. We assign a gene to an LD block 
if all SNPs in its expression prediction model fall into that block. If the 
variants of the prediction model of any gene span multiple LD blocks, 
we merge all such blocks into a new block. We will then compute αj and 
τ2j  of the variables in each block independently, while still using all vari-
ables in the genome to update the parameters using Eqs. (5) and (6).

Even within a single block, there may still be hundreds to thou-
sands of variables. This makes it difficult to compute αj and τ2j , as it 
requires marginalization of Γ. To address this challenge, we first notice 
that our problem is now reduced to standard fine-mapping or Bayesian 
variable selection problem, with different prior distributions of the 
effects of different variables. Therefore, we borrow from fine-mapping 
literature to compute αj and τ2j  (refs. 19,20; see Supplementary Note 
for details).

After we estimate the prior parameters, we apply SuSiE19, a 
fine-mapping method, on all variables, including both genes and 
variants, in each block. Note that all blocks, including the large blocks 
pruned in the parameter estimation step, will be analyzed. In applying 
SuSiE, we set the prior probability and prior effect variance of each 
variable, using the estimated parameters of the group (genes or vari-
ants) that this variable belongs to. We allow multiple causal variables 
by setting L = 5 in SuSiE and assigning null weight as 1 − ∑jpj. SuSiE will 
then return PIPs of all genes and variants in each LD block.

Model of summary statistics
The summary data would include the effect size estimates of variants, 
β̂j, and their standard errors sj, as well as the LD between all pairs of 
variants, denoted as the matrix R. The effect sizes can be standardized, 
denoted as ̂zj = β̂j/sj. Given that the summary data have only variant 
information, our model would first need to expand the summary data 
to include gene information. Specifically, we compute the marginal 
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association of each imputed gene with the GWAS trait, and the correla-
tion of any gene with all other genes and all the variants. These calcula-
tions are described in the Supplementary Note. Once computed, we 
will have marginal associations of all variables, including genes and 
variants, ẑ, and their correlation matrix R. These data would be the 
input of our analysis.

Following the literature20,52, and particularly, the summary statis-
tics version of SuSiE (SuSiE-RSS)20, we have the following model of ẑ:

ẑ|z,R ∼ Np(Rz,R), (7)

where z = (z1, z2, …, zp) denotes the ‘standardized’ true effect sizes. We 
use the same spike-and-slab prior for zj—when the variable j belongs 
to the group k

γj ∼ Bernoulli (πk)

zj|γj = 1 ∼ N (0,σ2k)

zj|γj = 0 ∼ δ0.

(8)

Again, we denote θ = {πk,σ2k} the prior parameters and Γ the causal 
configuration. We estimate the prior parameters θ by MLE. This can be 
done with the same algorithm used for the individual-level model. 
Specifically, following SuSiE-RSS20, the likelihood function under the 
individual-level data can be rewritten in terms of sufficient statistics 
and s2j . Then, if we make the following substitutions, the likelihood of 
the individual-level model would be identical to that of the summary 
statistics model. Specifically, we change β = (β1, β2, …, βp) to z, XTX to 
R, XTy to ẑ, yTy to 1 and n to 1. Also, the prior model of z in the summary 
statistics model is the same as the prior model of β in the individual-level 
model. Therefore, we can use the same EM algorithm and the update 
rules to estimate θ. The update rules follow Eqs. (5) and (6), where the 
PIP of variable j is now defined as α(t)j = P(γj = 1|ẑ,R,θ(t)) and the second 
moment of the posterior effect τ2,(t)j = 𝔼𝔼(z2j |γj = 1, ẑ,R,θ(t)).

Once the parameters were estimated, we followed the same pro-
cedure as in the individual-level model to obtain PIPs of all variables, 
except that SuSiE-RSS is used in fine-mapping.

Estimating proportions of phenotypic variance explained by 
variants and genes
We assume that all the explanatory variables and the response variable 
in the regression model are standardized, with a variance equal to 1. 
Then the proportion of variance explained (PVE) by a single variable, 
j, is simply β2

j ⋅ Var(Xj)/Var(y) = β2
j . Assuming that we use the z scores in 

the summary statistical model, the effect size is related to z score by 
βj = zj/√n, where n is the sample size. So, on average, the PVE of a vari-
able in group k (variant or gene) is 𝔼𝔼(z2j ) = σ2k/n, where σk is the prior 
variance of effect size in the group, k, at the z-score scale. The expected 
number of variables with nonzero effects in the group k is πk ⋅ ∣Mk∣, 
where πk is the prior inclusion probability and ∣Mk∣ is the group size. 
Putting this together, the PVE by the group k is given by

PVEk = σ2k ⋅ πk ⋅ |Mk| ⋅ n−1. (9)

This equation is used to compute PVE from estimated parameters using 
both simulated and real data.

Simulation procedure
In our simulations, we used the following data: (1) genotype data. We 
used genotype data from UK Biobank by randomly selecting 80,000 
samples. We then filtered samples to only keep ‘White British’, removed 
samples with missing information, mismatches between self-reported 
and genetic sex or ‘outliers’ as defined by UK Biobank. We also removed 
any individuals who have close relatives in the cohort. This ended up 
with a cohort of n = 45,087 samples. We used SNPs from chromosome 

(chr) 1 to chr 22 and selected those with a minor allele frequency of 
>0.05 and at least 95% genotyping rate. After filtering, 6,228,664 SNPs 
remained and were used in our analysis. (2) Gene expression prediction 
models. We used GTEx v7 Adipose tissue dataset. This dataset contains 
8,021 genes with expression models. We used the LASSO weights from 
the FUSION website (http://gusevlab.org/projects/fusion/).

We first impute gene expression for all samples using the predic-
tion models. SNP genotypes are harmonized between the expression 
prediction model and UK Biobank genotypes so that the reference and 
alternate alleles match. SNPs in the FUSION prediction models but not 
in UK Biobank, about 13% of all, were not used in imputing gene expres-
sion. We then sample the causal genes and SNPs under given prior 
inclusion probabilities πk’s and then sample their effect sizes accord-
ingly using the prior variance parameter σ2k. We then simulate y under 
the model defined in Eq. (1). The prior parameters πk,σ2k  were chosen 
to reflect the genetic architecture in real data. In particular, it was 
estimated that gene expression mediates about 10–20% of trait herit-
ability25. And the studies using rare variants for complex traits sug-
gested that about 5% of protein-coding genes are likely causal53. Given 
these considerations, we set the prior probability for SNPs to 10−4 or 
2.5 × 10−4, and PVE of SNPs to 0.3 or 0.5. For the genes, we set the prior 
probability to 0.015 or 0.05 and PVE of genes from 0.02 to 0.1.

To test if our method is robust to mis-specified priors for causal 
gene effect, we have also simulated causal gene effect under the mixture 
of normal distributions. For the mixture of normal distributions, we 
used equal mixtures of four normal distributions, each with mean 0 
and standard deviations with ratios of 1:2:4:8. That is for gene j, its prior 
distribution of causal effect size follows: βj|γj = 1 ∼ ∑ω∈[1,2,4,8]π′
(N(0,ωσ′2). The prior probability being a casual gene is, therefore, 4π′ 
and causal effect size variance is 15σ′2. The prior probability of being a 
casual gene and the PVE of genes were set to values as described above.

To run cTWAS, we performed the association of individual SNPs 
with the trait y, to obtain summary statistics of SNPs ẑSNP. We randomly 
selected 2,000 samples from the cohort to calculate SNP genotype 
correlation matrix or LD matrix R̂SNP. We then ran cTWAS summary 
statistics version under each simulation setting with ẑSNP, R̂SNP  and 
expression prediction models as input. The software will harmonize 
SNP genotypes for ẑSNP, R̂SNP and expression prediction models, so that 
the reference and alternate allele match. To further reduce the com-
putational burden in estimating parameters, we only used one in every 
ten SNPs (SNP thinning) in the EM algorithm. When calculating PIP, we 
first run SuSiE-RSS with L = 5 in each LD Block with thinned SNPs. For 
each block with maximum gene PIP > 0.8, we rerun SuSiE-RSS with L = 5 
with the original SNPs to get the final gene PIPs.

GWAS summary statistics
The LDL and SBP summary statistics were from the UK Biobank, 
computed by the Rapid GWAS project31 using Hail54. These summary 
statistics were downloaded from the IEU OpenGWAS project55 using 
GWAS IDs ‘ukb-d-30780_irnt’ (LDL) and ‘ukb-a-360’ (SBP). Both LDL 
and SBP summary statistics were based on the White British sub-
population of the UK Biobank, with sample sizes of n = 343,621 and 
n = 317,754, respectively. The IBD summary statistics were from the 
International IBD Genetics Consortium56, computed by meta-analysis 
using METAL57. These summary statistics were obtained from IEU 
OpenGWAS using GWAS ID ‘ebi-a-GCST004131’. IBD includes cases of 
both Crohn’s disease and ulcerative colitis. The IBD summary statistics 
were based on nonoverlapping samples of European ancestry with 
a combined sample size of n = 59,957. The SCZ summary statistics 
were from the Psychiatric Genetics Consortium and the CardiffCOGS 
study58, computed by meta-analysis using METAL57. These summary 
statistics were obtained from the authors via the link provided in the 
manuscript. The SCZ summary statistics were based on nonoverlap-
ping samples of primarily European ancestry with a combined sample  
size of n = 105,318.
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LD reference data
We computed the LD reference panel of common biallelic variants 
using the White British subpopulation of the UK Biobank. This panel 
is an in-sample reference for GWAS summary statistics from the Rapid 
GWAS project31. First, we used plate and well information from the 
genotyping to unambiguously identify over 99% (357,654 of 361,194) 
of the samples used in the Rapid GWAS project in our data. To ease 
computation, we randomly selected 10% of these samples to serve as 
the LD reference panel59. We also limited our panel to common auto-
somal variants with MAF > 0.01 in the Rapid GWAS analyses. Then, we 
computed correlations between all pairs of variants within each of 
1,700 approximately independent regions. These regions are assumed 
to have low LD between them and are based on previously identified 
regions51 that could be lifted over from hg37 to hg38 positions. The final 
LD reference panel consists of 1,700 correlation matrices and contains 
9,309,375 variants. This LD reference panel was used when analyzing 
all traits, including those that were not measured in the White British 
subpopulation of the UK Biobank.

Harmonization of GWAS data and expression prediction  
models to LD reference. We restricted our analyses to variants that 
were non-missing in the GWAS summary statistics, expression predic-
tion models, and LD reference panel. To ensure consistency between 
these three datasets, we performed two harmonization procedures. 
The objective of harmonization was to ensure that the reference and 
alternate alleles of each variant are defined consistently across all three 
datasets20. In our case, we must harmonize both the GWAS z-scores and 
the eQTL prediction models to our LD reference, and we use a different 
harmonize procedure for each. These procedures are based in part 
on previous work33. To describe the two procedures, it is necessary to 
define several cases of inconsistencies that can occur in either dataset. 
The first case is a variant with its reference and alternate alleles ‘flipped’ 
with respect to the LD reference. The GWAS z scores or eQTL weights 
in the prediction model of the flipped variants should have their signs 
reversed to be consistent with the LD reference. The second case is a 
variant that has had its strand ‘switched’ with respect to the LD refer-
ence (for example, variant is G/A in the LD reference but C/T in the other 
dataset). In this case, the reference and alternate alleles are the same, 
just named using different strands. The z scores or weights of switched 
variants should not be changed, as they are already consistent with the 
LD reference. The third case is a variant that is ‘ambiguous’ as to whether 
it is flipped or switched. This occurs when the two alleles of a variant 
are also complementary base pairs (A ↔ T substitutions or G ↔ C). For 
example, let us consider a variant that is A/T in the LD reference and 
T/A. It is unclear when this variant is flipped or switched with respect to 
the LD reference (both result in T/A), and it is ambiguous as to whether 
the signs of the z scores or weights should be reversed. We say that 
variants are ‘unambiguous’ when they do not involve substitutions of 
complementary base pairs.

To harmonize the z scores from GWAS summary statistics, we first 
identified all inconsistencies in reference and alternate alleles between 
the z scores and the LD reference. Next, we resolved all unambiguous 
cases of flipped and switched alleles, reversing the sign of z scores 
that were flipped and taking no action for switched alleles. Then, we 
imputed the z scores for ambiguous variants using all unambiguous 
variants in each of the LD regions60. If the sign of the imputed z score 
did not match the sign of the observed z score, we used the sign of the 
imputed z score, reversing the sign of the observed z score. Note that 
we did not perform the procedure to resolve ambiguous variants when 
analyzing LDL or SBP, as both the summary statistics and LD reference 
panel are derived from UK Biobank data.

To harmonize the eQTL prediction models, we first identified all 
inconsistencies in reference and alternate alleles between the predic-
tion models and the LD reference. Next, we resolved all unambiguous 
cases of flipped and switched alleles, reversing the sign of weights that 
were flipped and taking no action for switched alleles. These steps to 

resolve unambiguous variants are the same as in the z-score harmoni-
zation procedure. To resolve ambiguous variants, we leveraged cor-
relations between ambiguous and unambiguous variants in both our 
LD reference panel and the LD panel used to construct the PredictDB 
models. PredictDB reports the covariance between pairs of variants 
within each gene prediction model. For gene prediction models that 
include both ambiguous variants and unambiguous variants, we com-
puted the sum of correlations between each ambiguous variant and 
the unambiguous variants in the prediction model, using both our LD 
reference panel and the LD used for the prediction models. If the sign 
of the total correlation in the LD reference of the prediction models did 
not match the sign of the total correlation in our LD reference panel, 
we reversed the sign of the prediction model weights for the ambigu-
ous variant. If the total correlation in the LD reference was equal to 
zero, then we set the weight of the ambiguous variant to zero, as these 
ambiguous variants did not have any unambiguous variants in the 
same LD region. For gene prediction models that include only a single 
ambiguous variant and no unambiguous variants, we left the sign of 
the prediction model weight unchanged; the resulting gene z score may 
have an incorrect sign, but the magnitude of the z score will be correct. 
We excluded gene prediction models with multiple ambiguous variants 
and no unambiguous variants, as their gene z scores could be incorrect 
in both sign and magnitude. Such exclusions were infrequent, affecting 
less than 1% of liver genes in the LDL analysis (94 of 11,502 genes with 
prediction models).

Performing cTWAS analysis in real data
We used the following cTWAS settings when analyzing real data. For 
parameter estimation, we used the default procedure for selecting the 
starting values of the EM algorithm. We then performed 30 iterations of 
the EM algorithm assuming L = 1 effect (at most a single causal effect) 
in each region, using variants that were thinned by 10% to reduce com-
putation. For computing PIPs of genes and variants, we used thinned 
variants and assumed L = 5 (at most five causal effects) in each region. 
For regions with maximum gene PIP > 0.8, we recomputed PIPs using all 
variants, with L = 5. For this final step, we allowed a maximum of 20,000 
variants in a region to reduce computation; if the maximum number 
of variants was exceeded, we randomly selected 20,000 variants to 
include. Unless specified otherwise, we used the threshold PIP > 0.8 
for declaring significant genes.

Evaluating methods in distinguishing silver standard and 
bystander genes for LDL
Following previous studies35, we assessed the performance of TWAS 
and cTWAS on real data by comparing their ability to distinguish LDL 
silver standard genes from other nearby genes. We defined a set of 
‘bystander’ genes that were within 1 Mb of a silver standard gene. These 
bystander genes would be considered the negative set. We limited our 
analysis to 46 of 69 silver standard genes with imputed expression after 
harmonization, and the 539 imputed bystander genes that are nearby 
these genes. Next, we determined if these silver standard and bystander 
genes were significant by TWAS (Bonferroni) or cTWAS (PIP > 0.8). 
Then, we computed the precision of each method as follows: (number 
of detected silver standard genes)/(number of detected silver standard 
genes + number of detected bystander genes).

Classifying TWAS false-positive genes for LDL by source of 
confounding
To better understand how TWAS generated false-positive findings, we 
classified whether TWAS false positives as primarily due to confound-
ing by variants or confounding by genes. We defined TWAS false posi-
tives as genes that were significant by TWAS (Bonferroni) but PIP < 0.5 
by cTWAS. To categorize these false-positive genes, we first assigned 
them to credible sets. These credible sets were reported by cTWAS, 
using the default SuSiE setting, which means that only credible sets with 
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sufficient ‘purity’ are reported (that is all variables in a credible set are 
highly correlated, r > 0.5). If a false-positive gene was not included in 
any credible set but was highly correlated (r > 0.5) with at least one vari-
ant or gene in a credible set, that false-positive gene was also assigned 
to the credible set. After assigning a total of 83 false-positive genes to 
credible sets, for each assigned gene, we summed the PIPs of all other 
genes and variants in its credible set to obtain total PIPs for confound-
ing genes and variants. If the total gene PIP was higher than that of the 
variants, we classified the gene as confounded by genes, otherwise, 
confounded by variants.

Summarizing cTWAS results using tissue groups
To aid the interpretation of cTWAS findings, we grouped related tissues 
into ‘tissue groups’ and summarized the findings within these groups. 
We used previously defined tissue groups that assigned 37 of 49 tissues 
to one of 7 tissue groups25. We then took the union of genes detected 
at PIP > 0.8 in any tissue within each tissue group, and we used these 
combined lists of detected genes for downstream analyses.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Genotype data from UK Biobank are available through the UK Biobank 
data access process (http://www.ukbiobank.ac.uk/register-apply/). 
GTEx v7 Adipose tissue dataset gene prediction models (http://gusev-
lab.org/projects/fusion/). Publicly available summary statistics for 
LDL, SBP and IBD were obtained from the IEU OpenGWAS project 
(https://gwas.mrcieu.ac.uk/) using GWAS IDs ‘ukb-d-30780_irnt’ (LDL), 
‘ukb-a-360’ (SBP) and ‘ebi-a-GCST004131’ (IBD). Publicly available 
summary statistics for SCZ from the Psychiatric Genetics Consor-
tium and the CardiffCOGS study were obtained from http://walters.
psycm.cf.ac.uk/. Publicly available prediction models for 49 GTEx 
tissues from PredictDB (https://predictdb.org/post/2021/07/21/gtex-
v8-models-on-eqtl-and-sqtl/).

Code availability
Our software is available at https://xinhe-lab.github.io/ctwas/. 
Code related to analyses performed in this study can be accessed at 
https://github.com/xinhe-lab/ctwas-paper and https://zenodo.org/
doi/10.5281/zenodo.10373122 ref. 61.
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OpenGWAS project (https://gwas.mrcieu.ac.uk/) using GWAS IDs “ukb-d-30780_irnt” (LDL), “ukb-a-360” (SBP), and “ebi-a-GCST004131” (IBD). Publically available 
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