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Abstract

Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these
networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play
a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to
determine whether experimental manipulations asymmetrically affect functional relationships based on the distance
between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range
connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between
homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point
to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration.
This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive
processes when faced with a dynamic environment.
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Introduction

Functional brain networks are continually evolving on top of an

anatomical skeleton to engender perception, thought and action.

Patterns of functional connectivity may change either spontane-

ously [1–3], in response to task demands [4–7] or in response to

disease or pharmacological interventions [8–10]. It is unclear,

however, whether these various sources of connectivity change can

be characterized in a principled way to predict brain states.

One hypothesis is that short-range functional connections are

more stable than long-range connections. The laminar, cytoar-

chitectonic and columnar organization of the neocortex suggests

that proximal areas may participate in similar functions [11]. As a

result, short-range functional connections may be relatively stable

and less likely to be affected by changes in task demands.

Conversely, long-range functional connections between distal

brain areas with dissimilar functions may be less stable and more

likely to change due to task. Therefore, changes in tasks and

psychological conditions may elicit relatively large changes in

functional connectivity between distal areas and relatively small

changes between proximal areas.

An alternative hypothesis is that task-dependent changes in

functional connectivity do not depend on the distance between

areas. Complex network theory suggests that, for optimal

information processing, functional networks must simultaneously

enable local segregation and global integration, thereby allowing

for the interplay between specialization and integration of function

[12–14]. To strike an adaptive balance between integration and

segregation, task-dependent reconfiguration of functional networks

would require flexible functional connectivity that is not biased by

the distance between areas. According to this hypothesis, changes

in brain states will be associated with equally stable short- and

long-range functional connections.

Here we investigated whether the stability of a functional

connection between two brain regions is affected by the length
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(distance spanned) of that connection. We define stability as a

change in functional connectivity across two or more tasks or

psychological conditions. We used the Euclidean distance between

two regions as a proxy for the length of their functional

connection. We analyzed data from four functional magnetic

resonance imaging (fMRI) datasets, one magnetoencephalography

(MEG) dataset and one positron emission tomography (PET)

dataset. The data that we analyzed varied in task conditions,

populations, preprocessing parameters, and acquisition parame-

ters and yet even with all of this heterogeneity we demonstrate two

key results across all studies. 1) Within a single condition,

functional connectivity depends on spatial distance, i.e., short-

range functional connections are stronger than long-range

connections [a common finding [15]]. 2) Critically, the spatial

distance between two regions does not affect the stability of their

functional connectivity. Between conditions, changes in functional

connectivity do not depend on connection length. Thus, both

short- and long-range functional connections are equally likely to

change and are equally stable.

While distance is not predictive of stability, whether a

connection is between homotopic areas does predict stability.

Namely, connections between homotopic areas do not change and

therefore are the most stable connections. Importantly, we draw

these conclusions based on data from a wide-range of tasks,

populations, scanning environments, parcellation schemes, and

preprocessing parameters indicating that our results are robust to

these idiosyncrasies. These results suggest a simple yet fundamen-

tal characteristic of brain network dynamics; that changes in task

result in alterations to the entire landscape of functional

connections, independent of their lengths.

Results

Dataset Summaries and Rationale for Inclusion
Here we summarize the datasets that we used for our analyses.

The interested reader can find all of the details for each individual

study under the specific dataset sub-headings in the Materials and

Methods section. However, these details are not necessary to

understand our results and analyses. This section, and the next

section, ‘‘Partial Least-Squares (PLS) Analysis Parameters,’’ are

the only methods’ sections that are required to understand the

results and analyses.

Methodological details regarding participants, tasks, and

processing parameters for the six datasets used in this analysis

are shown in Table 1. Two fMRI datasets contained data from

clinically depressed patients and breast cancer patients to examine

if our results were robust for different clinical populations. The

third and fourth fMRI datasets involved healthy adults performing

a learning task where participants learned to associate pseudo-

words to pictures, and a crossmodal (auditory-visual) attentional

cuing task to examine if our results were robust for on-task
performance vs. resting-states. The MEG dataset was also acquired

using healthy adults participating in a visual learning paradigm.

The PET data were derived from a study on memory recall in

young and old adults. The MEG and PET datasets were included

to examine if our results were robust for different imaging
modalities. In the paragraphs below we describe these studies.

In the depression dataset [16], healthy individuals and

individuals diagnosed with major depression had their resting-

state connectivity assessed and this resting-state connectivity was

compared to a condition where participants were induced to

ruminate about two negative, self-generated, autobiographical

memories. There was also a resting-state scan after this rumination

phase to examine recovery after induced rumination. Here

changes in connectivity were assessed for changes
between rest and induced rumination.

In the breast cancer dataset, women with breast cancer and

healthy-aged matched controls had their brain connectivity

assessed during resting-state epochs. Of the patients with breast

cancer, half received chemotherapy treatment for breast cancer

and half received radiation therapy for breast cancer. Connectivity

was assessed before and after chemotherapy treatment, radiation

therapy and an equivalent period of elapsed time for the healthy

aged-matched controls. Here connectivity changes were due
to treatment (i.e., chemotherapy and radiation therapy)
vs. the mere passage of time for age-matched controls.

In the cross-modal dataset [17] participants responded to visual

and auditory targets. A trial was composed of a stimulus (S1), a

delay, and a second stimulus (S2). The two main task types were

designed by manipulating the content of S1 and S2. For the Cue

1st (C1) tasks, S1 was a cue that signaled a response compatibility

rule to a subsequent lateralized target (S2). In Target 1st (C2) tasks,

S1 was the lateralized target followed by the cue stimulus (S2). In a

compatible trial, a cue instructed participants to press a button on

the same side (left or right) as the lateralized target. In an

incompatible trial, participant’s pressed the button on the opposite

side of the lateralized target. Unlike in the depression and breast

cancer datasets, here connectivity changes were assessed by
examining connectivity changes for changes in the task
conditions such as trials when one must respond to a
visual target preceded by an auditory cue vs. when one
must respond to an auditory target preceded by a visual
cue.

In the learning dataset participants heard an auditory presen-

tation of a pseudoword. After the presentation of the pseudoword

participants saw a picture presented for 1 second and were told to

intuitively decide if the pairing of pseudoword and picture was

correct. There were two conditions: ‘‘Learning’’ and ‘‘No-

Learning.’’ The ‘‘Learning’’ condition involved a higher co-

occurrence of ‘‘correct’’ arbitrary object-pseudoword pairings

compared to ‘‘incorrect’’ pairings. Participants learned this novel

vocabulary of 30 concrete nouns over the course of five

consecutive training blocks. Over the course of the five training

blocks the ratio of ‘‘correct’’ to ‘‘incorrect’’ pairings increased. The

‘‘No-Learning’’ condition was structured similarly, but used a

parallel set of pseudoword-object pairings and lacked a learning

principle because each pairing occurred only once. Here
changes in connectivity were measured as learning
progressed.

In the MEG dataset [18] participants performed two tasks: an

active learning task and a choice reaction time task with no

learning component. In the learning task, participants linked 2

scene pairs with 2 color pairs (4 associations) through trial-and-

error. The general structure of a trial consisted of scene

presentation, a delay interval and a color pair, after which the

participants had to record their responses. Participants received

on-screen, written feedback (correct/wrong) about their response

choices. In the control task, participants were instructed in

advance about which colors were correct and scenes preceding

these colors were shown randomly. Here changes in connec-
tivity were assessed for these different task conditions
and for a different imaging modality (i.e., MEG).

In the PET dataset participants encoded and recalled word

pairs. Effective connectivity was assessed using Structural Equation

Modeling (SEM). Here changes in connectivity were
assessed for yet another imaging modality (i.e., PET),
for differences in memory recall by age (i.e., aging
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effects) and for effective connectivity rather than func-
tional connectivity.

Correlating Functional Connectivity and Euclidean
Distance

The parcellation scheme used for each dataset is specified in

Table 1. For datasets that were parceled into ROIs, time series

were averaged across all voxels in each ROI. Functional

connectivity matrices were then created by correlating the mean

ROI timeseries with all other mean ROI timeseries separately for

each individual participant and for each condition. Sample Fisher-

transformed and group averaged functional connectivity matrices

are shown separately for each condition (Fig. 1).

The Euclidean distance between ROI centroids was calculated

and correlated with functional connectivity. Euclidean distance

significantly predicted functional connectivity for each study, for

each group and for each condition, such that ROIs that were

spatially closer were more likely to be highly correlated (Fig. 2).

This result has been found by other researchers [2,15,19] and may

be expected given that contiguous brain areas participate in

similar functions. In addition, studies find that contiguous brain

areas share similar regional homogeneity [20,21], i.e. temporal

signatures, which may also indicate similar functionality. This

aspect of functional neuroanatomy also results in the well-known

spatial autocorrelation of the BOLD signal [22]. In summary,

within a condition, Euclidean distance significantly predicts

functional connectivity, i.e., connections between more proximal

areas are more highly correlated.

Correlating Changes in Functional Connectivity and
Euclidean Distance

The results presented in the previous sub-section indicate that,

within a condition, Euclidean distance and functional connectivity

are negatively correlated, such that proximal areas tend to be

more highly correlated with one another compared to more distal

areas. In the present section, we show that there is no reliable

relationship between Euclidean distance and changes in functional

connectivity due to changes in task or group.

For each dataset we extracted participant- and condition-

specific functional connectivity matrices and used a partial least-

squares (PLS) analysis [23–25] to find connections that showed

significant changes in functional connectivity across tasks and/or

groups. The latent variables (LVs) from those analyses are shown

in Fig. 3. Connection saliences are weights that describe the extent

to which a connection expresses a latent variable or contrast, and

therefore they express the degree to which a connection changes

according to the latent variable pattern. For the depression dataset

the greatest changes in functional connectivity occurred for the

individuals diagnosed with depression who are more affected by

the induced rumination condition compared to rest. These results

are described in more depth in [16].

For the Breast Cancer dataset the greatest changes in functional

connectivity occurred pre- and post-chemotherapy, followed by

pre- and post-radiation therapy. The healthy group does not show

reliable changes over an equivalent period of elapsed time (as

expected given that they receive no intervention). Related breast

cancer results are described in more depth in [26,27].

In the Crossmodal dataset there is a significant interaction for

changes in functional connectivity by cue position (1 vs. 2) and

target type (visual vs. verbal). The Crossmodal results are

described in more depth in [17]. Lastly, in the learning dataset

there are significant changes in functional connectivity from the

baseline reaction time condition with no learning (L8) compared to

the other learning conditions as learning progresses. When

comparing the greatest change in conditions, we compared the

last learning session to the baseline reaction time task that required

no learning.

The specific LV results are not critical for this investigation

(please see the aforementioned studies for analyses and results

specific to these studies). What is important is that for each study

there were functional connections that significantly changed due to

experimental manipulation (i.e. across groups and/or conditions).

Based on these significant LVs, we can determine whether changes

Table 1. Details for the neuroimaging studies that were analyzed.

Study Modality Groups Conditions ROIs
Parcellation
Scheme

Depression fMRI Depressed
(N = 16) Healthy
Control (N = 17)

4: Resting 1,
Resting 2,
Induced Rumination,
Resting 3

116 AAL

Breast Cancer fMRI Chemotherapy
(N = 16) Radiation
therapy (N = 16)
Healthy Control
(N = 16)

2: Pre-treatment,
Post-treatment

116 AAL

Learning fMRI Healthy Control
(N = 12)

6: Learning
conditions

152 AAL/MNI hybrid

Crossmodal fMRI Healthy Control
(N = 16)

4: Autitory-
Visual Cue target
combinations

229 voxels Every 100th gray matter voxel

MEG MEG Healthy Control
(N = 14)

3: Learning
Conditions

32 sources N/A

PET PET Healthy Control
(N = 12)

2: Memory
encoding and
Recall

13 ROIs N/A

Details for the PET study can be found in [31].
doi:10.1371/journal.pone.0111007.t001
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in functional connectivity are distance-dependent or distance-

independent.

To determine whether the lengths of connections predicted

connection changes we correlated the saliences of connection

changes with Euclidean distance (Fig. 4). The result of that

analysis showed no relationship between Euclidean distances and

salience values (Fig. 4). These results suggest that all functional

connections, independent of the distance between them, are

equally likely to change.

We then performed an analysis to examine how differences in

correlation values between two conditions in the experiments

might change with Euclidean distance. This analysis is much

simpler than PLS as we only examine changes in correlation

strength between two conditions. Here we selected the two

conditions that showed the greatest differences from the PLS

analyses and simply subtracted their correlation matrices (e.g.,

depression dataset: resting 1 vs. induced rumination). When doing

so, we again found no relationship between Euclidean distance

and changes in functional connectivity between the two conditions

(Fig. 5).

It is possible that we observed no systematic relationship

between saliences or correlation differences and Euclidean

distances because neither saliences nor correlation differences

measure the statistical reliability with which a functional connec-

tion changes. For instance, saliences are weighted coefficients that

represent the magnitude of change. In the PLS framework, the

statistical significance of a task effect is assessed at the level of the

entire multivariate connectivity profile, but the significance of the

task effect on individual functional connections is not tested

directly.

To address this problem, we related anatomical distance with

the bootstrap ratio associated with each functional connection

(Fig. 6). Bootstrap ratios are calculated by taking the ratio of the

salience (which reflects the magnitude of a statistical effect) and the

bootstrap-estimated standard error of that salience (which reflects

the reliability of the salience). Thus, a high-valued bootstrap ratio

for a given functional connection indicates both a strong

contribution to the latent variable as well as reliability across

subjects. Functional connections with large bootstrap ratios show a

statistically significant propensity to change due to experimental

manipulation. We then correlated the bootstrap ratios with

Euclidean distances for each of the four studies, and again found

no evidence for a systematic relationship (Fig. 6).

Assessing statistical significance
The results in Figs. 4, 5 and 6 show no obvious relationship

between Euclidean distance and changes in functional connectiv-

ity, but this is difficult to assess using conventional parametric

statistical inference because the data points are dependent. For

instance, functional connections are derived from correlation

coefficients and are inherently non-independent. Thus, if one

possesses knowledge of r(a, b) and r(a, c), it is possible to place

limits on the value of r(b, c). As a result, the assumption of

independence on which conventional inferential statistics are

predicated would be violated, resulting in inflated p-values.

To address this problem, we estimated the p-value for the

relationship between distance and change in functional connec-

tivity with respect to a nonparametric null distribution, construct-

ed using independent pairs of distances and correlations, e.g. r(a,

Figure 1. Fisher r-to-z-transformed correlation matrices for all studies exhibiting the correlation between all nodes used to analyze
each study. For the PLS analyses, each participant’s matrix was used in the analysis.
doi:10.1371/journal.pone.0111007.g001
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b), r(c, d) and r(e, f) but not r(a, c), etc. For a parcellation with n
nodes, there exist floor (n/2) such independent pairs. For a given

set of independent pairs, we computed the correlation coefficient

between distance and changes in functional connectivity. We then

repeated the procedure 1000 times, to construct a sampling

distribution of independent correlation coefficients. P-values were

calculated as the proportion of independent pairs that were greater

than or less than zero. Table 2 displays the mean, standard error

and p-value associated with the correlations between salience and

anatomical distance, for each of the four studies. The mean

correlation values (rho) were low, with small standard errors (SEs).

Importantly, one-tailed tests for rho,0 and rho.0 were non-

significant, suggesting no evidence of a statistically significant

relationship between change in functional connectivity and

anatomical distance.

To further illustrate that there is no evidence that these

correlations are different from zero, we performed three more

analyses. First, to ensure that there were no systematic trends in

the dense portions of the plots shown in Fig. 4 and Fig. 5, we re-

plotted the changes in correlation data with a 3-dimensional

surface plot. As shown in Fig. 7, the areas of the plot with more

data points do not show any relationship between changes in

correlation and Euclidean Distance.

Second, a principal components analysis (PCA) was conducted

as described by [28], to examine possible trends between

Euclidean distance and correlation differences in the outlying

points. To do so, we performed a PCA on the correlation

differences versus Euclidean distances, and for each observation

we calculated its displacement from the primary axis of variance.

Points that were in the upper or lower 5% in terms of

displacement from the primary axis of variance are colored red

(Fig. 8). When examining these outlying points, there appears to

be no systematic relationship between correlation differences and

Euclidean distances.

Third, we were concerned that using the signed value (i.e.,

positive or negative) of the salience or correlation change could

impact the relationship between Euclidean distance and the

magnitude of the effect. We calculated the absolute value of the

salience and the absolute value of the change in correlation and

found that the absolute value of the effects were unrelated to

Euclidean distance (Figs. 9 and 10).

In summary, across different groups (healthy, depressed and

breast cancer patients) and across different experimental condi-

tions (learning task, crossmodal task, rest) we find the same results.

Namely, we consistently find no evidence of a relationship between

anatomical distance and changes in functional connectivity. This

indicates that across different environmental conditions and

groups, the functional connectivity of the whole brain is equally

likely to change, independent of the distance between areas.

Figure 2. Relationship between the Euclidean distance of parcels and the correlation between parcel timeseries for each fMRI study
and for each condition and participant group.
doi:10.1371/journal.pone.0111007.g002
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Functional Specialization and Modularity
The previous set of analyses have shown that functional

connectivity changes cannot be predicted by the distance of the

functional connection across a wide range of populations, tasks,

fMRI scanners, preprocessing parameters and parcellation

schemes. However, it is possible that the relationship between

proximity and functional connectivity change may be influenced

by the modular organization of functional networks (Meunier,

Lambiotte and Bullmore, 2010). For example, long-distance

functional connections may be more likely to change between

conditions if they connect regions belonging to different modules,

as opposed to the same module.

We applied a community detection algorithm to partition

functional brain networks into modules [29,30], allowing us to

analyze how functional connections change both within and

between modules. Specifically, we used the Louvain algorithm, as

implemented in the Brain Connectivity Toolbox (Rubinov &

Sporns, 2010). Following 100 runs on each data set, we selected

the partition with the highest modularity, Q. We found no

evidence of a relationship between functional connectivity changes

and Euclidean distance either between or within modules (Fig. 11).

In other words, the propensity of a functional connection between

two areas to change does not appear to be influenced by the

community membership of those areas

Figure 3. First Latent Variables (LVs) from each of the four fMRI Datasets as uncovered with PLS. The significance of the LVs and the
amount of cross-block covariance explained are listed in the titles.
doi:10.1371/journal.pone.0111007.g003
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Replication across multiple neuroimaging modalities
Our analyses thus far have focused on a single neuroimaging

modality (i.e., fMRI). To examine whether these effects are

idiosyncratic to fMRI, we analyzed a MEG dataset [18] and a

PET dataset [31] that was published at an earlier time utilizing

Structural Equation Modeling (SEM) [32]. In analyzing the MEG

dataset, we replicated our previous results and found no

relationship between changes in functional connectivity and

Euclidean distance (Fig. 12).

We found the same pattern of results for the PET SEM dataset,

where significant condition changes in path coefficients were not

distance dependent (Fig. 12). It is noteworthy that the path

coefficients in SEM represent effective connections, i.e. causal

relationships based on known direct anatomical projections. In

contrast to functional connections based on zero-order correla-

tions, they are not confounded by potential indirect connections

from other areas. This is important because our previous results

with functional connectivity could be influenced by other indirect

connections. The fact that similar results are observed for SEM

suggests that the effects that we report are unlikely to be influenced

by indirect connections.

Intra- and inter-hemisphere connections
Finally, we investigated whether spatial proximity had any

differential effect on communication within and between hemi-

spheres. For this analysis all functional connections were divided

into two classes: intra-or inter-hemispheric. Inter-hemispheric

connections were further stratified into those between homotopic

and those between non-homotopic brain regions. Fig. 13 shows

that even when functional connections are stratified in this way,

distance did not predict changes in functional connectivity for

either inter- or intra-hemispheric functional connections

(Fig. 13A, B).

Interestingly, the relationship between Euclidean distance and

change in inter-hemispheric functional connectivity did appear to

be affected by whether connections were between homotopic

areas. When inter-hemispheric functional connections were

further segregated into homotopic and non-homotopic connec-

tions, there was still no reliable relationship between changes in

functional connectivity and distance (Fig. 13C, D). However,

functional connections between homotopic brain areas were

associated with smaller change saliences that deviated from zero

far less than non-homotopic connections, indicating that they were

less likely to change and were more stable than functional

connections between non-homotopic areas (Fig. 13D). This is

illustrated further in Fig. 13E, which shows the histogram of

Figure 4. PLS Saliences for the first latent variable in each study plotted against Euclidean distance of each functional connection.
doi:10.1371/journal.pone.0111007.g004
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change saliences for homotopic and non-homotopic functional

connections. The homotopic functional connections deviate from

zero considerably less than non-homotopic connections.

To statistically assess whether homotopic functional connections

were more stable compared to non-homotopic connections, we

combined the change saliences for both types of connections and

calculated the proportion of each connection type that exceeded

the 95% confidence interval of change saliences. We found that,

for each study, the proportion of change saliences that exceeded

the 95% confidence interval was greater for the non-homotopic

connections compared to the homotopic connections. For the

Depression, Breast Cancer and Learning studies, these propor-

tions, for the non-homotopic and homotopic connections respec-

tively, were: 5.4% vs. 1.9%, 5.8% vs. 0% and 5% vs. 3.9%. This

provides an interesting addition to previous reports, which have

shown stronger functional connectivity between homotopic areas

compared to functional connectivity between non-homotopic

areas [19,33,34].

Discussion

In the present report we investigated whether functional

connectivity stability could be predicted by anatomical distance.

The goal was to determine whether one of two hypotheses were

true: 1) That long-range connections were more likely to

change with different manipulations or 2) that all connections,

independent of distance, were equally likely to change with

different manipulations (i.e., equivalent stability). We implemented

a multivariate approach to test these hypotheses, allowing us to

simultaneously examine changes in all functional connections in

the brain.

We found three important results. First, within a single

condition, Euclidean distance significantly predicts functional

connectivity; namely, regions that are closer together have

stronger functional connectivity and regions further apart have

weaker functional connectivity (Fig. 2). We found this result to be

robust across different tasks, populations, preprocessing parame-

ters and parcellation schemes. This result is also consistent with

previous reports in the literature [2,15,19].

Second, we find that anatomical distance is not a significant

predictor of the stability of functional connectivity (Figs. 4–9 &

11), meaning that changes in functional connectivity are not

specific to short- or long-range connections; thereby lending

support for hypothesis 2. These effects were also robust for a wide

range of tasks, populations, preprocessing parameters, parcellation

schemes and neuroimaging modalities, suggesting that these effects

are not idiosyncratic to particular experimental and analysis

parameters.

Third, we find that homotopic functional connections appear to

be more stable than any other type of connection. This finding

complements previous reports that homotopic functional connec-

tions are stronger than other types of functional connections

Figure 5. Changes in correlation between conditions of greatest difference in correlation plotted against Euclidean distance.
doi:10.1371/journal.pone.0111007.g005
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[19,33,34]. We find that functional connections between homo-

topic brain areas are most stable, and therefore least likely to

change.

It is important to consider whether the main result reported

here – the weak or non-existent relationship between distance and

functional stability – is a ‘‘null’’ result and whether such a finding

holds scientific value. Standard inferential statistics do not allow us

to rule out such a relationship; rather, they can only indicate that

there is no significant evidence to suggest the existence of such a

relationship. The present analyses demonstrate that this ‘‘null’’

result is remarkably consistent and robust. First, the independent

pairs analysis reported in Table 2 shows that the miniscule

correlations between functional connectivity change and anatom-

ically distance are statistically stable, with tight confidence

Figure 6. PLS bootstrap ratios for each functional connection are plotted against the Euclidean distance of that connection.
doi:10.1371/journal.pone.0111007.g006

Table 2. For each study, a sampling distribution of correlations between changes in saliences and Euclidean distances was
constructed using only independent pairs of nodes.

fMRI Study rho SE P-value (rho.0) P-value (rho,0)

Depression –0.05 0.004 0.34 0.66

Breast Cancer 0.03 0.004 0.57 0.43

Crossmodal 0.05 0.003 0.71 0.29

Learning –0.03 0.003 0.42 0.58

The table displays the mean correlation (rho) and standard error (SE) from this sampling distribution, as well as P-values associated with one-tailed tests for rho,0 and
rho.0.
doi:10.1371/journal.pone.0111007.t002
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intervals. Second, the finding is robust and persistent across six

different data sets that were deliberately chosen to cover a wide

range of populations and brain states. Altogether, the present

investigation supports one particular hypothesis: that all functional

connections, regardless of their distance, are equally likely to

change.

The fact that all functional connections are equally likely to

change, regardless of their length, is counterintuitive. Namely, one

might expect connections between proximal areas to be more

stable given that proximal brain areas tend to be functionally more

similar and highly correlated within-condition (Fig. 2). While

somewhat counterintuitive, the fact that long- and short-range

connections are equally stable may support the balance between

local segregation (i.e., the isolation of specialized processing) and

global integration (i.e., the combination of different processes) in

the brain [12,35]. A functional connectivity landscape in which

short-range and long-range connections are equally likely to be

strengthened or weakened may facilitate fluid transitions between

regional specialization and global integration, thereby allowing the

brain to explore a wider range of functional network configura-

tions. This would appear to be a desirable and an adaptive quality,

as it would facilitate a more diverse repertoire of cognitive

processes.

As mentioned above, one variable that was predictive of

functional connectivity change was whether a connection was

between homotopic areas. Connections between homotopic areas

did not change significantly for changes in task. The source of this

stability is likely to be the inter-hemispheric callossal fibers

connecting these homotopic regions [19]. This small subset of

connections remained relatively stable against a perpetually

changing functional connectivity landscape. This stability, com-

bined with increased functional connectivity for those connections

[19,33,34], may serve as a grounding principle to maintain

steadiness in brain networks in the face of changes in the

environment.

Our results show a strong negative relationship between

functional connectivity and anatomical distance, but no relation-

ship for changes in functional connectivity and anatomical

distance. One may wonder if changes in functional connectivity

do not correlate with anatomical distance because of some type of

statistical artifact. Namely, within-condition functional connectiv-

ity has a robust negative relationship with anatomical distance,

and it may be the case that the difference between two such

negative trends automatically results in a ‘‘flat’’, non-significant

trend as observed in these data. This explanation is highly unlikely

because it would imply that the changes in individual data points

between two conditions are non-systematic and completely

Figure 7. 3-dimensional histogram of correlation differences by Euclidean distance for each study. In the 3-dimensional histogram (top)
the number of observations (i.e., density) is represented by color and height. In the 2-dimensional plot (bottom) density is represented by color only.
doi:10.1371/journal.pone.0111007.g007

The Functional Connectivity Landscape of the Human Brain

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e111007



random, whereas our PLS results show that the changes in

functional connectivity between conditions are statistically signif-

icant and highly reliable across participants. As such, we consider

it unlikely that these results are driven by this type of statistical

artifact.

One possible limitation of the present study is that we use

Euclidean distance as a proxy for anatomical distance. The former

may not be completely representative of the lengths spanned by

anatomical projections due to the well-known folding of cortical

tissue. Note, however, that we find the relationship between

changes in functional connectivity and Euclidean distance to be

the same for long and short distances. Additionally, if we look only

at relatively long distances that would be unaffected by folding, we

still find no relationship between Euclidean distance and changes

in functional connectivity.

In conclusion, the present investigation presents the first

detailed report that the changes in cognitive state are supported

by long-range and short-range functional connections in equal

Figure 8. PCA analysis of scatter plots displaying the relationship between correlation differences and Euclidean distance. The PCA
analysis was used to determine if outlying points exhibited a different relationship with Euclidean distance than the majority of the points. Points that
were in the upper or lower 5% in terms of displacement from the primary axis of variance are colored red and suggest that there is no systematic
relationship between correlation differences and Euclidean distances for the outlying points. The red line represents the primary axis of variance.
doi:10.1371/journal.pone.0111007.g008
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measure. At the same time, connections between homotopic areas

are among the most stable, which may provide stability in the face

of a changing environment. These may be fundamental brain

phenomena to strike a balance between local segregation and

global integration.

Materials and Methods

Partial least-squares (PLS) Analysis
These analysis parameters are the same as those presented in

[16]. Whole-brain fMRI timeseries were parcellated into 116 brain

areas based on the AAL template [36] for the depression and

breast cancer datasets, and with the template (that aggregated

across four atlases) for the Learning dataset. For the Crossmodal

dataset every 100th voxel in gray matter was used in the analysis.

These timeseries were then correlated together to form a full

correlation matrix for all regions correlated with all other regions

for each participant and condition.

Partial least-squares (PLS) analysis is a multivariate statistical

analysis that is used to relate two sets of variables together. In the

case of neuroimaging one set of variables could be brain data (e.g.,

BOLD signal per voxel per time point) while the other set of

variables could be the experimental study design (e.g., groups and

experimental conditions). The first step in PLS is to compute the

covariance between the two sets of variables (i.e., the ‘‘cross-block’’

covariance). The second step of PLS is to perform a singular value

decomposition on the ‘‘cross-block’’ covariance matrix to deter-

mine the combination of variables in each set that are optimally

related to each other (i.e., that accounts for the greatest proportion

of ‘‘cross-block’’ covariance). This combination, termed a latent

variable (LV), is comprised of a linear combination (i.e., weighted)

of variables from both sets (i.e., brain and experimental sets), as

well as a scalar singular value. For the brain set this combination is

a spatial-temporal pattern (saliences) and for the design set this

combination is a contrast between groups and conditions. The

mutually orthogonal LVs are extracted in order of magnitude, i.e.

the first LV explains the most ‘‘cross-block’’ covariance, the second

LV explains the second most ‘‘cross-block’’ covariance, etc. In the

present study the brain data were not activations (i.e., voxels in

time), but rather were functional connections between the parcels.

This produced 6670 unique connections for the AAL parceled

data (i.e., (116*115)/2). As a result, the latent variable represents a

Figure 9. Absolute value of the Saliences for each of the four fMRI studies plotted against Euclidean distance.
doi:10.1371/journal.pone.0111007.g009
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weighted combination of functional connections that optimally

relate to our groups and conditions (e.g., for the depression

dataset: depressed vs. control for the 4 different experimental

conditions).

The significance of each LV is assessed with permutation

testing. A set of 500 permuted samples were created by randomly

re-ordering participants and condition labels without replacement

for the brain set (note: groups and conditions are permuted

because PLS is uncovering the interactions between group and

condition effects) while the labels for the design set are maintained

resulting in 500 new covariance matrices. These covariance

matrices embody the null hypothesis and are then each subjected

to singular value decomposition as before resulting in a null

distribution of singular values. The significance of the original LV

is assessed with respect to this null distribution; the p-value is

calculated as proportion of permuted singular values that exceed

the original singular value.

The reliability with which each functional connection expresses

the LV pattern is determined with bootstrapping. A set of 500

bootstrap samples are created by re-sampling participants with

replacement within each condition (i.e., preserving condition

labels, but not participant labels). Each new covariance matrix is

subjected to singular value decomposition as before and the

saliences of the bootstrapped dataset are used to build a sampling

distribution of the saliences from the original dataset. The purpose

of a constructed a bootstrapped sampling distribution is to

determine the reliability of each salience; saliences that are highly

dependent on which participants are included in the analysis will

have wide distributions. A single index of reliability (‘‘bootstrap’’

ratio) is calculated by taking the ratio of the salience to its

bootstrap estimated standard error. A bootstrap ratio for a given

functional connection is large when that functional connection has

a large and stable salience.

Depression Dataset Details
The methods for this depression dataset are the same as those

from [16].

Participants. Sixteen participants diagnosed with clinical

depression (mean age = 26.6 std. age = 6.12, 11 female) and

Figure 10. Absolute value of the correlation differences for each of the four fMRI studies plotted against Euclidean distance.
doi:10.1371/journal.pone.0111007.g010
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seventeen non-depressed controls (mean age = 24.4 std. age = 5.83,

13 female) participated in our study. Participants’ diagnosis of

MDD vs. a non-diagnosis was determined by a trained clinician

administering the Structured Clinical Interview Diagnostic (SCID)

IV [37]. All participants provided written informed consent in

accordance with the Institutional Review Board of the University

of Michigan, which approved this study. Participants were

compensated $25/hour for their participation.

fMRI Acquisition and Analysis parameters. Images were

acquired on a GE Signa 3-Tesla scanner equipped with a standard

quadrature head coil. Functional T2* weighted images were

acquired using a spiral sequence with 40 contiguous slices with

3.4463.4463 mm voxels (repetition time (TR) = 2000 ms; echo

time (TE) = 30 ms; flip angle = 90u; field of view (FOV) = 22 cm).

A T1-weighted gradient echo anatomical overlay was acquired

using the same FOV and slices (TR = 250 ms, TE = 5.7 ms, flip

angle = 90u). Additionally, a 124-slice high-resolution T1-weighted

anatomical image was collected using spoiled-gradient-recalled

acquisition (SPGR) in steady-state imaging (TR = 9 ms,

TE = 1.8 ms, flip angle = 15u, FOV = 25–26 cm, slice thick-

ness = 1.2 mm).

Each SPGR anatomical image was corrected for signal in-

homogeneity and skull-stripped using FSL’s Brain Extraction Tool

[38]. These images were then segmented with SPM5 (Wellcome

Department of Cognitive Neurology, London) into grey matter,

white matter and cerebrospinal fluid and normalization param-

eters for warping into MNI space were recorded.

Functional images were corrected for differences in slice timing

using 4-point sinc-interpolation [39] and were corrected for head

movement using MCFLIRT [40]. To reduce noise from spike

artifacts, the data were winsorized prior to normalization [41] by

exploring time courses for each voxel and finding values that were

3 standard deviations (SDs) away from the mean of that voxel’s

time course. Spikes that were above 3 SDs from the mean were

made equal to the mean +3 SDs and spikes that were 3 SDs below

the mean were made equal to the mean –3 SDs. The segmented

normalization parameters were then applied to the functional

Figure 11. Relationship between Euclidean distance and Salience for functional connections within and between modules.
doi:10.1371/journal.pone.0111007.g011
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images maintaining their original 3.4463.4463 mm resolution

and they were spatially smoothed with a Gaussian kernel of 8 mm.

To correct for physiological artifacts, all of our functional data

were corrected using the PHYCAA algorithm. This is an adaptive

multivariate model that estimates and removes physiological noise

components from fMRI data, without requiring external measures

of heartbeat and respiration [42].

Furthermore, 24 motion parameters were calculated, which

included the linear, squared, derivative, and squared derivative of

the six rigid-body movement parameters [43]. A principal

component analysis was performed on these 24 motion parameters

and only the first principal component, which accounted for nearly

90% of the motion variance, was covaried out from each voxel’s

time course to remove any signal that could be attributed to

motion (Berman et al., 2013). Lastly, functional images were

parceled into 116 different ROIs based on the AAL template [36]

for analysis.

Task Parameters. Participants initially performed two

resting-state scans back-to-back that were 8 minutes in length.

Participants were instructed to look at a fixation cross at the center

of the screen and were told not to think about any particular

thought (i.e., they could think about whatever they wanted to).

After acquiring anatomical images of the brain, participants were

then taken out of the scanner and were asked to generate four

negative autobiographical memories. In order to facilitate the

generation of the memories, we provided four distinct prompts

such as ‘‘Please recall a specific time when you were rejected by

someone you loved or still love’’ or ‘‘Please recall a specific time

when you were very embarrassed.’’ Following such a prompt,

participants had to indicate whether they were able to think of a

prompted event and if they were successful in doing so they were

asked to re-live the event for 30 s as well as they could. Next, they

had to rate how positively and negatively they felt about that event

using a visual-analog scale. Finally, they were asked to describe the

event in a few sentences and to create a 2 to 3 word long cue that

reminded them of the event.

Following the creation of these events, participants went back

into scanner. Now only considering the two most negatively rated

events, we simultaneously showed the event description and its cue

and instructed participants to pair the two so that they were able to

easily recall the memory after seeing the corresponding cue. In a

next step, participants were asked to practice recalling the events

after seeing the corresponding cue. For this purpose, participants

had to press a key as soon as they were able to bring to mind the

cued event. The cues were repeated until participants were able to

vividly recall the corresponding event in less than 5 s.

Following this practice session, the induction period started.

Participants were presented with the cue of one of the two

memories that they rated as being most negative. The cue stayed

on the screen for 3 min and participants were instructed to re-live

that experience as vividly as possible in their imagination and to go

back to the time and place of the experience in their imagination

and to re-experience it happening to them all over again. After

3 min the cue of the second negatively rated event was presented

on the screen. After this negative mood induction, participants

again performed another resting-state scan where they fixated on

centrally on a fixation cross for 8 minutes.

Breast Cancer Dataset Details
Similar methods with the same participants performing a verbal

working memory-task can be found in [26,27].

Participants. Sixteen women (mean age = 49.3, std. = 10.7)

with breast cancer that underwent chemotherapy, sixteen women

(mean age = 55.0, std. = 8.9) with breast cancer who underwent

radiation therapy and sixteen aged-matched non-cancer controls

(mean age = 51.4, std. = 7.9) participated in our study. Participants

were tested before and after treatment. For the non-cancer

controls an equal amount of time separated their two imaging

sessions, which was approximately 5 months. All participants

provided written informed consent in accordance with the

Institutional Review Board of the University of Michigan, which

approved this study.

fMRI acquisition parameters. Images were acquired on a

GE Signa 3 Tesla scanner equipped with a standard quadrature

head coil. Functional T2* weighted images were acquired using a

spiral sequence with 25 contiguous slices with 3.7563.7565 mm

Figure 12. Relationship between changes in coherence and Euclidean distance for the MEG dataset (left) and differences in path
coefficients from an SEM analysis of the PET dataset (right).
doi:10.1371/journal.pone.0111007.g012
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voxels (repetition time (TR) = 1500 ms; echo time (TE) = 30 ms;

flip angle = 70u; field of view (FOV) = 24 cm). A T1-weighted

gradient echo anatomical overlay was acquired using the same

FOV and slices (TR = 225 ms, TE = 5.7 ms, flip angle = 90u).
Additionally, a 124-slice high-resolution T1-weighted anatomical

image was collected using spoiled-gradient-recalled acquisition

(SPGR) in steady-state imaging (TR = 9 ms, TE = 1.8 ms, flip

angle = 15u, FOV = 25–26 cm, slice thickness = 1.2 mm).

fMRI Preprocessing Parameters. Each SPGR was cor-

rected for signal in-homogeneity and skull-stripped using FSL’s

Brain Extraction Tool [38]. These images were then normalized

with SPM5 (Wellcome Department of Cognitive Neurology,

London); the normalization parameters for warping to the

standard MNI template were recorded and applied to the

functional images.

Functional images were corrected for differences in slice timing

using 4-point sinc-interpolation [39] corrected for head movement

using MCFLIRT [40]. To reduce noise from spike artifacts, the

data were winsorized prior to normalization [41] by exploring

time courses for each voxel and finding values that were 3

standard deviations (SDs) away from the mean of that voxel’s time

course. Spikes that were above 3 SDs from the mean were made

equal to the mean +3 SDs and spikes that were 3 SDs below the

mean were made equal to the mean –3 SDs. After normalization

the functional images were spatially smoothed with a Gaussian

kernel of 8 mm.

Nuisance covariates were then regressed out of the data. These

included the principal component of the estimated motion

parameters (Berman et al., 2013), and the average global signal

time course within brain voxels. Data were then low-pass filtered

(cutoff of 0.08 Hz), in order to remove high-frequency noise and

retain only the BOLD frequency band of interest. Finally, average

ROI time courses were extracted from the data using the AAL

template, generating 116 anatomically labeled ROIs of interest.

These time courses were then used for cross-correlation analysis.

Task Parameters. Participants were instructed to attend to a

centrally located fixation cross while in the fMRI scanner and

Figure 13. Relationship between changes in functional connectivity for nodes within a hemisphere (A), between hemispheres (B),
between homotopic areas (C) and between non-topic areas (D). (E) Histogram showing the changes in functional connectivity for homotopic
and non-homotopic areas.
doi:10.1371/journal.pone.0111007.g013
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instructed not to think about any particular memory or thought

(i.e., they could think about whatever they wanted to).

Learning Dataset Details
Participants. Sixteen healthy, right-handed, native English-

speaking individuals were enrolled in the study. Participants were

screened for neurological, psychiatric and relevant medical

conditions by a study-Medical Doctor and were also assessed by

the MINI-Plus [44].

All participants provided written informed consent in accor-

dance with the Research Ethics Boards of Baycrest Hospital, the

Centre for Addiction and Mental Health and the University of

Toronto, which approved this study.

The final sample was comprised of data from twelve partic-

ipants (5 females, mean age: 30.868.2). Data from four

participants were excluded due to improper task performance,

technical/equipment issues and/or excessive movement artifact

during fMRI scanning.

fMRI Acquisition. MRI images were acquired on a Siemens

Trio 3T magnet. A T1-weighted anatomical scan was obtained

using SPGR (TE = 2.6 ms, TR = 2000 ms, FOV = 256 mm, slice

thickness = 1 mm). The SPGR was co-registered with the func-

tional images and was also used to rule out any gross brain

anomalies. T2* functional images (TE = 30 ms, TR = 2000 ms,

flip angle = 70u, FOV = 200 mm) were obtained using an echo-

planar image (EPI) acquisition sequence leading to a blood

oxygenation level-dependent (BOLD) contrast. Each functional

sequence consisted of twenty-eight 5-mm-thick slices in the axial-

oblique plane positioned to image the entire brain.

Participants’ responses were made with their right hands using

the Fibre-Optic Response Pad (FORP) system, which has two

four-button response pads and is designed for MR compatibility.

Visual stimuli were presented on a rear projection screen placed at

the foot of the MR scanner using an LCD projector. The

participants viewed the stimuli using a mirror mounted on the

head coil. Auditory stimuli were presented using the Silent Scan

auditory presentation system (AVOTEC), which uses air conduc-

tion to transmit tones and headphones to attenuate the gradient

noise. E-Prime Stimulus Presentation Software (http://www.

pstnet.com) was used to control stimulus presentation, collect

behavioral responses and to log the precise timing of the stimulus

events.

fMRI Preprocessing Parameters. Functional images were

slice-timed corrected with AFNI (http://afni.nimh.nih.gov/afni).

Motion correction was completed using AIR (http://bishopw.loni.

ucla.edu/AIR5/) by registering functional volumes to the 100th

volume within each run. All functional volumes within each

motion-corrected run were averaged to create mean functional

volumes for each run. Using a rigid body transformation model,

this mean functional volume was then registered with each

participant’s structural volume. The structural data were spatially

normalized to the Common Anatomical Template previously

described by [45]. Thus, the end result was a direct nonlinear

transform from each initial fMRI volume into the Common

Template space.

Data were smoothed using a 7 mm Gaussian kernel. The voxel

time series were further adjusted by regressing out motion

correction parameters, white matter (WM) time series and CSF

time series. As [46], the time series of the unsmoothed data from

small regions-of-interest in the corpus callosum (WM) and

ventricles (CSF) of the Common Template were used as the white

matter and CSF regressors respectively. This last step minimizes

contamination of WM and CSF time series that can occur when

signals from neighboring gray matter voxels are mixed in due to

spatial smoothing or registration errors. Furthermore, we

performed high-pass temporal filtering using FSL (Gaussian-

weighted least-squares straight line fitting, with sigma = 75 s).

We combined four published probabilistic atlases to create a

gray matter atlas with 152 Regions of Interest (ROIs). Three of

these atlases are part of the FSL distribution: Harvard Oxford-

Cortical, Harvard Oxford-Subcortical and Oxford Thalamic

Connectivity atlases. The fourth atlas was the SUIT Cerebellar

atlas (www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm). Each

of the four atlases provides a thresholded maximum probability

ROI mask with a threshold of 25%. This means that each voxel

within the 3D image space was assigned to exactly one ROI,

namely the one with the highest probability according to the

sample of manually delineated single participant ROIs. If this

maximum probability was below 25%, then the voxel was not

assigned to any ROI. In this way each atlas provided a discrete

segmentation image where voxel intensity signifies the voxel’s most

probable ROI membership.

All ROIs from four atlases were used, with the exception of

global regions from the subcortical atlas, namely, Cerebral White

Matter, Lateral Ventricles and Cerebral Cortex. To obtain

consistent parcellation of thalamus we intersected a single thalamic

ROI from the subcortical atlas with all thalamic subregions from

the Thalamic Connectivity atlas. For a small number of voxels,

there was a conflict in terms of ROI membership, such that a voxel

could be a part of one ROI according to one atlas and also a part

of another ROI according to another atlas (e.g. along cerebrum/

cerebellum border). We resolved such conflicts by setting the

following atlas precedence order from highest to lowest: Cortical,

Subcortical, Thalamic, Cerebellar.

In order to create consistent left and right hemispheric

subdivisions we combined ROIs from four atlases, some of which

were lateralized and others which were not. For example, none of

the regions within Cortical, Subcortical and Thalamic atlases are

lateralized. On the other hand, the Cerebellum atlas has both

lateralized and medial (non-lateralized) regions. To create a

lateralization within the Cerebellum and brain stem, we used the

midsaggital plane of the MNI152 template brain (x = 0 in world

coordinates) and divided regions into left and right depending on

the position with respect to the plane. We made an exception for

medial cerebellar regions, which were left as such. The final

combined gray matter ROI atlas consists of 152 regions: 48+48

cortical lateralized regions, 7+7 lateralized thalamic regions, 6+6

additional lateralized subcortical regions (pallidum, putamen,

caudate, hippocampus, amygdala and accumbens), 10+10 later-

alized cerebellar regions, 8 medial cerebellar regions and 1+1

lateralized brain stem regions.

For each of the 152 ROIs we extracted the time series as a

weighted sum over the voxels within the region. The weighting

was provided by the distance transform from the region’s border,

so that voxels at the core of the region would be weighted more

than the voxels near region’s border. The weight of each voxel was

calculated as a squared distance from the region’s border,

normalized by the sum of all squared distances. This weighting

scheme was designed to reduce artificially high correlations

between small neighboring regions where signal can be smeared

due to coarse resolution, and preprocessing and registration errors.

This was performed separately for each condition.

Task Parameters. The overarching goal for the experiment

was for participants to learn a new lexicon comprised of 30

pseudowords in an associative learning task spanning two fMRI

scanning sessions. The study occurred over a three-day period. On

the first day participants were trained in a MRI simulator using a

parallel set of stimuli to ensure full understanding of the task to be
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completed during fMRI scanning. FMRI scanning then occurred

on two days over the course of a one-week period.

The learning task used was developed by [47], but modified for

English speakers. Participants heard a spoken pseudoword in their

headphones and then briefly saw a picture of an everyday object

followed by a fixation cross. Sometimes the pairings were ‘correct’

and sometimes ‘incorrect’. Participants indicated whether or not

they thought the pairings were correct by pushing one of two

buttons on a response pad. The underlying learning principle was

a higher co-occurrence of ‘correct’ pairings with a 20:1

(correct:incorrect) by the end of both scanning sessions. The

learning runs across both days were additive in that the vocabulary

to be learned for each participant was comprised of the same 30

words-object pairings on each of the days.

Participants also completed a reaction-time task, which was

identical in structure, but used another parallel set of stimuli and

lacked an underlying learning principle. In this task, participants

heard a pseudoword, and were then presented with an object-

picture. They were asked to simply push the first button as quickly

as possible when the picture appeared on the screen.

The two scanning sessions were identically structured. The

functional runs began with the reaction-time task (120 trials),

followed by five learning runs (900 trials in total) and then another

reaction-time run (120 trials). Each run lasted approximately

6.5 minutes. Data used in this analysis are from the second

scanning day and include the first reaction-time task and the

subsequent five learning runs.

Crossmodal Dataset Details
The same methods appear in [17].

Participants. Twenty-four (12 female) healthy, right-handed

individuals between the ages of 19 and 35 (mean age: 23.0863.87

years) with normal to corrected-vision were recruited for

participation. All participants were screened and cleared for any

neurological, psychiatric, substance abuse-related problems. All

participants provided written informed consent in accordance with

a joint Baycrest-University of Toronto Research Ethics Board

Committee, which approved this study.

fMRI acquisition and analysis parameters. Participants

were scanned in a Siemens Magnetrom TIM Trio Whole Body 3T

MR scanner with a matrix 12-channel head coil. A structural MRI

was obtained for each participant at the beginning of each

scanning session, consisting of a 3D T1-weighted pulse sequence

[echo time (TE), 2.6; 2566256 acquisition matrix, voxel size,

1.061.061.0 mm]. For functional scans, 28 oblique axial slices

with full brain coverage were obtained [TR, 2 s; 64664

acquisition matrix; voxel size, 3.125 mm63.125 mm65.0 mm]

using T2*-weighted echo-planar image (EPI) sequence. Oblique

axial slices were acquired to minimize sinus-related artifacts that

occur in EPI sequences. These oblique axial slices were restored to

the normal axial plane during reconstruction procedures.

Preprocessing of images was completed in Statistical Parametric

Mapping (SPM5; available at http://www.fil.ion.ucl.ac.uk/spm/

software/spm5/) and MELODIC [48] software packages. The

images were corrected for slice timing differences in the EPI

interleave acquisition, co-registered to the first EPI image in each

run, corrected for gradient and residual head-motion artifacts

using independent components analysis with MELODIC, spatially

normalized to a standard MNI template with an affine transfor-

mation and 4d-spline interpolated and smoothed with an 8-mm

Gaussian kernel. Functional data were parceled into 229 different

ROIs based on sampling every 100th voxel using the AAL

template as a gray matter mask.

Task Parameters. The experiment contained two types of

auditory stimuli that were matched in amplitude but differed in

frequency (250 Hz and 4000 Hz). The visual stimuli used in the

experiment were a black and white checkerboard pattern (square)

and the same checkerboard rotated 45 degrees (diamond). All

stimulus presentations were controlled by Presentation software

(version 10.2, Neurobehavioural Systems Inc.).

A trial was composed of a first stimulus (S1), delay, second

stimulus (S2), response window and a variable inter-trial interval of

3, 5, 7, or 9 seconds. Two main task types were designed by

manipulating the content of S1 and S2. For Cue 1st (C1) tasks, S1

was a cue that signaled a response compatibility rule to a

subsequent lateralized target (S2). In Target 1st (C2) tasks, S1 was

the lateralized target followed by the cue stimulus (S2). In a

compatible trial, a cue instructed participants to press a button on

the same side (left or right) as the lateralized target. In an

incompatible trial, participant’s pressed the button on the opposite

side of the lateralized target.

Auditory and visual stimuli were presented in Cue 1st and

Target 1st tasks. In auditory cue/visual target sub-tasks, the pitch

of a binaural tone specified the response rule to a lateralized visual

target, a square checkerboard. Low (250 Hz) and high (4000 Hz)

pitch tones signaled compatible and incompatible responses,

respectively. In the visual cue/auditory target sub-tasks, the shape

of a visual stimulus indicated the response rule to a lateralized,

monaural tone of 250 Hz. Square and diamond checkerboards

corresponded to compatible and incompatible responses. In

summary, modality and stimulus presentation order manipulations

resulted in four tasks: auditory cue followed by visual target (C1A),

visual cue followed by auditory target (C1V), visual target followed

by auditory cue (C2A) and auditory target followed by visual cue

(C2V).

We used a mixed event-related experimental design for

collecting fMRI data. Each of the four tasks were repeated three

times for a total of twelve runs (9 mins, 28 seconds in duration)

with 40 trials (20 compatible, 20 incompatible) randomly

presented within each run. We collected data on two scanning

days (6 runs per day) and counterbalanced across task types.

MEG Dataset Details
The same methods appear in [18].

Participants. Fourteen healthy, right-handed (8 female)

participants between the ages of 19 and 30 (mean age: 2262

years) with normal or corrected-vision, were recruited for the

study. All participants were screened and cleared for any

neurological, psychiatric, substance abuse-related problems. All

participants provided written informed consent in accordance with

a joint Baycrest-University of Toronto Research Ethics Board

Committee, which approved this study.

MEG acquisition and analysis parameters. MEG record-

ings were performed at the Rotman Research Institute at Baycrest

Centre, in a dimly-lit, magnetically shielded room using a 151-

channel whole-head axial gradiometer system (VSM-Med Tech

Inc., Coquitlam, BC, Canada) with receiver coils uniformly spaced

approximately 3 cm apart on a helmet-shaped array. Two

separate blocks of MEG recordings took place, each approxi-

mately 18 minutes in length at a sampling rate of 625 Hz. The

position of the participant’s head in the MEG was recorded at the

beginning and the end of each data session using indicator coils

placed on the nasion and bilateral preauricular points. Motion

tolerance was set to 0.5 cm and all participants were within this

limit. MEG data was acquired with participants lying in a supine

position to minimize head movements while viewing a screen

above the MEG system adjusted to participants’ eye level.
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Independent components analysis [ICA; [49]] was used to correct

for ocular and cardiac artifacts (http://sccn.ucsd.edu/eeglab/).

MEG data were parsed into 150 trials per task over the range 2

2.0 to 1.24 s relative to scene onset, band-passed between 0.5 and

55 Hz using a bidirectional filter, and time series were down-

sampled by a factor of four from the original digitization interval.

The baseline interval chosen for correction was 20.5 to 21.0 s.

The data were analyzed in a third-order gradient configuration for

external noise correction. In addition to MEG recordings, a

structural magnetic resonance image (MRI) was also acquired for

each participant for co-registration with the MEG functional data.

The structural image was a 3D MPRAGE T1-weighted pulse

sequence (echo time, 2.6 ms; repetition time, 2 s; 2566256

acquisition matrix; voxel size, 1.061.061.0 mm) acquired on a 3

Tesla magnet (Siemens Magnetrom TIM Trio Whole Body

scanner) located at Baycrest Centre.

A data-driven approach, previously applied to electroenceph-

alographic data [50] was employed to derive brain sources/

networks that gave rise to MEG signals recorded on the scalp.

Preprocessed data were concatenated into a single matrix with

MEG sensors (150) on the x-axis and participants (14), conditions

(2), trials (150), and time samples (407) on the y-axis. The grand

data matrix was evaluated with Bayesian Information Criterion

[BIC; [51]] to determine the optimal subspace that fairly

expressed the complexity of the data. The complete theoretical

range of models (1–150) based on the rank of the smallest

dimension of the data matrix were assessed. The probability of

each model was estimated by leveraging goodness of fit and model

complexity. The peak probability of the distribution for all models

occurred at 34. Next, Principal Component Analysis (PCA) was

performed on the original data matrix with the number of

principal components (PCs) restricted to 34. Subsequently, ICA

replaced the orthogonal PCs with independent components (ICs)

that were not necessarily uncorrelated but maximally independent

in the temporal domain. 2 out of the 34 components were dropped

because they contained residual artifacts. The remaining 32 group

ICs were projected onto participant data by multiplying the

original time series for each trial/condition with the weighting

(mixing) matrix. In this way, participant-specific ICs, representing

sources/networks, were calculated with weights from group

analysis.

The resulting spatial maps were translated into brain locations

using an event-related vector beamformer [52,53]. All 32

components showed dipolar patterns and were successfully

mapped to mainly singular sources in MEG data.

For each individual, the functional maps obtained from source

reconstruction were warped into a common space - the Montreal

Neurological Institute (MNI) standard brain, using SPM software’s

(http://www.fil.ion.ucl.ac.uk/spm/software/) spatial normaliza-

tion engine. To infer group-level source distributions, normalized

functional images were averaged for all participants. A peak

coordinate from within an activated cluster was identified from

group-averaged data. Using this procedure, a spatial location was

assigned to each of the 32 ICs. Functional connectivity was

estimated by correlating the beamformer-reconstructed activity for

all pairs of sources.

Task Parameters. Visual stimuli were eight scenes (4 indoor,

4 outdoor) taken from a repository of images used in [54]. The

experiment contained two tasks: active learning and choice

reaction time with no learning component, with 150 trials per

task. For learning, participants linked 2 scene pairs with 2 color

pairs (4 associations) through trial-and-error. The general structure

of a trial consisted of scene presentation (500 ms), a delay interval

(750 ms) and a color pair, after which the participants had up to

1.2 sec to record their responses. Participants received on-screen,

written feedback (correct/wrong) about their response choice.

After responses were made, a jittered, random, inter-trial interval

between 4.5 to 6 sec ensued. In the control task, participants were

instructed in advance about which colors were correct and scenes

preceding these colors were shown randomly. All stimuli were

unique for both tasks and were randomized for individuals. The

order in which the tasks were administered was counterbalanced

across participants.

PET Dataset Details
Information about the PET data set was compiled from a

previously-published study by Cabeza, McIntosh, Tulving, Nyberg

and Grady (1997). In that study, the authors constructed a

structural equation model (SEM, also known as path analysis) to

investigate how the patterns of interregional influence changed

during memory encoding and memory recall, and whether these

memory-related effects were modulated by aging. Specifically,

data were taken from Tables 1 and 2, which show the coordinates

of the nodes and the SEM-estimated beta coefficients (described in

more detail below), allowing us to fully reconstruct the network for

both the Encoding and Recall conditions.

The original PET data, which measured regional cerebral blood

flow (rCBF), was processed in a manner analogous to ‘‘standard’’

BOLD signal processing, including motion correction, spatial

normalization and spatial smoothing. The regional nodes of the

network (n = 13) were selected from an initial exploratory analysis

of the mean signal, i.e. all nodes showed a statistically significant

main effect of memory task.

The data from Cabeza et al. (1997) study are unique in the sense

that they represent a measure of effective connectivity, rather than

functional connectivity. Thus, the connections express the direct

effect one brain region has on another, above and beyond any

effects of indirect connections. The values for the individual

connections are the standardized path coefficients from the SEM

analysis, which are analogous to regression (‘‘beta’’) coefficients

and represent partial correlations (McIntosh & Gonzalez-Lima,

1994).

Specifically, the path coefficients were estimated as follows. An

empirical matrix of regional covariances was calculated and an

initial structural network was constructed using prior empirical

knowledge about the anatomical connectivity among the 13 nodes

of the network. The weight of each connection or path was

assigned an initial value. Through an iterative data fitting

procedure, the weights were modified to find an optimal solution,

which best reproduced the empirically-observed pattern of

regional covariances.

Details regarding the participants, task, acquisition parameters

and preprocessing parameters can be found in [31]. When

analyzing data from this published report, we examined differ-

ences in effective connectivity for older adults compared to

younger adults in the recall condition. Euclidean distances

between brain areas was calculated using the coordinates listed

in Table 1 of that publication, while the path coefficients were

compiled from Table 2 of that publication.

Supporting Information

File S1 Fisher-transformed correlation matrices. Each

of the Studies is represented as a MATLAB (The Mathworks,

Natick, MA) cell array. Each cell represents an experimental

group, and each array is organized in the following way:

Conditions 6Participants 6Regions 6Regions.

(MAT)
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