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Abstract

In this thesis we study integrable systems known as spin chains and their applications to
the study of the AdS/CFT duality, and in particular to N “ 4 supersymmetric Yang-Mills
theory (SYM) in four dimensions.

First, we introduce the necessary tools for the study of integrable periodic spin chains,
which are based on algebraic and functional relations. From these tools, we derive in detail
a technique that can be used to compute all the observables in these spin chains, known as
Functional Separation of Variables. Then, we generalise our methods and results to a class
of integrable spin chains with more general boundary conditions, known as open integrable
spin chains.

In the second part, we study a cusped Maldacena-Wilson line in N “ 4 SYM with
insertions of scalar fields at the cusp, in a simplifying limit called the ladders limit. We
derive a rigorous duality between this observable and an open integrable spin chain, the
open Fishchain. We solve the Baxter TQ relation for the spin chain to obtain the exact
spectrum of scaling dimensions of this observable involving cusped Maldacena-Wilson line.

The open Fishchain and the application of Functional Separation of Variables to it form
a very promising road for the study of the three-point functions of non-local operators in
N “ 4 SYM via integrability.
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Introduction

This thesis is dedicated to the description of new techniques developed for the study of
integrable systems, and in particular for the study of spin chains appearing in the special
type of quantum field theories known as gauge theories.

Integrability is a property of some dynamical systems, known as integrable systems.
The characteristic defining integrable systems is that they admit solutions for their dynamics
that can be obtained through algebraic methods. Integrable systems describe real physical
phenomena: thus, in spite of their solvability, their dynamics can still be quite complicated.

Integrable systems can be either classical or quantum, and the precise definition of
integrability in these two cases is different. The main subject of this thesis are quantum
integrable models, and their applications to the study of Quantum Field Theories. However,
we will also briefly discuss classical integrability.

Quantum Field Theories (QFTs) describe a wide variety of real-world phenomena,
with the most famous example being undoubtedly the Standard Model: computing ob-
servables in QFTs allows us to make predictions about the behaviour of the universe at
microscopic scales. Unfortunately, performing such computations is an extremely hard
task: in many cases, only perturbative methods can be used, and these are only applicable
when the interactions in the QFT are weak.

Given that integrability lets us obtain solutions for theories, finding integrable structures
in a QFT can drastically improve our ability to comprehend its dynamics, in particular in
the strongly coupled regime.

Until the end of last century, integrability was not found in any 4-dimensional QFT.
This fact changed dramatically thanks to the seminal papers [1, 2], where high energy
hadron scattering in QCD was linked to a quantum integrable model, a spin chain. A few
years later, the authors of [3] found that the perturbative corrections to some observables in
maximally supersymmetric Yang-Mills theory (N “ 4 SYM) also correspond to the energy
levels of a spin chain.

N “ 4 SYM is a 4-dimensional, supersymmetric, non-abelian QFT possessing conformal
symmetry and SUpNq gauge symmetry, which plays a pivotal role in modern Theoretical
Physics. The observables of interest in N “ 4 SYM are its conformal data, i.e. the
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scaling dimensions, or spectrum, ∆ of local and non-local operators and their three-point
structure constants. If we are able to compute them, the theory is said to be solved, as any
other correlation function is fixed in terms of the conformal data by conformal symmetry.
Solving N “ 4 SYM would provide invaluable insights into the properties and behavior of
gauge theories, including the Standard Model, and a new way to probe quantum gravity,
since N “ 4 SYM constitutes the Conformal Field Theory (CFT) side of the AdS5{CFT4
duality [4].

The results of [3] sparked a renewed interest in the study of N “ 4 SYM, exploiting
the integrable spin chains appearing in it, see [5] for a review. These spin chains are
often quite special, and many known methods for quantum integrability, such as the Bethe
Ansatz, are not always adept for their study1. The existence of these technical challenges
served as a catalyst for the development of new techniques for the analysis of quantum
integrable models.

One extremely successful example of this story is the Quantum Spectral Curve (QSC),
a method based on integrability that has been developed to solve the spectral problem for
N “ 4 SYM in the large N (planar) limit2. The QSC lets us compute the scaling dimen-
sion of every local operator with extremely high numerical precision at any coupling [14].
Computing the three-point structure constants has proven to be a harder problem. Many
new techniques have been developed in order to tackle it [15–22], but to this day it remains
unsolved.

While local operators in N “ 4 SYM have received a lot of attention, the application
of integrability to QFTs is not limited to them. For example, integrable spin chains also
describe non-local operators in N “ 4 SYM - such as supersymmetric Wilson-Maldacena
loops [23]. They also have been found in other high-dimensional QFTs, with one exam-
ple being the Fishnet theory [24], an important toy model for holographic dualities and
integrability.

These results underline the power of integrability - it lets us compute many observables
in CFTs, to a level of precision never seen before. In particular, we hope that integrability,
and the techniques that come from its study, can lead us to obtain the first complete solution
of a non-abelian gauge theory in the planar limit.

As we have already mentioned, the calculation of three-point structure constants is the
missing step to do in the road to the solution of N “ 4 SYM via integrability. We can
identify two open questions, which are critical for making progress in this research program:

• Can we rigorously build a non-perturbative duality between a spin chain model and
N “ 4 SYM?

• Once we have established such duality, can we build a general method that lets us
compute all observables in this integrable spin chain, including those that are dual to

1This is especially true if we want to do higher loops or non-perturbative calculations.
2The Quantum Spectral Curve has also been extended to other theories, see for example [6–13].
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the three-point structure constants of N “ 4 SYM?

The main goal of this thesis is to expose some recent progress towards the solution of these
two problems. We aim to do so in a self-contained manner, assuming no prior knowledge
of integrability and spin chains.

A promising method to solve the second problem is Functional Separation of Vari-
ables (FSoV). This framework can be applied to a wide range of spin chains, and in partic-
ular can already be used to compute some three-point functions in N “ 4 SYM [21, 25]. We
will explore recent progress in this approach, and prove that using FSoV we can compute
a complete set of observables for a large class of periodic integrable spin chains, even in
those cases found in N “ 4 SYM. These are given in terms of the same building blocks
of the QSC, the Baxter Q-functions, a fact that makes the applicability of this method to
CFTs much more natural. From these observables, it is in principle possible to compute any
physical quantity in the spin chain. Furthermore, we expand the range of applicability of
FSoV to spin chains with open boundary conditions, which are dual to non-local operators
in CFTs.

To make progress with the first problem, we develop the open Fishchain. This is
an integrable spin chain with open boundary conditions, dual to non-local operators in
N “ 4 SYM at all loops in a certain limit. This model represents a clear example of a
non-perturbative duality between a spin chain and a subsector of N “ 4 SYM. We will see
how the knowledge of this model lets us compute the scaling dimensions of operators in this
subsector at any coupling. We finally briefly describe how the open Fishchain can provide
a playground for the application of FSoV in the context of holographic CFTs.

Contents

This thesis is divided in two parts, each detailing one of the two topics we have described
above:

• Part 1 is dedicated to the study of integrable systems, and in particular integrable
spin chains, from a mathematical point of view. The main goal of this part consists
in showing how Functional Separation of Variables (FSoV) can be used to compute
observables in these systems. In order to do so, we first need to introduce the key
concepts on which FSoV is based. In particular, we will discuss the Yangian3, a special
symmetry group, and see how a certain class of integrable spin chains are naturally
based on the representation theory of this object. Then, we will introduce the T-
system and Q-system, which are the two fundamental functional descriptions of a
spin chain, based on the Yangian. Finally, we will explore the Separation of Variables
program, and introduce the author’s original work [26] on FSoV. In particular, we
show that Functional SoV can be used to obtain a complete set of observables for

3We will actually limit our discussion to a certain subset of Yangians, those related to the Lie algebra
glN .
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integrable spin chains built from the Yangian. We conclude this part by presenting
the author’s work in preparation [27] about the study of integrable spin chains with
open boundary conditions.

• Part 2 is dedicated to the development of connections between spin chains and High
Energy Physics, and to the applications of the techniques discussed in the first part
in this context. Basing on the author’s original work [28], we will build the open
Fishchain model, and rigorously prove its duality to non-local operators in N “ 4
SYM. We will implement a method based on the Quantum Spectral Curve to com-
pute quantities in the open Fishchain that describe the scaling dimension of Wilson-
Maldacena lines in N “ 4 SYM. We will then briefly talk about the possible applica-
tion of FSoV to this model.

Part 1 - Integrability and Spin Chains

Chapter 1: Classical Integrability The defining feature of classical integrable systems
is the existence of a large number of symmetries and conserved charges, which can be used
to obtain exact solutions for their motion. This section is not intended to give a complete
treatment of classical integrability. Rather, we will describe two special techniques, whose
quantum version is at the core of our analysis of integrable spin chains. The first one is
the Lax representation. This method, applicable only to some classes of classical integrable
systems, lets us compute all their conserved charges. The second is the Separation of
Variables, and can be used in any integrable system. It consists in the construction of a
set of special coordinates, called separated, or action-angle, variables. In these coordinates,
the equations of motion become exactly solvable.

Chapter 2: Quantum Integrability Quantum integrable systems are systems defined
by the presence of factorised scattering. This means that any scattering process can be
reduced to a series of 2 Ñ 2 particle scatterings. Factorised scattering is naturally associated
to symmetries known as quantum groups, which are a special class of non-commutative
algebras. Quantum groups are defined in terms of a universal R-matrix satisfying the
Yang-Baxter equation, a fundamental relation which imposes factorised scattering on the
underlying integrable system. The quantum group we will analyse is the Yangian, which
arises as the quantisation of a classical Lie algebra. We will specialise our treatment to the
glN algebra, and introduce the Yangian Y pglN q in terms of a set of generators satisfying
the set of equations known as the RTT relations. Finally, we will briefly talk about the
representation theory of Y pglN q.

Chapter 3: Integrable Spin Chains The quantum integrable spin chains we will anal-
yse are periodic, one-dimensional, discrete models which can be defined as a representation
of the Yangian Y pglN q. In this section, we will use the generators of Y pglN q as the starting
point to compute observables in these systems. First, we will introduce the Algebraic Bethe
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Ansatz, a technique based on the RTT relations which lets us compute the eigenstates of
integrable spin chains. We will then introduce more modern approaches for the study of
spin chains, the Q-system and the T-system. These are based respectively on the Bax-
ter Q-functions and the quantum Lax operators of the spin chain. The interplay between
these two systems gives rise to the Baxter TQ equation, known for its use in the Quantum
Spectral Curve formalism and which constitutes the key equation for FSoV.

Chapter 4: Sklyanin’s Separation of Variables The Separation of Variables (SoV)
program, initiated by Sklyanin [29], is the quantum version of the classical separated vari-
ables. We will show how we can use the T-system to build the so-called SoV basis for the
Hilbert space of a certain class of integrable spin chains. The SoV basis is a special basis in
which the spin chain states have a simple, separated form entirely given in terms of their
Baxter Q-functions. We will then briefly mention how to compute some physical quantities,
such as overlaps of states of the spin chain, using the SoV basis.

Chapter 5: Functional Separation of Variables The Functional Separation of Vari-
ables (FSoV) is a more direct and more powerful approach to Separation of Variables for
spin chains. FSoV lets us compute observables in terms of Q-functions without having to
know explicitly the SoV basis. This is a great advantage over Sklyanin’s SoV, since the SoV
basis cannot be easily built for a wide class of spin chains, including the ones appearing in
gauge theories. We will prove that using FSoV we can compute a complete set of observ-
ables for integrable spin chains built from the Yangian Y pglN q. Furthermore, we will show
that FSoV is equivalent to other SoV constructions, in the cases where the latter can be
used, and can be used to reconstruct the SoV basis.

Chapter 6: Open Integrable Spin Chains Open integrable spin chains are a class
of models obtained by adding special boundaries to the spin chains we have analysed so
far. These boundaries do not fully break the Yangian symmetry - they preserve a subgroup
known as Twisted Yangian. We will describe how integrability techniques developed for
periodic spin chains can be adapted to this new setting, and in particular detail some initial
progress in the FSoV program for open spin chains.

Part 2 - Spin Chains in Gauge Theories

Chapter 6: Conformal Field Theory and N “ 4 SYM In this section we briefly
review some basics of Conformal Field Theories, explaining why a CFT is completely de-
scribed by its spectrum and three-point structure constants. We will also review maximally
supersymmetric Yang-Mills theory in 4 dimensions, providing its Lagrangian and describing
how the spectrum of its SUp2q subsector can be described by a spin chain.
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Chapter 7: Cusps in N “ 4 SYM and the Open Fishchain In this section, we will
prove that cusped Maldacena-Wilson lines in a double scaling limit of planar N “ 4 SYM
are fully dual to an open spin chain, known as the open Fishchain. We will see how using
the Baxter TQ equation for the open Fishchain we can fully compute the scaling dimension
of a class of operators involving Maldacena-Wilson lines, at any coupling and with high
numerical precision. Finally, we will mention how FSoV can be applied to this setting.

Conclusions

We will conclude by presenting other open questions and possible lines for future work.
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Integrability and Spin chains
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Chapter 1

Classical Integrability

Classical Integrability - also known as Liouville integrability - is a property of some classical
systems that allows us to find exact solutions for their motion. In particular, their time
evolution can be fully determined by solving a finite number of algebraic equations and by
computing a finite number of integrals.

Liouville integrable systems form a large class of well-known solvable models. Some ex-
amples include the Kepler problem, the multi-dimensional harmonic oscillator, the Korteweg-
de Vries equation, and so on. In this thesis, we will treat a classical integrable system in
chapter 8, the classical open Fishchain.

Roughly speaking, a classical system with N degrees of freedom is Liouville integrable
if it admits N independent conserved charges Qi; one can then treat the N independent
conservation laws 9Qi “ 0 as the equations of motion to solve for the N degrees of freedom.

Liouville Integrability can be rigorously defined in the context of Hamiltonian systems,
which are dynamical systems admitting a description via a Hamiltonian function on a phase
space. After introducing the main definitions of Liouville integrability for Hamiltonian
systems, we will describe the Separation of Variables and the Lax representation. These two
techniques provide a direct way of solving some Liouville integrable systems. Furthermore,
their quantum analog will be at the core of our study of integrable spin chains.

This chapter is mostly based on the book by Arutyunov [30], while the discussion on
action-angle variables is taken from [31].

1.1 Hamiltonian systems

A Hamiltonian system is a dynamical system defined on a 2n-dimensional phase space H,
equipped with:

• Canonical coordinates pqi, piq, i “ 1 . . . n;

• A function H : H Ñ R called Hamiltonian;

23
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• A Poisson bracket t , u : FpHq ˆ FpHq Ñ FpHq, where FpHq is the space of smooth
functions on the phase space.

The Poisson bracket has the structure of an (infinite dimensional) Lie algebra, and thus
is determined on all the phase space H if we define its action on the canonical coordinates
pqi, piq, i “ 1 . . . n. This action is given by:

tqi, piu “ δij , tqi, qju “ 0, tpi, pju “ 0 . (1.1.1)

It is easy to check that the canonical Poisson bracket

tf, gu “

n
ÿ

i“1

Bf

Bpi

Bg

Bqi
´

Bg

Bpi

Bf

Bqi
(1.1.2)

satisfies all the properties required above.
The motion of a dynamical system is described by a trajectory on the phase space

pq⃗ptq, p⃗ptqq; such trajectory can be determined (given initial conditions pq⃗0, p⃗0q) by solving
the Hamilton’s equations of motion:

9qi “ tH, piu, 9pi “ tH, qiu . (1.1.3)

Therefore, the dynamics of a Hamiltonian systems are embedded in its Hamiltonian and
its Poisson bracket. More generally, the time evolution of any function f on the phase space
is determined by the Poisson bracket and the Hamiltonian:

9f “ tH, fu . (1.1.4)

The coordinates pqi, piq are not the only ones that have Poisson brackets of form (1.1.1). In
fact, one can apply a family of transformations on pqi, piq such that the structure (1.1.1) is
preserved. In particular, we define a canonical transformation as a change of variables on
the phase space:

qi Ñ q1
ipqj , pjq, pi Ñ p1

ipqj , pjq , (1.1.5)

that does not change the form of the Poisson bracket (1.1.1).

1.2 Liouville integrability

If a Hamiltonian system with dimpHq “ 2n has n independent functions fi P FpHq (in the
sense that the one-forms dfi, i “ 1 . . . n are linearly independent in each local coordinate
patch of H) such that:

tfi, fju “ 0, @i, j “ 1 . . . n, and Dk such that H “ fk , (1.2.1)

then the Hamiltonian system is said to be Liouville integrable.
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The functions fi are said to be in involution with respect to the Poisson bracket t , u.
Since they commute with the Hamiltonian, these functions are conserved in time, and we
will refer to them as conserved charges or Integrals of Motion (IoMs).

The Arnold-Liouville theorem, whose formal statement and proof can be found in [30],
ensures that any Liouville integrable system can be solved via quadratures, i.e. by solving
algebraic equations and computing a finite number of one-variable integrals. In particular, it
states that the motion of a Liouville integrable system can be described using the coordinates
pfi, ϕiq, i “ 1 . . . n, for which the equations of motion are linear in time. These coordinates
however are in general not canonical.

In a Liouville integrable system it is always possible to build another set of canonical
coordinates, called action-angle variables, in which Hamilton’s equations of motion split
into a set of 2n ordinary differential equations. This is why action-angles variables are also
called Separated Variables.

1.2.1 Action-angle variables

One of the statements of the Arnold-Liouville theorem [30] is that we can foliate H via a
set of surfaces, each isomorphic to an n-dimensional torus, where the conserved charges fi

take the constant values ci.
To simplify our treatment, we will use the following shorthand notation: a⃗ ” pa1 . . . anq.
On each torus, we can invert the equations fipp⃗, q⃗q “ ci to obtain pj “ pjpc⃗, q⃗q. The

action variables are then defined by:

Ijpc⃗q “
1

2π

¿

γj

n
ÿ

i“1
pipq⃗, c⃗qdqi (1.2.2)

where γj is the j-th cycle of the n-torus. Given that Ij are functions only of the constants
ci, the action variables are clearly time-independent, hence their Hamilton’s equation are:

9Ij “ 0 . (1.2.3)

We may then define the angle variables θi by requiring that the transformation
pqi, piq Ñ pθi, Iiq is canonical, i.e. it preserves the canonical Poisson bracket (1.1.1).

Doing so results in the following definition of angle variables:

θj “
BS

BIj
, where SpI⃗ , q⃗q ”

ż q

q0

pipq
1, Iqdq1

i . (1.2.4)

An important feature of action-angle variables is that the Hamiltonian in these coordi-
nates only depends on Ij variables. In fact, we have that:

9Ij “ tH, Iju “ 0 Ñ
BH

Bθj
“ 0 (1.2.5)



26 CHAPTER 1. CLASSICAL INTEGRABILITY

Therefore, H “ HpI⃗q. The dynamics of the angle variables are therefore given by:

9θj “ tH, θju “
BH

BIj
” ωjpI⃗q , (1.2.6)

where ωj are constants since they only depend on the constants I⃗.
The equations of motion in action-angles variables are evidently separated and can be

solved by direct integration, yielding:

Ijptq “ I0
j , θjptq “ ωjpI⃗0qt` θ0

j , (1.2.7)

where I0
j and θ0

j are integration constants which are determined from the initial conditions.
Clearly this procedure can be done in any Liouville integrable system, i.e. whenever

we have as many integrals of motion ci as half of the dimension of the phase space. Since
the construction of pI⃗ , θ⃗q only involves algebraic operations and integrals, and solving the
resulting equations of motion can be done by direct integrations in one variable, it follows
that any Liouville integrable system can be solved via quadratures1.

1.2.2 Lax representation

Due to the existence of the action-angle variables, classical integrable systems can always
be solved via quadratures. However, in order to establish Liouville integrability and build
action-angle variables, we need to know all the conserved charges of the integrable system.
Their construction is in general a nontrivial problem.

In this section, we will introduce the so-called Lax representation for integrable systems.
If a Hamiltonian system admits a Lax representation, it is a Liouville integrable system,
and we can automatically build all its conserved charges.

A Hamiltonian system is said to possess a Lax representation if it is possible to recast
its equations of motion as the Lax equation:

9L “ rM,Ls , (1.2.8)

where L,M are two square matrices called respectively the Lax matrix and the auxiliary
matrix, and r . , . s is the usual commutator between matrices. pL,Mq are known as a Lax
pair for the Hamiltonian system.

The dimension of the matrices L,M is not fixed a priori, and in general the Lax Pair
for an integrable system is not unique. Furthermore, even a given Lax pair possesses gauge
freedom: the d´dimensional Lax pair pL,Mq is equivalent to the Lax pair pL1,M 1q where:

L1 “ fLf´1, M 1 “ fMf´1 ` 9ff´1, f “ any dˆ d invertible matrix . (1.2.9)
1The construction of the action-angle variables is quite hard to do explicitly, especially for high dimen-

sional systems. A few detailed examples of it can be found in [31].
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It is always possible to build d independent conserved charges from the Lax matrix.
This can be done by taking the trace of products of the Lax matrix:

Ik “ trLk, k “ 1 . . . d. (1.2.10)

Ik are (power sum) symmetric polynomials in the eigenvalues of L, and the number of
independent symmetric polynomials is equal to the dimension of the Lax Matrix dimpLq “ d.
Hence we can only build up to d independent conserved charges from a d-dimensional Lax
matrix.

Proving that Ik are conserved is easy, in fact:

9Ik “ k trpLk´1 9Lq “ k trpLk´1 rM,Lsq “ tr
”

M,Lk
ı

“ 0 (1.2.11)

where we have used (1.2.8) in the first passage.
Of course, the conserved charges Ik of an integrable model need also to be in Poisson

involution, i.e. tIi, Iju “ 0. Proving that this is the case for the charges (1.2.10) requires
an ulterior condition on the Lax operators, given by the Babelon-Viallet theorem.

This theorem states that the eigenvalues of the Lax matrix are in involution if and only
if there exist a tensor r12 over MatdCb MatdC with entries on H such that:

tL1, L2u “ rr12, L1s ´ rr21, L2s (1.2.12)

where L1 ” Lb 1d and L2 ” 1d b L.
The tensor rij is known as the classical R-matrix. It also satisfies the Jacobi identity:

rL1, rr12, r13s ` rr12, r23s ` rr32, r13s ` tL2, r13u ´ tL3, r12us ` cyclic perm. “ 0 (1.2.13)

which becomes, in the case where the entries of r are constants in the phase space (i.e. they
Poisson commute with the Lax matrices):

rr12, r13s ` rr12, r23s ` rr32, r13s “ 0 (1.2.14)

which is also known as the Classical Yang-Baxter Equation.

As we have discussed, from the Lax representation one can only build a total of d “ dimL
independent integrals of motion. Thus, it seems that we might be forced to look for very
big Lax matrices when dealing with high-dimensional integrable systems.

We can circumvent this limitation via the introduction of a spectral parameter u P C in
the Lax representation. A Hamiltonian system admits a Lax representation with a spectral
parameter if its equations of motion are equivalent to:

9Lpuq “ rMpuq, Lpuqs , (1.2.15)

where now both the Lax matrix and the auxiliary matrix are functions of the spectral
parameter; in general, we may assume that they are polynomials2 in u. The conserved
quantities are given by:

Ikpuq “ trLkpuq . (1.2.16)
2Depending on the notation, they can also be assumed to be rational functions of u.
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These are also polynomials in u, and we can think of them as generating functions for
the conserved charges of the model. This implies that the conserved charges are coefficients
of powers of u in Ik

3. Given that in principle we can set the degree in u of L to any number,
we can generate as many integrals of motion as needed, independently from the dimension
of the Lax Matrix.

We will use the Lax representation with spectral parameter in chapter 8 to build the
classical open Fishchain, starting from its equations of motion. The quantum version of the
Lax representation will play a fundamental role throughout the rest of this work, and will
constitute one of the main tools that we use to study integrable spin chains.

3If we take Ik to be rational functions of u, the conserved charges will be defined as the coefficients of
their Laurent expansion around u “ 0.



Chapter 2

Quantum Integrability

In the previous chapter, we have defined the concept of classical integrability in terms of the
existence of a certain number of independent conserved charges in an Hamiltonian system.

Quantum models can be constructed from classical Hamiltonian system via a procedure
known as quantisation. A quantisation is a map between classical and quantum observables,
defined in the following way:

• classical observables consists of the functions f on the phase space H. These functions
are commutative: fg “ gf, @g, f ;

• quantum observables are the set of Hermitian operators1 O acting on the Hilbert space
H. These operators are not commutative: AB ´BA ‰ 0 for generic A,B P H.

A quantisation procedure consists in finding a one-to-one map Qℏ from classical to quantum
observables, depending on a parameter ℏ, with the requirements that ℏ Ñ 0 is a classical
limit [30]:

lim
ℏÑ0

1
2Q

´1
ℏ pQℏpfqQℏpgq `QℏpgqQℏpfqq “ fg (2.0.1)

lim
ℏÑ0

Q´1
ℏ

ˆ

i

ℏ
pQℏpfqQℏpgq ´QℏpgqQℏpfqq

˙

“ tf, gu (2.0.2)

This implies that as ℏ Ñ 0 the quantum system reduces to a classical Hamiltonian system,
and in particular the quantum commutators i

ℏ rA,Bs reduce to classical Poisson brackets.
The most used quantisation map is the canonical quantisation, which maps canonical

phase space variables pqi, piq (having canonical Poisson brackets (1.1.1)) to Hilbert space
operators ppqi, ppiq satisfying the Heisenberg commutation relations:

rpqi, pqjs “ 0, rppi, ppjs “ 0, rppi, pqjs “ ´iℏδij (2.0.3)
1In some cases, observables may be not Hermitian, see for example [32]. Another such example is the

fishnet theory [24], where the dilatation operator has complex eigenvalues [33].

29
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In addition to this quantisation map, one needs to choose a prescription for the ordering of
non-commutative operators whenever we quantise products of classical observables.

Using a quantisation map, we can obtain quantum integrable models from Liouville
integrable systems, provided that there are no anomalies. In particular, the conserved
charges of the latter are functions on a phase space, and the quantisation map Qℏ will give
their quantum version as operators on a Hilbert space. We will see an example of this
procedure with the Fishchain model in chapter 8.

However, the general definition of quantum integrability is non-trivial. We might in fact
be tempted to define quantum integrability using the same requirements as the classical
case, i.e. the presence of a sufficient number of mutually commuting conserved charges,
which are a set of Hilbert space operators commuting with the quantum Hamiltonian.

The problem with this definition lies in the fact that any quantum system has an infinite
number of independent conserved quantities, given by the Hermitian projectors on the
eigenstates of the quantum Hamiltonian.

Formally, if Pjei “ δijej , where ej are eigenstates of H, i.e. Hej “ hjej , then:

rPj , Hs ei “ pPjhi ´Hδijqei “ 0, @i, j Ñ rPj , Hs “ 0, @j (2.0.4)
rPi, Pjs ek “ pδijδjk ´ δjiδikqei “ 0 Ñ rPi, Pjs “ 0, @i, j (2.0.5)

Therefore any quantum system has many conserved charges in involution, and this phe-
nomenon is not a sign of quantum integrability.

Quantum integrability is in fact characterised by a different feature: factorised scatter-
ing, the property that any multiparticle process in a infinite-volume quantum integrable
theory can be always decomposed into a series of 2 Ñ 2 scattering processes. This property
is encoded in the so-called Yang-Baxter equation, which is in turn a manifestation of the
symmetries encoded in a quantum group. In fact, the existence of at least two higher-spin
conserved charges is needed for factorised scattering [34]. The quantum group of interest
for the type of systems analysed in this thesis is known as Yangian.

In this chapter, we will define and study the main properties of quantum groups and
Yangians. In particular, we will define them in terms of their generators tij and an R-matrix
which imposes restrictions on them via the RTT relations.

The discussion of this chapter is based on [30, 35].

2.1 Hopf algebras and quantum groups

The algebras defined by the quantum operators on a Hilbert space are non-commutative2.
Therefore, non-commutative algebras feature in any quantum theory.

Non-commutative algebras play an even bigger role in quantum integrable systems.
In fact, quantum integrability can be traced to the presence of symmetries, which are
deformations of Hopf algebras, a special type of non-commutative algebra.

2Although they are designed to reduce to a commutative algebra in the classical limit.
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Hopf Algebras

A Hopf algebra is an associative algebra A, possessing a unit 1 and a non-commutative
product ¨ : A b A Ñ A, with extra structures imposed on it. In particular, it possesses:

• a coproduct ∆ : A Ñ A ¨ A;

• a counit ϵ : A Ñ C, which associates a complex number to each element of the algebra.

• an antipode S : A Ñ A, which is an algebra anti-homomorphism.

These operations must be compatible with each other, and this fact imposes a series of
relations on them. They will not be used in this thesis, and the interested reader can find
them in [30].

A well known example of a Hopf algebra is the Universal Enveloping Algebra (UEA)
of a Lie algebra g, denoted as Upgq. A UEA is an associative algebra generated by the
elements:

txiu
dimpgq

i“1 subject to the relations xixj ´ xjxi “ cijkxk, (2.1.1)

where cijk are the structure constants of the Lie algebra g, and xi can be thought of as
the generators of g. Thus, a UEA is constituted by the polynomials in the generators of g,
modulo the commutator between its elements3.

For a UAE, the Hopf algebra structure is the following: the product and the unit are
the usual product and unit of the Lie algebra g, while the coproduct, the counit and the
antipode are defined as:

∆pxq “ xb 1 ` 1 b x, Spxq “ ´s, ϵpxq “ 0. (2.1.2)

Quantum groups

The special symmetries that define quantum integrable systems are deformations of Uni-
versal Enveloping Algebras by a parameter ℏ. Such symmetries reduce to the UAE in the
classical limit ℏ Ñ 0, and are known as quantum groups.

The definition of quantum group we will use is based on the existence of an Universal
R-matrix, R P A b A, that satisfies the Yang-Baxter Equation:

R12R13R23 “ R23R13R12 . (2.1.3)

Here we have introduced a notation that we will use in the remainder of this thesis:
Rij , i, j P t1, 2, 3u is an operator defined on the triple tensor product A b A b A, which

3In particular, the Poincare-Birkhoff-Witt theorem states that a basis of Upgq is composed of all such
polynomials.
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acts trivially on the factor corresponding to the missing number in the set t1, 2, 3u. For
example, we have that:

R12 “ R b 1, R23 “ 1 b R . (2.1.4)

Using the R-matrix we have introduced, we can define a quantum group as an algebra
over C generated by polynomials in the generators tij , i, j “ 1 . . . N modulo the relations:

R12T1T2 “ T2T1R12 , (2.1.5)

where T is a matrix whose entries are pT qi
j “ tij , and R is the R-matrix, an invertible

complex matrix which is a realisation of the universal R-matrix defined in (2.1.3) acting on
A “ Cn. The equations (2.1.5) are known as the RTT relations.

The requirement that in the classical limit ℏ Ñ 0 the quantum group reduces to a
Universal Enveloping Algebra can be imposed by assuming that R “ 1 ` ℏr`Opℏ2q, where
r is known as the classical r-matrix and satisfies the classical YBE (1.2.14).

Quantum affine groups By introducing a spectral parameter u P C to a quantum group,
we obtain a quantum affine group (QAG) [30]. In a QAG, the R-matrix will be a function
of u and the generators T will be a formal Laurent series in u, T puq “

ř

mPZ Tmu
m. The

Yang-Baxter equation for a quantum affine group will depend on 3 complex parameters
u, v, w and reads:

R12pu, vqR13pu,wqR23pv, wq “ R23pv, wqR13pu,wqR12pu, vq (2.1.6)

Furthermore, R will satisfy the unitarity condition R12pu, vqR21pv, uq “ αpuq, where αpuq

is a scalar function of u.
To conclude, a quantum affine group is generated by the coefficients of T puq modulo the

relations:
R12pu, vqT1puqT2pvq “ T2pvqT1puqR12pu, vq , (2.1.7)

which are still known as the RTT relations.

2.2 Yangians

The Yangian is the quantum (affine) group that is the symmetry of the so-called rational
integrable spin chain models, that are the main subject of this thesis. The Yangian Y pgq is
based on the Lie algebra g; in this work, we will only consider the case where g “ glN for
simplicity.

There are three equivalent ways in which the Yangian can be defined, called Drinfeld’s
first, second and third realisation [36, 37].

The first realisation defines the Yangian in terms of commutation relations between the
generators of g, Ji, i “ 1 . . . dimpgq and some further generators Ĵi. In particular one has:

rJi, Jjs “ cijkJk , (2.2.1)
”

Ji, Ĵj

ı

“ cijkĴk , (2.2.2)
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where cijk are the structure constants of g and Ĵi “ uJi ` Opℏq. This set of generators
satisfies all the properties of a quantum group, as detailed in [35].

The second realisation is given in terms of Serre-Chevalley relations between a different
set of generators of the Yangian, and we will not discuss it in this thesis.

Finally, the third realisation, also known as RTT formulation, is the most important for
our scopes. It is very close in spirit to the definition of quantum groups we have introduced
in the previous chapter, and we will discuss it in detail in the next section.

2.2.1 Drinfeld’s third realisation of the Yangian

Drinfeld’s third realisation of the Yangian is based on the definition of the rational R-matrix,
a complex matrix which is one of the possible solutions of the Yang-Baxter equation (2.1.3).

Rational R-matrix The rational R-matrix R P MatN2C, acting on the tensor product
CN b CN , is:

Rpu, vq “ pu´ vq1 ` ℏP , (2.2.3)
where 1 is the identity operator and P is the permutation operator on CN b CN :

1pxb yq “ xb y, P pxb yq “ y b x, @x, y P CN . (2.2.4)

The rational R-matrix is said to be of difference form, since it only depends on u and v via
the combination u´ v. It is also invariant under GLpNq group transformations:

rRpu, vq, GbGs “ 0, @G P GLpNq. (2.2.5)

Yangian Y pglN q the Yangian Y pglN q is the associative algebra over C with generators
T

p1q

ij , T
p2q

ij . . . , i, j “ 1 . . . N satisfying the following defining relations:
”

T
pr`1q

ij , T
psq

kl

ı

´

”

T
prq

ij , T
ps`1q

kl

ı

“ ℏpT
prq

kj T
psq

il ´ T
psq

kj T
prq

il q , (2.2.6)

valid for r, s “ 0, 1, 2 . . . if we set T p0q

ij “ δij .
These defining relations can be written in a compact form using the rational R-matrix.

By introducing the generating series:

Tij “
ÿ

n“0
unT

pnq

ij , (2.2.7)

we may write (2.2.6) as:

pu´ vq rTijpuq, Tklpvqs “ ℏpTkjpuqTilpvq ´ TkjpvqTilpuqq (2.2.8)

Equivalently, we can define the monodromy matrix:

T puq ”

N
ÿ

i,j“1
eij b Tijpuq , (2.2.9)
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where eij are the elements of the standard basis of N ˆ N matrices; in this formula, and
for the rest of this thesis, the first factor in the tensor product is called auxiliary space, and
corresponds to the space of N ˆN complex matrices. The second factor is called quantum
or physical space, and is the representation space of the Yangian generators Tij .

Using the rational R-matrix, we may write (2.2.6) as an equation on the tensor product
Aux1 bAux2 b Phys:

R12pu, vqT1puqT2pvq “ T2pvqT1puqR12pu, vq (2.2.10)

where:

T1puq “

N
ÿ

i,j“1
eij b 1 b Tijpuq, T2puq “

N
ÿ

i,j“1
1 b eij b Tijpuq. (2.2.11)

Following our usual notation, the subscripts on T indicate that the monodromy matrix acts
non-trivially only on the i-th copy of the auxiliary space.

Due to the form of the defining relations (2.2.10), Drinfeld’s third realisation of the
Yangian is also known as RTT realisation.

Since a Yangian is a quantum group, it is also a Hopf algebra. Therefore it possesses a
coproduct, counit and antipode defined as:

∆pTijpuqq “

N
ÿ

k“1
Tikpuq b Tkjpuq, ϵpT puqq “ 1, SpT puqq “ T´1puq , (2.2.12)

where T´1puq is the matrix inverse of the monodromy matrix.

2.2.2 Representations of the Yangian

The integrable systems we will analyse in this thesis arise as representations of the Yangian
Y pglN q. Hence, knowing the representation theory of the Yangian is crucial to study them.
This is quite similar to the representation theory of the classical Lie algebra glN .

It is possible to classify all highest weight representations of Y pglN q using the generators
Tijpuq. In particular, a irreducible representation of Y pglN q on a vector space V is called
highest weight if exist |0y P V such that:

Tijpuq|0y “ 0, @i ą j , (2.2.13)
Tiipuq|0y “ λipuq|0y, @i “ 1 . . . N . (2.2.14)

Thus Tijpuq, i ą j are the Yangian analog of raising operators, while Tiipuq are the analog of
a Cartan subalgebra. The weights of the Yangian representation are given by λipuq, which
are polynomials in u.

Just like simple Lie algebras, all finite dimensional, irreducible representations of Y pglN q

are of highest weight type.



2.2. YANGIANS 35

Finite-dimensional, highest weight representations of Y pglN q can be classified uniquely
by their Drinfeld polynomials Pipuq [38], which are monic polynomials in u satisfying:

λi`1puq

λipuq
“
Pipu` ℏq

Pipuq
, @i “ 1 . . . N . (2.2.15)

Drinfeld polynomials play a similar role to the weights of the Lie algebra glN .
For the representations of the Yangian found in finite dimensional integrable spin chains,

there is a simple isomorphism between Yangian weights and the weights of glN representa-
tions, as we will see in the next chapter.
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Chapter 3

Integrable Spin Chains

Integrable spin chains are quantum models defined on a discrete one dimensional lattice.
On each site of this lattice lives a Hilbert space. In this chapter and in the next few ones,
we will assume that the lattice is periodic. The resulting spin chains are known as periodic
or closed.

The first integrable spin chain model - known as the Heisenberg XXX spin chain - was
proposed in the early 20th century, representing a one dimensional magnet. The Hilbert
space at each site represents the spin of an electron in the magnet, and therefore is two-
dimensional. This model was first solved by Bethe via his celebrated ansatz [39], who
obtained its energy spectrum and the eigenstates of its Hamiltonian. We will see how to solve
the same spectral problem in a more modern form, relying on the RTT relations (2.2.11),
known as the Algebraic Bethe Ansatz (ABA) [40].

Integrable spin chains can be built from the Yangian via the so-called evaluation rep-
resentation, which assigns a quantum Lax operator to each site of the spin chain. From
the Lax operator, it is possible to immediately build the monodromy matrix (2.2.9). In
particular, the Heisenberg XXX spin chain is built from the Yangian Y pgl2q in the fun-
damental representation. In general, we can define other integrable spin chains using the
Yangian Y pglN q in any representation. Via the ABA, one can compute the eigenstates (and
even correlation functions) of the spin chain from the monodromy matrix. However, this
technique becomes computationally heavy for higher ranks, and it is not applicable to spin
chains in non-highest weight representations of the Yangian.

These facts led to the development of alternative techniques to compute observables in
a spin chain, such as the Separation of Variables program, which will be introduced in the
next chapters. In the rest of this chapter we will introduce the main tools for the modern
description of integrable spin chains:

• The Q-system, composed of the Baxter Q-functions and the functional relations be-
tween them, encoded in the QQ-relations.

• The T-system, composed of the transfer matrices and the functional relations between
them, encoded in the Hirota and Cherednik-Bazhanov-Reshetikhin (CBR) equations.

37
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These two systems, together with the Baxter TQ equation, have been at the core of many
advances in the study of integrable spin chains, and in particular form the basis of Separation
of Variables.

This chapter is based on [40–43], with adaptations in terms of the notation used. For
simplicity, we will consider as the reference model for this chapter spin chains in the fun-
damental representation of the Y pglN q Yangian.

3.1 Evaluation representation of Y pglNq

The evaluation representation is a way to construct representations of Y pglN q starting from
representations of the glN Lie algebra, and naturally gives rise to integrable spin chains.
Using this method, we can build spin chains using the well known representation theory of
glN .

Concretely, the evaluation representation of Y pglN q consists in picking up a represen-
tation π of glN , acting on the vector space V , and assigning to the Yangian generators
Tijpuq (2.2.7) the values:

Tijpuq Ñ pu´ θqδij1 ` ℏπpEjiq (3.1.1)
where πpEjiq are the generators of glN in a representation π, 1 is the identity operator on
the representation space V , and θ are some complex-valued constants.

The Yangian weights λipuq (2.2.13) of the evaluation representation are related to the
weights of the glN representation π. In fact, if π has highest weight vector |0y and weights
λi, then πpEiiq|0y “ λi|0y and therefore:

Tiipuq|0y “ pu´ θ ` ℏλiq|0y Ñ λipuq “ u´ θ ` ℏλi (3.1.2)

So |0y is also an highest weight for the evaluation representation of Y pglN q, and the Yangian
weights depend linearly on the glN weights.

The evaluation representation of Y pglN q is how we define rational integrable glN spin
chains: for a spin chain of length L, we can use the coproduct of Drinfeld’s third presenta-
tion (2.2.12) to tensor product L evaluation representations (3.1.1); each copy will represent
a site of the spin chain.

We will now introduce some notation that will be used throughout the rest of this thesis.
We define the quantum Lax operator at the site α as a matrix Lα

λ⃗
puq having components:

pLα
λ⃗

qijpuq “ pu´ θαqδij1 ` ℏπ
λ⃗
pEjiq, i, j “ 1 . . . N (3.1.3)

where λ⃗ are the N weights of the glN representation π and θα are constants called inhomo-
geneities. The Lax operator is evidently a generator of the Yangian Y pglN q built via the
evaluation representation; therefore, it will satisfy the RTT relations (2.2.11).

The quantum Lax operator in the classical limit ℏ Ñ 0 becomes the classical Lax matrix,
and the RTT relations become the Lax pair equations (1.2.12). Therefore, the quantum
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Lax operator can be naturally viewed as the quantisation of a Lax matrix of a classical
model.

As we have already mentioned, we can use the Yangian coproduct (2.2.12) to tensor
copies of the Lax operator (which may have different inhomogeneities and/or be in different
representations) to obtain the quantum monodromy matrix of the glN spin chain, whose
elements are given by:

Tijpuq “

N
ÿ

k1,k2...kL´1“1

´

L1
λ⃗1

¯

ik1
puq

´

L2
λ⃗2

¯

k1k2
puq . . .

´

LL
λ⃗L

¯

kL´1j
puq, i, j “ 1 . . . N (3.1.4)

By definition, the monodromy matrix is a NˆN matrix, with entries being operator on the
tensor product of L quantum spaces, each being the representation space of π

λ⃗i
, i “ 1 . . . L.

For simplicity, we will assume that all sites of the spin chain have the same representation,
and we will drop the labels λ⃗.

The elements of the quantum monodromy matrix are the Yangian generators (2.2.7)
and therefore (3.1.4) satisfies the RTT relations:

R12pu, vqT1puqT2pvq “ T2pvqT1puqR12pu, vq (3.1.5)

where T1 and T2 were introduced under (2.2.11), and R is the rational R-matrix (2.2.3).
By construction, the monodromy matrix T puq is a monic polynomial in u of degree L.

The action of its matrix elements on the highest weight state |Ωy ”
ÂL

i“1 |0y
λ⃗i

is given by:

Tijpuq|Ωy “ 0, @i ą j, Tiipuq|Ωy “

L
ź

α“1
pu´ θα ` ℏλα

i q|Ωy . (3.1.6)

Finally, we notice that T puq is GLpNq covariant, meaning that we have for any G P GLpNq:

rGb ΠpGq, T puqs “ 0 (3.1.7)

where ΠpGq denotes the action of G on the physical Hilbert space.

3.2 Diagrammatic rules

In this section, we introduce a set of diagrammatic rules that will help us in depicting some
algebraic equations we will use.

For the periodic spin chains that we analyse in this section, they are quite simple:

• We depict auxiliary spaces as horizontal, solid lines, equipped with a spectral param-
eter and an arrow. We follow the direction of the arrows to write equations.

• We depict physical spaces as vertical, double lines, equipped with inhomogeneities θα.
We follow the double lines from the top and go down to write equations.
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• R-matrices are pink dots at crossings of two auxiliary spaces. If A,B are the auxiliary
spaces we get RAB. The spectral parameter of R depends on the arrow directions on
the auxiliary spaces.

• Lax operators LApu´θαq appear at the crossing of an auxiliary space A and a physical
space θα.

Using them, we draw the Lax operator and the R-matrix as:

The monodromy matrix (3.1.4) is drawn as:

As an example, we can easily draw the RTT relations (3.1.5) as follows:
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where we assumed that the monodromy matrix is represented by one vertical line with
multiple inhomogeneities.

3.3 Conserved charges from the monodromy matrix

Given an integrable spin chain with monodromy matrix (3.1.4), there is a natural procedure
that allows to build a tower of quantum operators in involution with each other, which is
very similar to the method we have described in section 1.2.2.

We start by defining the transfer matrix for the glN spin chain as:

tpuq “ trpT puqq (3.3.1)

where T is the monodromy matrix, and tr is the trace on N ˆN matrices. Due to (3.1.7),
it is immediate to see that the transfer matrix is GLpNq invariant.

Since T puq is a monic polynomial in u, tpuq is also a monic polynomial in u, whose
coefficients are operators acting on the tensor product of L quantum spaces. We will
now prove that these operators commute with each other; in fact, multiplying the RTT
relation (3.1.5) by R´1

12 pu, vq on the left and taking the trace on the auxiliary spaces 1 and
2, we get:

tr1,2pT1puqT2pvqq “ tr1,2
`

pR´1
12 pu, vqT2pvqT1puqR12pu, vq

˘

“ tr1,2 pT2pvqT1puqq Ñ

Ñ t1puqt2pvq ´ t2pvqt1puq “ 0 ,

where in the first line we have used cyclicity of the trace and in the second line the fact
that tr1,2pA1A2q “ tr1pA1qtr2pA2q. Therefore, the RTT relation for the Monodromy matrix
implies that:

rtpuq, tpvqs “ 0, @u, v P C . (3.3.2)
Due to the fact that tpuq is a polynomial in u, this relation implies that the coefficients of u
in tpuq commute with each other. Explicitly, we define the L´1 integrals of motion (IoMs):

Ik ”
1

pk ´ 1q!
dk´1

dk´1u
tpuq|u“0, k “ 1 . . . L. (3.3.3)

These operators are in involution with each other:

rIk, Ils “ 0, @k, l “ 1 . . . L . (3.3.4)

In this way, we can generate L´ 1 commuting independent operators, which will share the
same basis of eigenstates. Since tpuq “ uL `

řL´1
k“1 u

k´1Ik, the eigenstates of Ik are also
eigenstates of the transfer matrix. Furthermore, if we interpret one of the Ik as the quantum
Hamiltonian H of the spin chain, we can say that Ik are also conserved charges, since they
commute with H1.

1In general defining which integral of motion is the Hamiltonian is just a convention. In some cases, such
as the Heisenberg XXX spin chain, there is a natural choice due to the fact that the quantum Hamiltonian
is known from the corresponding physical model.
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In general, the integrals of motion (3.3.3) do not represent all the conserved quantities
in an integrable spin chain. As pointed out in the introduction to this chapter, this is not
an issue since in a quantum model we can always build as many IoMs as needed. In any
case, for a Y pglN q spin chain there exists a procedure, called fusion, that allows to build
more integrals of motion from the so-called N antisymmetric fused transfer matrices. We
will see this in detail in section 3.7.1.

3.4 Algebraic Bethe Ansatz

The Algebraic Bethe Ansatz is a technique that lets us obtain eigenstates and eigenvalues
of the Hamiltonian of an integrable spin chain from its transfer matrix (3.3.1). These
eigenstates, which are also known as Bethe states, are obtained by diagonalisation of the
transfer matrix, given that it commutes with the Hamiltonian and therefore they share a
complete set of eigenstates.

For simplicity, we will examine in detail the rank N “ 2 case where Y pglN q is in
fundamental representation. This model corresponds to the aforementioned Heisenberg
XXX spin chain. We will then briefly discuss the generalisation to the ranks N ě 3.

3.4.1 Heisenberg XXX spin chain

The Heisenberg spin chain is a model describing a 1-dimensional magnet. It is composed of
L spin 1

2 -vectors placed on a periodic lattice, which represent the spins of the electrons in
the magnet. Each spin vector S⃗α interacts with only its nearest neighbors via the electro-
magnetic interaction S⃗α ¨ S⃗α`1, where S⃗ “ σ⃗

2 and σ⃗ “ pσ1, σ2, σ3q is the vector containing
the Pauli matrices:

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (3.4.1)

The Hamiltonian governing this model is therefore given by:

HXXX “

L
ÿ

α“1
Hα,α`1 “

L
ÿ

α“1

ˆ

S⃗α ¨ S⃗α`1 `
1
4

˙

, with S⃗L`1 ” S⃗1 . (3.4.2)

The second term, corresponding to the vacuum energy level, has been chosen for simplicity:
in fact, it is quite easy to see that

ˆ

S⃗α ¨ S⃗α`1 `
1
4

˙

“ Pα,α`1 , (3.4.3)

where P is the permutation operator between the sites α and α ` 1. Thus, an alternative
form of (3.4.2) that will be very useful is:

HXXX “

L
ÿ

α“1
Pα,α`1 . (3.4.4)
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We would like to obtain the energies and the eigenstates associated with this Hamilto-
nian2, who will organise themselves into irreducible representations of glp2q given that H
commutes with the components of the total spin vector, Si “

řL
α“1 S

i
α.

The Heisenberg XXX spin chain Hamiltonian was first diagonalised by Bethe [39], by
virtue of a clever ansatz for the wavefunctions associated to the eigenstates of (3.4.2). This
solution is known as the Coordinate Bethe Ansatz, and, given the form (3.4.4), consists in
finding wavefunctions that are invariant under all L permutation operators.

In this section, we will present a different technique to diagonalise (3.4.2), that is inti-
mately connected to the Yangian symmetry of the Heisenberg model, and heavily relies on
the RTT relations. This technique was created by the Leningrad school in the ’80s [40] and
is known as the Algebraic Bethe Ansatz.

The Algebraic Bethe Ansatz for the Yangian Y pgl2q starts from the Monodromy Ma-
trix (3.1.4), which we write in matrix form for convenience:

T puq “

ˆ

T11puq T12puq

T21puq T22puq

˙

. (3.4.5)

The transfer matrix is then tpuq “ T11puq ` T22puq.

Hamiltonian from the transfer matrix

The transfer matrix contains integrals of motion of the model, and in particular the Hamil-
tonian of the Heisenberg spin chain. To retrieve the explicit form of the Hamiltonian (3.4.2),
we need to tune the free parameters in the monodromy matrix (3.1.4), θα and ℏ. In partic-
ular, we need to set ℏ “ i and θα “ i

2 , @α “ 1 . . . L.
In terms of the Pauli matrices, the gl2 algebra generators are given by:

E11 “
1
2 `

σ3
2 E22 “

1
2 ´

σ3
2 (3.4.6)

E12 “
σ1
2 `

iσ2
2 E21 “

σ1
2 ´

iσ2
2 (3.4.7)

Therefore, the Lax operators read:

Lαpuq “

ˆ

u` iS3
α ipS1

α ´ iS2
αq

ipS1
α ` iS2

αq u´ iS3
α

˙

. (3.4.8)

It is immediate to see that:
Lαpi{2q “ Pα,a , (3.4.9)

where Pα,a is the permutation operator between vectors in the site α and vectors in the
auxiliary space.

2Of course, for small L this can be done via direct diagonalisation of HXXX . This becomes impractical
very fast as L grows, even using a computer. This problem is exacerbated for higher rank models.
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From this, we see that the transfer matrix evaluated at u “ i
2 is given by:

tpi{2q “ tr
L

ź

α“1
Pα,a “ PL´1,L . . . P23P12 . (3.4.10)

Taking the logarithmic derivative with respect to u we obtain:

d

du
logptpuqq|u“i{2 “

t1pi{2q

tpi{2q
“

řL
i“1 PL1,L . . . P̂i,i`1 . . . P12
PL´1,L . . . P23P12

(3.4.11)

where P̂ij means that the permutation operator Pij is missing. It is trivial to check that:

d

du
logptpuqq|u“i{2 “

L
ÿ

α“1
Pα,α`1 ” HXXX . (3.4.12)

So, we have proven that we can indeed retrieve the Hamiltonian of the Heisenberg XXX
spin chain from the monodromy matrix (3.4.5), albeit in a homogeneous limit where we set
all parameters θα to be the same.

Diagonalization of transfer matrix

Since the Hamiltonian of the Heisenberg XXX spin chain is contained in the transfer matrix,
the two quantities have a common basis of eigenvectors. The Algebraic Bethe Ansatz
(ABA) [40, 44] allows to easily find eigenvectors of tpuq, mapping this problem to a set
of algebraic equations known as Bethe equations. Knowing them, we can easily compute
the eigenvalues of H: therefore, the ABA can be used to diagonalise the Hamiltonian of
the Heisenberg XXX spin chain. In appendix (A.1), we give a complete derivation of this
procedure. In this section, we will simply write the results.

Formally, the goal of the ABA is to solve the spectral problem:

tpuq|Ψy “ τpuq|Ψy , (3.4.13)

where τ are the eigenvalues of the transfer matrix (3.3.1) and |Ψy are its eigenvectors, known
as Bethe states. We write the monodromy matrix (3.4.5) as:

T puq “

ˆ

Apuq Bpuq

Cpuq Dpuq

˙

, (3.4.14)

where A,B,C,D are operators on the quantum space of the spin chain. The transfer matrix
in this notation is tpuq “ Apuq `Dpuq.

As detailed in appendix A.1, we can prove that the eigenstates of tpuq take the form:

|Ψy “ Bpu1qBpu2q . . . Bpuiq|Ωy , (3.4.15)
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where |Ωy is the vacuum state for the spin chain, composed of spin ups in all the sites, and
ui are parameters known as the Bethe roots, solutions of the Bethe equations:

ˆ

uk ` i{2
uk ´ i{2

˙L

“

M
ź

j‰k

uk ´ uj ` i

uk ´ uj ´ i
. (3.4.16)

The eigenvalues of the transfer matrix on the Bethe states (3.4.15) are:

τpuq “

M
ź

j“1

u´ uj ´ i

u´ uj
pu` i{2qL ` pu´ i{2q

L
M
ź

j“1

u´ uj ` i

u´ uj
, (3.4.17)

Now that we have obtained the spectrum of the transfer matrix, we may compute the
energy eigenvalues of our Hamiltonian using (3.4.12). Indeed, since the second term in
(3.4.17) drops out when evalutated at u “ i{2, we obtain:

ˆ

d

du
log tpuq

˙

u“i{2
“

M
ÿ

j“1

ˆ

1
´uj ´ i{2 ´

1
´uj ` i{2

˙

. (3.4.18)

Hence:

E “

M
ÿ

j“1

i

u2
j ` 1{4 . (3.4.19)

To summarise, the Algebraic Bethe Ansatz lets us create eigenstates of the Hamiltonian
|Ψy via repeated applications to the ground state of a B operator, evaluated at the Bethe
roots uk. The energy levels of these states are then given by equation (3.4.19).

3.4.2 Rank N “ 3 spin chains and Nested ABA

It is possible to extend the ABA to spin chains based on the Yangian Y pglN q, N ě 3. In
these cases, the method is known as Nested Algebraic Bethe Ansatz (NABA). The higher
rank models do not have the same simple physical interpretation as the Heisenberg XXX
spin chain, however they appear in the context of High Energy Physics and in particular
they are at the core of integrability in AdS/CFT dualities. Studying them is therefore of
fundamental importance.

For simplicity, in this section we will focus on the case where at each site of the chain
we have the fundamental representation of the gl3 algebra. We will also introduce the
shorthand notation fpūq ” fpu1 . . . uLq, where f is any function.

In the N “ 3 case, the monodromy matrix is given by:

T puq “

¨

˝

T11puq T12puq T13puq

T21puq T22puq T23puq

T31puq T32puq T33puq

˛

‚ . (3.4.20)
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To simplify our treatment, we consider the case where the highest weight state is annihilated
by T23puq; the final form of eigenvectors of tpuq will not depend on this assumption, as only
the explicit form of the Bethe equations will be modified. The general case is treated in [41].
We will also assume that the ground state |Ωy is composed of spin up states in all the sites
of the chain.

We now define a parametrisation of T in terms of A,B,C,D operators as:

T puq “

ˆ

Apuq Bpuq

Cpuq Dpuq

˙

“

¨

˝

Apuq B1puq B2puq

C1puq D11puq D12puq

C2puq D21puq D22puq

˛

‚ . (3.4.21)

Given that we have assumed D12puq|Ωy “ |Ωy, the candidates for the role of creation
operators for our states are B1puq and B2puq.

Notice that now B,C are vectors and D is a matrix; the gl3 RTT relations imply that:

r12pu´ vqD1puqD2pvq “ D2pvqD1puqr12pu´ vq , (3.4.22)

where r is the gl2 rational R-matrix: D is therefore the monodromy matrix of an auxiliary
spin chain of symmetry Y pgl2q, i.e. of an Heisenberg XXX chain.

The transfer matrix of the model is:

tpuq “ trT pzq “ Apzq `D11pzq `D22pzq “ Apzq ` trDpzq . (3.4.23)

In appendix A.2, we derive the eigenstates of (3.4.23) via the Nested Algebraic Bethe
Ansatz. To summarise, they are built from the application of some operators to the vacuum
state; these operators are built from the scalar product between two vectors:

|ΨM pūqy “

M
ź

i“1
BipuiqFpūq|Ωy . (3.4.24)

• The first vector is composed of B operators - the vectorial B operators of the gl3
spin chain - evaluated at the Bethe roots pu1 . . . uM q satisfying the Bethe equa-
tions (A.2.12).

• The second vector F is an eigenvector of an auxiliary gl2 spin chain with transfer
matrix (A.2.6). It is built via the B operators of the auxiliary spin chain, evaluated at
the auxiliary Bethe roots pv1 . . . vN q, solutions of the auxiliary Bethe equations (A.2.8).

We have a set of M ` N equations for the M ` N total Bethe roots. The problem is that
these equations are not separated - each of them depends on the full set of Bethe roots
pū, v̄q. This nesting of the Bethe roots is the origin of the name Nested Algebraic Bethe
Ansatz.

Of course, given the states and the Bethe roots we may try to extract the Hamiltonian
of the spin chain and compute its eigenvalues; this can be done but it is quite a lengthy
calculation. We refer the interested reader to the review [41].



3.4. ALGEBRAIC BETHE ANSATZ 47

3.4.3 Higher rank models

In this section, we will briefly talk about how the NABA works for ranks N ě 4. For a full
treatment, we refer again to the review [41].

The procedure is iterative and quite similar to the rank N “ 3 case: to build the
eigenstates of the transfer matrix, we act with a linear combination ofN´1 glN B-operators.
Simlarly to the N “ 3 case, the coefficients F need to be eigenstates of an auxiliary glN´1
spin chain. To build the eigenstates of this glN´1 spin chain, we need an auxiliary glN´2
spin chain, and so on until we reach a gl2 auxiliary spin chain, whose eigenstates we can
build via the gl2 Algebraic Bethe Ansatz.

Throughout this procedure, we will need to impose exactly N´1 sets of Bethe equations
for the N ´ 1 sets of Bethe roots ū1 . . . ūN´1. Each set of Bethe equations depends on all
the Bethe roots. Solving this system is therefore extremely non-trivial even for very small
spin chain lengths.

The transfer matrix eigenstates are built as combinations of the B-operators of all the
nested spin chains gl2 . . . glN , evaluated at the corresponding Bethe roots. From these
states, it is possible to compute the spectrum of the Hamiltonian by extracting it from the
transfer matrix.

3.4.4 Scalar products and form factors from the ABA

Having obtained the states of spin chains via the Algebraic Bethe Ansatz, we can use them
to compute observables in the spin chain. These are either overlaps of these states, which
we call scalar products, or matrix elements of operators acting on the spin chain Hilbert
space, which we call form factors.

In order to compute these quantities, we need to build dual Bethe states xΨ|; this can
be done in a similar fashion to the Bethe states |Ψy, as detailed in [45].

Bethe states are orthogonal, hence overlaps between different states are trivial. Non-
trivial observable that we can compute include the norms of Bethe states [46], and the
overlaps of the so-called off-shell Bethe states, which are built via the same B operator as
the Bethe states, but with B being evaluated at generic spectral parameter u:

|Ψyoff´shell “

M
ź

i“1
Bpuq|Ωy . (3.4.25)

Bethe States (both on-shell and off-shell) can be also used to compute form factors of various
operators in the spin chain [47]. Most literature is focused on local operators, i.e. operators
who act non-trivially only on one site of the spin chain: for example, one might be interested
in computing the form factor of the spin-flipping operator S`

i at the site i of an Heisenberg
XXX spin chain.

Norms of Bethe states and form factors of local operators computed via the ABA have
been shown to take the form of determinants [48–55]. These determinants expressions are
valid both for overlaps of on-shell states and off-shell states, but are quite complicated.
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An in-depth review can be found in [41]. In the next section, we will briefly discuss some
limitations of this approach. In chapter 5, we will compute a similar, but wider class of
observables using Funcional Separation of Variables. In particular, in section 5.7 we will
make an explicit comparison between FSoV and the NABA.

3.4.5 Problems of the Bethe Ansatz techniques

From a computational point of view, the Bethe Ansatz is quite heavy - we need to solve
many coupled algebraic equations to find all the Bethe roots. However, if we manage to
do so, we have expressions for all the eigenstates and eigenvalues of the transfer matrix
tpuq, starting from a vacuum eigenstate |0y. Although we have seen the procedure for
the defining representation of the Yangian Y pglN q, the NABA can be generalised to other
finite-dimensional representations - only the explicit form of the Bethe equations will be
modified.

There are still several difficulties that the Algebraic Bethe Ansatz can encounter. Al-
though some can be solved (for example, via the introduction of twist in the spin chain, as
we will see in section 3.5), others cannot. In particular:

• Not all the states that we obtain from the ABA are physical. In particular, some
Bethe roots will give states that have non-polynomial in u eigenvalues τpuq3. There
is no general method to distinguish a priori such solutions.

• There is no guarantee that the ABA gives us all physical states. This problem is
known as the problem of completeness, and has only been solved via the ABA for a
few finite-dimensional representations of the Yangian4.

• Finally, the ABA is based on the existence of a vacuum state |Ωy. If the representation
of Y pglN q is highest-weight, we can use the highest weight vector as the vacuum
state. However, for non-highest weight representations, such vacuum is not available.
Therefore the ABA is not applicable in these cases, which are of crucial importance
since they are extensively found in the study of integrable spin chains appearing in
QFTs.

3.5 Twist

A twist in a Y pglN q spin chain is equivalent to the application of two global GLpNq trans-
formations to the transfer matrix:

tpuq “ trT puq Ñ t1puq “ trHtpuqG, @H,G P GLpNq . (3.5.1)

Adding a twist changes the physics of the model: in particular, it modifies the form of the
Bethe equations, that will now include a twist-dependent term.

3Recall that in our construction tpuq is a polynomial in u, so its eigenvalues should also be polynomial.
4This problem has been solved [56] via the QQ-relations of the Q-system, that we introduce in section 3.6.
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Only one of the two matrices H,G in (3.5.1) is actually needed. In fact, since the
transfer matrix is invariant under global GLpNq similarity transformations, we can always
set H “ 1 while leaving G generic. In the rest of this work, we will always take H to be
trivial.

Adding a twist G to the monodromy matrix T puq does not change the RTT relations:
in particular, any G P GLpNq satisfies the RTT relations, and so we can view the twist
matrix as a Lax operator in an extra site of the spin chain acting on a trivial physical space.
In particular, we define the twisted monodromy matrix as T̃ puq “ T puqG.

Notice that, while not breaking the Yangian symmetry, a twist G with distinct eigen-
values λi, i “ 1 . . . N does break the global GLpNq symmetry of the transfer matrix to
the group

ÂN
i“1 Up1q. Therefore, it breaks the degeneracy of its states: this fact will be

fundamental for the SoV construction.
For now, we will use a diagonal twist matrix:

G “ diagpλ1 . . . λN q, λi ‰ λj , @i ‰ j. (3.5.2)

In section 4.3, we will introduce a different type of twist matrix that is fundamental for the
Functional SoV construction.

3.6 Q-system

In this section, we will introduce one of the main concepts of this thesis - the Q-system. It
is based on an alternative description of the states of an integrable spin chain, which are
encoded in the Baxter Q-functions. These are polynomials in the spectral parameter u that
can be defined in terms of the Bethe roots. The Baxter Q-functions are not independent, and
the relations between them are encoded in a set of functional relations, the QQ-relations.

The full set of Baxter Q-functions and the QQ-relations form the Q-system of the inte-
grable spin chain. While the rank of the symmetry of the spin chain is encoded in the form
of the QQ-relations, all other details (such as the specific representation, inhomogeneities,
twist etc.) only appear in the large u asymptotics of the Q-functions and in some simple
extra factor in the QQ-relations. Therefore, the Q-system is quite general, and can be
applied to any rational integrable spin chain.

Due to this universality, the Q-system has been used extensively to investigate vari-
ous properties of spin chains. For example, it was used to solve the completeness problem
for many spin chains [56]. Furthermore, it forms the backbone of the Quantum Spectral
Curve [57], which is a Q-system for supersymmetric spin chains with non-trivial require-
ments on the analytic structure of its Q-functions.

Conventions From now on, we will assume that at each site of the spin chain there
are generic inhomogeneities θi such that θi ‰ θj , @i ‰ j, and we will keep on using the
convention ℏ “ i.



50 CHAPTER 3. INTEGRABLE SPIN CHAINS

3.6.1 Baxter Q-functions

In this section, we will define the Baxter Q-functions. The Q-functions describe a state of an
integrable spin chain in terms of the Bethe roots uj that are associated to it. In particular,
for each solution of the Bethe equations, we can form a set of Q-functions describing a
certain state by packaging the Bethe roots into monic polynomials in u.

3.6.2 Rank N “ 2 Q-system

For the Heisenberg XXX spin chain that we have introduced in section 3.4.1, any state is
described by the set of Bethe roots uk, j “ 1 . . .M , solution of the Bethe equations with
inhomogeneities θi:

L
ź

i“1

uk ´ θi ` i{2
uk ´ θi ´ i{2 “ λ2

1

M
ź

j‰k

uk ´ uj ` i

uk ´ uj ´ i
. (3.6.1)

We may define the Q-function associated to an eigenstate of tpuq characterised by the set
of Bethe roots tukuM

k“1 as the twisted Baxter polynomial:

q1puq “ λiu
1

M
ź

k“1
pu´ ukq (3.6.2)

The same state can also be described by another Q-function in terms of a different set of
Bethe roots ũk as:

q2puq “ λiu
2

M̃
ź

k“1
pu´ ũkq (3.6.3)

There is a simple physical interpretation for this phenomenon: q1 are associated to the
Bethe roots needed to build states starting from the reference vacuum with all spin ups
|Ωy “

ÂL
i“1 | Òyi. q2 are associated to the Bethe roots needed to build the same state

starting from the other possible vacuum with all spin downs, |Ω̃y “
ÂL

i“1 | Óyi.
While this simple interpretation only makes sense for the fundamental representation,

we always have two possible sets of q functions q1 and q2 for any representation of Y pgl2q.
For a general non-compact representation, they will not be polynomials in u, nor will they
be defined in terms of Bethe roots. However, for the type of representations that we will
consider in this work, q1 will always be a polynomial.

The two Q-functions introduced here are not fully independent; in fact, they must satisfy
the following QQ-relation or Wronskian relation:

pλ´1
2 ´ λ´1

1 qλiu
1 λ

iu
2 Q

r`2s

θ puq “ q1puqq
r`2s

2 puq ´ q
r`2s

1 puqq2puq , (3.6.4)

where we have introduced the following notation:

Qθpuq “

L
ź

i“1
pu´ θiq, f r`nspuq “ f

ˆ

u`
i

2n
˙

. (3.6.5)
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Assuming that qa are twisted Baxter polynomials, the QQ relations (3.6.4) can be used
to determine the Bethe roots without the need to resort to the Bethe ansatz. A simple
example of how this work can be found in [14].

3.6.3 Rank N ě 3 Q-system

As we have seen from the Nested Bethe Ansatz in section 3.4.3, for higher ranks the states
of a spin chain in the defining representation of Y pglN q are characterised by exactly N ´ 1
sets of Bethe roots, that we will denote as ttu

p1q

j u
M1
j“1 . . . tu

pN´1q

j u
MN´1
j“1 u. We can therefore

naturally define a set of N ´ 1 Q-functions associated to a given state that will package
these Bethe roots. Explicitly we define the Baxter polynomials:

q12...jpuq “

Mj
ź

i“1
pu´ u

pjq

i q, j “ 1 . . . N ´ 1 (3.6.6)

Once again, since in the fundamental representation of glN there is not a unique vacuum,
the Q-functions (3.6.6) are not the unique way of describing a state of the glN spin chain.

Recall that the Bethe roots come from building states using nested auxiliary spin
chains Y pgl2q Ă Y pgl3q Ă . . . Y pglN´1q Ă Y pglN q. Intuitively, we may think that the
Q-functions (3.6.6) correspond to a state built by choosing the glN vacuum with all spins
in the 1 direction, the glN´1 auxiliary vacuum with all spins in the 2 direction (i.e. the first
of the remaining ones), and so on. We may however pick such vacua in any order we like
- this will give us different Q-functions describing the same state, but built with different
Bethe roots just like in the Y pgl2q case.

We can denote all the Q-functions associated to a given state in a Y pglN q spin chain as:

qApuq, A Ă t1 . . . Nu, where q0puq “ 1 and q1...N “ 1 . (3.6.7)

These Q-functions are totally antisymmetric in their indices. By counting them and includ-
ing the trivial Q-functions q0 and q1...N , the total number of Q-function for a glN state is
given by

řN
i“0

`

n
i

˘

“ 2N .
More generally, for spin chains in any highest weight representation of Y pglN q, it is

possible to prove that there are always 2N Q-functions. Their structure will have the
following form:

QApuq “

˜

ź

aPA

λiu
a

¸

NAqApuq

|A|
ź

j“1
Fjpuq , (3.6.8)

where λj are the twist matrix eigenvalues, NA is a constant, qApuq is a monic polynomial
and Fjpuq are some functions of the spectral parameter. We will refer to the quantities
qApuq as the Baxter polynomials, and to

ś

aPA λ
iu
a qA as the twisted Baxter polynomials.

The Q-functions are not all independent - they will be subject to the QQ-relations:

QAbcQ
r´2s

A “ QAbQ
r´2s

Ac ´QAcQ
r´2s

Ab b, c “ 1 . . . N ´ 15 . (3.6.9)
5b and c can be contained in A, but in this case the QQ-relations are trivial since both sides are 0 due to

the antisymmetricity of the Q-functions.
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The set of 2N Q-functions and the QQ-relations form the so-called glN Q-system.

3.6.4 Dual Q-functions and symmetries of the Q-system

Since QA is antisymmetric in its indices, we can define its Hodge dual, that we will denote
QA, by:

QApuq “
ϵĀAQĀpuq

Q
r´2s

1...N puq
, (3.6.10)

where Ā is the complement of the set A in t1 . . . Nu. The dual Q-functions are the solution
of the Dual Baxter TQ equation that we will see in section 3.8, and form the natural building
blocks for the Functional Separation of Variables that we will see in chapter 5.

The Q-system is invariant under gauge transformations:

QApuq Ñ f|A|puqQApuq , (3.6.11)

where f are generic analytic function of u that need to satisfy the set of finite difference
equations f|A|`1f

r´2s

|A|`2 “ f|A|`2f
r´2s

|A|
. Using this gauge freedom, the functions Fj in (3.6.8)

can be fixed to different forms while mantaining the Q-system invariant. While it is possible
to set such functions to be 1, it is not always the most convenient choice, as we will see
later.

3.6.5 Quantum eigenvalues and transfer matrix from the Q-functions

From the knowledge of the Q-functions for a given state, it is possible to derive the eigenvalue
of the transfer matrix tpuq on that same state. As a byproduct of this process, we will
compute the so-called quantum eigenvalues, Λjpuq. These are defined in terms of the Q-
functions (3.6.8) as:

Λjpuq “
Q

r2s

1...j´1puq

Q1...j´1puq

Q
r´2s

1...j puq

Q1...jpuq
, j “ 1 . . . N . (3.6.12)

Notice that this definition only involves a subset of the Q-functions, those where A is
an ascending-ordered subset of t1 . . . Nu.

The eigenvalue τpuq of the transfer matrix tpuq corresponding to the state described by
the given set of Q-functions can be expressed in terms of the quantum eigenvalues as:

τpuq “

N
ÿ

i“1
Λipuq . (3.6.13)

3.7 T-system

We have seen that the Q-system contains information about the transfer matrix. The
opposite is also true: we can obtain the Q-functions from the knowledge of the transfer
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matrix, or more specifically the T-system, without needing to solve the Bethe equations.
This is done via the so-called Baxter TQ equation, a central concept for this thesis which
we define in section 3.8.

In this section we describe the T-system, composed of an extended set of transfer ma-
trices, which includes the fundamental transfer matrix (3.3.1), and two functional relations
between them, the Hirota [58] and CBR equations [59–61]. These functional relations are
not fundamental for the scopes of this thesis, and we leave their discussion to the ap-
pendix A.3.1.

The transfer matrices in the T-system can all be built starting from the monodromy
matrix (3.1.4), using a procedure known as fusion [62]. Fusion is the Yangian equivalent of
the procedure that lets us build irreducible representations of glN from the tensor product
of multiple copies of its fundamental representation. In particular, fusion can be described
in terms of the Young tableaux appearing in the representation theory of glN . For the
scopes of this thesis, we only need a subset of the fused transfer matrices, corresponding
to the Young tableaux with a single column and known as fused antisymmetric transfer
matrices. We describe how to build them from the so-called quantum minors in the next
section, while leaving the general description of the fusion procedure to the appendix A.3.

3.7.1 Quantum minors and quantum determinant

In this section, we will introduce the quantum minors and quantum determinant of a spin
chain. These are a special case of the fusion procedure, but are fundamental for the scopes
of this thesis so we will describe them separately from the general case, which can be found
in appendix A.3. We will not give formal proofs for most of the statements of this section;
the interested reader can find them in [43].

We will use the convention that objects with low indices Ai,j... are tensors acting non-
trivally on the i, j . . . -th copies of the auxiliary space, while objects with the same number of
up and down indices T ij...

kl... will always be intended as matrix elements of the corresponding
tensor.

To define the quantum minors, we first need to introduce the generalised R-matrix,
acting on m copies of the auxiliary space CN :

Rpu1 . . . umq “ pR12 . . . R1mq . . . pRm´2,m´1Rm´2,mqpRm´1,mq , (3.7.1)

where u1 . . . um are generic complex parameters, Ri,j ” Rijpui ´ ujq is the usual rational
R-matrix (2.2.3) acting non-trivially on the auxiliary spaces i, j. We can easily represent
the matrix elements of the generalised R-matrix using the diagrammatic rules. As a simple
example, in fig. 3.1, we depict the matrix elements of Rpu1, u2, u3q, which are given by:

Ri1,i2,i3
j1,j2,j3

pu1, u2, u3q “
ÿ

k1,k2,k3

Ri1,i2
k1,k2

pu1 ´ u2qRk1,i3
j1,k3

pu1 ´ u3qRk2,k3
j2,j3

pu2 ´ u3q . (3.7.2)

The generalised R-matrix (3.7.1) satisfies the following relation:

Rpu1 . . . umqT1pu1q . . . Tmpumq “ Tmpumq . . . T1pu1qRpu1 . . . umq (3.7.3)
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Figure 3.1: Matrix elements of the generalised R-matrix Rpu1, u2, u3q, acting on b3
i“1CN .

where Ti is the monodromy matrix for Y pglN q acting on m copies of the auxiliary space
Âm

i“1 CN as:
Tipuq “ 1 b . . . 1 b T puq

loomoon

i-th space

b 1 ¨ ¨ ¨ b 1 . (3.7.4)

If we take the parameters uj in (3.7.1) to be uj “ u` ji´ i, then uj ´ uj`1 “ ´i and:

Rpu1 . . . umq „ Am , (3.7.5)

where Am is the totally antisymmetric projector (or antisymmetriser) over
Âm

i“1 CN ; the
proportionality constant can be fixed by rescaling Rpu1 . . . umq and imposing that the re-
sulting projector is idempotent, i.e. A2

m “ Am. As an example, we use our diagrammatic
rules to depict the antisymmetriser A3 in figure 3.2. Its matrix elements can be obtained
by setting uj “ u` ji´ i in (3.7.2).

Note that if we choose uj ´uj`1 “ i, then Rpu1 . . . umq “ Symm, the totally symmetric
projector over

Âm
i“1 CN .

Setting uj “ u` ji´ i in the generalised RTT relation (3.7.3), the R-matrices become
antisymmetrisers over m copies of the auxiliary space of the monodromy matrix, and we
get the following relation:

Tmpuq ” AmT1puq . . . Tmpu` im´ iq “ Tmpu` im´ iq . . . T1puqAm (3.7.6)

The matrix elements of this equation are known as the quantum minors, and are explicitly
given by:

T i1...im
j1...jm

puq “
ÿ

pPSm

sgn p ¨ T
ipp1q

j1
puq . . . T

ippmq

jm
pu` im´ iq

“
ÿ

pPSm

sgn p ¨ T i1
jpp1q

pu` im´ iq . . . T im
jppmq

puq.
(3.7.7)
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Figure 3.2: Antisymmetriser on
Â3

i“1 CN built via the R-matrices.

where p is a permutations of m elements and T i
j are the monodromy matrix elements (3.1.4).

The quantum minors are still a representation of the Yangian Y pglN q. In particular,
they satisfy the RTT relations (with the R-matrix being given by an antisymmetrised tensor
product of the usual rational R-matrix), and they have coproduct given by:

∆
´

T i1...im
j1...jm

puq

¯

“

N
ÿ

k1¨¨¨km“1
T i1...im

k1...km
puq b T k1...km

j1...jm
puq . (3.7.8)

This means that we can build the m-th quantum minors of a spin chain of length L by
taking the coproduct of L m-th fused Lax operators, whose matrix elements are defined in
terms of the matrix elements of the Lax operator (3.1.3) by:

Li1...im
j1...jm

puq “
ÿ

pPSm

sgn p ¨ L
ipp1q

j1
puq . . . L

ippmq

jm
pu` im´ iq . (3.7.9)

This construction is convenient because we can easily depict the fused Lax operators using
the diagrammatic rules introduced in section 3.2, where the antisymmetriser Am built from
the R-matrices will be represented as a rectangle passing through all the copies of the
auxiliary space.

As an example, we depict the fused Lax operator that can be used to define the quantum
minor T 2puq:
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Its matrix elements are given by:

La1,a2
b1,b2

puq “ La1
b1

puqLa2
b2

pu` iq ´ La2
b1

puqLa1
b2

pu` iq . (3.7.10)

Using the fused Lax operators, the m-th quantum minor of a spin chain of length L is then:

T i1...im
j1...jm

puq “
ÿ

ki

pL1q
i1...im
k1...km

pu´ θ1q . . . pLLq
k1...km
j1...jm

pu´ θLq , (3.7.11)

where the fused Lax operator pLkq
i1...im
j1...jm

acts on the tensor product of L physical spaces as
1 b . . . 1 b Li1...im

j1...jm
loomoon

k-th copy

b1 ¨ ¨ ¨ b 1.

If I, J Ă t1 . . . Nu are m dimensional and i P I, j P J , then the following commutation
relation for the quantum minors is satisfied:

“

T i
jpuq, T I

J pvq
‰

“ 0 (3.7.12)

This implies that the N -th quantum minor T 1...N
1...N puq commutes with all elements of the

monodromy matrix T i
j :

“

T i
jpuq, T 1...N

1...N pvq
‰

“ 0, @i, j P t1 . . . Nu . (3.7.13)

Therefore, T 1...N
1...N puq, also known as the quantum determinant, is a central element of Y pglN q.

This name comes from the fact that, in the classical limit i Ñ 0, the quantum determinant
becomes the determinant of the monodromy matrix (3.1.4).

From the quantum minors, we can define the N fused antisymmetric transfer matrices:

tapuq “ trapT apuqq, a “ 1 . . . N (3.7.14)

These quantities commute with each other, as we prove in appendix A.3, and provide the
integrals of motion for the spin chain that we mentioned in section 3.3. In particular, we
have the expansion:

tapuq “ uL `

L´1
ÿ

α“1
uα´1Ia,α , (3.7.15)

where Ia,α, a “ 1 . . . N ´ 1, α “ 1 . . . L are the integrals of motion6.
6The quantum determinant does not contain IoMs since it is a central element of Y pglN q and therefore

proportional to the identity operator.



3.8. BAXTER TQ EQUATION 57

3.8 Baxter TQ equation

The Q-system and the T-system are two equivalent ways to describe a rational integrable
spin chain. These two systems are not completely independent; they are connected by the
Baxter TQ equation [63–65]. This equation, and its dual version, form the foundation of
the Functional Separation of Variables method described in section 5. For now, we will
introduce them, and see how we can exploit them to obtain all the Q-functions from the
T-system.

We define the Baxter TQ equation (or Baxter equation) as the eigenvalue equation
for the Baxter operator O, which is constituted by fused antisymmetric transfer matri-
ces (3.7.14) and finite shift operators D, and whose eigenfunctions are the Q-functions.

Similarly, the Dual Baxter equation is the eigenvalue equation for the dual Baxter
operator O:, whose eigenfunctions are the dual Q-functions (3.6.10).

We define the Baxter Operator as:

O “

n
ÿ

a“0
p´1qaτapuqD2a , (3.8.1)

where τa,1 are the eigenvalues of the antisymmetric transfer matrices ta, and Dfpuq “

fpu` i{2q. We define the Dual Baxter operator as:

O: “

n
ÿ

a“0
p´1qaτapu´ iaqD´2a . (3.8.2)

The Baxter and Dual Baxter equations are given by:

OQr´2s

i puq “ 0 (3.8.3)
O:Qipuq “ 0 , (3.8.4)

whereQi are the Q-functions (3.6.8) with a single index, andQi are the dual Q-functions (3.6.10)
with a single index. Explicitly:

Qipuq “ Ni F1puqλiu
i qipuq, Qipuq “

ϵ1...̂i...NQ1...̂i...N puq

Q
r´2s

1...N puq
. (3.8.5)

For these equations to hold, we need to choose the factors Fjpuq in the Q-functions appro-
priately - in particular, the Q-functions have to be compatible with the T-system in the
sense we explain now.

The Baxter operator can be expressed in terms of quantum eigenvalues (3.6.12):

O “
`

1 ´ ΛnpuqD´2˘

. . .
`

1 ´ Λ1puqD´2˘

. (3.8.6)

By comparing this expression with (3.8.1), one can immediately read off the expression of
τapuq in terms of the quantum eigenvalues and therefore in terms of the Q-functions. For
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example for a gl3 spin chain we have:

τ1puq “ Λ1puq ` Λ2puq ` Λ3puq , (3.8.7)
τ2puq “ Λ1pu` iqΛ2puq ` Λ1pu` iqΛ3puq ` Λ2pu` iqΛ3puq , (3.8.8)
τ3puq “ Λ1pu` 2iqΛ2pu` iqΛ3puq . (3.8.9)

We say that the Q-functions are compatible with the T-system if these τa are the eigenvalues
of the antisymmetric transfer matrices ta built via fusion in (3.7.14). This fixes completely
the functions Fjpuq in the Q-functions (3.6.8).

Since Fjpuq do not depend on the state of the spin chain, we can fix them by choosing
the simplest possible state. For compact representations, this will be the ground state,
where the Q-functions in (3.6.12) have Baxter polynomials qApuq of degree 0.

Once the functions Fj are fixed using the ground state, we can use the other eigenvalues
of the T-system as a set of N ´ 1 equations for each excited state, where the unknowns are
the Bethe roots of the corresponding Q-functions. Even though such equations will involve
polynomials in u of degree proportional to L, at least for low lengths they can be solved
explicitly to obtain all the Q-functions of the spin chain, establishing the full equivalence
between T and Q systems.



Chapter 4

Separation of Variables for
Integrable Spin Chains

In this chapter, we will discuss Separation of Variables (SoV) for integrable spin chains.
This technique can be used to compute a variety of observables in the spin chain, and
constitutes a modern alternative to the Bethe Ansatz described in section 3.4.

The approach to SoV we will describe in this section was first proposed by Sklyanin [29,
66–68], and is based on the introduction of a special basis for the Hilbert space of the spin
chain, known as SoV basis. The SoV basis is an analog of the action-angle variables of
chapter 1: in it, the wavefunctions corresponding to the Bethe states are separated, i.e.
they become a product of functions of one variable. These building blocks turn out to
be the Baxter Q-functions, evaluated at a special set of points that we call the separated
variables x.

To build the SoV basis, we follow Sklyanin’s recipe. It is based on a quantisation of
the separated variables for classical spin chains, which we define as the limit ℏ Ñ 0 of
the quantum integrable spin chains treated so far. The quantum separated variables x are
defined as the zeros of a special operator in the spin chain, the B operator. The SoV basis
is defined as the set of eigenstates of the B operator.

This construction was first worked out for rank N “ 2 spin chain [29], and was then
generalised to any rank [69], and we will review it in this chapter. We will describe the
correspondance between the separated variables for compact spin chains and the so-called
Gelfand-Tsetlin (GT) patterns, introduced in Appendix B.1.

We will finally discuss how the Q-functions appear as wavefunctions in the SoV basis,
and briefly describe how to compute observables using them.

It is worth mentioning that Sklyanin’s procedure, based on the SoV operator, is not the
unique way to build the SoV basis. Another method was proposed in [70], and does not
use a B operator. While these two techniques have slightly different ranges of application,
they have been proved to be equivalent in the cases where they are both applicable [42],
including the spin chains in compact representations that we describe in this chapter.

For the classical SoV, the main reference used in this chapter is [71]. The quantum

59
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SoV discussion is a simplified version of the one found in [42], with a small inclusion of the
author’s publication [26] that extends it to the non-compact spin-s representations that we
will use in the next chapter.

4.1 Separation of variables for classical spin chains

Sklyanin’s quantum SoV is based on a quantisation of the separated variables for a classical
spin chain. Therefore, in this section we will briefly review how to build these classical
separated variables.

To obtain classical separated variables, we need to find 2n canonical coordinates xi, pj

who satisfy the canonical commutation relations:

txi, xju “ 0 tpi, xju “ δij tpi, pju “ 0 i, j “ 1 . . . n (4.1.1)

and n functions ϕi, that will play the role of the separated equations of motion, such that:

ϕj pxj , pj , f1, . . . . . . , fnq “ 0, pj “ 1, . . . , nq (4.1.2)

where fi are the n integrals of motion.
To do so, we use the algebraic spectral curve. If T is the classical monodromy matrix

built from the classical limit ℏ Ñ 0 of the Lax operators (3.1.3), then the algebraic spectral
curve is the solutions to the eigenvalue equation for T :

detplipuq ´ T puqq “ 0 , (4.1.3)

where li are the eigenvalues of T puq.
For simplicity, we focus on the rank 2 case in the fundamental representation, for which

T is a 2 ˆ 2 matrix. Expanding equation (4.1.3), we obtain:

lpuq2 ´ tpuqlpuq ´ detT puq “ 0, tpuq ” trT puq . (4.1.4)

The two solutions to this quadratic equation are l˘puq “ 1
2

´

tpuq ˘
a

tpuq2 ´ 4 detT puq

¯

,
and define the algebraic spectral curve.

Now we build separated variables from the spectral curve. This can be done via the
eigenvectors of T , which we define as the two-component vector Ω˘ such that:

T puqΩ˘ “ l˘puqΩ˘ . (4.1.5)

Choosing the normalisation such that Ω˘
1 “ 1, the eigenvalue equation (4.1.5) is solved by:

Ω˘
2 “

´T11puq ` l˘puq

T12puq
“ ´

T21puq

T22puq ´ l˘puq
(4.1.6)

So the eigenvectors Ω˘ become singular at the points xα where T12pxαq “ 0, or zα where
l˘pzαq ´ T22pzαq “ 0.
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At the points xα, T12 “ 0 and T pxαq is triangular. Thus the spectral curve equation
becomes:

plpxαq ´ T11pxαqqplpxαq ´ T22pxαqq “ 0 Ñ l1 “ T11 and l2 “ T22. (4.1.7)

In the equations (4.1.6) evaluated at xα, the one on the left has no poles and the only
remaining ones are those for which l˘pxαq “ T22pxαq.

We will now define the A and B operators as Apuq “ T11puq and Bpuq “ T12puq; in this
notation, xα are the zeros of the B operator.

Using the classical RTT relation, it is possible to prove that the coordinates defined
by xα and log pα, where pα ” Apxαq, are canonically conjugated. Furthermore, these
coordinates can be used to separate the equations of motion of the classical spin chain as in
equation (4.1.2). For this reason, xα and log pα form the separated variables for a classical
spin chain. We will not be describing in detail how this procedure works: we invite the
interested reader to check [71].

Finding the separated variables for higher rank cases can be done in a similar fashion.
One needs to find a similarity transformation that makes the monodromy matrix triangular,
and look for zeroes of the non-diagonal entries, which will define the A and B operators. x
will be the zeros of the B operator, while p will be given by Apxq.

As an example, in the N “ 3 case the A and B operators are given by:

Apuq “
T11puqT32puq ´ T12puqT31puq

T23puq
, (4.1.8)

Bpuq “ T23puq pT21puqT32puq ´ T22puqT31puqq ´ (4.1.9)
´T13puq pT12puqT31puq ´ T11puqT32puqq . (4.1.10)

4.2 Sklyanin’s quantum separation of variables

Sklyanin’s quantum SoV is based on a direct quantisation of the procedure we have just
presented. The central tool to this construction is the quantum B operator: its zeros will
form the separated variables, while its eigenstates are the so-called SoV basis.

The construction is slightly different for Y pgl2q and higher ranks, so we will review them
separately.

4.2.1 Rank N “ 2

For the rank 2 case, the quantisation of the classical separated variables is straightforward.
We define the A and B operators as:

Apuq “ T11puq Bpuq “ T12puq (4.2.1)

where T is the quantum monodromy matrix (3.1.4).
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We need two properties from the B operator [69]. The first is that it needs to commute
with itself:

rBpuq, Bpvqs “ 0 , (4.2.2)
which is ensured from the RTT relations. The second is that B can be used to construct
the eigenvectors of the quantum transfer matrix tpuq; as we have seen in section 3.4, this
can be done via the Algebraic Bethe Ansatz, obtaining the Bethe states:

|Ψy “

M
ź

i“1
Bpuiq|Ωy, ui are the Bethe roots . (4.2.3)

Just like the classical case, the zeroes of B are the separated variables. In particular, if we
could write B as a polynomial in u with zeros at xα:

Bpuq “ B0

n
ź

α“1
pu´ xαq , (4.2.4)

then the left eigenvectors of B, labelled by the set txαun
α“1 and denoted as xx1 . . . xn|, would

form the SoV basis.
The SoV basis forms a basis of the Hilbert space in which the wavefunctions of the Bethe

states separate - i.e. they become products of functions of a single separated variable xα.
In fact, we have that:

xx1 . . . xn|Ψy “ xx1 . . . xn|

M
ź

i“1
Bpuiq|Ωy “ B0

n
ź

α“1

M
ź

i“1
pui ´ xαqxx1 . . . xn|Ωy . (4.2.5)

Choosing a normalisation of the SoV basis such that B0xx1 . . . xn|Ωy “ 1, we see that:

xx1 . . . xn|Ψy “ p´1qn
n

ź

α“1
Qpxαq (4.2.6)

where we have used the definition of Baxter Q-functions associated to the state |Ψy (3.6.2):

Qpuq “

M
ź

α“1
pu´ uαq . (4.2.7)

To compute observables, such as the form factors of operators, using SoV, we also need a
right SoV basis. For rank N “ 2, it can be simply defined as the right eigenvectors of the
B operator |x1 . . . xmy [42].

Since the SoV bases are complete bases, we have the completeness relation 1 “
ř

xα
|xyxx|µpxq,

where µ is the SoV measure defined as µpxq “ pxx|xyq´1. As an example, we show how to
compute the scalar product of two Bethe states using the SoV basis:

xΦ|Ψy “ x0|Bpu1q . . . BpuM q|0y
ÿ

xα

|xyxx|µpxq “
ÿ

xα

M
ź

m“1

n
ź

α“1
pum ´ xαq . (4.2.8)
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However, there is a problem in this procedure: the B operator is nilpotent [69], and cannot
be diagonalised to build the SoV basis. This is expected for any compact representation of
Y pgl2q: B creates states from the highest weight vector, so by applying it repeatedly we
must end at some point on the lowest weight vector, which is annihilated by the action of
B (recall that B “ T12 is the Yangian raising operator).

Not everything is lost: the B operator can be made diagonalisable by introducing a
special twist in the spin chain [69].

4.3 Companion twist frame

We have seen in section 3.5 that the addition of a twist to the spin chain breaks the
global symmetry of the transfer matrix, and thus makes the Bethe states non-degenerate.
However, even for a gl2 spin chain, a diagonal twist is not sufficient to make the B operator
diagonalisable. It is possible to act with further global transformations on (3.5.2) to solve
this issues, as was argued in [69]. In this thesis, we will instead introduce a non-diagonal
twist matrix, the companion twist matrix, which by itself makes B diagonalisable, and has
other useful features.

The companion twist matrix, introduced in [72], has the following form in the Y pgl2q

case:
GC “

ˆ

χ1 ´χ2
1 0

˙

(4.3.1)

where χi are the characters associated to the diagonal twist (3.5.2):

χ1 “ trpGq “ λ1 ` λ2 χ2 “ detpGq “ λ1λ2 (4.3.2)

It is possible to check that GC is related to (3.5.2) by a similarity transformation: this
implies that transfer matrices built with G and GC are physically equivalent and have
the same eigenvalues λ1, λ2. Furthermore, the Q-functions are the same for the two twist
matrices.

The usefulness of this choice of twist in the SoV framework has now been extensively
demonstrated [72–74]:

• The transfer matrix tpuq “ trpT puqGCq is linear in the characters χi, and in particular
tpuq “ T12puq ` χ1T11puq ´ χ2T21puq;

• the B operator Bpuq is explicitly diagonalisable and with non-degenerate spectrum;

• The SoV basis is independent of the twist eigenvalues.
With a diagonalisable B operator, we can obtain the SoV basis for any highest-weight
representation as seen in the previous section. The SoV basis will depend on the length
and the specific representation of Y pgl2q we are using. For example, for a representation of
weights ps, 0q, it will have the form:

xx|bpuq “ xx|

L
ź

α“1
pu´ xαq , (4.3.3)
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where bpuq ” ´
Bpuq

Q
r2s´2s

θ

and:

xα “ θα ` ips ` nαq, α “ 1 . . . L . (4.3.4)

Here θα are the inhomogeneities of the spin chain, while nα are non-negative integers which
are in one-to-one correspondence with the SoV basis states. A systematic description of how
to obtain these numbers involves the Gelfand-Tsetlin patterns, defined in the Appendix B.1.

Notations Due to the presence of the non-diagonal companion twist matrix, we need to
introduce some new notation. The monodromy matrix elements Tij will always refer to
the untwisted monodromy matrix, while the B operator is defined in terms of the twisted
monodromy matrix T̃ puq “ T puq.GC , i.e. Bpuq ” T̃12puq “ T11puq.

Thus, the name ’B operator’ will be reserved for the twisted SoV B operator, which is
different from the ABA B operator introduced in section 3.4!

4.4 Rank N ě 3 SoV

4.4.1 The B and C operators

In the case N “ 3, Sklyanin managed to obtain the quantum B operator by direct quanti-
sation of the classical case. Sklyanin’s expression is given by:

Bpuq “ T23puqT 12
23

r2spuq ` T13puqT 12
13

r2spuq (4.4.1)

where T ij
kl are the quantum minors matrix elements defined in (3.7.7). It was shown ana-

lytically [75] that for the fundamental representation, Sklyanin’s B operator, evaluated at
the Bethe roots of Q1, creates Bethe states i.e. eigenstates of the transfer matrix:

|Ψy “
ź

j

Bpujq|0y . (4.4.2)

This fact can be generalised to any rank [69], by defining the B operator as:

Bpuq “
ÿ

J1...Jn´1

T J1
n puqT J2

J1n
r2spuqT J3

J2n
r4spuq . . . T

Jn´1
Jn´2,n

r2n´4spuq , (4.4.3)

where Jk “ pj1
k . . . j

k
k q and we sum over configurations such that 1 ď j1

k ď ¨ ¨ ¨ ď jk
k ď n.

Just like the N “ 2 case, Sklyanin’s B operator is nilpotent, and therefore not diago-
nalisable.

This problem can again be solved by twisting. We can introduce a diagonal twist
G “ diagpλ1, λ2, λ3q and act with a similarity transformation on the twisted spin chain to
get a ’good’ B operator, as argued in [69].
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We will instead use again the companion twist matrix. Note that both procedures are
generalisable to any rank. We start by definining the GLpNq companion twist matrix:

Gij “ p´1qj´1χjδi1 ` δi,j`1 , (4.4.4)

where χj are the elementary symmetric polynomials in the twist eigenvalues λi:

N
ź

j“1
pt` λjq “

N
ÿ

r“0
tN´rχr . (4.4.5)

χr are also the characters of the totally anti-symmetric representations of GLpNq. We
remark that the companion twist matrix has the same eigenvalues pλ1 . . . λN q as the usual
diagonal twist matrix.

For example, in the N “ 3 case the Companion Twist Matrix is:

G “

¨

˝

χ1 ´χ2 χ3
1 0 0
0 1 0

˛

‚ . (4.4.6)

The twisted transfer matrix tpuq “ trpT puqGq is linear in the characters. In particular, we
can see that:

tpuq “ trpT puqGq “

N´1
ÿ

j“1
χ0Tj,j`1puq `

N
ÿ

r“1
χrp´1qr´1Tr1puq , (4.4.7)

where we have defined χ0 “ 1.
In the companion twist frame, the B operator becomes:

Bpuq “
ÿ

J1...Jn´1

T J1
1 puqT J2

1,J1`1
r2spuq . . . T

Jn´1
1,Jn´2`1

r2n´4spuq . (4.4.8)

This B operator is diagonalisable, and its eigenvectors constitute the left SoV basis xx|.
This SoV basis factorises right Bethe states |Ψy in terms of products of the corresponding

Q-functions; however, if we were to use it to try to factorise left Bethe states xΨ|, we would
not get a simple expression. It is possible to factorise xΨ| nicely by introducing a right SoV
basis |yy, who is defined as the eigenvectors of the SoV C operator [73], which for Y pglN q

reads:
Cpuq “

ÿ

J1...Jn´1

T
Jn´1
1,Jn´2`1puq . . . T J2

1,J1`1 puqT J1
1 puq . (4.4.9)

The C operator can be used to generate Bethe states in the antifundamental representation
of glN [73]:

xΨ| “ x0|

M
ź

i“1
Cpu˚

j q , (4.4.10)

where u˚
j is a certain set of Bethe roots for this representation.
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The B and C operators are related by the so-called ˚ anti-automorphism of the Yangian:

Tijpuq
˚
ÝÑ Tijp´uq (4.4.11)

TijpuqTklpvq
˚
ÝÑ Tklp´vqTijp´uq (4.4.12)

In particular, Bpuq
˚
ÝÑ Cpuq, and thus we can use most of the technology developed for the

B operator to treat C as well.

4.4.2 Building the SoV basis

In this section, we will review how to obtain the explicit expression for the separated
variables xα,a and yα,a labelling the left and right SoV bases.

The starting point is a slightly different construction for the SoV bases, due to Maillet
and Niccoli [70, 76–80]. The SoV basis can be obtained via the action on some reference
vector xS| of the transfer matrix tpuq evaluated at the inhomogeneities of the spin chain θα.
For example, for a Y pgl2q chain in the fundamental representation, we have:

xn1 . . . nL| “ xS|

L
ź

α“1
tpθαqnα , nα “ 0, 1 . (4.4.13)

For higher ranks, to build the SoV basis we also need to apply fused transfer matrices to
xS|, and we also need to shift the inhomogeneities by multiples of i.

It is evident that this SoV basis automatically factorises Bethe states, since the latter are
defined as eigenvectors of tpuq. The Maillet-Niccoli SoV basis is supplemented with some
closure relations. These ensure that we can obtain SoV basis vectors with lower nα from
those with higher nα by application of transfer matrices evaluated at some special points.
Such closure relations are based on the Hirota and the CBR equations of the T-system.

Although the Maillet-Niccoli method requires the arbitrary choice of a vector xS|, which
is not natural in non-compact cases, it can give a good insight on the spectrum of the
separated variables for compact spin chains. In particular, it can be proven [73] that the
eigenvectors of the B operators can be built by successive action of fused transfer matri-
ces evaluated at some special point, who constitute the values of the separated variables
xα,a. These special points can be determined by the so-called Gelfand-Tsetlin patterns for
the Yangian Y pglN q, which we introduce in Appendix B.1. We also point out that the
Gelfand-Tsetlin basis and patterns are fundamental to prove the link between the SoV ba-
sis construction via the B-operator of [69] and the Maillet-Niccoli one [70]. We refer the
interested reader to [42] for a detailed explanation.

4.4.3 Separated variables and factorised wavefunctions

We now come to the main point of this section - given a compact Y pglN q spin chain in
a representation with weights ν⃗α, α “ 1 . . . L, the Gelfand-Tsetlin patterns label the SoV
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bases |xy and xy| as follows [73]:

|xy is labelled by xα
k,j “ θα ` ipµα

k,j ´ j ` 1q (4.4.14)
xy| is labelled by yα

k,j “ θα ` ipνN´k ´ µ̄α
k,j ` j ´ 1q (4.4.15)

where µα
k,j are the (finite) possible values in the dual diagonals of the GT patterns and µ̄α

k,j

measures how much the element of the dual diagonal has been excited above its minimum
value allowed by the branching rules (B.1.6), and is defined by µ̄α

k,j “ µα
k,j ´ να

k`1. Note
that the number of these states is finite and corresponds to the dimension of the Hilbert
space of the spin chain.

Furthermore, the same xα
k,j and yα

k,j appear in the factorised wavefunctions. We define
as factorised wavefunctions the overlaps between the SoV bases and the Bethe states.

Factorised wavefunctions are built as follows: first, we build eigenvectors of B (Cq by
applying transfer matrices in the T-system evaluated at xα

k,j (yα
k,j) [73], in a similar way

as (4.4.13). Then, we take the overlap between these eigenvectors and Bethe states. But
Bethe states by definition diagonalise the transfer matrices we use to build the SoV bases,
so we end up with transfer matrices eigenvalues τ evaluated at xα

k,j (yα
k,j). Finally, we write

the transfer matrix eigenvalues in terms of Q-functions, as delined in section 3.8.
The final result is given in terms of products of Q-functions evaluated at the separated

variables xα
k,j (yα

k,j). In particular, after an appropriate normalisation one obtains the
following expressions for left and right wavefunctions:

Ψpxq “ xx|Ψy “

L
ź

α“1

N´1
ź

k“1
det

i,jďk
qipx

α
kjq , (4.4.16)

Ψpyq “ xΨ|yy “

L
ź

α“1

N´1
ź

k“1
det

i,jďk
qipyα

kjq , (4.4.17)

where qi are twisted Baxter polynomials with a single index introduced in (3.6.8), and qi

are the twisted dual Baxter polynomials.
We also mention that in the case of glN representations of weights ps, 0, . . . , 0q, it is

always possible to normalise the SoV basis so that the right wavefunction Ψpxq becomes a
product of Q-functions [42]. In particular we get the following simple expression:

Ψpxq “

L
ź

α“1

N
ź

j“1
q1

`

xα
j1

˘

. (4.4.18)

Non-compact spin chains

The SoV basis can also be introduced for non-compact spin chains. In the next chapter,
we will consider a spin-s highest-weight representation of Y pglN q, with highest-weight state
|0y satisfying

Eα
ij |0y “ 0, i ă j

Eα
ii|0y “ ωi|0y ,

(4.4.19)
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where E are generators of glN and ω1 “ ´s and ωi “ `s for i ě 2. This is the simplest
non-compact representation which can be considered and we have chosen it for simplicity
to illustrate our main results, but we believe all the main statements can be easily extended
to more general representations. In this representation, the wavefunctions are given by:

Ψpxq :“ xx|Ψy “

L
ź

α“1

N´1
ź

a“1
Q1pxα,aq (4.4.20)

Ψpyq :“ xΨ|yy “

L
ź

α“1

N´1
ź

a“1
det

1ďa,bďN´1
Qa`1

ˆ

yα,b `
i

2pN ´ 2q

˙

. (4.4.21)

The separated variables are labelled by:

xα,a “ θα ` i ps ` nα,aq , yα,a “ θα ` i ps `mα,a ` 1 ´ aq (4.4.22)

where nα,a and mα,a are non-negative integers subject to the constraints nα,1 ě ¨ ¨ ¨ ě

nα,N´1 ě 0 andmα,1 ě ¨ ¨ ¨ ě mα,N´1 ě 0, with each possible configuration corresponding to
a basis state. Note that these restrictions give infinite dimensional SoV bases, in agreement
with the fact that the Hilbert space of this non-compact spin chain is infinite dimensional.

4.4.4 SoV charge operator

From the knowledge of the SoV bases it is possible to compute the so-called SoV measure:

My,x “ xy|xy . (4.4.23)

For Y pgl2q, where the left and right SoV bases are the same, this measure is diagonal. For
higher ranks it is non-diagonal and highly nontrivial. An example of it for a Y pgl3q spin
chains of short length in the fundamental representation can be found in [69].

A useful object proposed in [81] is the so-called SoV charge operator N. It commutes
with the B and C operators and is diagonalised in both SoV bases |yy and xx| and counts
the number of “excitations” above the SoV ground state. More precisely:

N|yy “

˜

ÿ

α,a

mα,a

¸

|yy, xx|N “ xx|

˜

ÿ

α,a

nα,a

¸

. (4.4.24)

The SoV charge operator can be obtained as the first non-trivial coefficient in the large u
expansion of B or C, and imposes useful selection rules on the SoV measure, as we will see
in the next section.
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4.4.5 SoV measure

The explicit form of the measure for Y pglN q spin chains in the spin-s representations defined
above, worked out in [74], is given by1

My,x “ sL
ÿ

k

signpσq

˜

N´1
ź

a“1

∆a

∆θ

¸

L
ź

α“1

N´1
ź

a“1

rα,nα,a

rα,0

ˇ

ˇ

ˇ

ˇ

ˇ

σα,a“kα,a´mα,a`a

. (4.4.25)

In Appendix C.1, we derive a more general formula that also gives this expression. We will
now summarise the notations we use, following [74]. sL is a simple sign factor

sL “ p´1q
L
4 pL´1qpN2`N´2q . (4.4.26)

σ denotes a permutation of L copies of the numbers t1, 2, . . . , N ´ 1u

t1, . . . , 1
loomoon

L

, . . . , N ´ 1, . . . , N ´ 1
loooooooooomoooooooooon

L

u (4.4.27)

with σα,a denoting the number at position a ` pα ´ 1qpN ´ 1q. σ0 denotes the identity
permutation on this set and so σ0

α,a “ a. The signature of the permutation signpσq is
˘1 depending on the number of elementary permutations needed to bring the ordered set
uσ´1p1q Yuσ´1p2q ¨ ¨ ¨Yuσ´1pN´1q to the canonical order u1,1, u1,2, . . . , uL,N´1 where uσ´1paq “

tuα,b : σα,b “ au. Whereas signpσq could be ambiguous due to different possible orderings
inside σ´1paq, the combination with the Vandermonde determinants ∆b is well defined.
There are pN´1qL!

L!N´1 possible permutations σ, and if σ is not such a permutation we define
signpσq “ 0.

Since the SoV charge operator (4.4.24) commutes with both B and C, My,x is only
non-zero if the states xx| and |yy have the same SoV charge eigenvalue. Furthermore, My,x
is only non-zero if there exists a permutation σ of the number (4.4.27) such that

mα,a “ nα,a ´ σα,a ` a (4.4.28)

for each α, a. There are distinct dual basis states |xy with the same value of nα,a and
hence there are multiple permutations satisfying (4.4.28). We denote such inequivalent
permutations (within each αq by k which we then sum over. The sum over k is needed only
in a limited number of cases, for example in the gl3 case only k “ n is possible.

In (4.4.25), ∆b, which depends on σ, denotes the Vandermonde determinant constructed
from all xα,a for which σα,a “ b and ∆θ denotes the Vandermonde determinant built from
θ’s

∆θ “
ź

αăβ

pθα ´ θβq . (4.4.29)

1There is a typo in [74] where the sign factor sL does not appear. However, it is correctly included in
the Mathematica code contained in that paper.
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Finally, the function rα,n is defined as

rα,n “ ´
1

2π

L
ź

β“1
pn` 1 ´ iθα ` iθβq2s´1 , (4.4.30)

where pzqs “
Γps`zq

Γpzq
is the Pochhammer symbol.

4.4.6 Computing observables using the SoV basis

We now have all the tools to compute observables using Separation of Variables. Suppose,
for example, we want to compute the overlap of two Bethe states. Since Bethe states are
orthogonal, this should be a trivial calculation. However, obtaining the explicit result via
SoV is not simple, especially for high rank spin chain. In fact, we have to compute the
following expression:

xΨA|ΨBy “
ÿ

x,y
ΨApyqMy,xΨBpxq . (4.4.31)

while we do in principle know all the elements on the RHS, this is indeed a hard calculation
to perform in most cases. This is especially true for spin chains in non-compact, non-highest
weight representations, such as the ones found in N “ 4 SYM.

In the next section, we will introduce an alternative SoV construction, that allows to
bypass these problems and is particulary adapt for applications to integrable CFTs, the
Functional SoV.



Chapter 5

Functional Separation of Variables

The operator-based SoV (OSoV) construction (i.e. based on the B and C operators) that
we analysed in the previous chapter has recently been supplemented with a functional SoV
(FSoV) construction [82] allowing us to compute highly non-trivial quantities such as scalar
products and form factors directly in separated variables, bypassing the explicit operator-
based construction of the SoV bases. While being completely equivalent for spin chains in
compact representations, the functional approach is particularly attractive in settings where
an explicit construction of the SoV bases is complicated. For example, this is the case for
non-compact spin chains without a highest-weight state, that are commonly found in High
Energy Physics. Functional SoV has been already used to compute non-trivial observables
in these systems despite its recent concoction [21, 25].

The functional SoV approach allows one to naturally compute the overlaps of Bethe
states in terms of a determinant of the corresponding Q-functions. These observables can
be immediately enhanced to a family of diagonal form factors xΨ|BpÎ|Ψy, where p is some
parameter of the model and Î is an integral of motion, via the simple use of quantum
mechanical perturbation theory [74, 82]. From this, we can extract the form-factors of
some local operators.

The study of correlators via the FSoV approach has been advanced in [26] by the
character projection technique and by identifying a set of pN ´ 1q ˆ pN ` 1q distinguished
operators �a,rpuq acting on the spin chain Hilbert space, which we call principal.

The main feature of the principal operators is that their off-diagonal matrix elements can
be computed in a simple determinant form in terms of the Q-functions, similarly to overlaps
of Bethe states. Even more generally, we show that the same determinant form holds true
for the form factor xΨA|�a,rpuq|ΨBy, where |ΨBy and xΨA| are two general factorisable
states, a class that includes both on-shell and off-shell Bethe states.

Furthermore, the form-factors of certain anti-symmetric combinations of the principal
operators also take a determinant form. A particular case of such combinations is the SoV
B and C operators that are used to build the SoV bases. Thus the FSoV construction
allows to derive from first principles the form of the B and C operators.

71
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Finally, we also compute the SoV basis representation of all the principal operators,
which allows one to construct arbitrary combinations of these operators (not only anti-
symmetric). In particular we show that those operators generate the complete set of the
spin chain Monodromy matrix elements Tijpuq. Note that at least in the finite dimensional
case, this implies, via the “quantum inverse transform” [83] that we have access to all local
symmetry generators Epαq

ij from which one can in turn build any physical observables in this
system. We also believe this to be the case in general but we do not have a simple proof of
this.

In this chapter, we will assume that the spin chain is of length L and is in the spin-s
representation defined in (4.4.19). However, the FSoV formalism can also be easily adapted
to study spin chains in any highest-weight representations, although some expressions would
become more complicated. Therefore, we choose the spin-s representation for simplicity’s
sake.

This chapter is based on the author’s work [26].

5.1 Principal operators

A major goal in this chapter will be to compute the matrix elements of (sums of) certain
monodromy matrix entries between two transfer matrix eigenstates and their generalisation
to arbitrary factorisable states. We will refer to these particular monodromy matrix entries
as principal operators.

The principal operators are defined as follows. It is easy to check that the fused compan-
ion twist matrices Gpaq, obtained by doing fusion on the companion twist matrix introduced
in section 3.5, are linear in the characters χr. As such, each of the totally antisymmetric
transfer matrices tapuq admits the expansion:

tapuq ”

N
ÿ

r“0
χr �a,rpuq . (5.1.1)

We call the operators �a,rpuq principal and the reason for their importance will become
clear in section 5.3. Note that they are independent of the twist eigenvalues λj as all twist
dependence of the transfer matrices is contained in the characters χr.

For example, the transfer matrix t1puq can be expanded as

t1puq “

N´1
ÿ

j“1
χ0Tj,j`1puq `

N
ÿ

r“1
χrp´1qr´1Tr1puq , (5.1.2)

where χ0 “ 1.
Similar expansions can be performed for the totally antisymmetric transfer matrices

tapuq, built from the quantum minors (3.7.7). These are given by:

tapuq “
ÿ

1ďi1ă¨¨¨ăiaďN

T i1...ia
j1...ja

puqGj1i1 . . . Gjaia , (5.1.3)
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where Gij are matrix elements of the companion twist matrix. As a result of the summation
condition 1 ď i1 ă ¨ ¨ ¨ ă ia ď N the coefficient of each χr is a sum of quantum minors with
distinct upper indices which cannot cancel each other and as a result the coefficient of each
χr is non-zero as long as 1 ď a ď N ´ 1.

While most principal operators are given by large sums over quantum minors things
simplify for a “ N ´ 1 as the N ´ 1-th anti-symmetric representation monodromy matrix
is simply equal to the quantum-inverse matrix of T puq divided by a trivial factor [43]. We
introduce the notation T ij for these operators, defined by

T ijpuq

N´1
ź

k“1
Q

r2ps´kqs

θ puq “ T 1 ... ĵ ... N

1 ... î ... N

ˆ

u´
i

2pN ´ 2q

˙

, (5.1.4)

where the notation î, ĵ means that the corresponding index is missing, and we multiply
the LHS by Qθ (defined in (3.6.5)) to remove the non-dynamical factors. It is then easy to
derive that:

tN´1puq “

N´1
ÿ

r“0
χr T

r`1,N puq ´ χN

N´1
ÿ

j“1
T j`1,jpuq . (5.1.5)

We will write out explicitly the principal operators in terms of monodromy matrix
elements Tij for the special cases of gl2 and gl3.

gl2 case. In this case we have already seen in section 3.5 that:

t1puq “ T12puq ` χ1T11puq ´ χ2T21puq (5.1.6)

and hence
�1,0puq “ T12puq, �1,1puq “ T11puq, �1,2puq “ ´T21puq . (5.1.7)

gl3 case. For the special case of gl3 there are only two antisymmetric transfer matrices
t1puq and t2puq which in the notations described above admit the expansions of Table 5.1,
where t2 is written both in terms of the original monodromy elements Tij and the elements
T ij defined in (5.1.4).

Since the transfer matrices tapuq admits the expansion (3.7.15) into integrals of motion
Ia,α it clearly follows that each Ia,α also admits a linear expansion into characters χr. We
will denote the coefficients of the characters in this expansion I

prq
a,α and so

Îa,α “

N
ÿ

r“0
χr Î

prq
a,α . (5.1.8)

Finally, since the transfer matrices commute for different values of the spectral param-
eters rtapuq, tbpvqs “ 0 we see that by expanding into principal operators we obtain the
relation

ÿ

r,s

χrχsr�a,rpuq,�b,spvqs “ 0 . (5.1.9)
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�1,0puq “ `T12 ` T23

�1,1puq “ `T11

�1,2puq “ ´T21

�1,3puq “ `T31

�2,0puq “
`

T12T
´´
23 ´ T13T

´´
22

˘

{Q
r2s´2s

θ `T 13{Q
r2s´2s

θ

�2,1puq “
`

T11T
´´
23 ´ T13T

´´
21

˘

{Q
r2s´2s

θ `T 23{Q
r2s´2s

θ

�2,2puq “
`

T11T
´´
22 ´ T12T

´´
21

˘

{Q
r2s´2s

θ `T 33{Q
r2s´2s

θ

�2,3puq “
`

´T11T
´´
32 ` T12T

´´
31 ´ T21T

´´
33 ` T23T

´´
31

˘

{Q
r2s´2s

θ ´pT 21 ` T 32q{Q
r2s´2s

θ

Table 5.1: gl3 Principal Operators in terms of Monodromy Matrix elements.

As this should hold for arbitrary twist eigenvalues λ it is easy to see1 that the above
expression implies r�a,rpuq,�b,rpvqs “ 0, that is principal operators corresponding to the
same character index r form a commutative family.

As a final note, we show that the B and C operators can be written in terms of Prin-
cipal operators. For the Y pgl3q case, using the RTT relations it is possible to rewrite the
expressions for B (4.4.1) and C (4.4.9) in a slightly different form:

Bpuq “ ´T11pT11T
´´
22 ´ T22T

´´
21 q ´ pT11T

´´
23 ´ T13T

´´
21 qT21 , (5.1.10)

Cpuq “ ´T11pT``
11 T22 ´ T``

22 T21q ´ pT``
11 T23 ´ T``

13 T21qT21 . (5.1.11)

This simple rewriting allows us to express the B and C operators in terms of the principal
operators (after removing the trivial non-dynamical factor) in an ordering which will be
convenient later

´
Bpuq

Q
r2s´2s

θ

” bpuq “ �1,1�2,2 ´ �2,1�1,2 , ´
Cpuq

Q
r2ss

θ

” cpuq “ �1,1�``
2,2 ´ �``

2,1 �1,2 . (5.1.12)

5.2 Functional Separation of Variables method

In this section we review the key idea of the functional separation of variables method of [82].
We will then extend this method in section 5.3 by introducing the character projection tool.

1For example one can change variables from λi, i “ 1, . . . , N to χi, i “ 1, . . . , N . The Jacobian of such
transformation is simply a Vandermonde determinant of λ’s so this is always possible for generic λ’s. After
that (5.1.9) becomes a quadratic polynomial in N independent variable χi, i “ 1, . . . , N which is identically
zero, which is only possible if all coefficients vanish.
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We will use slightly different conventions compared to chapter 3. First, we will use the
Q-functions:

QApuq “

|A|
ź

j“1
λiu

j qApuq, qA „ uMi , Mi P N . (5.2.1)

These Q-functions are analytic in all the complex plane and will render the calculations in
this chapter much simpler.

With this choice for the Q-functions, the Baxter and Dual Baxter operators are:

O: “

N
ÿ

a“0
p´1qaτapuqDN´2a , O “

N
ÿ

a“0
p´1qaD2a´Nτapuqεpuq (5.2.2)

where D is the shift operator satisfying D fpuq “ fpu ` i
2q, τa, a “ 1, . . . , N ´ 1 are the

eigenvalues of the totally antisymmetric transfer matrices ta and we have denoted:

τ0puq “ Q
r2ss

θ , τN puq “ χNQ
r´2ss

θ , Qθpuq “

L
ź

α“1
pu´ θαq . (5.2.3)

Here, χN “ detpGq, where G is the twist introduced in section 3.5. Finally εpuq is the
function

εpuq “

L
ź

β“1

Γps ´ ipu´ θβqq

Γp1 ´ s ´ ipu´ θβqq
. (5.2.4)

5.2.1 Functional orthogonality and scalar product

The key relation in the FSoV approach is the adjointness condition [74, 81, 82]
´́

fO:g
¯̄

α
“

´́

gMαOf
¯̄

α
, (5.2.5)

where O and O: are the Baxter and the dual Baxter operators defined in (5.2.2), the bracket
´́

fpwq

¯̄

α
is defined by

´́

fpwq

¯̄

α
“

ż 8

´8

dwµαpwqfpwq , (5.2.6)

the measure factor µα is given by [74]

µαpwq “
1

1 ´ e2πpw´θα´isq

L
ź

β“1

Γps ´ ipw ´ θβqq

Γp1 ´ s ´ ipw ´ θβqq
, (5.2.7)

and Mα is some unimportant factor which does not depend on the functions f and g that
can be set to 1 by changing our conventions.

We will be interested in particular in the case where the functions f and g are the
twisted Q-functions Q1 (5.2.1) and the dual Q-functions Q2, . . . , QN (defined in (3.6.10)),
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or functions with similar analytic properties. The way to compute these integrals is to close
the contour in the upper half plane and write them as a sum of residues. However, we need
to ensure that the integrals actually converge and that the contour can be closed in this
way without changing the result. In order to do so, it is sufficient to impose constraints on
the twist eigenvalues that we find inside the Q-functions, as in [74], which read

0 ă argλa ´ argλ1 ă 2π, a “ 2, . . . , N . (5.2.8)

Once we do this, we can replace the integral by the sum of the residues in the upper
half-plane. Since the Q-functions (5.2.1) are analytic everywhere, the only contribution
comes from the simple poles of the measure factor (5.2.7). These poles are situated at
w “ θα ` is ` in, n P Zě0. As such we can write the bracket as an infinite sum of the
residues at the poles of the measure:

´́

fpwq

¯̄

α
“

8
ÿ

n“0

rα,n

rα,0
fpθα ` is ` inq , (5.2.9)

with rα,n being the residue of µα at the pole θα ` is ` in:

rα,n “ ´
1

2π

L
ź

β“1
pn` 1 ´ iθα ` iθβq2s´1 , (5.2.10)

where pzqs “
Γps`zq

Γpzq
denotes the Pochhammer symbol and we have included the overall

normalisation rα,0 for convenience.

5.2.2 Basic idea of Functional SoV

To demonstrate the basic idea of the FSoV notice that the adjointness condition (5.2.5)
implies in particular

´́

fO:Q1`a
¯̄

α
“ 0 “

´́

Q1O:g
¯̄

α
“ 0, α “ 1, . . . , L, a “ 1, . . . , N ´ 1 (5.2.11)

and so if we pick Q1`a
A and QB

1 to be the Q-functions associated to two transfer matrix
eigenstates |ΨAy and |ΨBy we have:

´́

QB
1 pO:

A ´ O:

BqQ1`a
A

¯̄

α
“ 0, α “ 1, . . . , L, a “ 1, . . . , N ´ 1 . (5.2.12)

Now if we insert the explicit form of O: (5.2.2) for the two states A and B we obtain
the following system of equations:

L
ÿ

β“1

N´1
ÿ

b“1

´́

QB
1 u

β´1Q
1`a rN´2bs

A

¯̄

α
IAB

b,β “ 0, α “ 1, . . . , L, a “ 1, . . . , N ´ 1 (5.2.13)
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where we have defined IAB
b,β “ p´1qbpIA

b,β ´ IB
b,βq. Here IA

b,β (IB
b,β) are the eigenvalues of the

integrals of motion Îb,β (defined in (3.7.15)) evaluated on the state |ΨAy (|ΨBy). All other
terms of the dual Baxter operator cancel out since they do not depend on the state. Since
the collection of integrals of motion Ib,β has non-degenerate spectrum at least one of the
differences IAB

b,β must be non-zero for the two distinct states and so in order for the linear
system (5.2.13) to have a non-trivial solution we must have2

det
pa,αq,pb,βq

´́

QB
1 u

β´1Q
1`a rN´2bs

A

¯̄

α
9 δAB . (5.2.14)

This is the functional orthogonality relation, and is the cornerstone of the Functional SoV
program. It reproduces a crucial feature of the scalar product between two Bethe states,
namely that it vanishes for two distinct states. In fact, it can be shown [74] to be exactly
identical to the scalar product (4.4.31) by including a state-independent normalisation N
which should be chosen to ensure that M0,0 “ 1 and so we have

xΨA|ΨBy “
1
N

det
pa,αq,pb,βq

´́

QB
1 u

β´1Q
1`a rN´2bs

A

¯̄

α
, (5.2.15)

where the normalisation factor N is given by

N “
ź

αąβ

pθα ´ θβqN´1 “ p´1q
L
2 pL´1qpN´1q∆N´1

θ (5.2.16)

where ∆θ is the Vandermonde determinant in the spin chain inhomogeneities:

∆θ :“
ź

αăβ

pθα ´ θβq . (5.2.17)

5.2.3 Scalar product between arbitrary factorisable states

The functional orthogonality relation (5.2.14), together with the orthogonality conditions
for the SoV vacuum states M0,x “ δ0,x and My,0 “ δy,0, allows one to completely determine
all matrix elements My,x of the SoV measure (4.4.25) from the knowledge of the determinant
form of the scalar product (5.2.15). In fact, by considering all possible pairs of different
Bethe states A and B, we obtain a system of linear equations for every matrix element. A
rigorous counting can even be carried out in the infinite-dimensional case, as detailed in
[74].

As was noticed in [74] the fact that the determinant (5.2.15) reproduces the sum (4.4.31)
is independent of whether or not the functions Q1 and Q1`a actually solve the Baxter
equation. As a result, we can consider any so-called factorisable states |Φy and xΘ| with
wave functions

Φpxq “

L
ź

α“1

N´1
ź

a“1
Fαpxα,aq, Θpyq “

L
ź

α“1
det

1ďa,bďN´1
G1`a

α

ˆ

yα,b `
i

2pN ´ 2q

˙

, (5.2.18)

2A row in this matrix is labelled by the pair pa, αq and a column is labelled by the pair pb, βq. The pairs
of indices pa, αq and pb, βq are ordered lexicographically.
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where Fα and G1`a
α can be any functions (chosen such that the infinite sum over SoV states

converges) and their scalar product will still be given by the determinant (5.2.15), where
the bracket is understood as the sum over residues (5.2.9).

A useful and non-trivial example to consider is the case of the scalar product between
eigenstates of two transfer matrices built with different twists. Concretely, we consider a
family of transfer matrices ta of twist G and another family of transfer matrices t̃a with G
replaced by G̃, obtained by replacing the twist eigenvalues λi of G with a new set λ̃i. In fact
as we mentioned in section 3.5, the SoV bases are independent of the twist parameters λj .
As a result, the same SoV bases serve to factorise the wave functions of transfer matrices
built with any twist matrix of the form (4.4.4) such as G̃ and so we have

xΨA|Ψ̃By “
ÿ

x,y
ΨApyqMy,xΨ̃Bpxq , (5.2.19)

where we have denoted a right eigenstate of the transfer matrices t̃a by |Ψ̃By. This means
that we can easily compute scalar products between eigenstates of transfer matrices with
different twists via determinants of Q-functions. In particular we get:

xΨA|Ψ̃By “
1
N

det
pa,αq,pb,βq

´́

Q̃B
1 u

β´1Q
1`a rN´2bs

A

¯̄

α
(5.2.20)

where Q̃B
1 are the Q-functions associated to the state |Ψ̃By and the transfer matrices t̃apuq.

5.2.4 Correlators from variation of spin chain parameters

The functional SoV approach allows one to extract a host of diagonal form-factors by varying
the integrals of motion with respect to some parameter p of the spin chain, such as twists
λj or inhomogenities θα or even the local representation weights. The construction is based
on standard quantum mechanical perturbation theory and we review it here.

The starting point is the trivial relation
´́

Q1O:Q1`a
¯̄

“ 0 with Q1`a being on-shell
Q-function, i.e. satisfying the dual Baxter equation O:Q1`a “ 0. This obviously remains
true if we consider a variation p Ñ p` δp of the parameter p in Q1`a and O resulting in:

´́

Q1pO: ` δpO:qpQ1`a ` δpQ
1`aq

¯̄

“ 0. (5.2.21)

Expanding to first order in δ, using the adjointness property of O: and also assuming that
OQ1 “ 0 we obtain at the leading order in perturbation theory:

´́

Q1BpO:Q1`a
¯̄

α
“ 0 . (5.2.22)

By expanding out BpO:, this relation allows one to obtain an inhomogeneous linear system
for the derivatives BpIb,β of the integral of motion eigenvalues Ib,β. As a result we have the
relation, following from Cramer’s rule,

xΨ|BpÎb1,β1 |Ψy

xΨ|Ψy
“ BpIb1,β1 “

det
pa,αq,pβ,bq

m1
pa,αq,pb,βq

det
pa,αq,pβ,bq

mpa,αq,pb,βq

, (5.2.23)
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where mpa,αq,pb,βq “

´́

Q1uβ´1DN´2bQ1`a
¯̄

α
and m1 is obtained from m by replacing the

column pb1, β1q with ypa,αq ”

´́

Q1Ŷp ˝Q1`a
¯̄

α
, where Ŷp is the part of BpO: which does not

depend on the integrals of motion, given by:

Ŷp “ ´

´

BpQ
r´2ss

θ D´N ` p´1qN BpQ
r`2ss

θ D`N
¯

´

N´1
ÿ

b“1
p´1qb`1Bpχbu

LD´2b`N . (5.2.24)

We introduce the short-hand notation for the determinants as follows

rob,βs ” det
pa,αq,pb,βq

´́

Q̃B
1 ob,βQ

A
1,1`a

¯̄

, (5.2.25)

where ob,β is some finite difference operator. Since the LHS makes no reference to the twists
or indices A and B used on the Q-functions these should be inferred from context. As such
the scalar product in this notation is given by

xΨA|Ψ̃By “
1
N

rwβ´1D3´2bs . (5.2.26)

We will also use the replacement notation

rpb1, β1q Ñ os , (5.2.27)

which corresponds to replacing wβ1´1D3´2b1 in the determinant rwβ´1D3´2bs with the finite
difference operator o. For instance the numerator of (5.2.23) becomes

det
pa,αq,pb,βq

m1
pa,αq,pb,βq ” rpb1, β1q Ñ Ŷ s . (5.2.28)

Since the scalar product xΨ|Ψy in our normalisation is proportional to the denominator of
the right hand side (see (5.2.19)) we have

xΨ|BpÎb1,β1 |Ψy “
1
N

rpb1, β1q Ñ Ŷ s . (5.2.29)

It is appealing to assume that the operator BpÎb1,β1 can be characterised by this particular
modification of the structure of the determinant as compared to the identity operator given
by (5.2.19). One can also notice that for the identity operator in (5.2.19) we managed to
obtain a more general relation with the left and right states corresponding to two different
eigenvalues of the transfer matrix or, even more generally, to the transfer matrices with
different twists. It is thus very tempting to upgrade the relation (5.2.29) by replacing xΨ|

and Q1`a accordingly by those corresponding to a different state. Whereas this does give
the right result in some cases, as was noticed in [25], in general this strategy, unfortunately,
fails as we verified explicitly for some small length cases. However, for the case when the
parameters p are the twist angles this naive approach gives the correct result as we prove
in the next section where we also provide generalisations of this result.
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However, we noticed that for the case of p “ λa the equation (5.2.29) survives a series of
upgrades. Firstly, it works for two arbitrary left and right factorisable states. Secondly, and
probably the most surprising, it still works for multiple derivatives in the twist parameters:

xΨA|Bλa1
. . . Bλak

Îb1,β1 |ΨBy “
1
N

«

pb1, β1q Ñ ´

N´1
ÿ

b“1
p´1qb`1Bλa1

. . . Bλak
χbu

LD´2b`N

ff

.

(5.2.30)
In the next section we will derive this identity using character projection. We will also see
more explicitly that the operators of type (5.2.30) are closely related with the principal
operators introduced earlier.

5.3 Character projection

In this section we extend the FSoV method, introduced in the previous section, in order
to obtain form-factors of non-trivial operators between two arbitrary factorisable states.
We will use these results in the next section to extract the matrix elements of a set of
observables in the SoV bases in a similar way to the measure, which then allows us to
efficiently compute the expectation values of a complete set of physical observables. For
simplicity in this section we only analyse the gl3 case.

5.3.1 Derivation

We start from the conjugate Baxter operator O:. We define the gl3 dual Q-functions as
Q1`a :“ Q1,1`a. O: gives 0 when applied to the Q1,1`a functions as they satisfy the dual
Baxter equation (5.2.2), which in the gl3 case becomes3:

O: “ Q
r2ss

θ D3 ´ τ1D
1 ` τ2D

´1 ´ χ3Q
r´2ss

θ D´3 , O:Q1,1`a “ 0 . (5.3.1)

This implies that for any g, chosen such that the integral in the scalar product is convergent,
we have:

´́

gO:

AQ
A
1,a`1

¯̄

α
“ 0 , α “ 1, . . . , L , a “ 1, 2 . (5.3.2)

For definiteness we take g “ Q̃B
1 , which is a Q-function corresponding to a state of a transfer

matrix with generic twist eigenvalue λ̃a, different from that of the state A, which we denote
as λa. The corresponding characters are denoted as χ̃r and χr. We consider the set of 2L
equations in (5.3.2) as equations on the 2L integrals of motion IA

b,β, b “ 1, 2, β “ 1, . . . , L,
which are the non-trivial coefficients in τ2puq and τ1puq. More explicitly we have

ÿ

β,b

p´1qb
´́

Q̃B
1 u

β´1D3´2bQA
1,a`1

¯̄

α
IA

b,β “ ´

3
ÿ

r“0
χr

´́

Q̃B
1 O:

prq
QA

1,a`1

¯̄

α
, (5.3.3)

3In the gl3 case, the dual Q-functions Qa`1 are by definition equivalent, up to a sign, to the Q-functions
with two indices Q1,a`1 for a “ 1, 2.
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where we introduced the following notations for the non-dynamical terms in the dual Baxter
equation (5.2.2):

O:

p0q
“ Q

r2ss

θ D3 , O:

p1q
“ ´uLD , O:

p2q
“ uLD´1 , O:

p3q
“ ´Q

r´2ss

θ D´3 . (5.3.4)

The solution to (5.3.3) can be written as a ratio of determinants. In the notations of
section 5.2.4 we have

IA
b1,β1 “ p´1qb1`1

3
ÿ

r“0
χr

rpb1, β1q Ñ O:

prq
s

rwβ´1D3´2bs
. (5.3.5)

At the same time, since IA
b1,β1 is the eigenvalue of the operator Îb1,β1 on the left eigenstate

xΨA| we have

IA
b1,β1 “

xΨA|Îb1,β1 |Ψ̃By

xΨA|Ψ̃By
“ N

xΨA|Îb1,β1 |Ψ̃By

rwβ´1D3´2bs
(5.3.6)

where in the last identity we used the expression for the scalar product of two factorisable
states (5.2.20). Comparing (5.3.5) and (5.3.6) we get

xΨA|Îb1,β1 |Ψ̃By “
p´1qb1`1

N

3
ÿ

r“0
χr rpb1, β1q Ñ O:

prq
s . (5.3.7)

The next step, which we call character projection, is quite crucial. As we discussed in
Section 5.1 the IoMs, as operators, depend non-trivially on the twist of the spin chain λa,
but when expressed in terms of the characters this dependence is linear in χr, see (5.1.8). We
also notice that the RHS of (5.3.7) has explicit linear dependence on χr. However, notice
that both sides of (5.3.7) have an additional implicit dependence on the twists through
the eigenstate xΨA| and the corresponding Q-function QA

1,1`a. In order to remove this
dependence we use the result of section 5.2.3, which states that the determinants in the
RHS of (5.3.7) can be written in the form

p´1qb1`1

N
rpb1, β1q Ñ O:

prq
s “

ÿ

x,y
ΨApyqM prq;b1,β1

y,x Ψ̃Bpxq (5.3.8)

which is analogous to (5.2.19), with M
prq;β1,a1

y,x being independent of the states A and B.
In section 5.4.2 we compute the coefficients M prq;β1,a1

x,y explicitly. The expression (5.3.8) is
obtained by expanding the determinant and comparing the combinations of the Q-functions
with those appearing in Ψ̃Bpxq and ΨApyq as shown in (4.4.20).

At the same time for the LHS of (5.3.7) we have

xΨA|Îb1,β1 |Ψ̃By “
ÿ

x,y
xΨA|yyxy|Îb1,β1 |xyxx|Ψ̃By (5.3.9)
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by using completeness of SoV bases. The operator Îb1,β1 can be decomposed into terms
corresponding to different characters χr as Îb1,β1 “

ř3
r“0 χr Î

prq

b1,β1 , see (5.1.8). By comparing
(5.3.8) and (5.3.9) we get

ÿ

x,y
xΨA|yyxx|Ψ̃By

«

3
ÿ

r“0
χr

´

xx|Î
prq

b1,β1 |yy ´M prq;b1,β1

x,y

¯

ff

“ 0 . (5.3.10)

Note that the expression in the square brackets does not depend on the state A and only
carries the information on the twist of this state in the characters χr. For simplicity, consider
an arbitrary finite dimensional case with representation of dimensionD per site. Considering
the expression in the square bracket as a collection of DL ˆ DL numbers computed for
different x and y we get a system of linear equations on those coefficients. There are DL

states xΨA| and DL states |Ψ̃By so we have as many equations as unknowns and furthermore
the matrix xΨA|yyxx|Ψ̃By can be considered as an overlap matrix between two complete
bases xΨA| b |Ψ̃By to xx| b |yy in the double copy of the initial Hilbert space H bH:, and
thus is not degenerate. In fact we have many more of the equations as |Ψ̃By contains its
own set of independent continuous twist parameters. We see that as a consequence of the
consistency of the linear system it should have a trivial solution and thus we should have
that the square bracket is identically zero

3
ÿ

r“0
χr

´

xx|Î
prq

b1,β1 |yy ´M prq;b1,β1

x,y

¯

“ 0 . (5.3.11)

The above equation also stays true for the infinite dimensional case and this will be argued
in Appendix C.1 where the coefficients M prq;b1,β1

x,y are explicitly computed.
Another way to arrive to (5.3.11) from (5.3.10) is by multiplying the LHS by xy1|ΨAyxΨ̃B|x1y

and summing over complete basis of eigenstates ΨA and ΨB with the completeness relation4

1 “
ÿ

A

|ΨAyxΨA| (5.3.12)

As a result we have
ř

Axy1|ΨAyxΨA|yy “ δyy1 which removes the dependence on the wave
functions and leads to (5.3.11).

Next, the round bracket in (5.3.11) does not depend on the twists, and the only way
the above identity stays true for arbitrary values of twists is if

xx|I
prq

b1,β1 |yy “ M prq;b1,β1

x,y . (5.3.13)

Thus we get a set of 4ˆ2ˆL observables Îprq
a,α explicitly in the SoV basis, which are precisely

the coefficients of the principal operators �a,rpuq

�a,rpuq “

L
ÿ

β“1
I

prq

a,βu
β´1 ` uLδa,r . (5.3.14)

4See Appendix D.3 for a proof of the existence of this relation for our family of infinite-dimensional
representations.
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In section 5.6.1 we prove that this set of non-local observables is complete and we will
explicitly compute the SoV matrix elements for �a,rpuq in section 5.3.4.

Finally, after obtaining the relations (5.3.13) for the individual operators in the SoV
basis we can revert the logic and multiply (5.3.13) by

ř

x,yxΨA|yyxx|Ψ̃By to obtain the
character projected version of the equation (5.3.7)

xΨA|Î
prq

b1,β1 |Ψ̃By “
p´1qb1`1

N
rpb1, β1q Ñ O:

prq
s , (5.3.15)

which constitutes the main result of this section. To summarise, we obtained a determinant
form of form-factors of all operators Îprq

b,β between two arbitrary factorisable states. It is
easy to see that (5.3.15) is equivalent to (5.2.30).

Before closing this subsection a comment is in order. A key step in our derivation relied
on the denominator in (5.3.6) being non-zero. This is indeed non-zero as long as |Ψ̃By is
not orthogonal to xΨA| which is true as long as |Ψ̃By is a generic factorisable state or as
long as the twists in |Ψ̃By are independent from those in xΨA|. The expressions (5.3.15)
for the form-factors are then valid for any choice of twists or indeed any factorisable states.
However, it is possible to recast the derivation in an alternate way which avoids this step
completely and we present it in Appendix D.1: the above derivation, which may be singular
in certain degenerate cases, is presented to highlight the determinant origin of our result as
a consequence of Cramer’s rule. Finally, the counting argument presented above relied on
the representation being finite dimensional. The results remain true even when extended
to the infinite-dimensional case as is discussed in Appendix C.1.

5.3.2 Form-factors for gl3 principal operators

In the previous section we found the form-factors of the coefficients Îprq
a,α of the u-expansion of

the principal operators �a,rpuq. In this section we derive compact determinant expressions
for the form-factors of �a,rpuq themselves as functions of the spectral parameter u. We
will use w for the dummy spectral parameter appearing inside the determinants to avoid
confusion with u – the argument of �a,rpuq.

Let us start from �1,1puq “ T11puq. From (5.3.14) we see this principal operator is a
generating function for the set of operators Îp1q

1,α with α “ 1, . . . , L. From (5.3.15) we thus
have

xΨA|T11puq|Ψ̃By “ uLxΨA|Ψ̃By ´
1
N

L
ÿ

β1“1
uβ1´1rp1, β1q Ñ wLDs . (5.3.16)

This expression appears to be a sum over determinants. Let us show that it can be com-
pressed into a single determinant. Let us write the determinants in the sum (5.3.16) more
explicitly by introducing the notation

rob,βs “ ro1,1, . . . , o1,L, o2,1, . . . , o2,Ls , (5.3.17)
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obtaining

N xΨA|�1,1puq|Ψ̃By “ (5.3.18)
´ u0rwLD, wD, w2D, . . . , wL´1D,D´1, wD´1, . . . , wL´1D´1s

´ u1rD, wLD, w2D, . . . , wL´1D,D´1, wD´1, . . . , wL´1D´1s

´ u2rD, wD, wLD, . . . , wL´1D,D´1, wD´1, . . . , wL´1D´1s

. . .

` uLrD, wD, w2D, . . . , wL´1D,D´1, wD´1, . . . , wL´1D´1s ,

where in the last term we also wrote the overlap of the states in the determinant form
(5.2.20). By a simple rearrangement of the columns we get:

p´1qLrtpwj ´ ujqDuL
j“1, tw

j´1D´1uL
j“1s (5.3.19)

or equivalently:
p´1qLrtpw ´ uqwj´1DuL

j“1, tw
j´1D´1uL

j“1s. (5.3.20)

Hence we arrive to the following expression as a single determinant

xΨA|�1,1puq|Ψ̃By “
p´1qL

N
rtpw ´ uqwj´1DuL

j“1, tw
j´1D´1uL

j“1s . (5.3.21)

We will now introduce a very convenient shorthand notation. For ordered sets ua and 4
integers La, a “ 0, 1, 2, 3 we define the following object

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

Ψ
“

1
N

ˆ (5.3.22)
”!∆u0Yw

∆u0
wjD3

)L0´1

j“0
,
!∆u1Yw

∆u1
wjD1

)L1´1

j“0
,
!∆u2Yw

∆u2
wjD´1

)L2´1

j“0
,
!∆u3Yw

∆u3
wjD´3

)L3´1

j“0

ı

,

where ∆v for some ordered set v is a Vandermonde determinant

∆v “
ź

iăj

pvi ´ vjq (5.3.23)

and v Yw means that we add one element w to the ordered set v at the end. For example
equation (5.3.21) can be written as

x�1,1puqy “

”

0;
ˇ

ˇ

ˇ
L;u

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
0;

ı

Ψ
. (5.3.24)

Here and below we will systematically omit ΨA and Ψ̃B. Note that the determinant in the
RHS of (5.3.24) implicitly contains the Q-functions of the corresponding states.

Using a similar strategy as above we derived the following single determinant expressions
for the principal operators between two arbitrary factorisable states
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x1̂y “

”

0;
ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
0;

ı

Ψ

x�1,0puqy “ ´

”

1; θ ´ is
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
0;

ı

Ψ

x�1,1puqy “

”

0;
ˇ

ˇ

ˇ
L;u

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
0;

ı

Ψ

x�1,2puqy “ p´1qL
”

0;
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L` 1;

ˇ

ˇ

ˇ
0;

ı

Ψ

x�1,3puqy “ ´

”

0;
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
1; θ ` is

ı

Ψ

x�2,0puqy “ p´1qL
”

1; θ ´ is
ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
0;

ı

Ψ

x�2,1puqy “ p´1qL´1
”

0;
ˇ

ˇ

ˇ
L` 1;

ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
0;

ı

Ψ

x�2,2puqy “

”

0;
ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
L;u

ˇ

ˇ

ˇ
0;

ı

Ψ

x�2,3puqy “ p´1qL
”

0;
ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
1; θ ` is

ı

Ψ

(5.3.25)

Here we have defined θ ˘ is :“ tθ1 ˘ is, . . . , θL ˘ isu. In the next section we will use
these expressions to obtain the matrix elements in the SoV basis of the principal operators.

5.3.3 Form-factors for gl2 principal operators

In order to compare with previous results in the literature we also write form-factors for
the principal operators in the case of the gl2 spin chain in a form similar to those of the
previous section.

We start from the gl2 dual Baxter operator O: “ Q
r2ss

θ D2 ´ τ1 ` χ2Q
r´2ss

θ D´2. For the
gl2 spin chain, we only have the fundamental transfer matrix t1puq, so we only have the
principal operators �1,rpuq, r “ 0, 1, 2. The notation (5.3.22) in the gl2 case becomes

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ı

Ψ
“

1
N

ˆ (5.3.26)
”!∆u0Yw

∆u0
wjD2

)L0´1

j“0
,
!∆u1Yw

∆u1
wj

)L1´1

j“0
,
!∆u2Yw

∆u2
wjD´2

)L2´1

j“0
,
ı

.

Following exactly the same steps as for gl3 we find that the matrix elements for the principal
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operators and the identity operator are given by

x1̂y “

”

0;
ˇ

ˇ L;
ˇ

ˇ 0;
ı

Ψ

x�1,0puqy “ `xT12puqy “ ´

”

1; θ ´ is
ˇ

ˇ L´ 1;u
ˇ

ˇ 0;
ı

Ψ

x�1,1puqy “ `xT11puqy “

”

0;
ˇ

ˇ L;u
ˇ

ˇ 0;
ı

Ψ

x�1,2puqy “ ´xT21puqy “ p´1qL
”

0;
ˇ

ˇ L´ 1;u
ˇ

ˇ 1; θ ` is
ı

Ψ
.

(5.3.27)

Here we used (5.1.7) to relate principal operators with the elements of the monodromy
matrix. From these equations it is already easy to see that T11puq “ Bpuq is the SoV B-
operator, which acting on the factorised wave function, replaces Qpwq Ñ pu ´ wqQpwq.
We will analyse the action of the remaining operators on the SoV basis in the next section.

5.3.4 Principal operators in SoV basis

The goal of this section is to convert the form factors we have derived in section 5.3.2 to
the SoV basis. The general strategy is simple: starting from a form factor xΨA|Ô|Ψ̃By, for
some operator Ô, which we assume can be expressed as

xΨA|Ô|Ψ̃By “

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

Ψ
(5.3.28)

we insert two resolutions of the identity
ř

x |xyxx| “
ř

y |yyxy| “ 1:

xΨA|Ô|Ψ̃By “
ÿ

x,y
xΨA|yy xx|Ψ̃By xy|Ô|xy . (5.3.29)

We then use (4.4.20) to write the RHS in terms of Q-functions. Since the LHS can be written
in terms of determinants of Q-functions as proven in section 5.3.2, we can treat (5.3.29) as
a linear system, where the unknowns are precisely the form factors in the SoV basis. It is
then immediate to read off the matrix elements xy|Ô|xy.

It is straightforward to deduce a general formula, which we derive in Appendix C.1,
which reads

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

Ψ
“

ÿ

xy
Ψ̃BpxqΨApyq

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

xy
(5.3.30)

where we have introduced the notation
”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

xy
:“ sL

∆2
θ

ÿ

k

signpσq
ź

α,a

rα,nα,a

rα,0

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

σa,α“ka,α´mα,a`a

.

(5.3.31)
The notation used here is identical to that used for the measure (6.7.15), with the only
difference now being the sign factor sL is defined as, for glN ,

sL :“ p´1q
LN

4 pL´1qpN´1q`
řN

n“0
Ln
2 pLn´1q (5.3.32)
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and now σ in (5.3.31) is a permutation of the set

t0, . . . , 0
loomoon

L0

, 1, . . . , 1
loomoon

L1

, 2, . . . , 2
loomoon

L2

, 3, . . . , 3
loomoon

L3

u (5.3.33)

and as before σα,a denotes the number in position a` 2pα ´ 1q.

Selection rules One can show that the SoV charge operator (4.4.24) imposes selection
rules on the states xy| and |xy for which the matrix elements xy|Ô|xy can be non-zero. As we
explain in Appendix C.1, the overlap can only be non-zero if there exists some permutation
ρα of t1, 2u such that

mα,a “ nα,ρα
a

´ σα,ρα
a

´ a (5.3.34)

for some fixed σ. We now sum over all values of pα, aq and denote the SoV charge of the
state xy| (|xy) by Ny (Nx). We obtain

Ny ´ Nx “ 3L´
ÿ

α,a

σα,ρα
a
. (5.3.35)

Since σ is a permutation of (5.3.33) the sum
ÿ

α,a

σρα
a ,α simply equates to L1 ` 2L2 ` 3L3 and

hence we see that xy|Ô|xy is only non-zero if

Ny ´ Nx “ 3L´

3
ÿ

n“0
nLn . (5.3.36)

Notice that this reproduces the observation of [74] that the measure Myx “ xy|xy is only
non-zero if Nx “ Ny. Indeed, for the measure we have L0 “ L3 “ 0 and L1 “ L2 “ L.
Plugging into (5.3.36) we immediately find Nx “ Ny.

gl2 matrix elements

Using the general formula (5.3.30) we will compute the SoV matrix elements of the gl2
principal operators in order to make contact with existing results in literature.

Modifying the notation (5.3.31) to the case of gl2 we define
”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ı

Ψ
“

ÿ

xy
Ψ̃BpxqΨApyq

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ı

xy
(5.3.37)

with

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ı

xy
“

sL
∆θ

signpσq
ź

α,a

rα,nα

rα,0

ź

b

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

σα“nα´mα`1

(5.3.38)
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σ is a permutation of the set

t0, . . . , 0
loomoon

L0

, 1, . . . , 1
loomoon

L1

, 2, . . . , 2
loomoon

L2

u (5.3.39)

with σα denoting the number at position α. Notice that unlike in the higher rank case there
is no sum over k as only kα “ nα is possible.

We will now use this general formula to derive the SoV matrix elements of the gl2
principal operators. We will begin with the operator �1,1puq “ T11puq for which we have

x�1,1puqy “

”

0;
ˇ

ˇ

ˇ
L;u

ˇ

ˇ

ˇ
0;

ı

Ψ
. (5.3.40)

In this case σ is simply a permutation of t1, . . . , 1u and the only possibility is that it is the
identity permutation with σα “ 1. As a result we find that the non-zero matrix elements
xy|�1,1puq|xy are given by

xy|�1,1puq|xy “
1

∆θ

L
ź

α“1
pu´ xαq

ź

αąβ

pxα ´ xβq

L
ź

α“1

rα,nα

rα,0

ˇ

ˇ

ˇ

ˇ

ˇ

mα“nα

. (5.3.41)

We then read off that5

xy|�1,1puq|xy “

L
ź

α“1
pu´ xαqxy|xy (5.3.42)

and hence the operator �1,1puq “ T11puq is diagonalised in the basis |xy. This is not
surprising as T11puq coincides with the Sklyanin’s B operator when the twist is taken to be
of the form (4.4.4). What is remarkable is that we derived that this operator acts diagonally
on the SoV basis directly from the FSoV construction. We will later see that this persists
at higher rank.

Next we examine �1,0puq “ T12puq and have

x�1,0puqy “ ´

”

1; θ ´ is
ˇ

ˇL´ 1;u
ˇ

ˇ0;
ı

Ψ
. (5.3.43)

Using the relation (5.3.37) we obtain

”

1; θ´is
ˇ

ˇL´1;u
ˇ

ˇ0;
ı

xy
“

sL
∆θ

signpσq
∆θ´isYxσ´1p0q

∆θ´is
∆uYxσ´1p1q

ź

α

rα,nα

rα,0

ˇ

ˇ

ˇ

ˇ

ˇ

σα“nα´mα`1

(5.3.44)

where now σ is a permutation of the set

t0, 1, . . . , 1u . (5.3.45)
5For gl2 we see that the measure is diagonal and so xy| 9 xx|. We keep the notation xy| in order to be

consistent with higher rank.



5.3. CHARACTER PROJECTION 89

We can characterise each σ by the property σγ “ 0 for some γ “ 1, . . . , L and there are L
such permutations. Hence, we obtain

xy|�1,0puq|xy “
Q

r2ss

θ pxγq

∆θ

ź

α‰γ

u´ xα

xγ ´ xα

ź

αąβ

pxα ´ xβq
ź

α

rα,nα

rα,0

ˇ

ˇ

ˇ

ˇ

ˇ

mγ“nγ´1,mα“nα

(5.3.46)

where we have used that |σ| “ γ ´ 1. The situation with �1,2puq “ ´T21puq is identical.
We have

xy|�1,2puq|xy “ p´1qL
”

0;
ˇ

ˇL´ 1;u
ˇ

ˇ1; θ ` is
ı

xy
. (5.3.47)

Now, σγ is a permutation of
t1, . . . , 1, 2u (5.3.48)

Up to the fact that now |σγ | “ L´ γ the situation is identical to the previous case and we
find

xy|�1,2puq|xy “ ´
Q

r´2ss

θ pxγq

∆θ

ź

α‰γ

u´ xα

xγ ´ xα

ź

αąβ

pxα ´ xβq
ź

α

rα,nα

rα,0

ˇ

ˇ

ˇ

ˇ

ˇ

mγ“nγ`1,mα“nα

(5.3.49)

which perfectly reproduces the well-known gl2 results [84].

gl3 matrix elements - explicit example

We now turn our attention to the matrix elements of the gl3 principal operators. Since
we have access to the general formula (5.3.30) we will not present the matrix elements
xy|�a,rpuq|xy for each principal operator explicitly. Instead we will demonstrate an explicit
computation showing the formula (5.3.31) being used in practice.

We consider an gl3 spin chain of length L “ 2. The bases xy| and |xy are labelled by
non-negative integers mα,a and nα,a respectively, with a, α P t1, 2u. Hence, we will use the
notation

xy| :“ xm1,1,m1,2;m2,1,m2,2|, |xy “ |n1,1, n1,2;n2,1, n2,2y . (5.3.50)

We will compute the following matrix element

x3, 2; 0, 0|�1,0puq|2, 1; 1, 0y . (5.3.51)

The starting point is the expression

xΨA|�1,0puq|Ψ̃By “ ´

”

1; θ ´ is
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
0;

ı

Ψ
. (5.3.52)

As a result of (5.3.30) we see that the SoV matrix elements are given by

xy|�1,0puq|xy “ ´

”

1; θ ´ is
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L;

ˇ

ˇ

ˇ
0;

ı

y,x
. (5.3.53)
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We will use the expression obtained in (5.3.31) to explicitly compute (5.3.51). Repeating it
here for convenience, (5.3.31) reads

xy|Ô|xy “ sL
ÿ

k

p´1q|σ|

∆2
θ

ź

α,a

rα,nα,a

rα,0

ź

b

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

σα,a“kα,a´mα,a`a

. (5.3.54)

For the case at hand, we have L “ 2 and L0 “ L1 “ 1, L2 “ 2 and L3 “ 0. Furthermore,

u0 “ θ ´ is :“ tθ1 ´ is, θ2 ´ isu, u1 “ tuu (5.3.55)

with both u2 and u3 empty.
First, in order to obtain a non-zero matrix element we need to check that the SoV

charges of xy| and |xy satisfy the SoV charge selection rule (5.3.36) which reads

Ny ´ Nx “ 3L´

3
ÿ

n“0
nLn (5.3.56)

with Nx “
ř

α,a nα,a and Ny “
ř

α,amα,a and L “ 2. We have

Nx “ 2 ` 1 ` 1 “ 4, Ny “ 3 ` 2 “ 5 . (5.3.57)

For the operator �1,0puq we have L0 “ 1, L1 “ 1 L2 “ 2 and L3 “ 3 and hence (5.3.56) is
satisfied. As such, σ in (5.3.31) corresponds to a permutation of

t0, 1, 2, 2u . (5.3.58)

We now need to construct permutations of the set tn1,1, n1,2, n2,1, n2,2u for fixed α. In
general there are 4 possible permutations which read

tn1,1, n1,2, n2,1, n2,2u, tn1,2, n1,1, n2,1, n2,2u,

tn1,1, n1,2, n2,2, n2,1u, tn1,2, n1,1, n2,2, n2,1u
(5.3.59)

but if there are degeneracies in nα,a for fixed α there can be fewer permutations. In our
case there are no degeneracies and we have the following permutations

t2, 1, 1, 0u, t1, 2, 1, 0u, t2, 1, 0, 1u, t1, 2, 0, 1u . (5.3.60)

The formula (5.3.31) requires summing over all permutations in (5.3.60) for which σα,a “

kα,a ´ mα,a ` a produces a valid permutation of (5.3.58). For each of the permutations in
(5.3.60) the corresponding σα,a are given by

t0, 1, 2, 2u, t0, 1, 3, 3u, t´1, 2, 2, 2u, t´1, 2, 1, 3u . (5.3.61)

Only the first set corresponds to a permutation of t0, 1, 2, 2u, which has |σ| “ 1, and hence
the only term in the sum over permutations of nα,a for fixed α comes from t2, 1, 1, 0u. Of
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course, in general there can be multiple such permutations which need to be taken into
account.

From here, for this single σ, we can read off

xσ´1p0q “ x1,1, xσ´1p1q “ x1,2, xσ´1p2q “ tx2,1, x2,2u (5.3.62)

which results in
ź

b

∆ubYxσ´1pbq

∆ub

“ Q
r2ss

θ px1,1qpu´ x1,2qpx2,1 ´ x2,2q . (5.3.63)

Finally we plug everything in, obtaining

x3, 2; 0, 0|�1,0puq|2, 1; 1, 0y “ ´ipu´ θ1 ´ ips ` 1qq
Q

r2ss

θ pθ1 ` ips ` 2qq

pθ1 ´ θ2q2
r1,2
r1,0

r1,1
r1,0

r2,1
r2,0

. (5.3.64)

or more explicitly

´
8s3ps ` 1qp2s ` 1q p2s ´ iθ12q 2 p1 ´ iθ12 ` 2sq p2 ´ iθ12 ` 2sq p2s ` iθ12q p1 ´ iθ1 ` s ` iuq

θ2
12 pi´ θ12q pi` θ12q 2 pθ12 ` 2iq .(5.3.65)

where we have defined θ12 “ θ1 ´ θ2.

5.4 Form-factors of Multiple Insertions

In the previous sections we derived various matrix elements of the principal operators. In
this section we will extend this consideration to multiple insertions of the principal operators.

The most general case can be obtained by using the matrix elements in the SoV basis,
however, this does not guarantee that the form-factor will have a simple determinant form.
We consider this general case in section 5.4.2. At the same time, for a large number of com-
binations of the principal operators we still managed to obtain determinant representations
as we explain now.

5.4.1 Antisymmetric combinations of principal operators

The set-up in this section is similar to that of section 5.3.1. We consider the gl3 case with
two factorisable states xΨA| and |Ψ̃By. In addition we assume that the state xΨA| is on-
shell meaning that it is an actual wave function of a spin chain and that it diagonalises the
transfer matrix with twists λa.

Let us try to extend the previous method to general multiple insertions. The starting
point is again from (5.3.3), which we write below for convenience

ÿ

b,β

p´1qb
´́

Q̃B
1 u

β´1D3´2bQA
1,a`1

¯̄

α
IA

b,β “ ´

3
ÿ

r“0
χr

´́

Q̃B
1 O:

prq
QA

1,a`1

¯̄

α
. (5.4.1)
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We rewrite the above equation by modifying one term in the sum in the LHS at b, β “ b2, β3.
Namely, we replace

´́

Q̃B
1 pwβ2´1D3´2b2

qQA
1,a`1

¯̄

α
by

´́

Q̃B
1 O:

psq
QA

1,a`1

¯̄

α
. In order for the

equality to hold we also have to change the RHS accordingly
ÿ

β,b

p´1qb
´́

Q̃B
1 pwβ´1D3´2bq

ˇ

ˇ

ˇ

wβ2´1D3´2b2
ÑO:

psq

QA
1,a`1

¯̄

α
IA

b,β (5.4.2)

“ ´

3
ÿ

r“0
χr

´́

Q̃B
1 O:

prq
QA

1,a`1

¯̄

α
` p´1qb2

´́

Q̃B
1

”

O:

psq
´ pwβ2´1D3´2b2

q

ı

QA
1,a`1

¯̄

α
IA

b2,β2 .

So far this is just an innocent rewriting. Next we treat the RHS as an inhomogeneous part
of the linear system on IA

b,β and apply Cramer’s rule. As we have two terms in the RHS
of (5.4.2) we obtain a sum of two ratios of determinants. As a result, for b1, β1 ‰ b2, β2 we
have

IA
b1,β1 “ p´1qb1`1 rpb2, β2q Ñ O:

psq
, pb1, β1q Ñ

ř

r χrO:

prq
s

rpb2, β2q Ñ O:

psq
s

(5.4.3)

´ p´1qb1`b2

IA
b2,β2

rpb2, β2q Ñ O:

psq
, pb1, β1q Ñ wβ2´1D3´2b2

s

rpb2, β2q Ñ O:

psq
s

.

Notice that the term with O:

psq
in the RHS of (5.4.2) disappears as it produces a zero

determinant in the numerator. The last term in (5.4.3) can be simplified a bit as we first
replace the pb2, β2q column with O:

psq
and then insert into the column pb1, β1q the exact

expression which was previously at the column pb2, β2q

IA
b1,β1 “ p´1qb1`1 rpb2, β2q Ñ O:

psq
, pb1, β1q Ñ

ř

r χrO:

prq
s

rpb2, β2q Ñ O:

psq
s

(5.4.4)

` p´1qb1`b2

IA
b2,β2

rpb1, β1q Ñ O:

psq
s

rpb2, β2q Ñ O:

psq
s
.

Next we use the previously derived (5.3.15), which in the new notations becomes
”

pb1, β1q Ñ O:

prq

ı

“

p´1qb1`1N xΨA|Î
prq

b1,β1 |Ψ̃By. We get

IA
b1,β1xΨA|Î

psq

b2,β2 |Ψ̃By ´ IA
b2,β2xΨA|Î

psq

b1,β1 |Ψ̃By (5.4.5)

“
ÿ

r

χr
p´1qb1`b2

N
rpb2, β2q Ñ O:

psq
, pb1, β1q Ñ O:

prq
s .

Then we use that IA
b1,β1xΨA| “ xΨA|Îb1,β1 to plug the LHS under one expectation value

xΨA|Îb1,β1 Î
psq

b2,β2 ´ Îb2,β2 Î
psq

b1,β1 |Ψ̃By “
ÿ

r

χr
p´1qb1`b2

N
rpb2, β2q Ñ O:

psq
, pb1, β1q Ñ O:

prq
s .
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Finally, we apply the character projection trick to obtain

xΨA|Î
prq

b1,β1 Î
psq

b2,β2 ´ Î
prq

b2,β2 Î
psq

b1,β1 |Ψ̃By “
p´1qb1`b2

N
rpb2, β2q Ñ O:

psq
, pb1, β1q Ñ O:

prq
s .

As before, once we have this expression we can remove the assumption that ΨA is an on-shell
and replace it by a generic factorisable state following the same argument as in section 5.2.

Finally, the derivation we outlined above can be iterated to get the following general
expression for the multiple insertions of the principal operators antisymmetrised w.r.t. the
multi-indices pb, βq

xΨA|Î
ps1q

rb1,β1
. . . Î

pskq

bk,βks
|Ψ̃By “

p´1qb1`¨¨¨`bk`k

k! N
rpb1, β1q Ñ O:

ps1q
, . . . , pbk, βkq Ñ O:

pskq
s .(5.4.6)

Note that the RHS vanishes if any of the character indices psiq coincide. Thus in order to
get a nontrivial RHS we can have at most 4 antisymmetrised principal operators for the gl3
case and N ` 1 for general glN . The fact that the RHS is antisymmetric in the character
indices is also reflected on the LHS, where this is a consequence of the commutativity of
transfer matrices. In fact, expanding the relation (5.1.9) in u and v we immediately get that
Î

prq

rb1,β1 Î
psq

b2,β2s
“ ´Î

psq

rb1,β1 Î
prq

b2,β2s
. Since this can be done for any consecutive pair of character

indices in the LHS of (5.4.6), it follows that this quantity is completely antisymmetric in
the character indices as a consequence of the RTT relations.

Finally, like in section 5.3.2 we can convert the expression for the form-factor of the coef-
ficients of the principal operators into the form-factor of the principal operators themselves.
For example, we have:

p´1qL x�1,1puq�1,2pvq ´ �1,1pvq�1,2puqy

u´ v
“

”

0;
ˇ

ˇ

ˇ
L´ 1;u, v

ˇ

ˇ

ˇ
L` 1;

ˇ

ˇ

ˇ
0;

ı

Ψ

x�1,1puq�2,2pvq ´ �2,1pvq�1,2puqy “

”

0;
ˇ

ˇ

ˇ
L;u

ˇ

ˇ

ˇ
L; v

ˇ

ˇ

ˇ
0;

ı

Ψ

´x�1,0puq�2,2pvq ´ �2,0pvq�1,2puqy “

”

1; θ ´ is
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L; v

ˇ

ˇ

ˇ
0;

ı

Ψ

p´1qL´1x�1,0puq�2,3pvq ´ �2,0pvq�1,3puqy “

”

1; θ ´ is
ˇ

ˇ

ˇ
L´ 1;u

ˇ

ˇ

ˇ
L´ 1; v

ˇ

ˇ

ˇ
1; θ ` is

ı

Ψ
.

(5.4.7)

For a more complicated but nice looking example of a triple insertion we get:

ϵijkx�1,1puiq�1,2pujq�1,3pukqy

pu1´u2qpu1´u3qpu2´u3q
“ p´1qL

”

0;
ˇ

ˇ

ˇ
L´ 2;u1, u2, u3

ˇ

ˇ

ˇ
L` 1;

ˇ

ˇ

ˇ
1; θ ` is

ı

Ψ
.(5.4.8)

Notice that the second form-factor in (5.4.7) contains exactly the same combination that we
found for the expressions for B and C operators in (5.1.12)! We will discuss the implications
of this observation in section 5.4.3.

5.4.2 Via Matrix elements in SoV basis

In the above subsection we demonstrated how it is possible to write a large family of
correlation functions with anti-symmetrised insertions of principal operators. However, this
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does not exhaust all possible correlators. On the other hand, we can in principal reduce the
computation of correlators with any number of insertions to sums over products of form-
factors with a single insertion by inserting a resolution of the identity over transfer matrix
eigenstates. In practice this is not very useful as one would need to know the Q-functions
for every state and not just those appearing in the wave functions.

This issue can be resolved by using the matrix elements of the principal operators in
the SoV bases instead. Consider the double insertion

xΨA|�a,rpuq�b,spvq|Ψ̃By . (5.4.9)

We now consider three resolutions of the identity

1 “
ÿ

x
|xyxx| “

ÿ

y
|yyxy| “

ÿ

x,y
|xyxy|pM´1qy,x (5.4.10)

where pM´1qy,x denotes the components of the inverse SoV measure M (6.7.15) which
appears in the resolution of the identity

1 “
ÿ

x,y
|yyxx|My,x . (5.4.11)

We insert the three resolutions into the above correlator, obtaining

xΨA|�a,rpuq�b,spvq|ΨBy “
ÿ

x,x1,y,y1

ΨApyq xy|�a,rpuq|x1y xy1|�b,spvq|xy pM´1qy1,x1ΨBpxq .

(5.4.12)
At this point we see that the computation of multi-insertions becomes quite complicated.
Indeed, for the rank 1 gl2 case the measure My,x is diagonal and so the computation of
the inverse measure pM´1qy1,x1 is trivial. For higher rank the measure is no longer diagonal
and pM´1qy1,x1 needs to be computed. Nevertheless, it can be computed since My,x is
explicitly known (6.7.15) and furthermore My,x, in an appropriate order of x and y, is an
upper-triangular block diagonal matrix where each block is finite-dimensional even in the
case of non-compact glN [74].

5.4.3 SoV B and C operators

In this section we will demonstrate that our results allow one to derive that the SoV B and
C operators (5.1.10) are diagonalised in the SoV bases |xy and xy| respectively. Structurally,
the B and C operators are very similar. We recall the expressions (5.1.12) which read

Bpuq “ �1,1puq�2,2puq ´ �2,1puq�1,2puq

Cpuq “ �1,1puq�2,2pu` iq ´ �2,1pu` iq�1,2puq .
(5.4.13)

Both of these expressions are special cases of the general double insertion �1,1puq�2,2pvq ´

�2,1pvq�1,2puq appearing in (5.4.7). We will denote this operator as Bpu, vq, that is

Bpu, vq “ �1,1puq�2,2pvq ´ �2,1pvq�1,2puq . (5.4.14)
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By using the relation (5.3.30) we can convert its matrix elements in the Ψ basis in (5.4.7)
to matrix elements in the x, y basis. The result simply reads

xy|Bpu, vq|xy “
sL
∆2

θ

ÿ

k

signpσq
ź

α,a

rα,nα,a

rα,0
∆uYxσ´1p1q

∆vYxσ´1p2q

ˇ

ˇ

ˇ

ˇ

ˇ

σa,α“ka,α´mα,a`a

(5.4.15)

where σ is a permutation of
t1, . . . , 1
loomoon

L

, 2, . . . , 2
loomoon

L

u . (5.4.16)

We now examine the special cases v “ u and v “ u`i, relevant for B and C respectively.

B operator The crucial point is that in (5.4.15) we have that ∆uYxσ´1p1q
∆vYxσ´1p2q

“

pu´ xσ´1p1qqpv ´ xσ´1p2qq∆1∆2 and hence, we see that, for v “ u, we have

pu´ xσ´1p1qqpu´ xσ´1p2qq “
ź

α,a

pu´ xα,aq (5.4.17)

which is independent of σ. Hence, this factor can be pulled outside the sum over permuta-
tions and we obtain

xy|Bpu, uq|xy “
ź

α,a

pu´ xα,aq
sL
∆2

θ

ÿ

k

signpσq
ź

α,a

rα,nα,a

rα,0
∆1∆2

ˇ

ˇ

ˇ

ˇ

ˇ

σa,α“ka,α´mα,a`a

“
ź

α,a

pu´ xα,aqxy|xy .

(5.4.18)

Hence the operator Bpuq :“ Bpu, uq acts diagonally on |xy with eigenvalue
ś

α,apu ´ xα,aq.
This coincides precisely with the spectrum of Sklyanin’s Bpuq operator [74].

C operator We will now show that C is diagonalised in the |yy basis in the same manner
as we did for B. We start again from the expression:

xy|Bpu, u` iq|xy “
sL
∆2

θ

ÿ

k

signpσq
ź

α,a

rα,nα,a

rα,0
∆uYxσ´1p1q

∆u`iYxσ´1p2q

ˇ

ˇ

ˇ

ˇ

ˇ

σa,α“ka,α´mα,a`a

.

(5.4.19)
We will now show that ∆uYxσ´1p1q

∆u`iYxσ´1p2q
“

ś

α,apu´ yα,aq∆1∆2. We have

∆uYxσ´1p1q
∆u`iYxσ´1p2q

“ pu´ xσ´1p1qqpu` i´ xσ´1p2qq∆1∆2 (5.4.20)

We now examine the factor pu´ xσ´1p1qqpu` i´ xσ´1p2qq which can be rewritten as
ź

α,a:σa,α“1
pu´ xα,aq

ź

α,a:σa,α“2
pu` i´ xα,aq . (5.4.21)
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Next, we use that xα,a “ θα ` ips ` nα,aq and yα,a “ θα ` ips ` mα,a ´ aq with nα,a “

mα,a ´ σa,α ` a to obtain
ź

α,a:σa,α“1
pu´ xα,aq

ź

α,a:σa,α“2
pu` i´ xα,aq “

ź

α,a

pu´ θα ´ is ´mα,a ` 1 ´ aq . (5.4.22)

The final expression coincides with
ś

α,apu ´ yα,aq which is independent of σ. Hence we
obtain

xy|Cpuq|xy :“ xy|Bpu, u` iq|xy “
ź

α,a

pu´ yα,aqxy|xy , (5.4.23)

meaning that the operator Cpuq acts diagonally on the xy| basis with eigenvalue
ś

α,apu ´

yα,aq.

5.5 Extension to glN spin chains

In this section we will extend our results from the previous sections to the glN case. The
construction is a simple generalisation of the results in the previous sections, where we
focused mainly on gl2 and gl3 cases. We will briefly go through the main steps of the
derivations.

5.5.1 Determinant representation of form-factors

We start again from the dual Baxter operator

O:

A “

N
ÿ

a“0
p´1qaτA

a puqDN´2a, O:

AQ
1`a
A “ 0 . (5.5.1)

Now we consider the usual trivial identity, where O:

A is applied to Q1`a
A :

´́

QB
1 O:

AQ
1`a
A

¯̄

α
“ 0 , a “ 1, . . . , N ´ 1, α “ 1, . . . , L (5.5.2)

Now we first expand the Baxter operator and the eigenvalues of the transfer matrices τA
a

in the spectral parameter u, obtaining

ÿ

b,β

p´1qb
´́

QB
1 u

β´1DN´2bQ1`a
A

¯̄

α
IA

b,β “ ´

N
ÿ

r“0
χA

r

´́

QB
1 O:

prq
Q1`a

A

¯̄

α
, (5.5.3)

where we have defined

O:

p0q
“ Q

r2ss

θ DN , O:

prq
“ p´1qruLDN´2r, r “ 1, . . . , N ´ 1 , O:

pNq
“ p´1qNQ

r´2ss

θ D´N .

(5.5.4)
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Using Cramers’ rule, we can compute the matrix elements of the integrals of motion exactly
as in the gl3 case leading to

Ib1,β1 “ p´1qb1`1 rpb1, β1q Ñ
řN

r“0 χr O:

prq
s

rwβ´1DN´2bs
. (5.5.5)

Since xΨA| is an eigenvector of Îb,β with eigenvalue Ib,β we can rewrite the above as

xΨA|Îb1,β1 |Ψ̃By “
p´1qb1`1

N
rpb1, β1q Ñ

řN
r“0 χr O:

prq
s

rwβ´1DN´2bs
. (5.5.6)

The principal operator coefficients Îprq

b,β are then introduced via the expansion into characters
of the integrals of motion Îb,β

Îb1,β1 “

N
ÿ

r“0
χr Î

prq

b1,β1 . (5.5.7)

Performing character projection we then obtain the form-factors

xΨA|Î
prq

b1,β1 |Ψ̃By “
p´1qb1`1

N
rpb1, β1q Ñ O:

prq
s . (5.5.8)

We see that this relation is identical to that of the gl3 case (5.3.15).
In the same way as in gl3 we can assemble the operators Îprq

b,β into the generating functions
�b,rpuq – the principal operators. The form-factor of the generating function �b1,rpuq defined
by (5.1.1) is then given by

xΨA|�b1,rpuq|Ψ̃By “ δb1ru
Lrwβ´1DN´2bs `

L
ÿ

β1“1
p´1qb1`1uβ1´1rpb1, β1q Ñ O:

prq
s . (5.5.9)

This result can be easily recast in determinant form using the same arguments as the gl3
case. We introduce the notation:

”

L0; u0

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
LN ; uN

ı

Ψ
“

1
N

ˆ (5.5.10)
”!∆u0Yw

∆u0
wjDN

)L0´1

j“0
, . . . ,

!∆uN Yw

∆uN

wjD´N
)LN ´1

j“0

ı

.

We will write explicit expression for the form factors of type x�b1,rpuqy. We have that:

r “ b1
”

0;
ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pLqr;u

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
0;

ı

Ψ

r “ 0 p´1qb1L`b1`L
”

1; θ ´ is
ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pL´ 1qb1 ;u

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
0;

ı

Ψ

r “ N p´1qb1`LpN´b1q`N`1
”

0;
ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pL´ 1qb1 ;u

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
1; θ ` is;

ı

Ψ

(5.5.11)
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r ą b1 p´1qb1`r`1`Lpr´b1q
”

0;
ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pL´ 1qb1 ;u

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pL` 1qr;

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
0;

ı

Ψ

r ă b1 p´1qb1`r`Lpb1´rq
”

0;
ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pL` 1qr;

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
pL´ 1qb1 ;u

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
0;

ı

Ψ

(5.5.12)

Multiple insertions The expression (5.4.6) for multiple insertions generalise without
modification from the gl3 case and we have

xΨA|Î
ps1q

rb1,β1
. . . Î

pskq

bk,βks
|Ψ̃By “

p´1qb1`¨¨¨`bk`k

k! N
rpβ1, b1q Ñ O:

ps1q
, . . . , pβk, bkq Ñ O:

pskq
s

(5.5.13)
As mentioned in the gl3, the LHS is anti-symmetric in character indices and so in order to
get a non-zero correlator we require that k ď N ` 1.

5.5.2 Matrix elements in SoV bases

We can repeat the arguments from the gl3 section to compute all form-factors of the form
xy|�a,rpuq|xy. We introduce the notation

”

L0; u0

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
LN ; uN

ı

y,x
(5.5.14)

defined by the property
”

L0; u0

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
LN ; uN

ı

Ψ
“

ÿ

x,y
ΨApyq

”

L0; u0

ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ
LN ; uN

ı

y,x
Ψ̃Bpxq (5.5.15)

where we remind the reader that the SoV wave functions are given by

ΨApyq “

L
ź

α“1
det

1ďa,a1ďN´1
Q1`a

A pyα,a1 ` i
2q, Ψ̃Bpxq “

L
ź

α“1

N´1
ź

a“1
Q̃B

1 pxα,aq . (5.5.16)

The explicit expression for (5.5.15) is worked out to be

sL

∆N´1
θ

ÿ

k

p´1q|σ|
ź

α,a

rα,nα,a

rα,0

ź

b

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

σa,α“ka,α´mα,a`a

. (5.5.17)

The index b takes values in the set t0, 1, . . . , Nu, a P t1, . . . , N ´ 1u and α P t1, . . . , Lu and
the summation is over all permutations k of the set tnα,au for fixed α for which σ defined
by σα,a “ kα,a ´mα,a ` a defines a permutation of the set

t0, . . . , 0
loomoon

L0

, . . . , N, . . . , N
loooomoooon

LN

u . (5.5.18)

The matrix element (5.5.17) is only non-zero if the SoV charges Nx and Ny satisfy the
relation

Ny ´ Nx “
N

2 pN ´ 1qL´

N
ÿ

n“0
nLn . (5.5.19)

The details of the derivation are exactly the same as in the gl3 case described in Ap-
pendix C.1.
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B and C operators. Having access to the complete set of SoV matrix elements it is now
easy to determine which operators correspond to the SoV B and C operators. Following
the derivation in the gl3 case it is trivial to work out that Bpuq corresponds to the operator
with

u0 “ uN “ tu, ur “ tuu, r “ 1, . . . , N ´ 1 (5.5.20)

whereas Cpuq corresponds to the operator with

u0 “ uN “ tu, ur “ tu` ipr ´ 1qu, r “ 1, . . . , N ´ 1 . (5.5.21)

Indeed, by examining the matrix element (5.5.17) as in the gl3 case we immediately read off
that the operator defined by (5.5.20) ((5.5.21)) acts diagonally on |xy (xy|) with eigenvalue
given by

ś

α,apu´ xα,aq (
ś

α,apu´ yα,aq) and hence coincides with Bpuq (Cpuq) respectively
due to the non-degeneracy of these operators’ spectra. It is possible to work out what these
operators correspond to in terms of principal operators �a,rpuq. They are given by

Bpuq “ pN ´ 1q!εa1...aN´1�a1,1puq . . .�aN´1,N´1puq

Cpuq “ pN ´ 1q!εa1...aN´1�a1,1puq . . .�aN´1,N´1pu` ipN ´ 2qq .
(5.5.22)

The fact that these operators coincide with the B and C operators of [74] is not manifest
– application of the RTT relations is required as was already demonstrated in the gl3 case.
Nevertheless, the fact that their spectra and eigenstates coincide guarantees that they are
equal.

5.6 Properties of principal operators

The main goal of this section is to demonstrate the completeness of the set of the principal
operators. We show that any element of the Yangian can be obtained as a combination
of the principal operators, which in at least finite dimensional cases guarantees that all
physical observables can be obtained in this way. In the last section we also give explicit
expressions for the principal operators in the diagonal frame – i.e. in the case when the
twist matrix becomes diagonal.

5.6.1 Completeness

In this section we will demonstrate a crucial property of the operator basis, namely that
knowledge of the matrix elements of each of our principal operators is equivalent to the
knowledge of the matrix elements of every operator Tijpuq in the Yangian algebra. More
precisely we will show that any monodromy matrix element Tijpuq can be constructed as a
polynomial of degree at most N ` 1 in principal operators.

Knowing all Tijpuq is essentially equivalent to the full algebra of observables. For ex-
ample, in the finite dimensional case i.e. when s “ ´n{2, n P Z` one can use the “inverse
scattering transform" [85] to construct local symmetry generators acting on a single site of
the chain in terms of Tijpuq. The precise notion of completeness could be ambiguous – in
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order to be precise in this chapter when referring to completeness of the system of principal
operators we understand that any element of the Yangian can be generated in finitely many
steps (independently of the length of the chain). Note that while we are not aware of any
simple way to extract local operators in the infinite-dimensional case in terms of Tijpuq we
would like to stress that these operators still contain all information about the system. For
example, consider the spin-s representation used in this section and consider some local
operator Epαq. The key point is the existence of the SoV basis xx| which is constructed by
action of polynomials in Tijpuq on the SoV ground state x0| [74]. Hence, the action of Epαq

on the SoV basis can be re-expressed as a sum over (finitely many6) SoV basis states xx1|

and hence the matrix elements of Eα are completely fixed by the SoV matrix elements of
the monodromy matrix Tijpuq.

We now show that the principal operators generate the full Yangian. Our starting point
is the large u expansion of the operators Tijpuq

Tijpuq “ uLδij ` uL´1 piEji ´ δijΘq ` O
`

uL´2˘

, Θ :“
L

ÿ

α“1
θα . (5.6.1)

Note that the indices on E are swapped compared to those on T . The operators Eij are
generators of the global glpNq algebra

Eij “

L
ÿ

α“1
Epαq

ij (5.6.2)

and satisfy the glpNq commutation relations

rEij , Ekls “ δjkEil ´ δliEkj . (5.6.3)

We will now prove the following property: that any Tijpvq can be expressed as a commutator
of a global glpNq generator and a principal operator Tk1pvq. The key point are the RTT
relations expanded at large u which read

rEji, Tklpvqs “ Tkjpvqδil ´ Tilpvqδkj . (5.6.4)

From here it is clear that we can write any operator Tijpvq as

Tijpvq “ T11pvqδij ` rEj1, Ti1pvqs “ �1,1pvqδij ` p´1qi´1rEj1,�1,ipvqs (5.6.5)

where the RHS only contains principal operators and global glpNq generators.
The family of principal operators includes the following global Lie algebra generators:

E1j and E´ “

n´1
ÿ

j“1
Ej`1,j . These appear in the asymptotics of the generating functions

�1,0puq “ iuL´1E´ ` OpuL´2q, p´1qj�1,jpuq “ uLδj1 ` uL´1 piE1j ´ δijΘq ` O
`

uL´2˘

.
(5.6.6)

6There are only finitely many states of a given SoV charge, and each local Lie algebra generator raises
or lowers the SoV charge by some finite amount.
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Hence, if we can prove that these operators can be used to generate the set of Ej1 then
it follows from (5.6.5) that knowing the matrix elements of all principal operators implies
knowledge of the matrix elements of all Tijpuq. From the commutation relations (5.6.3) it
is easy to see that

Ej`1,1 “ rE´, Ej1s . (5.6.7)

Thus, we have
Ej1 “ rE´, rE´, r. . . , rE´, E11ss

loooooooooooooomoooooooooooooon

j´1

, (5.6.8)

where the RHS contains only principal operators. After that from (5.6.5) we get all operators
Tijpuq generated, which completes the proof.

Let us remark that despite the abundance of literature on SoV in gl2 spin chains the
relation (5.6.5) does not seem to have been exploited. Indeed, the standard approach is to
obtain the matrix elements of the one non-principal operator T22puq in terms of the principal
operators via the quantum determinant relation

qdetT puq “ T´
11T

`
22 ´ T´

21T
`
12 (5.6.9)

together with the known eigenvalue of the quantum determinant and the fact that T11puq is
invertible, see for example [86]. This produces a rather complicated expression for T22puq.
On the other hand, using the relation (5.6.5) we see that T22puq can be written in terms of
principal operators simply as

T22puq “ �1,1puq ´ rE21,�2,1puqs . (5.6.10)

5.6.2 Principal operators in the diagonal frame

In the main part of this chapter, we used the frame with the twist matrix G being of the
special form (4.4.4). Whereas for SoV approach this choice is extremely beneficial, as the
SoV basis does not depend on the twist eigenvalues λa, it is not the most commonly used
in the literature. A more standard choice is the diagonal twist G “ diagpλ1, . . . , λN q. In
this section we give an explicit way to relate those two conventions. As we will see the
basic consequence of changing the frame is that the explicit expressions for the principal
operators �r,s in terms of the monodromy matrix elements Tij will slightly change in the
frame where the twist matrix is diagonal.

In the companion twist frame the transfer matrix tpuq is given by tpuq “ tr pT puqGq

where G is the companion twist matrix (4.4.4). We want to perform a similarity transfor-
mation ΠpSq on the Hilbert space of the spin chain where S is some GLpNq group element
and ΠpSq denotes its representative on the spin chain so that the transfer matrix transforms
as tr pT puqGq Ñ tr pT puqgq where g is the diagonal twist matrix with the same eigenvalues
as G. As was established in [74] a possible choice for S is given by the Vandermonde matrix

pS´1qij “ λN´i
j . (5.6.11)
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Under this transformation the monodromy matrix elements Tijpuq transform as

Tijpuq Ñ Π´1TijpuqΠ “ pS´1T puqSqij , Π ” ΠpSq (5.6.12)

with similar expressions holding for anti-symmetric monodromy matrices.
To summarise we have the wave-functions in the diagonal frame related to the wave-

functions in the companion frame by

|Ψdiagy “ Π´1|Ψy , xΨdiag| “ xΨ|Π . (5.6.13)

and they diagonalise the transfer matrices tdiagpuq and tpuq correspondingly related as

tdiagpuq “ Π´1t1puqΠ “ trpS´1T puqSGq “ trpT puqgq . (5.6.14)

Similarly we define �diag
a,r “ Π´1�a,rΠ so that

xΨdiag
A |�diag

a,r |Ψdiag
B y “ xΨA|�a,r|ΨBy “ determinant . (5.6.15)

Note that the above expression only holds for the states with the same twist unlike the
expressions in the companion twist frame which hold for any twist on either state.

In general the expressions for the principal operators in the diagonal frame in terms of
Tij are quite bulky, but straightforward to work out from (5.6.12). For example for gl3 we
have �diag

1,1 “ pS´1TSq1,1

�diag
1,1 “

λ2
1T11

pλ1 ´ λ2q pλ1 ´ λ3q
´

λ2
1T12

pλ1 ´ λ2q pλ2 ´ λ3q
`

λ2
1T13

pλ1 ´ λ3q pλ2 ´ λ3q
(5.6.16)

`
λ2

2T21
pλ1 ´ λ2q pλ1 ´ λ3q

´
λ2

2T22
pλ1 ´ λ2q pλ2 ´ λ3q

`
λ2

2T23
pλ1 ´ λ3q pλ2 ´ λ3q

`
λ2

3T31
pλ1 ´ λ2q pλ1 ´ λ3q

´
λ2

3T32
pλ1 ´ λ2q pλ2 ´ λ3q

`
λ2

3T33
pλ1 ´ λ3q pλ2 ´ λ3q

.

Note that whereas in the companion twist frame the principal operators by definition where
independent of the twist eigenvalues, in the diagonal frame they explicitly depend on λi.
In order to get nice looking expressions is it better to introduce the notation T goodpuq “

S´1T puqSG “ S´1T puqgS going back to [69]. It obeys tdiag “ trpT goodq and is related in a
simple way to the principal operators in the diagonal frame (4.4.4) so that

�diag
1,i puq “ p´1qN´i

T good
i,N puq

χN
, i “ 1, 2, . . . , N ,

�diag
1,0 puq “

N´1
ÿ

i“1

ˆ

T good
i,i ´ p´1qN´i χi

χN
T good

i,N

˙

.

(5.6.17)

One can check that
řN

r“0 �diag
1,r puqχr “ trpT goodq. In particular, from (5.6.17) the above

we see that the form-factor of any T good
i,N in the diagonal frame is a determinant. For the

particular case of gl2 these operators generalise the well-known operators T good
11 and T good

22
which act as conjugate momenta of the separated variables encoded in T good

12 , see [87].
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5.7 Comparison between FSoV and NABA

In this chapter we used the functional separation of variables (FSoV) technique in combi-
nation with the novel character projection (CP) method to compute all matrix elements
of the set of principal operators which in particular includes some individual monodromy
matrix elements Tij and their combinations in a concise determinant form. We also showed
that they generate a complete basis of observables of the spin chain and contain the SoV
B operator as a particular case. Thus we gained access to the matrix elements of a set of
operators which generates a complete set of observables in high-rank integrable glN spin
chains.

Determinant representations for form factors of some Tij have appeared in the literature
before for the gl3 case in the Nested Bethe Ansatz approach [52, 88, 89]. However, in
addition to giving an alternative form for those objects, the results presented in this chapter
have a number of advantages and conceptual differences:

• Firstly, the form factors are expressed directly in terms of Baxter Q-functions instead
of Bethe roots. From a direct calculational perspective Q-functions offer a significant
advantage [90].

• Secondly, the FSoV approach does not require the existence of a highest-weight state.
As such our approach is applicable to models which do not have the highest-weight
state, for example the Fishchain described in this thesis.

• Thirdly, as demonstrated, our approach is valid for any rank glN with general formulas
being almost equally simple to write down as for gl3. The NABA becomes much harder
for higher ranks, due to the presence of extra levels of nesting.

• Fourthly, our formulas are applicable to the set-up where the transfer matrix eigen-
states are constructed with two distinct twists, which have attracted attention recently
[91], or in fact any two arbitrary off-shell states (to which we refer to as factorisable).
In addition to being a new result, this is a very important technical advantage for
example in non-highest-weight models where the scalar product between states built
with the same twist is divergent [92] and so deforming one set of twists serves as a
natural regulator7.

• Finally, using our approach we were able to compute the matrix elements of the
principal operators in the SoV bases meaning one can compute the matrix elements
of any number of insertions. Currently and to the best of our knowledge, this has been
done via the NABA only for a single insertion of the monodromy matrix elements Tij

and for ranks N ď 3 .

7See [93] for the explicit realisation of the twist in Fishnet CFT.
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Chapter 6

Open Integrable Spin Chains

So far, this thesis has been focused on periodic integrable spin chains, which arise as repre-
sentations of the Yangian Y pglN q. The periodicity condition however neglects any possible
boundary effect, which arise in applications to condensed matter physics. Even twisting the
spin chain does not help in modelling them.

Therefore, it is natural to try and add boundaries to a spin chain and make it non-
periodic. We would however like to preserve the underlying integrability of the model.
This fact greatly reduces the freedom in the choice of the possible boundaries. In fact, the
way to add boundaries to a periodic spin chain is by ‘opening’ it and putting two matrices
representing the boundaries at its two new end points. Using generic matrices as boundaries
breaks the integrability of the spin chain, i.e. it breaks the Yangian symmetry.

In [94], Sklyanin found a set of algebraic equations that a boundary matrix should
satisfy to preserve integrability; these conditions can be packaged in a matrix equation
that involves the rational R-matrix (2.2.3) and is known as the Boundary Yang-Baxter
Equation (BYBE). The solutions of the BYBE are matrices that we denote as K. Using as
the boundary matrices of a periodic spin chain two solutions to the BYBE, we obtain an
integrable spin chain with open boundary conditions, known as open integrable spin chain.

From the Yangian symmetry point of view, the addition of integrable boundary matrices
breaks Y pglN q to a subgroup, the Twisted Yangian, that we will denote as YCpglN q. Here,
C denotes the class of boundary matrices allowed.

Two boundary matrices K and K 1 that are related by a similarity transformation will
give rise to the same Twisted Yangian, and they are in the same class C. All the (complex-
valued) solutions of the BYBE will give rise to a certain Twisted Yangian YCpglN q. Recently
there has been great progress in classifying twisted Yangians [95–97], and in particular the
general form of the boundary matrices for many different classes of twisted Yangians C is
known. Furthermore, just like Yangians arise from a quantisation of classical Lie algebras,
it has been understood that the Twisted Yangians arise as quantisations of the symmetric
pairs given by Cartan’s classification of symmetric spaces (see [98], Chapter X).

In this chapter, we will treat twisted Yangians as arising from a periodic spin chain
and boundary matrices satisfying the BYBE. We will focus on a single class of boundary

105
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matrices, which are associated to the Twisted Yangian known as Y `p2Nq in the literature.
This twisted Yangian is the basic symmetry of the open Fishchain model described in the
next section.

Many techniques that we described in chapter 3 for the Yangian carry over to the twisted
Yangian, and we will describe them here. In particular, after introducing the basic notation,
we will describe the open T-system, the open Q-system and the open Baxter TQ relation.
The spin chain we will use as reference model in this chapter is an open spin chain in a
highest-weight representation of weights p´2s,´2s, 0, 0q, s P ´N

2 of Y `p2Nq, as this is a
simple model that arises naturally as a strong coupling limit of the open Fishchain.

To conclude this section, we will start the Separation of Variables program for Y `p2Nq.
Some results for SoV have been obtained in [99] for the twisted Yangian based on the so-
called Reflection Equation [100]. However, a big limitation of this approach is that the SoV
B operator is not known for any open spin chain, and many other gaps need to be filled.
We will present results that adapt the Functional approach of chapter 5 to Y `p2Nq. While
some technical difficulties still need to be solved, this is a promising road that will lead to
a much better understanding of open integrable spin chains: as we have seen in chapter 5,
even the trivial Functional scalar product provides access to non-trivial form factors.

This chapter is based on the author’s work in preparation [27].

6.1 Open spin chains and twisted Yangians

The symmetry that defines rational spin chains with open boundary conditions is known
as the twisted Yangian [101]. The twisted Yangian YCpglN q is a subalgebra of the Yangian
Y pglN q, and is characterised by the boundary matrices K. While the Yangian Y pglN q

arises as the quantisation of the classical glN algebra, the twisted Yangian YCpglN q arises
as the quantisation of the classical symmetric pair pglN , g

ρq, which we define in the next
paragraph.

Symmetric pairs A symmetric pair is a pair composed of a (semi)simple Lie algebra
g and an involutive automorphism ρ acting on it, such that ρ2pXq “ X, @X P g. The
subalgebra gρ corresponds to the fixed points of the reflection ρ, i.e. gρ “ tZ | ρpZq “

Z, Z P gu. Usually, gρ can be identified with another semisimple Lie algebra contained in
g.

Being involutive, ρ can only have eigenvalues ˘1, therefore its eigenvectors which are
not in gρ are those with eigenvalue ´1. Symmetric pairs were classified by Cartan, and a
table can be found in [98].

Twisted Yangians Twisted Yangians arise as the quantisation of classical symmetric
pairs. To the best of our knowledge, not all symmetric pairs have been used yet to define
a twisted Yangian. The ones that have been built so far correspond to symmetric pairs
involving the Lie algebras in the A,B,C,D series [95].
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In this thesis, we will be dealing with the family of Twisted Yangians known as Y `p2Nq.
These are the quantisation of the classical symmetric pair pgl2N , so2N q, originally introduced
in [101].

For the family Y `p2Nq, the automorphism ρ is given explicitly by ρpXq “ Xt, where t

is the generalised transposition:

Xt “ V XTV ´1, V “ antidiagp1, . . . , 1q . (6.1.1)

This automorphism actually leaves invariant two subalgebras of gl2N , so2N and spN . To
select so2N at the level of the twisted Yangian, we will need to impose further restrictions
on the boundary K matrices characterising Y `p2Nq.

6.1.1 Boundary Yang-Baxter equation and open transfer matrix

The twisted Yangian can be defined via the introduction of boundary matrices K in a
periodic spin chain. We define the boundary matrices K´ as a solution of the Boundary
Yang-Baxter equation (BYBE):

R12pu´ vqK1puqRt
12p´u´ vqK2pvq “ K2pvqRt

12p´u´ vqK1puqR12pu´ vq (6.1.2)

where we are using the rational R-matrix (2.2.3) and denote by t the generalised transpo-
sition (6.1.1) applied to the auxiliary space 1.

The BYBE and the usual RTT relations (2.2.11) are the fundamental algebraic relations
defining integrable open spin chains.

We now describe how to build open spin chains from solutions of the BYBE (6.1.2) and
a periodic rational spin chain. Given the monodromy matrix (3.1.4) associated to a Y pglN q

periodic spin chain in some representation, we define:

U´puq “ T puqK´puqT tp´uq . (6.1.3)

This is the analog of the monodromy matrix T puq for open spin chains. Therefore, we will
call U´puq the boundary monodromy matrix.

The boundary monodromy matrix (6.1.3) satisfies the BYBE:

R12pu´ vqU´
1 puqRt

12p´u´ vqU´
2 pvq “ U´

2 pvqRt
12p´u´ vqU´

1 puqR12pu´ vq . (6.1.4)

This is due to the coproduct property of the Twisted Yangian:

∆pKijpuqq “

N
ÿ

k,l“1
Tikpuq bKklpuq b pT tqljp´uq , (6.1.5)

where Tij P Y pglN q are monodromy matrix elements of a periodic spin chain. This coproduct
does not satisfy all the axioms of the coproduct of a quantum group seen in chapter 2:
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this implies that the twisted Yangian is not a quantum group itself. Nevertheless, many
techniques developed for the Yangian continue to work when adapted to the twisted Yangian.

The generating function of the conserved charges for an open spin chain is called open
transfer matrix. It is built by multiplying the boundary monodromy matrix (6.1.3) by
another boundary matrix K`, which satisfies the following BYBE:

R12p´u`vqK`
1 p´uqRt

12pu`vqK`
2 p´vq “ K`

2 p´vqRt
12pu`vqK`

1 p´uqR12p´u`vq . (6.1.6)

Then, we define the open transfer matrix by:

T̃puq “ trpK`puqU´puqq . (6.1.7)

If K` and K´ are polynomials in u, the transfer matrix will also be a polynomial in u. The
open transfer matrix (6.1.7) possesses a global symmetry Gρ, which is the group associated
to gρ, the conserved subalgebra of the underlying symmetric pair.

The transfer matrix (6.1.7) forms a commuting family of operators
“

T̃puq, T̃pvq
‰

“ 0.
This can be proven explicitly using the BYBE equations as in [94]. In section 6.4, we give
instead a diagrammatic proof. The coefficient of the powers of u in T̃puq are a subset of the
conserved charges of the open spin chain.

To select a specific twisted Yangian YCpglN q, we need to impose further conditions on
the boundary matrices. In particular, to get Y `p2Nq, the quantisation of the symmetric
pair pgl2N , so2N q, we need to impose the following identities on the K matrices [102]:

K´puq “ Kt
´p´uq (6.1.8)

K`puq “ ´Kt
`p´uq . (6.1.9)

It can be checked [97] that the BYBE (6.1.2) and (6.1.6) with either of the conditions (6.1.8)
do not have u-dependent solutions whose entries are complex numbers. In this chapter, we
will take as particular solutions the following boundary matrices:

K`puq “ diagpζ1, . . . , ζN ,´ζN ¨ ¨ ¨ ´ ζ1q , (6.1.10)
K´puq “ I2N , (6.1.11)

where ζi are complex parameters that play the role of the twist in the open spin chain, and
I2N is the identity matrix in 2N dimensions. In the next section, we will prove that this
choice of the boundaries can always be taken for Y `p2Nq.

6.1.2 Properties of the open transfer matrix

SOp2Nq symmetry

In this chapter, we will see why the properties (6.1.8) let us obtain a non-degenerate transfer
matrix. In particular, we will see how the form of the boundary matrices (6.1.10) breaks
the global SOp2Nq symmetry of the open transfer matrix.
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Suppose that t̃puq “ trT puqT tp´uq. This transfer matrix has a manifest global SOp2Nq

symmetry. This is due to the fact that T puq is GLp2Nq covariant, meaning we have for any
G P GLp2Nq:

rGb ΠpGq, T puqs “ 0 (6.1.12)

where ΠpGq denotes the action of G on the physical Hilbert space. As a result of this, we
have

ΠpGq´1T puqΠpGq “ GT puqG´1 . (6.1.13)

Hence,

ΠpGq´1t̃puqΠpGq “ trpΠpGq´1T puqT tp´uqΠpGqq

“ trpΠpGq´1T puqΠpGqpΠpGq´1T p´uqΠpGqqtq (6.1.14)

where we used that the trace and transpose only act on the auxiliary space. Now we use
the GLp2Nq covariance to get

trpGT puqG´1pGT p´uqG´1qtq “ trpGtGT puqpGGtq´1T tp´uqq . (6.1.15)

Clearly, for G P SOp2Nq, we have that GtG “ 1. Hence the transfer matrix t̃puq is SOp2Nq

invariant.
This symmetry means that the eigenspaces of the transfer matrix will organise them-

selves into multiplets of SOp2Nq and hence we will have a degenerate spectrum. Just like
the periodic case, in order to lift these degeneracies we can add a twist by considering
Tpuq “ KT puqT tp´uq where Kt “ ´K, while leaving the other boundary trivial. This is
exactly what we imposed in (6.1.8) for the boundary matrices K´ and K` (notice that
It

2N “ I2N ).
Finally, note that any matrix K with Kt “ ´K with distinct non-zero eigenvalues

can be diagonalised by an orthogonal matrix P , i.e. with P tP “ 1. By applying this
transformation inside the transfer matrix, we can transform any K such that Kt “ ´K to
the diagonal matrix K` in (6.1.10).

Parity of the transfer matrix

The transfer matrix (6.1.7) is a polynomial in u of degree 2L. Since the integrals of motion
are the coefficients of its powers of u, one could think that T̃puq has 2L IoMs - twice the
number of a periodic spin chain. However, this is not the case: the transfer matrix of an
open spin chain of length L contains L integrals of motion.

This is due to the fact that the open transfer matrix has simple parity properties in
the spectral parameter, and can be made manifestly even in u by slightly modifying the
conventions we have used so far. In our new conventions, we shift the spectral parameter
in the Lax operators (3.1.3):

Lα
ijpuq “ pu´ θα ` isqδij ` iπpEjiq . (6.1.16)
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After building the transfer matrix (6.1.7), we normalise it by a function of u:

Tpuq “
T̃puq

u` i{2 . (6.1.17)

As we prove in Appendix E.1 doing so ensures that:

Tpuq “ Tp´uq , (6.1.18)

meaning that the transfer matrix of an open spin chain is even in the spectral parameter.

6.2 Open Q-system

The spectrum and eigenstates of the open transfer matrix can be reconstructed via the
Algebraic Bethe Ansatz [103], in a very similar way to the periodic spin chain described in
detail in section 3.4. In particular, states can be built by applications on a vacuum vector
of some B operators, evaluated at the 2N ´ 1 sets of Bethe roots tui

ku
2N´1
i“1 , which are the

solutions to the nested open Bethe equations.
We will not present the detailed calculations here. The key point is that we can package

the 2N ´ 1 sets of Bethe roots into 2N ´ 1 sets of Q-functions, who form a open Q-system
analogous to the periodic one described in section 3.6.

Let us define ζN`a ” ´ζN´a, @a ą N . We define the open Q-functions as:

QApuq “ NA

˜

ź

aPA

ζiu
a

¸

F|A|puqqApuq , (6.2.1)

where F|A| are some functions that can be changed using the gauge freedom of the open
Q-system, and qA are the Baxter polynomials, monic polynomials in u containing the
Bethe roots. The structure of the open Q-functions is very similar to the periodic Q-
functions (3.6.8); in particular, the boundary parameters ζi play the same role as the twist
eigenvalues of the periodic case.

There are 22N Q-functions in total, and the QQ-relations still hold [104]:

QAabpuqQ
r´2s

A puq “ QAapuqQ
r´2s

Ab puq ´QAbpuqQ
r´2s

Aa puq . (6.2.2)

As argued in [102], the main feature of the Q-functions for open spin chains are the following
conditions on the Baxter polynomials qApuq:

q1...lpuq “ q1...2N´lp´uq, l ď N (6.2.3)

This holds for other choices of the indices as well; in particular, if l “ N , this relation
implies that the middle node Baxter polynomial q1...N is even in u1.

1In the paper [102], the authors claim that all the open Q-functions should be even. This is not true,
as can be verified from explicit calculations even in the simplest examples: only the middle node Baxter
polynomials are even in u.
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6.3 Open T-system

We now construct the family of mutually commuting, totally antisymmetric transfer ma-
trices Tipuq, i “ 1 . . . 2N for the twisted Yangian, which will form the open T-system.
Although conceptually similar to the periodic case, fusion for the open spin chain is more
complicated, since the underlying algebra is the BYBE (6.1.2) rather than the simpler RTT
relations.

In order to remove some overall factors that would otherwise appear throughout this
section, we introduce the normalised rational R-matrix via a rescaling of (2.2.3):

Spuq “
Rpuq

u` i
“

1
u` i

pu1 ` iP q . (6.3.1)

This rescaling leaves invariant the RTT relations and is an isomorphism of the Yangian
Y pglN q.

In the periodic case, we obtained the totally antisymmetric transfer matrices via the
quantum minors (3.7.7). We will use a similar approach here: we define the Sklyanin
minors [43] as the matrix elements of the following equation:

Umpuq ” AmU1S
t
12U2 . . . Um´1

˜

m´1
ź

k“1
St

km

¸

Um . (6.3.2)

In this equation, we have used the antisymmetriser Am, the normalised Rt-matrix Stpuq “
Rtpuq

u`i and introduced the following shorthand notation:

Uj ” U´
j

ˆ

u´ i
m` 1

2 ` ij

˙

, (6.3.3)

St
kl ” St

klp´2u` ipm` 1 ´ l ´ kqq . (6.3.4)

Explicitly the Sklyanin minors are given by:

Ua1...am
b1...bm

puq “
ÿ

pPSm

sgn p ¨ pUmpuqq
app1q...appmq

b1...bm
. (6.3.5)

The Sklyanin minors satisfy a generalised BYBE, where the R-matrix is substituted with
the fused R-matrix in a similar way as (A.3.4) [43].

In contrast with the quantum minors, the Sklyanin minors are not enough to define the
open antisymmetric transfer matrices. In fact, we also need the fused K` matrix as the
matrix elements of the following equation:

Km
` puq ” AmK

`
1 S̃

t
12K

`
2 . . .K`

m´1

˜

m´1
ź

k“1
S̃t

km

¸

K`
m , (6.3.6)

where S̃t
kl ” St

klp2u` ipm` 1 ´ l´ kqq and K`
j ” Kjpu` im`1

2 ´ ijq. Explicitly we define:

Ka1...am
b1...bm

puq “
ÿ

pPSm

sgn p ¨ pKmpuqq
app1q...appmq

b1...bm
. (6.3.7)
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Notice that we can also define the boundary matrix Km
´ puq by substituting U with K´

in (6.3.5). This will be used in chapter 8.
Using both the Sklyanin minors (6.3.5) and (6.3.7), we can define the m-th fused anti-

symmetric transfer matrix as:

T̃mpuq “ trmpKmpuqUmpuqq “ Ka1...am
b1...bm

puqU b1...bm
a1...am

puq, @m ď 2N , (6.3.8)

where the trace is taken on m antisymmetrised copies of the auxiliary space. Just like the
periodic case, T̃2N is the center of the twisted Yangian Y `

2N and is known as the Sklyanin
determinant.

It is possible to make the fused antisymmetric transfer matrices even in u by a simple
rescaling. In particular, we have that:

Tmpuq “
T̃mpuq

śm
k“1

`

u´ im
2 ` ik

˘ , Tmpuq “ Tmp´uq @m ď 2N . (6.3.9)

The fused antisymmetric transfer matrices form a commuting family of quantum operators:

rTipuq,Tjpvqs “ 0, @i, j ď 2N . (6.3.10)

Just like in the periodic case, it is possible to introduce further fused transfer matrices using
Young diagrams; we will not do so explicitly, as we will not be using them in this work.
The open T-system is formed by these fused transfer matrices, plus the open Hirota and
CBR equations, which have a similar form to the periodic ones.

6.4 Diagrammatic rules for open spin chains

As in section 3.2, we can implement diagrammatic rules to express many algebraic equations
for open spin chains. These will essentially be the same as the one presented in section 3.2
with a few new ingredients:

• The dashed auxiliary horizontal lines, which is obtained after an horizontal line is
reflected on the boundary. It is associated with a negative spectral parameter. A
physical space vertical line crossing a dashed horizontal line gives the Lax operator
Lt.

• The transposed R-matrix Rt, which is obtained when a solid and a dashed horizontal
line cross.

• The boundary matrices K` and K´, which are put on a black vertical line representing
the "boundary" physical space (which is trivial in this section).

We draw the diagrammatic rules in figure 6.1.
As an example of their use, we draw the BYBE equations (6.1.2) and (6.1.6) in figures 6.2

and 6.3 respectively.
Furthermore, we use them to draw the proof of the statement that the open transfer

matrices commute with each other, i.e. rTpuq,Tpvqs, in figure 6.4.



6.5. TRANSFER MATRIX EIGENVALUES FROM Q-FUNCTIONS 113

Figure 6.1: Diagrammatic rules

6.5 Transfer matrix eigenvalues from Q-functions

Based on the parity properties of the transfer matrix Tpuq a proposal for its eigenvalues in
terms of a handful of Bethe roots was proposed in [102]. We recast this here in terms of
Q-functions in the following way:

T1puq “

N
ÿ

k“1
Λkpuq (6.5.1)

where we have introduced the quantum eigenvalues Λkpuq defined by

Λkpuq “
Q

r2s

1...k´1
Q1...k´1

Q
r´2s

1...k

Q1...k
. (6.5.2)

By exploiting the analytic structure of the Q-functions (6.2.1) the quantum eigenvalues can
be explicitly written as

Λkpuq “
Fk´1pu` iq

Fk´1puq

Fkpu´ iq

Fkpuq

q̃1...k´1pu` iq

q̃1...k´1puq

q̃1...kpu´ iq

q̃1...kpuq
, (6.5.3)
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Figure 6.2: The BYBE (6.1.2)

Figure 6.3: The BYBE (6.1.6)

where q̃A indicates the twisted Baxter polynomial
ś

aPA ζ
iu
a qA. From this equation it is

possible to fix uniquely the functions Fk by confronting (6.5.1) with the eigenvalues of Tpuq

obtained from the boundary monodromy matrix.
Just like the periodic case, we can use the quantum eigenvalues to build the eigenvalues

of all antisymmetric transfer matrices. Since we know the latter from the fusion procedure,
we can treat the quantum eigenvalues as unknown in a linear system. Solving it lets us
reconstruct the Q-functions, i.e. the Bethe roots, without the need of the Bethe equations.

Note that the asymptotics of the antisymmetric open transfer matrices are directly
related to the elementary symmetric polynomials in the K` boundary matrix eigenvalues.

6.6 Open Baxter TQ equation

The key equations for the rest of this work describing open spin chains are the Baxter and
the Dual Baxter equation.
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(a) Step 1 — We start off with
TpuqTpvq, which acts as an opera-
tor on the quantum space.

(b) Step 2 — By introducing
the identity as a product of S-
matrices from the unitarity condi-
tion SpuqSp´uq “ 1, we can pass
the auxiliary space line of Tpuq

through Tpvq.

(c) Step 3 — Now we apply the
boundary Yang-Baxter equations
(6.1.2) and (6.1.6).

(d) Step 4 — Finally we resolve the
identity again using unitarity, to
obtain TpvqTpuq hence proving that
indeed the transfer matrices com-
mute with each other for arbitrary
values of the spectral parameter.

Figure 6.4: Diagrammatic proof of rTpuq,Tpvqs “ 0

In the conventions of this chapter, we define the open Baxter and open dual Baxter
operators as:

O “

2N
ÿ

a“0
p´1qa Tr´2N`a`1s

a D´2N`2apuq , (6.6.1)

O: “

2N
ÿ

a“0
p´1qaD2N´2aTra´1s

a puq . (6.6.2)

Then the Baxter and Dual Baxter equation are respectively:

OQipuq “ 0 , (6.6.3)
O:Qipuq “ 0 . (6.6.4)

The Baxter and Dual Baxter equation described here can be simplified - the antisymmet-
ric transfer matrices of an open spin chain contain non-dynamical prefactors that can be
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stripped out, and furthermore we can reduce the Q-functions to be twisted Baxter polyno-
mials. We will see an example of this in the rank 4 case in the next section, and also in
chapter 8.

6.7 Functional Separation of Variables for the twisted Yan-
gian

In this section, we will work for simplicity on the rank 4 case Y `p4q. The motivations for
choosing this as our example are two:

• The rank 2 case Y `p2q is isomorphic to other types of twisted Yangian [97], such as
the Reflection Algebra [100]. Thus the rank 4 case is the simplest case which shows
the unique features of the family Y `p2Nq;

• Y `p4q is the symmetry of the open Fishchain model described in chapter 8.

We will write down the Baxter and Dual Baxter equation for twisted Baxter polynomials,
and use them to obtain the functional SoV measure by imposing functional orthogonality.
Finally, we will work out the functional scalar product between Bethe states.

First, we need to rescale the antisymmetric transfer matrices to remove some overall
non-dynamical factors. In particular, we define:

τ1puq “ T1puq , (6.7.1)
τ2puq “ T2puqpu` i{2qpu´ i{2q , (6.7.2)

τ3puq “ T3puq
pu` iqpu´ iq

Q
r2s´2s

θ puqQ
r´2s`2s

θ puq
, (6.7.3)

where Qθpuq ”
śL

α“1pu´ θαqp´u´ θαq.
By stripping away the normalisation NA and Fk from the Q-functions (6.2.1), we get

the following form for the Baxter operator:

O4 “ O´ ` τ´
2 ` O` , (6.7.4)

where
O´ “ Q

r´2ps`1qs

θ Q
r´2ss

θ D´2 ´ pu´ iqQ
r´2ss

θ τ
r´2s

1 D´1 (6.7.5)

O` “ ´uQ
r2ps´1qs

θ τ3D ` pζ1ζ2q2Q
r2ps´1qs

θ Q
r2ss

θ D2 (6.7.6)

The dual Baxter operator is:
O:

4 “ O:
` ` τ`

2 ` O:
´ (6.7.7)

where:
O:

` “ Q
r2ss

θ Q
r2ps`1qs

θ D2 ´ pu` iqQ
r2ss

θ τ
r2s

1 D (6.7.8)

O:
´ “ ´uQ

r´2ps´1qs

θ τ3D´1 ` pζ1ζ2q2Q
r´2ps´1qs

θ Q
r´2ss

θ D´2 (6.7.9)
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The Baxter and Dual Baxter equations are given by:

O4q̃apuq “ 0 (6.7.10)
O:

4q̃
apuq “ 0 (6.7.11)

(6.7.12)

where q̃a “ ζiu
a qapuq are the twisted Q-functions and q̃a are their duals, defined exactly as

in the periodic case (3.6.10).

6.7.1 Functional measure and scalar product

Functional Separation of Variables works for the twisted Yangian in the same way as for
the periodic case, which we analysed in chapter 5.

The first step consists in defining the functional bracket:
´́

f, g
¯̄

α
“

ż

C
duµαpuqfpuqgpuq (6.7.13)

where µα is the functional measure, and C is a contour that contains all the poles of µα and
of the dual Baxter equation, if the latter has any. In our conventions where the Q-functions
are Baxter polynomials, the poles only come from the measure.

We can bootstrap the family of measures µα, α “ 1 . . . L by imposing the functional
orthogonality relation:

´́

fO:
4g

¯̄

α
“

´́

gO4f
¯̄

α
(6.7.14)

By using our gauge choices, we get that:

µαpuq “

L
ź

β“1

Γpu´ θβ ` ips´ 1{2qq

Γpu´ θβ ´ ips´ 3{2qq

Γpu` θβ ` ips´ 1{2qq

Γpu` θβ ´ ips´ 3{2qq
ραpuq, α “ 1 . . . L , (6.7.15)

where ραpuq are any i-periodic functions. Notice that µα have infinite poles if the weights
of the representation are non-integer, i.e. for non-compact open spin chains. For the simple
representation s “ ´1{2, we get:

µαpuq “
1

Q
r2s

θ puqQθpuqQ
r´2s

θ puq
ραpuq , (6.7.16)

where ρα is a rational function. If ρα “ 1, the measure has poles at:

t´θβ ´ i,´θβ ` i,´θβ, θβ, θβ ´ i, θβ ` iu, β “ 1 . . . L . (6.7.17)

By choosing the functions ρα appropriately, it is possible to cancel out the poles at ´θβ `ni,
while leaving the functional scalar product of next section unchanged. The functional
bracket can be computed by summing over the residues at these poles, provided the asymp-
totics of the twisted Baxter polynomials are chosen appropriately.
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6.7.2 Scalar products from functional orthogonality

Having defined the functional bracket (6.7.13), we can use it to obtain an expression for the
scalar product of states of the open spin chain. The procedure is quite similar to the one
derived for periodic spin chains.

The starting point is the system of trivial equalities:
´́

q̃B
j puq

´

O:

4,A ´ O:

4,B

¯

q̃i
Apuq

¯̄

α
“ 0 , (6.7.18)

where the subscript A (B) in the Dual Baxter operator imply that it is applied to the state
labelled by A (B).

Notice that these equalities are all trivial, since O:
4q̃

i “ 0 and the functional orthogo-
nality condition implies that

´́

fO:
4q̃j

¯̄

“ 0 @j, for any function f that does not spoil the
convergence of the functional bracket.

The next step is to use the explicit form of the dual Baxter operator (6.7.7), and expand
the transfer matrices in integrals of motion. The integrals of motion will be the variables
for which we solve the linear system composed by the equations (6.7.18).

For the class of representations we consider, of weights p´2s,´2s, 0, 0q, s P ´N
2 , T1 and

T3 contain L Integrals of motion each, while T2 contains 2L of them. Therefore, we will
need 4L equations of type (6.7.18).

A natural way to pick this number of equations is by taking α “ 1 . . . L, j “ 1, 2 and
i “ 3, 4 in (6.7.18). This is done in analogy to the periodic case, where such choice would
reproduce the wavefunctions Ψpxq “ xx|Ψy present in the scalar product computed via the
B operator. We hope that this is the case here as well, although we do not possess an SoV
B operator for this open spin chain.

We will now compute the scalar product explicitly. For simplicity, we set L “ 1 and
s “ ´1{2. To do so, we need to expand the functional orthogonality relation (6.7.18), and
we get:

´́

ˆ

q̃i
Apuqr´1spu´ θ1 ´ iqp´u´ θ1 ´ iqIAB

2,1 puq,

´ q̃i
Apuqr´1spu´ θ1 ` iqp´u´ θ1 ` iqIAB

2,2 puq,

´ q̃ipuqr`1spu`
i

2qQ
r´2s

θ IAB
1 puqr`1s,

´ q̃ipuqr´3spu´
i

2qpu´ θ1 ` iqp´u´ θ1 ´ hqIAB
3 puqr´1s

˙

q̃B
j puq

¯̄

α
“ 0 .

Here, we have introduced the IoMs contained in the antisymmetric transfer matrices eigen-
values τi as Ii. We splitted the ones in τ2 into two factors, I2,1 and I2,2, each containing
L “ 1 IoMs. Furthermore, IAB

i indicates that we are subtracting the IoMs evaluated on the
state B from those evaluated on the state B. Some of these quantities must be non-zero if
A ‰ B.
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As in the periodic case, in order to have a non-trivial solution of this linear system, we
must have that:

det
j“1,2;i“3,4

´́

q̃A
j Lq̃

i
B

¯̄

9δAB , (6.7.19)

where L is the following vector applied to the right Q-function:

L “

" ˆ

u`
i

2

˙

Q
r´2s

θ D, pu´ θ1 ` iqp´u´ θ1 ` iqD´1,

pu´ θ1 ´ iqp´u´ θ1 ´ iqD´1,

ˆ

u´
i

2

˙

Q
r`2s

θ D´3
*

.

(6.7.20)

This formula can be easily generalised to any L and s P ´N
2 , and forms the first step for the

application of FSoV to open spin chains. In particular, we hope to be able to apply this
construction to Wilson loops in N “ 4 SYM, via the open Fishchain that we will introduce
in Chapter 7.



120 CHAPTER 6. OPEN INTEGRABLE SPIN CHAINS



Part II

Spin Chains in Gauge Theories
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Chapter 7

Conformal Field Theory and N “ 4
SYM

In Part 1 of this thesis, we have introduced the tools to analyse integrable systems, with
a particular focus on integrable spin chains. In this Part, we will see how these systems
arise in High Energy Physics, and how they can be used to compute physical observables
in Quantum Field Theories. In particular, we will focus on the context of the AdS5{CFT4
correspondence, a gauge/gravity duality formulated between type II string theory on a
AdS5 ˆ S5 background and 4-dimensional N “ 4 Supersymmetric Yang-Mills theory with
SUpNq gauge symmetry [4]. This correspondence gave a huge impulse to the study of
integrability in the context of high energy physics, due to the fact that the 2-dimensional
sigma model describing strings moving in AdS5 spacetime was proven to be classically
integrable [105].

Supported by this fact, the search of integrable structures in the CFT side of the duality,
i.e. N “ 4 SYM, turned out to be extremely fruitful. The first breakthrough happened
when it was noticed that [3] in the large N (planar) limit the one-loop mixing matrix of
operators composed by a single trace of scalar fields can be identified with the Hamiltonian
of a periodic integrable SOp6q spin chain. This Hamiltonian can then be diagonalized using
the tools of integrability seen in Part 1 of this thesis. Its eigenvalues correspond to the
one-loop anomalous dimensions of the single-trace operators of N “ 4 SYM theory.

The work by Minahan and Zarembo opened up a line of research that culminated in a
method that lets us obtain the full, non-perturbative spectrum of planar N “ 4 SYM, known
as the Quantum Spectral Curve (QSC) [57]. The QSC computes the Baxter Q-functions
of the integrable spin chain dual to N “ 4 SYM, and extracts the spectrum of single-trace
operators from them. Hopefully, this line of research will lead us to the calculation of the
three-point structure constants too, in light of the promising results from recent works [15,
16, 18, 21, 22, 106–109]. If this task is completed, integrability will have played the main
role in the solution of an interacting gauge theory, a feat that looked impossible just twenty
years ago.

In this chapter, we will review the initial part of this story, introducing the theory of
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N “ 4 SYM and describing how Minahan and Zarembo found a spin chain in it. While their
construction is perturbative, it inspired non-perturbative dualities as well, such as the one
that we will see in the next chapter between cusped Wilson lines and the open Fishchain.

7.1 Brief overview of N “ 4 SYM theory

In this section, we will give a brief overview of N “ 4 SYM. We will first introduce Conformal
Field Theories and define fundamental concepts such as the scaling dimensions, three-point
correlation functions. We will end this section with the Lagrangian for N “ 4 SYM, which
will be useful in the next chapter.

7.1.1 CFT basics

A conformal field theory (CFT) in D dimensions is a quantum field theory enjoying con-
formal symmetry, which in Euclidean space is represented by the global symmetry group
SOp1, D ` 1q. Being a QFT, a CFT is endowed with an Hilbert space (one for each time
slice1), and operators acting on it. The operators acting at a single point in space, or local
operators, of a CFT are its quantum fields.

The observables in a CFT are the correlation functions of its operators, i.e. their expec-
tation values on the vacuum state, where each operator is evaluated at a different spatial
point. Conformal symmetry makes correlation functions extremely constrained: in a CFT,
any correlation function of local operators can be fully determined by two sets of numbers,
the conformal (or scaling) dimensions and the structure constants of its primary opera-
tors. Here, primary operators are the operators that act as “highest weight states” for the
conformal group, i.e. they are annihilated by the action of a subset of its generators, the
special conformal transformations. Primary operators are also eigenstates of the dilatation
operator D of the conformal group, with eigenvalues being their scaling dimension ∆.

Scaling dimension Given two scalar primary operators OA, their two point correlation
function can be constrained by the Ward identities associated to conformal symmetry. This
implies that, if OA are both scalar primary operators, their two point correlation function
is:

xOApxqOBpyqy “
δAB

|x´ y|∆A`∆B
, (7.1.1)

where ∆A is the scaling dimension of the operator OA, ∆B is the scaling dimension of OB,
x and y are D-dimensional Euclidean vectors and | | is the Euclidean norm on RD. If
O are not scalar, their two point function will depend on ∆, plus an extra, non-dynamical
factor that depends on the spin of the operators.

1In Euclidean space, we can just select one dimension and treat it as "time".
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Structure constants The Ward identities constrain the three point correlation function
of 3 scalar primary operators to be:

xOApz1qOBpz2qOCpz3qy “
λABC

|z12|∆1`∆2´∆3 |z23|∆2`∆3´∆1 |z13|∆1`∆3´∆2
, (7.1.2)

where zij ” zi ´zj and λABC are C-numbers called structure constants. If O are not scalars,
their three point function will have extra non-dynamical factors that depend on the spin of
the operators.

The form of the 2 and 3 point functions are completely fixed by conformal invariance,
and the only dynamical dependence in them are the CFT data, the set of all possible ∆
and λ in a given theory.

OPE A CFT has a convergent Operator Product Expansion (OPE): given two operators
OA and OB at two different points, we can expand their product in a convergent series
around one of these two points:

OApxqOBpx1q “
ÿ

C

λABCpx´ x1q∆C´∆A´∆BOCpxq . (7.1.3)

Using this property, we can always express an N -point correlation function in terms of a
pN ´ 1q-point one plus the CFT data. This lets us always reduce the calculation of any
correlation function to the knowledge of the CFT data. Therefore from the knowledge of
CFT data we can determine any observable in a CFT, i.e. solve it.

7.1.2 N “ 4 SYM theory

Maximally supersymmetric Yang-Mills theory in D “ 4, or N “ 4 SYM, is a CFT in
4-dimensional Euclidean space, possessing the maximal amount of supercharges allowed
for this spacetime. It is an interacting gauge theory, with gauge symmetry SUpNq. Cru-
cially, its conformal symmetry is unbroken at any order in perturbation theory [110]. Its
Lagrangian is given by:

L “
1

g2
YM

Tr
„

1
2 rDµ, Dvs

2
` pDµΦiq

2
´

1
2 rΦi,Φjs

2
` iΨ̄

`

ΓµDµΨ ` Γi rΦi,Ψs
˘

` Bµc̄Dµc` ζ pBµAµq
2
ı

(7.1.4)
Here, gY M is the Yang-Mills coupling, and all the fields are in the adjoint representation of
SUpNq. These fields are:

• Φi, i “ 1 . . . 6 are scalar fields;

• Ψa, a “ 1 . . . 4 are Dirac spinor fields;

• Aµ is the non-abelian gauge field;

• c, c̄ are the ghost fields.
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We will be mostly interested in the planar limit of N “ 4 SYM, which is obtained by sending
the rank N of the gauge group SUpNq to infinity while the ’t Hooft coupling g “ g2

Y MN
stays fixed. In this limit, the Feynman diagrams that cannot be drawn on a spherical surface
become subleading, as they will be multiplied by overall negative powers of N . Hence, only
the so-called planar diagrams, that can be drawn on spherical surfaces, will contribute to
the correlation functions in the planar limit.

7.1.3 The SUp2q subsector of N “ 4 SYM and spin chains

In this section, we will review the seminal work by Minahan and Zarembo [3].
We start by noticing that the 2-point correlation function (7.1.1) is not as simple as

it looks. In fact, the operators OA, eigenstates of D, are actually renormalized opera-
tors, which are related to a naive set of bare operators (i.e. the quantum fields in the
Lagrangian (7.1.4)) via the so-called mixing matrix Ĥ as:

OApxq “

´

eĤ log Λ
¯

AB
OB

0 pxq , (7.1.5)

where Λ is a momentum cutoff. In fact, under a RG flow the bare operators mix between
each other, while the renormalized ones have simple scaling:

OApxq Ñ λ∆OApλ´1xq . (7.1.6)

This means that the latter must be eigenvectors of the mixing matrix Ĥ, with eigenvalue ∆:
therefore, by diagonalizing Ĥ we can find the scaling dimensions of our theory. Of course,
this is easier said than done: since N “ 4 SYM is a very complicated interacting theory,
even taking simple operators and computing Ĥ at 1-loop level is a very hard task. Then
we would still need to diagonalize it and find its eigenstates!

Minahan and Zarembo in [3] noticed that the 1-loop expansion of the mixing matrix for
operators which are made by a single trace of scalar fields of N “ 4 SYM is the Hamiltonian
of a spin chain, for which the Algebraic Bethe Ansatz (3.4) can be used to find eigenstates
and eigenvalues.

We will now review in detail how this is done for the so-called SUp2q sector of N “ 4
SYM.

We start by considering single-trace operators of the 6 scalars Φi of N “ 4 SYM:

O0
Apxq “ tr pΦi1 . . .ΦiLq (7.1.7)

To compute Ĥ at 1-loop, we need to compute a huge number of planar diagrams, which
will be of self energy type and of "interaction" type between two scalars, as in figure 7.1.
Since we are interested only in the UV divergent part, we only need to evaluate them as
the loop momentum k Ñ 8. In this limit, we only obtain two types of integral, which give
rise to a logarithmic and a quadratic divergence, given by:

I1 ” g2 log Λ “
λ

2

ż Λ d4k

p2πq4
1

pk2q2 , I2 ”
g2

2
Λ2

p2 “
λ

2

ż Λ d4k

p2πq4
1

k2p2 , (7.1.8)
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Figure 7.1: Planar diagrams for the 1-loop mixing matrix of single trace scalar operators,
adapted from [3]

.

where g2 ”
λ

16π2 . By summing over all diagrams, the second contribution drops out and we
obtain a logarithmic divergence, as we would expect from the loop expansion of the mixing
operator in (7.1.5). Explicitly we get:

´

eĤ log Λ
¯...,in,in`1,...

...,jn,jn`1,...
» 1 ´

g2N

16π2 logpΛq

´

2δjn
in
δ

jn`1
in`1

` δinin`1δ
jnjn`1 ´ 2δjn`1

in
δjn

in`1

¯

, (7.1.9)

where we only have non-zero elements for pairs of consecutive indices. This operator can be
written in a form which resembles a spin chain Hamiltonian acting on the following states:

|si1 . . . siLy (7.1.10)

where sin are 6-dimensional spins. These correspond to the operators (7.1.7), with the
obvious identification of si Ø Φi, i “ 1 . . . L. It is easy to then rewrite (7.1.9) acting on
these state by introducing the identity, the permutation and the trace operators:

I |. . . sisj . . .y “ |. . . sisj . . .y

P |. . . sisj . . .y “ |. . . sjsi . . .y

K |. . . sisj . . .y “ δij

6
ÿ

k“1
|. . . sksk . . .y .

(7.1.11)

We obtain that the spin chain Hamiltonian corresponding to (7.1.9) is:

Ĥ “ g2
L

ÿ

n“1
p2In,n`1 `Kn,n`1 ´ 2Pn,n`1q . (7.1.12)

This is actually the Hamiltonian of a rational integrable spin chain in the fundamental
representation of Y pso6q. It is possible to apply a version of the Nested Bethe Ansatz to find
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eigenstates and eigenvalues of this Hamiltonian, which will correspond to the eigenstates of
the mixing matrix and their 1-loop anomalous dimensions. This would be computationally
heavy, and we prefer to focus on the SUp2q subsector, which is much simpler but can
still illustrate the power of integrability. In this subsector, we will take only the complex
combinations of 4 scalar fields, say Z “ Φ1 ` iΦ2 and X “ Φ3 ` iΦ4. Then the states we
need to consider will have the form |ZZXXZXZ . . . y. The main simplification for this
model is that the trace operator K vanishes identically when applied to any such state.
In fact, we have that applying K to any state with two equal consecutives spins, say ZZ,
gives:

K| . . . ZZ . . . y “

“ K trp. . . pΦ1 ` iΦ2qpΦ1 ` iΦ2q . . . q

“ K trp. . . pΦ1Φ1 ` iΦ1Φ2 ` iΦ2Φ1 ´ Φ2Φ2q . . . q

“ trp. . . p2Φ1Φ1 ` 2Φ2Φ2 ´ 2Φ1Φ1 ´ 2Φ2Φ2q . . . q “ 0 .

. (7.1.13)

Acting on consecutives different spins with K gives 0, so we conclude that K| . . . y “ 0 for
any state. Therefore our spin chain Hamiltonian for the SUp2q subsector is simply:

Ĥ “ 2g2
L

ÿ

n“1
pIn,n`1 ´ Pn,n`1q . (7.1.14)

This is just the XXX Heisenberg spin chain Hamiltonian described extensively in chapter
2. We can easily diagonalise it using the ABA of section 3.4.

For higher loops, one could perform similar calculations and obtain that Ĥ is still dual
to an integrable spin chain. These spin chains have long-range interactions, and most of the
techniques studied in this thesis cannot be easily applied yet to them. The modern method
to study the non-perturbative conformal dimension is the Quantum Spectral Curve, which
does not need to deal directly with these long-range spin chains.

The fact that Feynman diagrams contributing to observables of N “ 4 SYM can be
described in terms of an integrable spin chain, or that they exhibit Yangian symmetry, is
a concept that has been used extensively in literature, despite its quite recent conception:
a few non-exhaustive examples can be found in [33, 111–120]. In the next chapter, our
analysis will use it to derive an integrable spin chain that is dual to all loops Feynman
diagrams describing cusped Maldacena-Wilson loops, in a special limit of planar N “ 4
SYM.



Chapter 8

Cusps in N “ 4 SYM and Open
Fishchain

In this chapter, we consider a cusped supersymmetric Wilson loop (also known as Maldacena-
Wilson loop), with insertions of local operator at the cusp, in planar N “ 4 SYM. We will
adapt methods developed for the Fishnet theories [33, 93, 121], a simple, non-unitary CFT
in D “ 4, to develop an integrability based description, in the form of an open spin chain,
of these observables in the so-called ladders limit of N “ 4 SYM. This spin chain, called the
open Fishchain, is built upon the twisted Yangian Y `p4q in a very non-trivial, non-compact
representation. We use this spin chain description to obtain a solution for the spectrum of
cusped supersymmetric Wilson loop, using the Baxter TQ equation supplemented with a
particular quantisation condition.

The setup that we will consider in this chapter is the following: we have a cusped
Maldacena-Wilson line [23, 122] with internal cusp angle φ, as in figure 8.1. This Maldacena-
Wilson lines has two rays, one to the left and one to the right of the cusp, to which there
are coupled the gauge field and a scalar Φi of N “ 4 SYM.

We pick the scalar Φ1 to couple to the left ray and Φ1 cos θ ` Φ2 sin θ to couple to the
right ray, thus θ is the angle between the two scalar fields. J1 N “ 4 SYM complex scalars
Z “ 1?

2 pΦ5 ` iΦ6q, orthogonal to the ones that couple to the rays, are inserted at the
cusp. In addition, we can include in our description the excited states, in analogy with
[25, 123], which corresponds to insertions on the cusp of linear combinations of the scalars
coupled to the lines. This observable has a well defined anomalous dimension, which was
studied in [124–126] by means of Thermodynamic Bethe Ansatz and then QSC methods.
We will instead carry out a first principles derivation in the so-called ladders limit, which we
describe below. The only insight we borrow from the QSC approach is a simple quantisation
condition, that can be naturally imposed using FSoV arguments as seen in [92].

The ladders limit which we study in this chapter was first introduced for the case J “ 0
in [127] and then used in [128]. This is obtained by taking the ’t Hooft coupling g Ñ 0

1The name of this parameter comes from the Wilson loops literature. In our construction, it will corre-
spond to the length of the spin chain, thus for this chapter we will use the letter J instead of L.
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Figure 8.1: The CFT wavefunction for J “ 2 is a sum of the fishnet diagrams with any
number of bridges. This figure shows one such diagram with l “ 4 bridges. The graph
building operator is highlighted.

and θ Ñ i8, in such a way that ĝ ” g
´

expp´iθ{2q

2

¯
1

J`1 is kept constant. For the case
J “ 0 it was noticed in [127, 128] that only the ladder graphs contribute to the anomalous
dimensions and the correlation functions. In this chapter we show that for the general J ą 0
case the diagrams which survive are those of the fishnet type with a boundary corresponding
to the two rays of the Wilson line (see figure 8.1). This drastic simplification in Feynman
graphs allows us to construct a resummation procedure for them involving a graph-building
operator. Such an operator was first constructed in the case of a Wilson-Maldacena loop
with no scalar insertions in [25] and for the Fishnet theory in [33]. A new ingredient in
our construction is the boundary of the Fishnet, which itself carries a 1D dynamics. This
corresponds to the need to build an open spin chain, with two boundary matrices that are
not constant matrices but nontrivial operators. This novel feature has not been yet fully
investigated in the literature of open spin chains.

In this chapter we first explore the integrability in the classical (strong coupling) limit
ĝ Ñ 8 and then quantise this system and develop the full quantum integrability. The
integrability description comes from a chain of particles living on AdS5 (with radius going
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to zero at strong coupling) also known as “Fishchain” [121, 129, 130]. This time, however,
we have two “particles” with zero conformal weight at the ends of the chain whose motion
is additionally restricted to the Wilson lines. In the quantum construction we identify
explicitly the conserved charges of the system in the commuting family of operators, and
prove that the graph-building operator of the Feynman graph in the perturbation theory
is one of them. In this way we obtain a full quantum non-perturbative description for the
spectrum.

We also briefly discuss an interesting limit when the cusp becomes a straight line. In
this limit the insertion becomes an operator in 1D defect CFT, which has been intensively
studied in recent years [123, 131–138].

8.1 Ladders limit and graph building operator

In this section we will describe the Feynman diagrams contributing to the expectation value
of the cusped Wilson line. We show that in the ladders limit it gets an iterative Dyson-
Schwinger structure, governed by a graph building operator. The graph building operator
is a hybrid between that obtained for J “ 0 in [127, 128] for the cusp without insertion
and the one for the fishnet theory [24, 111]. In the rest of the chapter we develop the
integrability based method to diagonalise this operator.

8.1.1 Graph building operator

Figure 8.2: We only need a subset of all Feynman diagrams. Above are the conventions for
the scalar propagators and the interaction vertex between Φ1 and Z “ Φ5`iΦ6?

2 . We use the
standard definition g “

?
λ

4π with the ‘t Hooft coupling λ “ g2
Y MN .

The Maldacena-Wilson Loop with J insertions of scalar fields and cusp angle φ is given
by:

W “
1
N
trP exp

ż 8

0
dt 4πg

`

i A ¨ x1ptq ` Φ1|x1ptq|
˘

ˆ Zp0qJ ˆ P exp
ż 8

0
ds 4πg

“

´i A ¨ x1psq ` pΦ1 cos θ ` Φ2 sin θq|x1psq|
‰

, (8.1.1)
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where x1ptq ”
Bxptq

Bt and x1psq ”
Bxpsq

Bs , g is the ’t Hooft coupling of planar N “ 4 SYM,
P is the path-ordering operator and the trace is taken over the full expression. The two
scalars that couple to the individual Wilson rays form an angle θ between each other.
The expectation value of this quantity is divergent in both the IR and the UV, with the
divergence controlled by the dimension ∆2:

xW y „

ˆ

RIR

ϵUV

˙´∆
, (8.1.2)

where ∆ corresponds to the overall scaling dimension of W and is also known as the cusp
anomalous dimension in the J “ 0 case. The cusp anomalous dimension was studied
intensively in perturbation theory and integrability [122, 124, 125, 127, 128, 139–155]. In
this chapter we will study a more general observable which is the expectation value of W
with J additional insertions (under the trace) of complex scalar fields Z̄ “ 1?

2pΦ5 ´ iΦ6q

at points yi which lie outside of the contour, and also truncate the upper limit in Wilson
lines at some finite t and s. In analogy with [121] we call this object the CFT wavefunction
ψpt, s, yiq. At first sight this object is not gauge invariant, however in the ladders limit
it is well defined. In fact, it can be made gauge invariant by closing the Wilson loop by
introducing additional segments of non-supersymmetric Wilson lines running through the
Z̄ insertions, which will decouple in the ladders limit, as in fig. 8.1. As we will see, the role
of the effective coupling in the ladders limit is played by

ĝ ” g

ˆ

exp p´iθ{2q

2

˙
1

J`1
, (8.1.3)

which we will assume finite while g Ñ 0 and θ Ñ i8. In this limit we will get the following
simplifications:

• First of all, since we are taking the ’t Hooft coupling to zero, the gluons and fermions
decouple, and we are left with a theory of interacting scalar fields. Hence, we can
drop out the gauge field A from the definition (8.1.1).

• In a Feynman diagram expansion, only the contributions with the highest power of
cos θ will survive. For J “ 0, the only diagrams at l-loop order correspond to ladder
diagrams, that is, diagrams that contain l scalar propagators beginning on one of the
Wilson lines and ending on the other [128].

• For J ą 0, the scalars at the cusp Z can only contract with the external insertions
of Z̄. This means that only one type of vertex is allowed, i.e. the one in figure 8.2.
This is analogous to what one finds in the simplest fishnet CFT. Consequently, only
“fishnet” diagrams contribute.

2Strictly speaking for J ą 0 it is only divergent for large enough coupling as at tree level we have ∆ “ J .
For J “ 0 it is divergent for any g ą 0.
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Using these simplifications, we can define the CFT wavefunction in the ladders limit as:

ψpt, y1, . . . , yJ , sq ”
1
N

C

tr
J

ź

j“1
Z̄pyjq ˆ P exp

ż t

0
dt1 p4πgq |x1pt1q|Φ1

ˆ Zp0qJ ˆ P exp
ż s

0
ds1 p4πgq |x1ps1q|Φ1 cos θ

G

. (8.1.4)

The CFT wavefunction is obtained expanding the path-ordered exponentials

ψpt, y1, . . . , yJ , sq “

8
ÿ

l“0
ψlpt, y1, . . . , yJ , sq “

8
ÿ

l“0
tr

ż t

0
dtl|x

1ptlq|

ż tl

0
dtl´1|x1ptl´1q| . . .

ż t2

0
dt1|x1pt1q|

ż s

0
dsl|x

1pslq|

ż sl

0
dsl´1|x1psl´1q| . . .

ż s2

0
ds1|x1ps1q|Flpyj , ti, siq .

(8.1.5)

Here, ψlpyj , ti, siq represents the contribution of the l-bridge fishnet Feynman graph, where
a bridge is defined as a series of J ` 1 propagators connecting the left and right Wilson
rays, as can be seen in figure 8.1. Note that the sum is over the number of “bridges” l. The
integrand in si, ti is given by:

Flpyj , ti, siq “
1
N

ˆ

1
8π2N

˙lpJ`1q`Jpl`1q

p64π2N g2ql J p16π2 g2 cos θqlN pl`1qpJ`1q`1

ż

˜

J
ź

i“1

l
ź

j“1
d4xi,j

¸ ˜

J
ź

r“0

l
ź

k“1

1
pxr`1,k ´ xr,kq2

¸ ˜

J
ź

m“1

l
ź

n“0

1
pxm,n`1 ´ xm,nq2

¸

. (8.1.6)

Here we have defined xk,0 ” y0 ”
`

etk , 0, 0, 0
˘

, xk,J`1 ” yJ`1 ” pesk cosφ, esk sinφ, 0, 0q

@k “ 1 . . . l, and xl`1,j ” yj , x0,j ” 0 @j “ 1 . . . J . In the formula (8.1.6), the second factor
in the first line of the r.h.s contains the contribution from the propagators, the third the one
from the vertices, the fourth comes from the expansion of the path-ordered exponentials,
while the fifth represents the contribution from the closed index loops of the planar diagram.
In the second line we first integrate over all positions of the vertices, the second term is a
collection of all vertical propagators, while the third contains that of the horizontal ones
(see figure 8.1 for the case of J “ 2 and l “ 4). Notice that at any loop order these graphs
have the same order in N , consistent with the fact that we are using a planar diagram
expansion. Instead of computing this integral we notice that we can define it recursively in
terms of the inverse of a graph building operator as we illustrate below. First, notice that
lyi acts on scalar propagators as:

lyj

1
pyj ´ xj,lq

2 “ ´4π2 δpyj ´ xj,lq . (8.1.7)
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Moreover, acting with BtBs on the contour of a Wilson line brings down the expansion of
the path ordered exponential by one step, at the cost of a factor |y1

0ptq||y1
J`1psq|. Therefore

acting on ψ with a string of lyj , followed by BtBs, we get back ψ expanded to one less
bridge, up to a multiplicative factor:

BtBs

J
ź

j“1
lyjψl “ p´1qJ p4ĝ2qJ`1 |y1

0||y1
J`1|

śJ
i“0pyi ´ yi`1q2

ψl´1 , (8.1.8)

where we use the definition of ĝ from (8.1.3). From this we can extract an operator anni-
hilating the CFT wavefunction:

pB̂´1 ´ 1qψ “ 0 , B̂´1 ”
p´1qJ

p4ĝ2qJ`1

śJ
i“0pyi ´ yi`1q2

|y1
0||y1

J`1|
BtBs

J
ź

j“1
lyj . (8.1.9)

We refer to B̂´1 as an inverted graph-building operator. The role of B̂´1 ´ 1 was realised
in [129] to be the analogue of the world-sheet Hamiltonian of a string theory 3. We will
explore this further in the next section.

The Wilson loop with insertion W is invariant under dilatations, which stretches the
space around the origin (which we take to be the position of the cusp). Thus we can use
the following dilatation operator, acting on the CFT wavefunction

D̂ “ ´i

˜

Bt ` Bs `

J
ÿ

i“1
pyi ¨ Byi ` 1q

¸

, (8.1.10)

to measure the dimension ∆ of the initial cusped Wilson line. More precisely, the eigenvalue
of D̂ is i∆. This operator commutes with B̂ as it is easy to see. Another operator which
commutes with B̂ is the generator of rotations in the orthogonal plane to the Wilson line:

Ŝ “ i
J

ÿ

i“1

´

y3
i By4

i
´ y4

i By3
i

¯

. (8.1.11)

This operator measures the spin of W . For ZJ scalar insertions S “ 0, but one can also
study more general insertions with derivatives in the orthogonal plane, corresponding to
S ‰ 0, which are also described by our construction.

In analogy with the fishnet [130] one should diagonalise both Ŝ and D̂. After doing so,
the equation pB̂´1 ´1qψ “ 0 should restrict us to the discrete spectrum of eigenvalues of the
dilatation operator, which would give us all the anomalous dimensions of the operators with
given quantum numbers. Indeed we will find that there are infinitely many (but a discrete
set) of such ψ’s diagonalising all the 3 operators. In analogy with [25, 123] we expect each

3It’s important to notice that the graph-building operator is diagonalisable and its spectrum contains
only operators with non-trivial anomalous dimension. All operators which form Jordan blocks, like those
studied in [156], seem to be absent from its spectrum.
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of them to correspond to a particular insertion of operators, which could include derivatives
and extra Φ1,Φ2 fields in addition to ZJ , whose number is fixed by the R-charge. These
type of insertions at the cusp will not modify the iterative structure of the diagrams, instead
just adding a finite number of propagators close to the cusp (cf. figure 8.3). Therefore, all
these states should be governed by the same equation (8.1.8).

Figure 8.3: An example of an “excited state” for J “ 2. Here, propagators from the
extra insertion of Φ1 at the cusp contract with the Wilson line without crossing any other
propagators of Φ1 (shown in red), as such diagrams would be subleading in the ladders
limit.

In the next sections we will explore how the integrability arises explicitly in this system.
In particular, we will show first in the classical (strong coupling) limit and then in general
that the operators B̂, D̂ and Ŝ are part of a bigger commuting family of operators.

8.2 Classical open fishchain

In this section, following [129], we interpret the inverse of the graph-building operator as
a Hamiltonian of a quantum system of particles. Then we take the quasi-classical strong
coupling limit of the system, deriving the classical fishchain with specific open boundary
conditions. We analyse in detail the classical system and find some of the solutions of the
equations of motion.

8.2.1 Strong coupling limit

The starting point for the strong coupling ĝ Ñ 8 analysis is equation (8.1.8). By re-writing
(8.1.9) in terms of the conjugate momenta:

pi “ ´iByi , πt “ ´iBt, πs “ ´iBs, (8.2.1)
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we obtain the Hamiltonian Ĥ, governing a system with 4J`2 degrees of freedom, given by:

Ĥ “ πt πs

J
ź

i“1
p2

i ` p4ĝ2qJ`1 |y
1

0ptq||y
1

J`1psq|
śJ

i“0pyi ´ yi`1q2
. (8.2.2)

In this section we will be treating this Hamiltonian as the one of a classical system. In
analogy with [129] we will see that the classical limit corresponds to the strong coupling
ĝ Ñ 8 limit of the original quantum system (8.1.9). We will now demonstrate the classical
integrability of this system and then describe its quantisation in section 8.4.

We remark that yi, i “ 1 . . . J are 4D vectors with four bulk degrees of freedom for
each one, while y0 and yJ`1 are 4D vectors having one boundary degree of freedom each.
Therefore, without loss of generality, we parametrise the latter as:

y0ptq “
`

et, 0, 0, 0
˘

, yJ`1psq “ pes cosφ, es sinφ, 0, 0q . (8.2.3)

We will find it beneficial to embed the system in 6D space, which will allow to make
the conformal symmetry of the system manifest, but will also result in a local action with
nearest neighbour interaction.

In the rest of this section we will deduce the classical equations of motion of this system,
using the Lagrangian formalism. First, by performing a Legendre transformation on (8.2.2),
we find the Lagrangian to be:

L “ 2
´2J

2J`1 p2J ` 1q

˜

9t 9s
J

ź

i“1
9y2
i

¸
1

2J`1

´ p4ĝ2qJ`1 |y
1

0ptq||y
1

J`1psq|
śJ

i“0pyi ´ yi`1q2
, (8.2.4)

where 9f ” d
dτ f , with τ being a “world-sheet” time variable (conjugate to the Hamiltonian

(8.2.2)). The action S “
ş

Ldτ is not invariant under time reparametrisation symmetry
τ Ñ fpτq, which is needed to ensure Ĥψ “ 0. In order to enforce this symmetry we
introduce an auxiliary field γ transforming as γ Ñ

γ
9f

when τ Ñ fpτq which gives

L “ 2
´2J

2J`1 p2J ` 1q

˜

1
γ

9t 9s
J

ź

i“1
9y2
i

¸
1

2J`1

´ γ p4ĝ2qJ`1 |y
1

0ptq||y
1

J`1psq|
śJ

i“0pyi ´ yi`1q2
. (8.2.5)

This is now time-reparametrisation invariant. We then eliminate the auxiliary field setting
it to its extremum (by a suitable time reparametrisation). We have to remember that y0
(and yJ`1) is not itself a canonical coordinate, but depends on the world-sheet time through
tpτq (and spτq respectively). Thus we can use 9y0 “ y1

0 9t and similarly 9yJ`1 “ y1
J`1 9s. After

that we get:

L “ p2J ` 2qp2iq
1

J`1 ĝ

«

| 9y0|| 9yJ`1|
śJ

i“1 9x2
i

śJ
i“0 |yi ´ yi`1|2

ff
1

2pJ`1q

. (8.2.6)
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We now embed the system in 6D Minkowksi spacetime, using lightcone coordinates in the
Poincare’ slice:

yµ
i “

Xµ
i

X`
i

, X2
i “ 0, X`

i “ X0
i `X´1

i . (8.2.7)

Hence we get:

L “ p2J ` 2qp2iq
1

J`1 ĝ

«

| 9X0|| 9XJ`1|
śJ

i“1
9X2

i
śJ

i“0p´2Xi.Xi`1q

ff
1

2pJ`1q

. (8.2.8)

Furthermore, we can disentangle this action to bring it to a Polyakov-like form, by intro-
ducing auxiliary fields αi, getting:

L “ ξ

˜

α0
| 9X0|| 9XJ`1|

2 `

J
ÿ

i“1

˜

αi

9X2
i

2 ` ηiX
2
i

¸

` pJ ` 1q

J
ź

k“0
p´αkXk.Xk`1q

´ 1
J`1

¸

, (8.2.9)

where
ξ ” p2iq

1
J`1 ĝ . (8.2.10)

In (8.2.9) we also introduced the light-cone constraint X2
i “ 0 via the Lagrange multiplier

ηi. In order to get back the Nambu-Goto-like form (8.2.8), we have to extremise the fields
αi and plug these values back into (8.2.9). It is possible to do this due to the new re-scaling
symmetry of Xi. More precisely, the Lagrangian (8.2.9) has J ` 3 gauge symmetries: time-
dependent rescaling Xi Ñ gipτqXi, αi Ñ αig

´1{2
i pτq, ηi Ñ ηig

´1{2
i pτq, i “ 0 . . . J ` 1 and

time reparametrisation τ Ñ fpτq, under which fields transform as Xi Ñ
Xi

9f
, αi Ñ 9fαi, ηi Ñ

ηi
9f
. Instead of setting αi’s to their extreme values we can use the symmetries to impose

αi “ 1, @i “ 0, . . . , J . This would lead to the following constraints (the same way as one
gets Virasoro constraints):

9X2
k “ L , (8.2.11)

where

L ” 2
J

ź

i“0
p´Xi ¨Xi`1q

´ 1
J`1 , (8.2.12)

with k “ 1, . . . , J in the first equation. Furthermore, from the equation of motion for
α0 we get | 9X0|| 9XJ`1| “ L: this still leaves us with the freedom to rescale X0 Ñ hpτqX0
and simultaneously XJ`1 Ñ 1

hpτq
XJ`1, which we can fix by imposing additionally | 9X0| “

| 9XJ`1|. Hence, we can just extend the range of k in (8.2.11) to k “ 0, . . . , J ` 1. Finally,
to fix the remaining time-reparametrisation gauge freedom we can set:

L “ 1 , (8.2.13)

which is a convenient gauge to work with. We have imposed J ` 3 conditions, so all gauge
degrees of freedom are fixed. The gauge fixed Lagrangian is then:

L “ ξ

˜

| 9X0|| 9XJ`1|

2 `

J
ÿ

i“1

9X2
i

2 ` pJ ` 1q

J
ź

k“0
p´Xk.Xk`1q

´ 1
J`1

¸

, (8.2.14)
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Finally, by noticing that 2| 9X0|| 9XJ`1| “ 9X2
0 ` 9X2

J`1 ´ p| 9X0| ´ | 9XJ`1|q2 we can replace

| 9X0|| 9XJ`1| Ñ
9X2

0
2 `

9X2
J`1
2 in (8.2.14), modulo terms quadratic in constraints. Similarly,

defining y “ 2
śJ

i“0p´Xi ¨ Xi`1q
´ 1

J`1 » 1 on constraints, we have y “ elog y “ 1 ` log y `

Oplog2 yq, which allows us to replace the potential term by
řJ

k“0
1
2 log ´Xk.Xk`1

2e . Therefore
we get the gauge fixed Lagrangian:

L “ ξ

˜

9X2
0

4 `

J
ÿ

i“1

9X2
i

2 `
9X2

J`1
4 ´

J
ÿ

i“0

1
2 log ´Xi.Xi`1

2e

¸

, (8.2.15)

with constraints given by:
J

ź

i“0

´Xi.Xi`1
2 “ 1 , (8.2.16)

X2
i “ 0 , 9X2

i “ 1 , i “ 0, . . . , J ` 1 . (8.2.17)

Note that on the constraints we also have L » ξpJ ` 1q. In this form the Lagrangian is
explicitly local and the interaction is only between the nearest neighbours. It may appear
a bit strange that the boundary particles have mass 1{2 w.r.t. to the particles in the bulk,
however we will see in the next section that in this way the equations of motion are more
uniform. The reason is that the bulk particles have to be split in two and reflected, unlike
those at the boundaries. In (8.2.14) the 6D variables Xi, i “ 1, . . . , J are independent
canonical coordinates, constrained by (8.2.11) and (8.2.13). At the same time the boundary
particles X0 and XJ`1 are encoded in terms of one variable each tpτq and spτq, due to
(8.2.3). Explicitly:

Xipτq “ ripτq pcoshwipτq,´ sinhwipτq, cosϕi, sinϕi, 0, 0q i “ 0, J ` 1, (8.2.18)

where ϕ0 “ 0, ϕJ`1 “ φ, w0pτq “ tpτq and wJ`1pτq “ spτq. On the constraint 9X2
i “ 1 we

also have riptq “ 1
9wipτq

. Apart from this, the Lagrangian (8.2.14) is very similar to the one
found in the classical limit of the fishnet graphs in [129]. It can be interpreted as the one of
a discretised string with string-bits having a nearest neighbour interaction. However, due
to the difference in the boundary DOFs it still remains to be seen whether the system is
classically integrable, as it was in the original case [129].

8.2.2 Equations of motion

We now compute the Euler-Lagrange equations starting from (8.2.15). The J equations for
bulk variables are interpreted as equations of motion for J bulk particles, while the equations
for X0 and XJ`1 are interpreted as equations of motion for two particles constrained on the
two Wilson lines. Since the Lagrangian (8.2.15) has nearest neighbour interactions, only
the first and last bulk particles in the spin chain will feel the presence of the particles on
the Wilson lines. For example, for the bulk particle j we have [129]:

:Xj “ 2ηjXj ´
1
2

ˆ

Xj`1
Xj`1.Xj

`
Xj´1

Xj .Xj´1

˙

, j “ 1, . . . , J (8.2.19)
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For the particles on the Wilson lines, we only have one physical degree of freedom for each,
tpτq and spτq. The relative equations of motion are given by:

:t
9t2

“
X1.BtpτqX0

X1.X0
,

:s

9s2 “
XJ .BspτqXJ`1

XJ .XJ`1
. (8.2.20)

These two equations can be written in the form (8.2.19) by introducing the reflected particles
X´1 and XJ`2 as the reflection of the particles X1 and XJ w.r.t. the ray parametrised by t
and s respectively. More precisely we introduce the reflection matrix and rotation matrices:

CM
N “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 ´1 0 0

0 0 0 0 ´1 0

0 0 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

MN

, GM
N “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 cosφ ´ sinφ 0 0

0 0 sinφ cosφ 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

MN

.

(8.2.21)

Then we define the images of the particles 1 and J by the reflection about the ray parametrised
by t and s respectively as X´1 “ C.X1 and XJ`2 “ G.C.G´1.XJ “ G2.C.XJ . With these
definitions the equations (8.2.20) coincide with (8.2.19) for j “ 0 and j “ J ` 1 correspond-
ingly.

Thus, we conclude that at the level of the classical equations of motion the open version
of the fishchain we consider here is identical to the double-size closed fishchain of [129],
with length 2J ` 2 and quasi-periodic boundary condition twisted by a 2φ rotation (see
figure 8.4). However, there are some important differences in the Poisson structure and
consequently the quantisation is different.

8.2.3 Conserved charges

The presence of boundaries in the open fishchain breaks the SOp1, 5q symmetry that its
closed counterpart enjoyed to the subgroup SOp2q ˆ SOp1, 1q. Nevertheless it is useful to
define

qMN
j ” 9XM

j XN
j ´ 9XN

j X
N
j “ 2 9X

rM
j X

Ns

j , (8.2.22)

for j “ 0, . . . J ` 1, which are the local SOp1, 5q generators for j “ 1, . . . , J . We also define
the total charge

QMN “ ξ

˜

qMN
0
2 `

J
ÿ

i“0
qMN

j `
qMN

J`1
2

¸

. (8.2.23)
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As the SOp1, 5q symmetry is broken, only the components of QMN corresponding to the
unbroken symmetry subgroup will remain conserved in time. Thus we only have two Noether
charges, corresponding to the SOp2q angular momentum and to the scaling dimension:

S “ Q3,4 , D “ Q´1,0 “ i∆ . (8.2.24)

Figure 8.4: Schematic representation of the open Fishchain

8.2.4 Example of solution of the classical equations of motion

Now we proceed to the numerical solution of the system (8.2.19). To do so, we introduce
the following parametrisation for the bulk particles, which is similar to the one used for the
boundary particles (8.2.18):

Xapτq “
1

b

9w2
apτq ` 9ϕ2

apτq

ˆ

coshwapτq, ´ sinhwapτq, cosϕapτq, sinϕapτq, 0, 0
˙

.

(8.2.25)

where a “ 1, . . . , J . This resolves the X2 “ 0 and 9X2 “ 1 constraints. For the ansatz
(8.2.25) the particles are all in the same plane. The boundary particles are constrained to
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move on the Wilson rays, so their angular position is fixed

ϕ0pτq “ 0 , (8.2.26)
ϕJ`1pτq “ φ . (8.2.27)

We can imagine the simplest solution would be when these particles move along straight
lines. For that we need to compensate the interaction with neighbours, which could other-
wise bend the trajectory, so we require

ϕkpτq “
k

J ` 1φ . (8.2.28)

To simplify our ansatz further we can assume that wkpτq “ W pτq. Plugging this ansatz
into the EOMs (8.2.19) we obtain

wkpτq “ β τ . (8.2.29)
Finally, constraint (8.2.16) gives

¨

˝

sin
´

φ
2J`2

¯

β

˛

‚

2J`2

“ 1 , (8.2.30)

which has 2J ` 2 different solutions

β “ e2πi n
2J`2 sin

ˆ

φ

2 J ` 2

˙

, n “ 1 . . . 2J ` 2 . (8.2.31)

To get an interpretation of this, we also compute the anomalous dimension, using (8.2.24)

∆ “ ´
pJ ` 1q i

β
ξ . (8.2.32)

We see that the ambiguous factor can be absorbed into ξ. In fact, the initial graph building
operator only depends on ξ2J`2, thus this type of ambiguity is expected. In fact this is the
same as in the case of the closed fishchain [129], where the solutions were found to multiply
in a similar way and were responsible for the different asymptotics of a 4 point correlator.
We can check our classical solution by comparing with some known results for J “ 0 case.
From (8.2.32) for J “ 0 we obtain:

∆ “ ˘
2ĝ

sin φ
2

(8.2.33)

which agrees perfectly with the equation (E.6) in [25]. We note that for ĝ ą 0 only the
minus sign solution appears in the spectrum whereas the plus sign solution corresponds to
large and negative ĝ.

More general solutions can be obtained numerically. We generated a couple of solutions,
obtained by perturbing the analytic solution we just presented. These can be found in
figure 8.5a and figure 8.5b.



142 CHAPTER 8. CUSPS IN N “ 4 SYM AND OPEN FISHCHAIN

(a) J “ 2 — Notice that the boundary particles run
away to infinity in a finite amount of time, while
the particles in the bulk have only moved a finite
amount.

(b) J “ 3 — Notice that one of the bulk particles
proceeds to make a complete loop.

Figure 8.5: Plot of the motion of particles obtained by a numerical solution of the classical
equations of motion. In these solutions, motion is restricted to the plane of the Wilson loop.
As expected, the boundary particles are confined to fixed rays whereas the bulk particles
are free to move anywhere in the plane.

8.3 Classical integrability

In this section we prove that the dual model is integrable at the classical level by studying
its Poisson structure. We will construct the Lax matrices, corresponding to the particles in
the bulk, and the dynamical reflection matrix will represent the boundary particles. Using
these building blocks we will construct a family of mutually Poisson-commuting objects.

The main purpose of this section is to establish the grounds for quantisation. For this
reason we will only build here a subset of all commuting integrals of motion, as they will
anyway appear in the quantum case in full generality.

8.3.1 Poisson brackets

In this section we discuss the Poisson structure following from the Lagrangian (8.2.15).
For the bulk DOFs the Poisson structure is identical to the closed fishchain case already
studied in [130]. One can find the conjugate momenta and define the Poisson bracket in
the standard way. In particular, for the bulk particles the momentum conjugate to Xi,M is

PM
i “ ξ 9XM

i , (8.3.1)
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and the Poisson bracket is defined as tXi,M , PN
j u “ δijδ

N
M . Due to the constraints the

Poisson brackets is ambiguous, and we could define a Dirac bracket. Alternatively, one
can work with gauge invariant quantities. The gauge invariant combination of phase space
coordinates for the bulk particles are the local symmetry generators

qMN
i “

1
ξ

`

XN
i P

M
i ´XM

i PN
i

˘

“ XN
i

9XM
i ´XM

i
9XN

i , (8.3.2)

which form the SOp1, 5q algebra under the Poisson bracket:

tqMN
k , qKL

k u “
1
ξ

`

´ηMKqNL
k ` ηNKqML

k ` ηMLqNK
k ´ ηNLqMK

k

˘

, k “ 1, . . . , J . (8.3.3)

Similarly, one can proceed with the boundary degrees of freedom t and s. The canonically
conjugate momenta to tpτq and spτq are

Πt “
ξ

2t1pτq
, Πs “

ξ

2s1pτq
. (8.3.4)

Even though the boundaries explicitly break down the SOp1, 5q symmetry, it is still useful
to define qMN

0 and qMN
J`1 in a similar to (8.3.2) way

qNM
0 “

2
ξ

´

Y M
0 Y

1N
0 ´ Y N

0 Y
1M

0

¯

Πt , qNM
J`1 “

2
ξ

´

Y M
J`1Y

1N
J`1 ´ Y N

J`1Y
1M

J`1

¯

Πs , (8.3.5)

where

Y0 “ tcosh t,´ sinh t, 1, 0, 0, 0u , YJ`1 “ tcosh s,´ sinh s, cosφ, sinφ, 0, 0u . (8.3.6)

Since the Wilson lines explicitly break conformal symmetry, the Poisson bracket of q0 is
modified to

tqMN
0 , qKL

0 u “
1
ξ

`

´η̃MKqNL
0 ` η̃NKqML

0 ` η̃MLqNK
0 ´ η̃NLqMK

0
˘

, η̃ “ η p1` Cq ,

(8.3.7)
where C is the reflection matrix defined in (8.2.21). Similarly for the right boundary we get

tqMN
J`1 , q

KL
J`1u “

1
ξ

`

´η̃MK
ϕ qNL

J`1 ` η̃NK
ϕ qML

J`1 ` η̃ML
ϕ qNK

J`1 ´ η̃NL
ϕ qMK

J`1
˘

, η̃ϕ “ η p1`G.G.Cq ,

(8.3.8)
where G is the rotation matrix defined in (8.2.21).

Finally, let us write the Hamiltonian H, corresponding to the lagrangian (8.2.15) in
terms of the local symmetry generators qi. For this we introduce

Hq ”
1

22J`2 tr
`

q2
0.q

2
1. . . . q

2
J .q

2
J`1.G.G.C.q

2
J . . . . .q

2
1.C

˘

´ 1 . (8.3.9)

Then we find that Hq is proportional to the Hamiltonian H up to a constant multiplier and
up to second order in constraints

Hq “ exp
´

4
ξH

¯

´ 1 » 4
ξH ` OpH2q . (8.3.10)
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As our constraint implies H “ 0 we can equivalently use 4
ξHq instead. The advantage of

Hq over H is that it is written explicitly in terms of qi’s. At explained in [130] in the case
of qi’s there is no difference between the Poisson and Dirac brackets and so they are more
convenient for the quantization.

Next, we will build the Lax representation based on the Poisson structure explained
here and develop the integrability construction.

8.3.2 Lax representation

In this section we will build the the Lax representation for the equations of motion of the

open Fishchain. It is useful to introduce the local current jMN
i “ ´2

X
rM
i´1X

Ns

i

Xi´1.Xi
, satisfying

9qMN
i “ tqMN

i , Hu “ ´
1
2

`

jMN
i`1 ´ jMN

i

˘

, i “ 0, . . . , J ` 1 . (8.3.11)

This allows us to define the Lax pair of matrices Li and Vi:

Li “ u 14x4 `
i

2q
MN
i ΣMN , Vi “ ´

i

4u j
MN
i ΣMN , (8.3.12)

where ΣMN are the 6D σ matrices, giving a 4D representation of SOp1, 5q. The explicit
form we are using can be found in [130]. Both Li and Vi are complex 4 ˆ 4 matrices with
entries that are functions on the phase space of the i-th site of the spin chain. One can
show [129] from (8.2.19) that Li and Vi satisfy the flatness condition

9Li “ Li.Vi`1 ´ Vi.Li “ Vi`1.Li ´ Li.Vi . (8.3.13)

From this we have that the open transfer matrix:

Tpuq “ trLt
J p´uq.Lt

1p´uq.L0puq.L1puq ¨ ¨ ¨LJ puq.LJ`1puq.G4.G4 , (8.3.14)

is conserved in time for any value of u, i.e. tTpuq, Hu “ 0. In the above expression we have
defined the twist matrix:

G4 a
f “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

ei φ
2 0 0 0

0 e´i φ
2 0 0

0 0 e´i φ
2 0

0 0 0 ei φ
2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

a

f

. (8.3.15)

To prove that the model is classically integrable, we also need to show that the integrals
of motion are in convolution, i.e. that tTpuq,Tpvqu “ 0. This is not automatic, since the
Lax pair construction we have reviewed in section 1 does not apply to (classical) open spin
chain.
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In order to prove the convolution property of integrals of motion one can use (8.3.3) and
(8.3.12) to show that:

ξ tLnpuq,Lmpvqu “ rrpu, vq,Lnpuq b Lmpvqsδnm , (8.3.16)

where r is the classical r-matrix.
For the boundary matrices we have a different relation due to the modifications in the

Poisson brackets (8.3.7) and (8.3.8). Denoting

Kpuq ” C.L0puq , K̄puq ” G´1.LJ`1puq.G.C , (8.3.17)

we have:

ξ tKabpuq,Kcdpvqu “
KadpuqKcbpvq ´ KadpvqKcbpuq

u´ v
´

KdbpuqKcapvq ´ KbdpvqKacpuq

u` v
.

(8.3.18)

and the same for K̄. In Appendix F.1 we use these identities to show that indeed

tTpuq,Tpvqu “ 0 . (8.3.19)

Therefore, the open Fishchain is classically integrable - its equation of motion are equivalent
to a Lax pair equation, and from it we can construct mutually commuting transfer matrices.

8.4 Quantum integrability

In order to demonstrate the integrability at the quantum level we will have to embed the
graph building operator into a family of commuting operators. To first approximation, one
can replace the local SOp1, 5q generators qi by the operators q̂i. However, there are some
quantum corrections to work out due to non-commutativity of various components of q̂MN

i ,
and this is what we will do in this section.

We will define the Lax operator L̂ and the boundary matrices K̂ as quantum versions
of the classical ones. They will continue to be 4 ˆ 4 matrices, but now each component
will become a differential operator. Thus we will treat them as tensors acting on a tensor
product of a finite, 4-dimensional vector space and an infinite dimensional functional space.
We will refer to these spaces as auxiliary and physical spaces as usual. In particular, the
physical space for the bulk Li matrices will be made of functions of 6D projective space
variables Xµ

i , while the physical space for the boundary K and K̄ matrices will be made of
functions of the boundary degrees of freedom t and s.

8.4.1 Quantisation of the integrability relations

We need to build the quantum analogue of (8.3.16), which is the Yang-Baxter equation,
and of (8.3.18), which is given by the boundary Yang-Baxter equation.
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Quantum Lax matrix The quantum version of the Lax matrix is4

L̂ a
i bpuq “ u δa

b `
i

2 q̂
MN
i Σ a

MN b , (8.4.1)

where q̂MN
i is the local generator of SOp1, 5q, obtained as a quantisation of (8.3.2), i.e. by

replacing PK
j Ñ P̂K

j “ ´iBXj,K
:

q̂MN
j “ ´

i

ξ

ˆ

XN
j

B

BXj,M
´XM

j

B

BXj,N

˙

. (8.4.2)

It satisfies the SOp1, 5q commutation relation:
“

q̂MN
k , q̂KL

k

‰

“
i

ξ

`

´ηMK q̂NL
k ` ηNK q̂ML

k ` ηMLq̂NK
k ´ ηNLq̂MK

k

˘

, k “ 1, . . . , J . (8.4.3)

As explained in [130] q̂i can be understood as acting on the functions of 4-dimensional
variables yi (e.g. CFT wave function) as if it was the corresponding conformal generator in
4D. In other words one can use the following map between the functions of 4D coordinates
ym and functions of 6D coordinates XM

fpy1, . . . , ymq Ñ
1

X´1 `X0 f

ˆ

X1

X´1 `X0 , . . . ,
X4

X´1 `X0

˙

(8.4.4)

as qi preserves the 6 interval XMXM we can set it to zero consistently. Note the action
on the 4D is only well defined for observables build out of qi’s. In particular P̂j and X̂j

themselves are operators living in AdS5 [130].
The Lax operator (8.4.1) satisfies the usual RTT relations with the rational R-matrix if

we set the quantum parameter ℏ to i
ξ . This Lax operator is built on a representation of gl4

that is non-compact and non-highest weight, as evident from the fact that the generators
qMN

i are differential operators acting on an infinite-dimensional space. This implies that the
Bethe Ansatz approaches are not available for this spin chain, and the Q-functions cannot
be built in terms of Bethe roots and Baxter polynomials. However, the FSoV techniques
discussed in chapter 6 would still be available.

8.4.2 Boundary reflection operator

In the classical case at the boundary we found that q0 and qJ`1 satisfied the modified
Poisson brackets (8.3.7). This in turn results in K satisfying the boundary Yang-Baxter
equation.

The quantum version of q0 and qJ`1 are again obtained by replacing Πt Ñ ´iBt and
Πs Ñ ´iBs, and read:

q̂NM
0 ” ´i

2
ξ

pY M
0 9Y N

0 ´ Y N
0 9Y M

0 qBt , q̂NM
J`1 ” ´i

2
ξ

pY M
J`1 9Y N

J`1 ´ Y N
J`1 9Y M

J`1qBs , (8.4.5)

4Note that our conventions differ by sign in comparison with [130].
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where Y 1s are explicit functions of s and t, parameterising the Wilson rays defined in (8.3.6).
Following the classical case, we also introduce:

L̂ a
0 bpuq “ u δa

b `
i

2 q̂
MN
0 Σ a

MN b , L̂ a
J`1 bpuq “ u δa

b `
i

2 q̂
MN
J`1Σ a

MN b . (8.4.6)

These will form the operatorial part of the boundary matrices.
Next we need to identify the quantisation of K (8.3.17), such that (8.3.18) becomes the

BYBE (6.1.2). We find that at the quantum level there is a quantum correction to the
spectral parameter, invisible in the classical ξ Ñ 8 limit. Namely the BYBE is solved by

K̂puq “ C.L̂0pu´ i
2ξ q , (8.4.7)

where C is the same reflection matrix as the classical case (8.3.15). For the other boundary
matrix, we need to find a solution of (6.1.6). One can easily verify that the solution to this
equation has the following form:

ˆ̄Kpuq “ G´1.LJ`1pu` i
2ξ q.G.C , (8.4.8)

where G is the twist matrix defined in (8.3.15)5. This expression is again identical to the
classical expression up to a quantum correction in the spectral parameter.

The R-matrix itself is defined up to an arbitrary scalar factor, which does not affect
any of the previous relations. However, in the next sections we will be using the fusion
procedure for the boundary reflection matrix which is sensitive to the normalisation.

In the next sections we will use the normalised R-matrix (6.3.1) S, and denote for future
convenience:

Apuq ”
u2ξ2

1 ´ u2ξ2 . (8.4.9)

8.4.3 Transfer matrix

In this section we will build the family of antisymmetric transfer matrices for the open
Fishchain out of the building blocks discussed above and the fusion procedure.

We will use the index 4 to indicate the fundamental open transfer matrix of the open
Fishchain, which is a representation of the twisted Yangian Y `p4q, and define it as:

T̂4puq “tr
“

Lt
J p´uq ¨ ¨ ¨Lt

2p´uqLt
1p´uqKpuqL1puq . . .LJ´1puqLJ puqGK̄puqGt

‰

. (8.4.10)

The boundary monodromy matrix of the model can be defined as:

Upuq “ L1puq . . .LJ´1puqLJ puqGK̄puqGtLt
J p´uq . . .Lt

2p´uqLt
1p´uq , (8.4.11)

but we will not use it in this chapter.
As showed in chapter 6, open transfer matrices form a family of mutually commuting

operators:
rT̂4puq, T̂4pvqs “ 0 . (8.4.12)

5Notice that the twist is included for convenience in this solution via the twisted Yangian coprod-
uct (6.1.5).
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First fused transfer matrix

In order to build T6 - the transfer matrix acting on the auxiliary space C4 ^C4 „ C6, or T2
in the notations of chapter 6 - we need the fuse the corresponding building blocks, K and
L6.

The L6 needed in this section has auxiliary space being the 6-dimensional Minkowski
space with metric ηMN . The fused Lax operator is a quadratic polynomial in u with
coefficients built out of local charge operators q̂i as follows:

L̂6 MN
i puq “

ˆ

u2 ´
1
8trq̂2

i

˙

ηMN ´ uq̂MN
i `

ˆ

1
2 q̂

2 MN
i ´

i

ξ
q̂MN

i `
1

4ξ2 η
MN

˙

. (8.4.13)

Note that the fused Lax operator L̂6
i puq is invariant under generalised transposition t plus

flipping of the spectral parameter u Ñ ´u.

Boundary reflection operator What remains to be done is fusing the reflection oper-
ators. This can be done using the procedure described in chapter 6.

In terms of Y “ Y0, defined in (8.3.6), we get:

K̂6
MN puq “ C6

MNu

ˆ

u´
i

ξ

˙

` u
2i
ξ

pYN
9YM ´ YM

9YN qBt (8.4.14)

`
2
ξ2YN B̂tYM B̂t ´

2i
ξ3u

YM B̂tYN B̂t .

As we can see, it is a second order differential operator in t and a second order polynomial
in the spectral parameter u. Similarly for the right boundary we get (replacing t by s):

ˆ̄K6
MN puq “ C6

MNu

ˆ

u`
i

ξ

˙

` u
2i
ξ

pYN
9YM ´ YM

9YN qBs (8.4.15)

`
2
ξ2YM B̂sYN B̂s `

2i
ξ3u

YN B̂sYM B̂s .

In the equations above we are using the reflection matrix C6 in vector representation is the
matrix C we introduced in (8.2.21). An important property, which follows directly from
the definitions (8.4.14) and (8.4.15), is that K6p`i{ξq “ 0 and K̄6p´i{ξq “ 0.

Using q̂0 (8.4.5) we can write

K̂6puq “ C6u

ˆ

u´
i

ξ

˙

´ uq̂0 `
1
2 q̂

2
0 ´

i

2ξupq̂2
0qT . (8.4.16)

For the right boundary we have very similar expression

ˆ̄K6puq “ pG6q´1.

ˆ

u

ˆ

u`
i

ξ

˙

´ uq̂J`1 `
1
2pq̂2

J`1qT `
i

2ξu q̂
2
J`1

˙

.G6.C6 . (8.4.17)

6We could also fuse the boundary monodromy matrix U directly, but this seems to be computationally
heavier to do.
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where G6 in vector representation is the twist matrix G from (8.2.21). The twist matrix G6

appears in the expression (8.4.17) for the right boundary reflection operator, as it is defined
in a way that does not depend on φ.

Having all the needed ingredients we can compute T6 by replacing in the RHS of (8.4.10)
all the operators and matrices by their fused counterpart.

Hamiltonian from the transfer matrices

In this section we will show that the Hamiltonian of the system is a part of the commuting
family of operators. For that consider:

T6p0q “ 4 lim
uÑ0

u2ξ2tr
“

LJ p0q ¨ ¨ ¨L2p0qL1p0qKpuqL1puq . . .LJ´1p0qLJ p0qGK̄puqGt
‰

.

(8.4.18)
First we can use that:

L̂6 MN
i p0q “

q̂2 MN
i

2 ´
i

ξ
q̂MN

i ´
ηMN

8 trq̂2
i `

ηMN

4ξ2 “
: q̂2

i :MN

2 “
1

2ξ2X
M
i XN

i B2
XK

i
. (8.4.19)

where in the last equality we used the identity from [130]. Also from (8.4.14) and (8.4.15)
we have

u ξ K̂6 MN puq

ˇ

ˇ

ˇ

u“0
“ ´

i

2pq̂2
0 qNM “ ´

2i
ξ2Y

M
0 B̂tY

N
0 B̂t , (8.4.20)

uξ
´

G6 ˆ̄K6puqpG6q´1
¯MN

ˇ

ˇ

ˇ

ˇ

u“0
“ `

i

2pq̂2
J`1qMN “ `

2i
ξ2Y

N
J`1B̂sY

M
J`1B̂s . (8.4.21)

Combining all parts together, up to sub-leading terms in 1{ξ we get the quantum version
of Hq ` 1, where Hq is defined in (8.3.9). In order to check that this produces the correct
quantisation of Hq, i.e. the one related to the graph building operator, we have to analyse
the expression (8.4.19) more carefully. Paying attention to the order of the operators we
get

T6p0q “ 4 4
22Jξ4J`4 ηNMXM

J XJ .XJ´1 . . . X1.Y0Bt

J
ź

i“1
l

p6q

i (8.4.22)

ˆ Y0.X1X1.X2 . . . XJ .YJ`1BsY
N

J`1BsBt

J
ź

i“1
l

p6q

i ,

where all derivatives are understood as operators acting on the CFT wavefunction embedded
in the lightcone of 6D Minkowski spacetime. In order to relate the above expression with
the graph building operator (8.1.9), which is expressed in terms of derivatives acting on
functions in 4D Euclidean spacetime, we recall that T6 is built out of qi’s and as such
we can act with it, in a consistent way, on functions of 4D coordinates, following the
prescription (8.4.4). Furthermore, one can just replace the 6D d”Alembertian operator in
4D d”Alembertian due to the identity

lp6q “ lp4q ` BX`
BX´

, (8.4.23)
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and the fact that there is no dependence on X´ in the 4D functions, by construction (8.4.4).
Therefore,

Y0.X1X1.X2 . . . XJ .YJ`1BsBt

J
ź

i“1
l

p6q

i “ (8.4.24)

`

´1
2
˘J`1 BsBt

|y1
0||y1

J`1|

J
ź

i“0
pyi ´ yi`1q2

J
ź

i“1
l

p4q

i “
`1

2
˘J`1

p4ĝ2qJ`1B̂´1 , (8.4.25)

where we used that X1.X2 “ ´1
2px1 ´ x2q2 and Y0.X1 “ ´ e´t

2 px0 ´ x1q2. We use the
expression for the inverse of the graph-building operator B̂´1 from (8.1.9). Then for T6p0q

one gets precisely
T6p0q “ 4B̂´2 . (8.4.26)

Where we used (8.2.10) to relate ξ and ĝ. We see that all factors cancel exactly, implying
that at the quantum level we also have T6p0qψ “ 4ψ as it follows from (8.1.9). At the same
time we see that the quantum graph building operator B̂ is indeed a part of the commuting
family of operators, which demonstrates the integrability of the initial system of Feynman
graphs.

Second fused transfer matrix

Here we compute the 4̄ transfer matrix (or T3 in the notation of chapter 6), corresponding
to the antisymmetrisation of the antisymmetric tensor product of three copies of 4 irrep. in-
gredients with the corresponding shifts in the spectral parameters, dictated by the fusion
procedure. The calculation for L4 was done in [130]. The result for L4̄ can be re-expressed
in terms of one L4 times a scalar polynomial factor

L̂4̄
kpuq “

ˆ

u2 ´
trq̂2

k

8 `
1
ξ2

˙

pL̂4
kqtp´uq , (8.4.27)

Doing the fusion of the boundary reflection operator and projecting onto the 4 auxiliary
space, we get:

K̂4̄ abpuq “ ´

ˆ

u2 ´
iu

ξ
`

3
4ξ2

˙

ˆ̄K4 bap´uq , ˆ̄K4̄
abpuq “ ´

ˆ

u2 `
iu

ξ
`

3
4ξ2

˙

K̄4
bap´uq .

(8.4.28)
Finally, the twist matrix is the inverse of the one for the 4 irrep. (8.3.15). The polynomial
factors in (8.4.27) and (8.4.28) will play an important role in the Baxter TQ equation.

Sklyanin determinant

Here we compute the ingredients of the transfer matrix in the representation 1̄, also known
as the Sklyanin determinant. Like in the previous sections, this can be computed as an
antisymmetrisation of the tensor product of four copies of L and K in the 4 irrep. For both
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L1̄ and K1̄ we find that they are just fourth order polynomials in u acting trivially on the
physical space. Again the calculation of L1̄ was already performed in [130] and the result
reads:

L̂1̄
i puq “

ˆ

u2 ´
tr q̂2

i

8 `
5

4ξ2

˙2
`

tr q̂2
i

8ξ2 ´
1
ξ4 . (8.4.29)

For the boundary reflection operator, we obtain:

K1̄puq “

ˆ

u´
2i
ξ

˙ ˆ

u´
i

ξ

˙

u

ˆ

u`
i

ξ

˙

, K̄1̄puq “

ˆ

u`
2i
ξ

˙ ˆ

u`
i

ξ

˙

u

ˆ

u´
i

ξ

˙

.

(8.4.30)

J “ 0 example

Before discussing the general case we first give the explicit result for the simplest case of
a chain of zero length. This means that we are only left with the boundary reflection
operators. Furthermore, the graph-building operator is a second order differential operator
in s and t, as it should commute with the dilatation operator only one variable remains.
If we further impose T6p0q “ 4, we will automatically diagonalise all transfer matrices
obtaining the following results for their eigenvalues:

T4pvq “
1
ξ2

`

4v2 cosφ` cosφ` 8ξ2˘

,

T6pvq “ Ap2vq
v2 ` 1
ξ4v2

`

v4p2 cosp2φq ` 4q ` v2 `

16ξ2 cosφ´ 4∆2 sin2 φ
˘

` 16ξ4˘

,

T4̄pvq “ Ap2vqAp2v ` iqAp2v ´ iq

`

4v2 ` 1
˘ `

4v2 ` 9
˘

16ξ6
`

4v2 cosφ` cosφ` 8ξ2˘

,

T1̄pvq “ A2p2vqAp2v ` iqAp2v ´ iqAp2v ` 2iqAp2v ´ 2iq
v2 `

v2 ` 1
˘2 `

v2 ` 4
˘

ξ8 ,

(8.4.31)

where we introduced the rescaled spectral parameter v “ u ξ. The factors A, where Apvq “
v2

1`v2 , are due to the R-matrix normalisation as discussed in section 8.4.2. We also worked
out the form of the transfer-matrix eigenvalues for J “ 1 case in Appendix F.3 in terms
of a few unknown constants. We have explicitly verified that all the T-operators for J “ 0
and J “ 1 commute between themselves and with the charges ∆, S, H as expected.

In the next section we will extend these results to the general J case.

Eigenvalues of the transfer matrices

Here we deduce the general form of the eigenvalues of the transfer matrices. First, one
can notice explicitly that for J “ 0 and J “ 1 case they are even functions of the spectral
parameter. In Appendix F.2 we prove that this is true for any J . Some other properties of
the transfer matrices are:

• T4 is a polynomial of degree 2J ` 2 in v, as it follows from its definition (8.4.10).
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• T6 is a rational function with two poles at v “ ˘i{2, coming from the normalisation
factor Ap2vq. Another potential pole at v “ 0, coming from the boundary reflection
operators, is cancelled by the same Ap2vq. At large v it behaves as „ v4J`4.

• Previously we noticed that K6pu “ `i{ξq “ 0 and K̄6pu “ ´i{ξq “ 0, therefore we
can see that T6 should have a prefactor of v2 ` 1 “ ξ2u2 ` 1.

• Finally, in section 8.4.3 we have showed that T6p0q “ 4 due to (8.4.26).

• The properties of T4̄ are very similar to those of T4, apart from the trivial factors of
A’s and additional trivial factors coming from L4̄ and K4̄.

• Finally, T1̄ (the Sklyanin determinant) contains only trivial factors and can be com-
puted explicitly for any J .

Based on these observations we can write the transfer matrices in terms of the polynomials
P λ

k pv2q as:

T1pvq “ 1 ,

T4pvq ”
P 4

J`1pv2q

ξ2J`2 ,

T6pvq ” Ap2vq
v2 ` 1
v2

P 6
2J`2pv2q

ξ4J`4 ,

T4̄pvq “ Ap2vqAp2v ` iqAp2v ´ iq
pv2 ` 9

4qpv2 ` 1
4q2J`1P 4̄

J`1pv2q

ξ6J`6 ,

T1̄pvq “ A2p2vqAp2v ` iqAp2v ´ iqAp2v ` 2iqAp2v ´ 2iqpv2 ` 4qpv2 ` 1q2J`2v4J`2

ξ8J`8 .

(8.4.32)

Here, P λ
k is a polynomial of degree k, labelled by the representation λ in the auxiliary space.

The eigenvalues of the conserved charges of the system are the coefficients of the powers of
v2 in these polynomials. We will denote them as (defining w ” v2):

P 4
J`1pwq “

J`1
ÿ

i“0
aiw

´i`J`1 ,

P 6
2J`2pwq “

2J`2
ÿ

i“0
biw

´i`2J`2 ,

P 4̄
J`1pwq “

J`1
ÿ

i“0
ciw

´i`J`1 .

(8.4.33)

In our definition, a0 will represent the coefficient of the highest power in v2 in P 4
J`1, a1 the

second highest etc. The leading coefficients are easy to compute explicitly directly from the
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definition
a0 “ c0 “ 4 cosφ , b0 “ 2 cos 2φ` 4 . (8.4.34)

They just give the twisted (or q-)dimension of the corresponding representations. Since
the leading coefficients are trivial, in total we get 4J ` 4 non-trivial coefficients in the
polynomials P . As our system has 4J ` 2 degrees of freedom it may suggest that there are
2 more relations between the coefficients of the polynomials P . Indeed, in the J “ 0 and
J “ 1 cases we found them by computing the differential operators explicitly, but it is rather
hard to deduce the general relations. In the J “ 1 case we found exactly 6 independent
operators guarantees integrability of the system.

We found that the global charges ∆ and S are encoded into the sub-leading coefficients
in the following way:

c1 ´ a1 “ 8 i S∆ sinφ , (8.4.35)
pa1 ` c1q cosφ´ b1 “ 2

`

2S2 ` 2 ∆2 ` J
˘

sin2 φ` 2 cos2 φ .

These relations are also quite hard to derive in general, but we explicitly verified the first
relation up to J “ 3 and the second up to J “ 2.

Finally, the condition T6p0q “ 4 implies:

b2J`2 “ ξ4J`4 “ 16ĝ4J`4 . (8.4.36)

In order to find the eigenvalues of all coefficients of the transfer matrices we will have to
develop a numerical procedure. For that we will first build the TQ-relations in the next
section.

8.5 Baxter TQ equation

In this section we follow the derivation of [121] to deduce the general simplified form of
the TQ-relations and deduce asymptotic of the Q-functions. The starting point is the
TQ-relation, valid in the gauge used in this chapter7:

Qpv` 2iq `T4pv` i{2qQpv` iq `T6pvqQpvq `T4̄pv´ i{2qQpv´ iq `T1̄pv´ iqQpv´ 2iq “ 0 .
(8.5.1)

As we discussed above the transfer matrices have a number of trivial factors. In order to
remove these fixed, non-dynamical factors, we perform the following gauge transformation
of the Q-function

Qpvq “ qpvq
eπpJ`1qvΓp´ivqξ2ipJ`1qvΓpiv ` 1q´2J´1

Γ
`

´iv ´ 1
2
˘

Γpiv ` 2q
, (8.5.2)

7Notice that this is actually the dual Baxter TQ relation presented in chapter 6, with the main difference
being an overall shift in the transfer matrices.
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which brings (8.5.1) to a simpler and more symmetric form:

P 6
2J`2pv2q

v2J`3 qpvq “ ´pv ` iq2J`1qpv ` 2iq ´
v ` i

2
vpv ` iq

P 4
J`1

`

pv ` i
2q2˘

qpv ` iq (8.5.3)

´pv ´ iq2J`1qpv ´ 2iq ´
v ´ i

2
vpv ´ iq

P 4̄
J`1

`

pv ´ i
2q2˘

qpv ´ iq .

As a test of this equation we can compare with the case J “ 0, studied as a ladder limit of
QSC in N “ 4 SYM. For J “ 0, by plugging in the explicit form of the polynomials (8.4.31)
into (8.5.3), we obtain:

qpvq

ˆ2
`

8ĝ2v2 cospφq ` 8ĝ4 ` v4pcosp2φq ` 2q
˘

v3 ´
4∆2 sin2pφq

v

˙

`
2p2v ´ iqqpv ´ iq

`

2ĝ2 ` vpv ´ iq cospφq
˘

vpv ´ iq
`

2p2v ` iqqpv ` iq
`

2ĝ2 ` vpv ` iq cospφq
˘

vpv ` iq

` pv ´ iqqpv ´ 2iq ` pv ` iqqpv ` 2iq “ 0 . (8.5.4)

This is the same as what was found in [25, 157] for a cusped Wilson line in the ladders
limit, as expected (see detailed comparison in Appendix F.3).

The equation (8.5.3) for general J is one of our main result. As we show in section 8.6
it lets us evaluate numerically the spectrum.

8.5.1 Large v asymptotic of Q-functions

For the numerical evaluation, which we describe in the next section, it is important to have
the large v asymptotics under control. As the leading and partially subleading coefficients in
the polynomials P are known from (8.4.34) and (8.4.35), we can deduce that the 4 linearly
independent solutions of the equation (8.5.3) should have the following large v asymptotic
expansion:

q1 “ e`ϕvv`∆´S´J
´

1 `
c1,1
v

` . . .
¯

,

q2 “ e´ϕvv`∆`S´J
´

1 `
c2,1
v

` . . .
¯

,

q3 “ e`ϕvv´∆`S´J
´

1 `
c3,1
v

` . . .
¯

,

q4 “ e´ϕvv´∆´S´J
´

1 `
c4,1
v

` . . .
¯

.

(8.5.5)

where ϕ “ π ´ φ. The above asymptotics suggest the following relation to the QSC Q-
functions of [126]:

qipvq „
Qipvq

vJ`1{2 , (8.5.6)

which is similar to the relations found in the fishnet model [33]. Subleading coefficients in
1{v can be found systematically in terms of the coefficients of the polynomials P , i.e. ai, bi
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and ci, by plugging the expansion (8.5.5) into (8.5.3). In order to fix the coefficients of the
polynomials P one has to use the gluing (or quantisation) condition, which we describe in
the next section.

8.6 Numerical solution

After having established the key properties of the Baxter equation we can solve them nu-
merically and fix the remaining coefficients ai, bi and ci. The method we implement is
essentially the one of [158] which was adopted and simplified to the current type of prob-
lems in [33, 93, 121, 157]. The 4th order finite difference equation (8.5.3) has 4 linearly
independent solutions with the asymptotic (8.5.5). The way to find them numerically is
first finding the asymptotic solution at large v, where (8.5.3) reduces to a linear problem for
the asymptotic expansion coefficients. The truncated asymptotic series gives a very good
approximation at sufficiently large |Im v|. In order to bring Im v to a finite value, we can
simply use (8.5.3) itself, as it allows to find qpvq in terms of qpv ` inq, n “ 1, . . . , 4 (or
qpv ´ inq, n “ 1, . . . , 4). Using (8.5.3) as a recursion relation, we can gradually decrease
|Im v|. By doing this there are two options: starting from `i8 or from ´i8. Correspond-
ingly, we will find 4 analytic solutions in the upper-half plane, qÓ

i , and other 4 analytic in
the lower-half plane, qÒ

i . Since the Baxter equation is a fourth order equation, we can have
only four independent solutions, meaning that the qÒ

i and qÓ
i should be related by a linear

transformation. We should therefore have:

qÒ
i pvq “ Ω j

i pvqqÓ
j pvq, Ω j

i pv ` iq “ Ω j
i pvq , (8.6.1)

where

Ω j
i pvq “

ϵj j1 j2 j3

3!
detn“0,...,3

!

qÒ
i pv ´ inq, qÓ

j1
pv ´ inq, qÓ

j2
pv ´ inq, qÓ

j3
pv ´ inq

)

detn“0,...,3
!

qÓ
1pv ´ inq, qÓ

2pv ´ inq, qÓ
3pv ´ inq, qÓ

4pv ´ inq

) . (8.6.2)

Ω j
i pvq is an i-periodic function which can have poles at v “ in of order no higher than

qipvq’s themselves. From the Baxter equation (8.5.3) it is easy to see that qipvq only has
poles at v “ in of maximal order 2J`2, which implies that Ω j

i pvq is a trigonometric rational
function of the form:

Ω j
i pvq “

2J`2
ř

n“0
C

pnq j
i e

2 π n u

p1 ´ e2 π uq
2J`2 , (8.6.3)

The quantisation condition can be obtained by comparing with the QSC description of the
cusped Wilson line [126], where one defines an antisymmetric matrix ωik, related to Ω j

i in
the following way:

ωik “ Ω j
i Γjk , (8.6.4)
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where the so-called gluing matrix is:

Γjk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 γ1 sinhp2πvq 0 γ3

γ2 sinhp2πvq 0 γ4 0

0 γ5 0 0

γ6 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (8.6.5)

where γi are some constants. All we need to know, from QSC, is that ω in (8.6.4) is
anti-symmetric i.e. Ω j

i Γjk “ ´Ω j
k Γji, which, in particular, implies:

Ω41 “ Ω32 “ 0 . (8.6.6)

As each component of Ωpuq is a nontrivial function parametrised in terms of 2J`3 constants
C

pnq

ij , imposing (8.6.6) is usually sufficient to fix 4J ` 4 unknown constants, contained in
the Baxter equations.

Tests By applying the numerical method we studied the spectrum for J “ 1 and J “ 2
cases. For J “ 1 we also found a large number of excited states (see figure 8.6), correspond-
ing to additional insertions of Φ2 and Φ1 fields at the cusp, as discussed in [25]. We tested
our results against the weak coupling result of [125], which in our notations reads

∆ “ J ` ĝ2J`2 p´1qJ24J`3π2J`1 cscpφqB2J`1
`

φ
2π

˘

Γp2J ` 2q
` Opĝ4J`4q , (8.6.7)

which agreed with high precision (of more than 15 digits) with our numerical data for
J “ 0, J “ 1 and J “ 2. For example for J “ 2 and φ “ 2π{3 we get the following fit for
the numerical data on figure 8.7:

∆ “ 2 ´ 124.08839542210ĝ6 ` 23271.513371517ĝ12 ` . . . (8.6.8)

in agreement with (8.6.7), which for J “ 2 gives

2 ` ĝ6 8
45φ

`

3φ4 ´ 15πφ3 ` 20π2φ2 ´ 8π4˘

cscφ “ 2 ´ ĝ6 512π5

729
?

3
. (8.6.9)

The states ZJ for the cases J “ 1 and J “ 2 do not behave classically at large ξ, i.e.
∆ decreases faster than linear. Like in [33] we expect the classical regime to describe the
highly excited states.
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8.7 Summary

In this chapter we showed that the cusped Wilson-Maldacena loop with insertions of J
orthogonal scalars is dual to an open integrable spin chain. We computed the transfer
matrices of this model, and obtained a Baxter TQ equation which can be solved numerically
for any J , finding the spectrum of dimensions ∆ non-perturbatively (for J “ 0, 1, 2). This
lets us find the Q-functions of the system, which could be used as a building block for future
calculations, such as the three-point correlation functions using Functional SoV. Some hints
that this approach will work in this setting can be found in [25], while some initial progress
for the cousin Fishnet theory has been done in [92].
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Null

Figure 8.6: Numerical spectrum with excited states for J “ 1 and S “ 0. The lowest curve
(starting at ∆ “ 1 at zero coupling) corresponds to the case with a single insertion of Z at
the cusp. The curves which begin at higher integers at zero coupling correspond to excited
states of the solution of the Baxter equation, which correspond to additional insertions of
Φ2 and Φ1 at the cusp (see [25] for some explicit examples). Whereas for the ground state
the dimension ∆ is real, excited states could appear in complex conjugate pairs.
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Δ
J=2, φ=2π /3

Figure 8.7: Numerical data (dots) for the ground state of length-2 chain with φ “ 2π{3.
Red solid line shows the Lüscher formula prediction of [125].
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Chapter 9

Conclusions and Outlooks

In chapters 5 and 6 of this thesis, we developed the Functional Separation of Variables.
For periodic rational spin chains, we presented the Character Projection (CP) technique
to compute a complete basis of observables, the Principal Operators for the spin chain in
terms of Baxter Q-functions. We then showed that FSoV + CP let us reconstruct from
first principles the Sklyanin’s B and C operators, whose form for rank N ě 4 spin chains
was only conjectured before (the rank N “ 3 case was treated in [75]). We also derived
the SoV basis and the SoV basis matrix elements of all Principal Operators, which form a
complete set of observables: from their knowledge, as we explained, it is possible to extract
any correlation function for rational integrable spin chains.

For open rational spin chains, based on the twisted Yangian Y `p2Nq, we also developed
the FSoV approach, culminating in the functional orthogonality relations and the scalar
product between Bethe states. While the latter is a trivial relation1, it is practically im-
mediate to update it to obtain diagonal matrix elements of various operators, using the
perturbation theory techniques explained in chapter 5.

In chapter 7, we proved from first principles that the cusped Maldacena-Wilson line
in N “ 4 SYM with orthogonal scalar insertions at the cusp, is integrable in the ladders
limit. We derived the holographic dual of this observable, the open Fishchain. Solving the
Baxter TQ relation for this open rational spin chain allowed us to find the non-perturbative
values of the scaling dimension of the cusped line with orthogonal scalar insertions, for any
value of the coupling constant and cusp angle. It also provides an ideal playground for the
application of FSoV to a concrete model in an important Quantum Field Theory such as
N “ 4 SYM.

9.1 Future directions

FSoV We believe that the formulas presented for form-factors in this thesis extend imme-
diately to the q-deformed high-rank XXZ case [77] after simple modification as is already

1Recall that Bethe states are orthogonal.
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the case in the gl2 setting [159], and it would be interesting to check directly, allowing one
to extend the recent rank 2 results [160] and to study high-rank correlators at zero tem-
perature along the lines of [86]. From our results it is also possible to extract form-factors
of local operators using the quantum inverse transform [85]. From here there are many
interesting directions to pursue. For example, these can be used in the computation of
current operators [161] which have numerous applications. It would also be very interesting
to compare with the results of [162], where certain mean-values related to current operators
are shown to factorise, and to understand such results from an SoV perspective.

Another interesting direction would be to construct the quantum version of the classical
A operator of Sklyanin seen at the beginning of chapter 4, which is expected to act as a rais-
ing / lowering operator on the SoV bases, as some combination of principal operators as was
done here for the B and C operators. This would solve an important puzzle as it is known
that Sklyanin’s quantum construction is singular for the highest-weight representations we
consider here, see for example the discussion in [70].

It would be very interesting to develop the FSoV formalism and the approach to cor-
relators developed in this thesis for spin chains based on different algebras. The Q-system
for models with orthogonal symmetry has attracted huge attention recently [163, 164] and
will likely play a large role in the SoV approach to correlators in conformal fishnet theories
in D ‰ 4 [165, 166].

The SoV construction for models with open boundary conditions still needs quite a lot
of work. First of all, we have not developed yet a Character Projection technique, nor we
know a companion “boundary” frame in which the SoV basis is independent of the boundary
matrices eigenvalues. This in turn does not let us define Principal Operators, nor a way
to compute off-diagonal form factors. Furthermore, the B and C operators have not been
built yet. An operatorial approach for open spin chains has recently been studied [86, 99,
167–171], but this is for a different twisted Yangian, the reflection algebra. We used some
insights from this work, such as the procedure to build the SoV basis, but it would be
interesting to develop it fully for our open spin chain. Finally, it would be interesting to
extend FSoV to any open rational spin chain, which would mean extending it to all the
known twisted Yangians [95]. This would let us study any so-called integrable boundary
state within the SoV formalism. First steps were already taken in [92, 172, 173] and recently
this problem received increased interest [174–183].

Open Fishchain Since we have the spectrum of the model under control, the natural
next step is to compute correlation functions. In [25, 184], the first steps towards this were
taken, where the authors calculated the three point functions of three cusped Wilson lines in
the ladders limit. Remarkably, they observed that the structure constants can be expressed
as overlaps between some states via formulas that are highly reminiscent of FSoV. We have
given some preliminary results in this thesis, but it would be important to extend them to
the general case. This would naturally lead to the calculation of structure constants for
cusped Wilson lines in the ladders limit.

It would also be interesting to get away from the ladders/fishnet limit both in our set-up
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and in the Fishnet theory. Such an exploration could give some clues as to how to develop
a first principles holographic derivation for the full theory. Some progress for the Fishnet
theory has been made in [185], where a more complicated version of the Fishnet theory,
which includes fermions and gauge fields, has been proven to be fully dual to a periodic
integrable spin chain.

Another direction of exploration would be to try to expand our construction to Wilson
loops in the ABJM theory [186] where there is already some evidence of integrability [187]
and further, it admits treatment from a defect CFT point of view [188, 189]. Here too, a
fishnet limit exists with Feynman graphs which look like a triangular lattice [190] and one
can envisage the definition and study of a similar CFT wavefunction like the one we studied
in this thesis.
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Appendix A

Technical Details for Chapter 3

In this Appendix, we will put some more technical derivations of the subjects treated in
chapter 3.

A.1 Derivation of eigenstates of the Heisenberg XXX spin
chain

Our goal is to solve the spectral problem:

tpuq|Ψy “ τpuq|Ψy (A.1.1)

We start by considering the monodromy matrix (3.4.5). We will write it as acting as a
matrix on the auxiliary space Haux “ C2, with entries being operators in the full physical
space Hphys “

ÂL
i“1 Hi:

T puq “

¨

˚

˝

Apuq Bpuq

Cpuq Dpuq

˛

‹

‚

. (A.1.2)

The transfer matrix in this notation is simply tpuq “ Apuq `Dpuq.
We now need to compute the operators in the entries of (A.1.2). Recall that T is defined

as a product of Lax operators (3.4.8), whose action on a physical spin up state (tensored
with a generic state |Φy on the auxiliary space) is:

Lipuq| Òyi b |Φy “

¨

˚

˝

pu` i{2q| Òy i| Óy

0 pu´ i{2q| Òy

˛

‹

‚

|Φy . (A.1.3)

Thus, if we choose as the vacuum state for the physical space a state with all spin ups,
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|Ωy “
ÂL

i“1 | Òyi, the action of the monodromy matrix on it will be given by:

T puq|Ωy b |Φy “

¨

˚

˝

pu` i{2q| ÒyL i| ÓyL

0 pu´ i{2q| ÒyL

˛

‹

‚

b ¨ ¨ ¨ b

¨

˚

˝

pu` i{2q| Òy1 i| Óy1

0 pu´ i{2q| Òy1

˛

‹

‚

|Φy

“

¨

˚

˝

pu` i{2qL|Ωy | . . . y

0 pu´ i{2q
L

|Ωy

˛

‹

‚

|Φy ,

(A.1.4)

where | . . . y is a value we do not need to write explicitly. Comparing with (A.1.2), we see
that:

Apuq|Ωy “ pu` i{2qL|Ωy, Dpuq|Ωy “ pu´ i{2q
L

|Ωy, (A.1.5)

Cpuq|Ωy “ 0, Bpuq|Ωy “| . . . y . (A.1.6)

So now we know that the vacuum state |Ωy is an eigenvector for tpuq:

tpuq|Ωy “
`

pu` i{2qL ` pu´ i{2qL
˘

|Ωy . (A.1.7)

We now need to build the other eigenstates. The fact that Cpuq|Ωy “ 0 suggests us to treat
Cpuq as a lowering operator. Therefore, we may think of Bpuq as a raising operator, with
eigenstates of T puq being of the form:

|Ψy “ Bpu1qBpu2q . . . Bpuiq|Ωy . (A.1.8)

To prove this, we need to check the commutation relations between the various operators,
and in particular we need that rBpuq, tpuqs „ tpuq. Luckily, all the algebra we need is
contained into the RTT relation (2.2.11). In particular, by using the matrix forms for T
and R and comparing the entries, we obtain the following relations:

ApuqBpvq “
u´ v ´ i

u´ v
BpvqApuq `

i

u´ v
BpuqApvq ,

DpuqBpvq “
u´ v ` i

u´ v
BpvqDpuq ´

i

u´ v
BpuqDpvq ,

BpuqBpvq “ BpvqBpuq .

(A.1.9)

It is quite simple from here to prove that the state with one excitation, Bpvq|Ωy, is an eigen-
state of tpuq “ Apuq`Dpuq. In fact, we can easily compute ApuqBpvq|Ωy and DpuqBpvq|Ωy,
obtaining:

ApuqBpvq|Ωy “
u´ v ´ i

u´ v
pu` i{2qLBpvq|Ωy `

i

u´ v
pv ` i{2qLBpuq|Ωy , (A.1.10)

DpuqBpvq|Ωy “
u´ v ` i

u´ v
pu´ i{2q

LBpvq|Ωy ´
i

u´ v
pv ´ i{2q

LBpuq|Ωy . (A.1.11)
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Therefore, we have that:

tpuqBpvq|Ωy “

ˆ

pu´ v ´ iqpu` i{2qL ` pu´ v ` iqpu´ i{2qL

u´ v

˙

Bpvq|Ωy ` (A.1.12)

`

ˆ

i

u´ v

`

pv ` i{2qL ´ pv ´ i{2qL
˘

˙

Bpuq|Ωy . (A.1.13)

So, under the condition that the second row cancels in the above equation, i.e. that:
ˆ

v ` i{2
v ´ i{2

˙L

“ 1 , (A.1.14)

we get that Bpvq|Ωy is an eigenstate of the transfer matrix tpuq with eigenvalue:

τpuq “

ˆ

pu´ v ´ iqpu` i{2qL ` pu´ v ` iqpu´ i{2qL

u´ v

˙

. (A.1.15)

With a little more work, it is possible to generalize the above argument to states created
by applying M creation operators B evaluated at different spectral parameters uk, obtaining
that they again are eigenstates of tpuq with eigenvalues:

τpuq “

M
ź

j“1

u´ uj ´ i

u´ uj
pu` i{2qL ` pu´ i{2q

L
M
ź

j“1

u´ uj ` i

u´ uj
, (A.1.16)

provided that the following Bethe equations hold:
ˆ

uk ` i{2
uk ´ i{2

˙L

“

M
ź

j‰k

uk ´ uj ` i

uk ´ uj ´ i
. (A.1.17)

The solutions of the Bethe equations uk are known as Bethe roots.
Of course, the cancellation of the unwanted terms given by the Bethe Equations (A.1.17)

is an ansatz, but there are many other ways to see that this is indeed correct.

A.2 Derivation of eigenstates for the Y pgl3q spin chain

We have seen that the transfer matrix of the Y pgl3q spin chain in the fundamental repre-
sentation is:

tpuq “ trT pzq “ Apzq `D11pzq `D22pzq “ Apzq ` trDpzq (A.2.1)

We want to check what are the conditions for which the states built from the two operators
B1, B2 as:

|ΨM pūqy “

M
ź

i“1

2
ź

βi“1
Bβi

puiq|0y (A.2.2)
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are eigenstates of tpuq.
It turns out that the ansatz (A.2.2) does not work; one needs to consider linear combi-

nations:

|ΨM pūqy “

2
ÿ

β1...βM “1
Bβ1pu1q . . . BβM

puM qFβ1...βM
|0y , (A.2.3)

where Fβ1...βM
are some complex coefficients. This notation can be simplified using the

vectors Bpuq “

¨

˚

˝

B1puq

B2puq

˛

‹

‚

. If B1 . . .BM is the tensor product of M such vectors, then

equation (A.2.3) can be written compactly as:

|ΨM pūqy “

M
ź

i“1
BipuiqFpūq|0y , (A.2.4)

where now F is a vector in the tensor product of M copies of C2. We now need to compute
the action of (A.2.1) on these vectors.

Commutator with trD Using the RTT relation for Y pgl3q, it is possible to prove that
(we indicate the trace on the 2 ˆ 2 matrix D with the subscript 0):

tr0D0pzq|ΨM pūqy “ tr0

M
ź

i“1
BipuiqD0T pMq

0 pzqFpūq|0y ` unwanted terms (A.2.5)

where T pMq

0 pzq ” r0M pz, uM q . . . r01pz, u1q is a gl2 monodromy matrix built via the gl2 R-
matrix r and the unwanted terms all contain at least one of the B evaluated at z. For now
we will leave the unwanted terms alone.

The first term in the RHS of (A.2.5) is almost of the form we want; we just need to
impose that Fpūq is an eigenvector of the gl2 transfer matrix:

tr0T pMq

0 pzq “

¨

˚

˝

AM pzq BM pzq

CM pzq DM pzq

˛

‹

‚

. (A.2.6)

We know exactly how to get them - via the Algebraic Bethe Ansatz for Y pgl2q. Therefore,
we impose that:

Fpūq “

N
ź

i“1
BM pviq|ΩM y , (A.2.7)

where |ΩM y is the vacuum vector for (A.2.6), and the auxiliary Bethe roots v1 . . . vN satisfy
the auxiliary Bethe equations:

M
ź

l“1

vj ´ ul ` i

vj ´ ul
“

N
ź

k‰j

vj ´ vk ` i

vk ´ vj ` i
, j “ 1 . . . N (A.2.8)
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Under these conditions, we get that:

trDpzq|ΨM,N pū, v̄qy “ τDpz, ū, v̄q|ΨM,N pū, v̄qy ` unwanted terms (A.2.9)

Commutator with A Using again the RTT relations for gl3, it is possible to show that:

Apzq|ΨM,N pū, v̄qy “ τApz, ū, v̄q|ΨM,N pū, v̄qy ` unwanted terms (A.2.10)

Combining, we see that:

tpzq|ΨM,N pū, v̄qy “ τpz, ū, v̄q|ΨM,N pū, v̄qy ` unwanted terms (A.2.11)

Then it turns out that the overall coefficient of the unwanted terms can be set to zero
provided that ū “ pu1 . . . uM q satisfy the Bethe equations:

puk ` i{2qL “

M
ź

j‰k

uk ´ uj ` i

uj ´ uk ` i

L
ź

l“1

vl ´ uk ` i

vl ´ uk
, k “ 1 . . .M . (A.2.12)

A.3 Fusion for transfer matrices

Fusion is a generalisation of the procedure used to build the quantum minors of section 3.7.1.
In particular, fusion takesm copies of the monodromy matrix (3.1.4), and computes their

projection on the tensor product of m auxiliary spaces
Âm

i“1 CN , opportunely symmetrised
and/or antisymmetrised. This symmetrisation of auxiliary spaces can be described in terms
of the Young tableaux appearing in the representation theory of the glN Lie algebra.

Young diagrams and Young tableaux

A Young diagram is a two-dimensional array of boxes, arranged in left-justified rows with
row lenghts that are in non-increasing order.

The number of boxes in each row is defined as λ “ pλ1, λ2 . . . λN q, where N is the
number of rows and λ1 ě λ2 ě ¨ ¨ ¨ ě λN , and specifies completely the Young diagram1.

A Young Tableau is any set of numbers that we put in the boxes of a Young diagram.
To index the boxes in a Young diagram, we will use Cartesian coordinates ps, aq. Both s

and a start from 0 at the top-left box; s increases moving to the right along columns, while
a increases moving down along rows.

The Young Tableaux we use to fill Young diagrams for fusion are simply expressed in
terms of these Cartesian coordinates; to the box of coordinates ps, aq we assign the number:

cj “ a´ s , (A.3.1)

where the order of the boxes j is given in figure A.1.
1This notation is used because Young tableaux are in one-to-one correspondence with highest weight

representations of glN , which are determined uniquely by their weights λi.
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1

-2
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Figure A.1: Left: Column-ordering of boxes on the Young diagram λ. Right: cj “ a ´ s
associated with each box j.

Fused monodromy matrices

We now describe how to use Young tableaux in the fusion procedure. We start by defining
T λpuq as the monodromy matrix whose auxiliary space is P λ

´

Â|λ|

i“1 CN
¯

, where P λ is the
Young symmetriser associated to the Young diagram λ.

To obtain T λpuq explicitly, we just need to generalise the results of the previous section;
in fact, the antisymmetriser Am we have used there is just the Young symmetriser associated
to a Young diagram with a single vertical column of length m.

Any Young symmetriser P λ with total number of boxes |λ| “ m can be obtained from
the generalised R-matrix (3.7.1) using the following spectral parameters:

uj “ u` icj , j “ 1 . . .m (A.3.2)

where cj are the numbers in the Young tableaux defined in (A.3.1). Then the fused mon-
odromy matrix is:

T λpuq ” P λ
`

T1pu` ic1q . . . T|λ|pu` ic|λ|q
˘

“ T|λ|pu` ic|λ|q . . . T1pu` ic1qP λ (A.3.3)

The fused monodromy matrices form representation of Y pglN q, and the coproduct for them
is given by (3.7.8).

Fused transfer matrices as generators of conserved charges

The fused monodromy matrices satisfy the generalised RTT relation:

Rλλ
12 pu´ vqT λ

1 puqT λ
2 pvq “ T λ

2 pvqT λ
1 puqRλλ

12 pu´ vq (A.3.4)

where Rλλ
12 is the fused R-matrix:

Rλλ
ABpuq “ P λ

AP
λ
B

´

Ra1,b1pu` ic1q . . . Ra|λ|,b|λ|
pu` ic|λ|q

¯

(A.3.5)

By taking the trace on the auxiliary spaces 1, 2 in (A.3.4), it is easy to see that:
”

tλpuq, tλpvq

ı

“ 0, @λ (A.3.6)
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where tλpuq ” trpT λpuqq is the fused transfer matrix corresponding to the Young tableau λ.
Therefore, the fused transfer matrices commute with themselves at different values of the
spectral parameters, for each Young tableau λ.

This property can be generalised to the case where we have two different fused transfer
matrices associated to different Young tableaux λ, µ. To prove this, we define the corre-
sponding fused R-matrix as:

Rλµpu, θq “ PµP λ

¨

˝

|λ|
ź

j“1

|µ|
ź

k“1
Rajk

´

u` icλ
j ´ icµ

k

¯

˛

‚ (A.3.7)

Then the fused monodromy matrices corresponding to any two Young diagrams λ, µ satisfy:

Rλµ
12 pu´ vqT λ

1 puqTµ
2 pvq “ Tµ

2 pvqT λ
1 puqRλµ

12 pu´ vq (A.3.8)

Taking the trace on auxiliary spaces 1, 2, we conclude that:
”

tλpuq, tµpvq

ı

“ 0, @λ, µ (A.3.9)

Hence, all fused transfer matrices commute with each other, forming a large class of com-
muting operators. The fundamental transfer matrix tpuq corresponds to the Young diagram
formed by a single box, and is part of this family. Furthermore, the fused antisymmetric
transfer matrices ta a “ 1 . . . N defined in section 3.7.1 are also part of this family, since ta
can be built via fusion using a Young diagram with a single column of a boxes.

A.3.1 Hirota and CBR equations

The T-system is composed of the fused transfer matrices we have just defined and two
functional relations between them, which take the form of finite difference equations.

The first one is the Hirota equation. It is a relation between transfer matrices corre-
sponding to rectangular Young diagrams, which are completely specified by their number
of rows and columns. Therefore, we will denote λrect as pa, sq, where a is the number of
rows and s is the number of columns.

The Hirota equation reads:

ta,st
r´2s
a,s “ t

r´2s

a`1,sta´1,s ` ta,s`1t
r´2s

a,s´1 (A.3.10)

where t0,i “ 1, ta`N,s „ ta,s and ta,i “ 0, @a ă 0.
It is possible to use this relation repeatedly to obtain all rectangular transfer matrices

ta,s from the subset of N elements ta,1, a “ 1 . . . N , which correspond to the totally anti-
symmetric transfer matrices (3.7.14). This is one of the reasons why quantum minors play
a fundamental role in the T-system.

In fact, one can start by fixing s “ 1 in (A.3.10), and read off ta,2 for any a in terms of
ta`1,1, ta,1, ta´1,1. Then fixing s “ 2 one can obtain ta,3 in terms of ta`1,2, ta,2, ta´1,2, ta,1.
This procedure can be then iterated for any s.
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The Hirota equation admits the following gauge symmetry:

tpa,sqpuq Ñ gi,j
pa,sq

tpa,sqpuq, i, j “ 1, 2 (A.3.11)

where gi,j
pa,sq

are 4 independent analytic functions of u who depend in a fixed way on the
constants a, s. We can use the transformation (A.3.11) to impose a specific normalisation
on the transfer matrices corresponding to rectangular Young diagrams.

The second relation between fused transfer matrices is the CBR formula:

tλpuq “ det1ďk,jďλ1 tλ1
j`k´j,1pu´ ipk ´ 1qq (A.3.12)

where λ1
j denotes the number of boxes in the j-th column of the Young diagram λ.



Appendix B

Technical Details for Chapter 5

B.1 Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern is a collection of numbers that labels uniquely a state of a spin
chain based on the Yangian Y pglN q1. This procedure is based on the chain of subalgebras
Y pgl1q Ă Y pgl2q Ă . . . Y pglN´1q Ă Y pglN q.

We can take as a starting point the fact that glk has a glk´1 subalgebra naturally
identified with the subset of generators Eij , i, j “ 1 . . . k ´ 1, and this subalgebra can be
decomposed into a direct sum of irreps. of glk´1:

RpEijqλ|k´1 “
à

µ

RpF qµ (B.1.1)

where the LHS is the restriction of the irrep. R, of weights λ, of glk to its glk´1 subalgebra,
and on the RHS F are the generators of glk´1 in a irrep. with weights µ.

This decomposition is unique and each µ can appear at most once, and furthermore it
is subject to the branching rules:

λj ě µj ě λj`1 (B.1.2)

Considering now the chain of subalgebras gl1 Ă gl2 Ă . . . glN´1 Ă glN and using the
decomposition (B.1.1), we can start from glN and pick up a single µ irrep. of glN´1 from
the RHS of the decomposition (B.1.1), subject to the branching rules (B.1.2); then, we can
decompose this glN´1 irrep into a sum of glN´2 irreps, pick one of them and continue until
we reach a single gl1 irrep. All the possible highest weights of these chains of irreps. of

1Technically one has to assume non-degenerateness of the spin chain; thanks to twisting, this is always
true in the setting we consider.
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subalgebras form the Gelfand-Tsetlin patterns for glN :

λN,1 λN,2 . . . λN,N

λN´1,1 . . . λN´1,N´1

. . .

λ1,1

(B.1.3)

where λk,i is the i´ th weight of the irrep. of glk, subject to branching rules:

λk,j ě λk´1,j´1 ě λk,j`1 (B.1.4)

The Gelfand-Tsetlin patterns can immediately be lifted to the Yangian. In fact, a similar
chain of subalgebras is present in Y pglN q, and the Gelfand-Tsetlyn patterns for the Y pglN q

are built with the same philosophy as the ones for glN . The main difference is that now we
will have a GT pattern for each site of the spin chain, that we will label via α2:

λα
N,1 λα

N,2 . . . λα
N,N

λα
N´1,1 . . . λα

N´1,N´1

. . .

λα
1,1

(B.1.5)

subject to branching rules:

λα
k,j ě λα

k´1,j´1 ě λα
k,j`1, @α “ 1 . . . L . (B.1.6)

We find it convenient to label the glN weights as νi, i “ 1 . . . N and introduce for the
other weights in the GT pattern the notation µα

k,j ” λα
n´k`j´1,j . In this notation the GT

pattern becomes:

να
1 να

2 να
3 . . . να

N´2 να
N´1 να

N

µα
1,1 µα

2,2 . . . µα
N´2,N´2 µα

N´1,N´1

µα
2,1 µα

3,2 . . . µα
N´1,N´2

µα
3,1 . . . µα

N´1,N´3

. . .

µα
N´1,1

(B.1.7)

2In principle there can be a different representation of Y pglN q at each site. We will always assume that
every site is in the same representation.
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µα
k “ pµα

k,1 . . . µ
α
k,kq is said the be the k-th dual diagonal of the GT pattern, since it is placed

on the k-th bottom left to top right diagonal of (B.1.7). The dual diagonals are the natural
objects labelling the separated variables.
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Appendix C

Technical Details for chapter 6

C.1 Mapping xΨA|Ô|ΨBy to xy|Ô|xy

Our goal in this section is to prove the relation (5.3.30) which we repeat here for convenience
”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

Ψ
“

ÿ

xy
Ψ̃BpxqΨApyq

”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

xy
(C.1.1)

where we use the notation
”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

Ψ
“

1
N

ˆ (C.1.2)
”!∆u0Yw

∆u0
wjD3

)L0´1

j“0
,
!∆u1Yw

∆u1
wjD1

)L1´1

j“0
,
!∆u2Yw

∆u2
wjD´1

)L2´1

j“0
,
!∆u3Yw

∆u3
wjD´3

)L3´1

j“0

ı

,

and
”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

xy
:“ sL

∆2
θ

ÿ

k

signpσq
ź

α,a

rα,nα,a

rα,0

ź

b

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

σa,α“ka,α´mα,a`a

.

(C.1.3)
Our starting point is the l.h.s. of (C.1.1). By explicitly writing each entry of the matrix
we can pull out the measure factors µαpωα,aq and Q-functions Q̃B

1 associated to the state
|Ψ̃By, as the finite-difference operators in the determinant do not act on them. Hence we
obtain

ż

tptwα,auq
ź

α,a

Q̃B
1 pwα,aqµαpwα,aqdwα,a (C.1.4)

where
tptwα,auq “ det

pα,aq,pb,βq
fbpwα,aqwβ´1

α,a Q1,1`a

ˆ

wα,a `
i

2p3 ´ 2bq
˙

, (C.1.5)

and
fbpwq “

∆ubYw

∆ub
.

(C.1.6)
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Let us note the range of indices in the above determinant formula. pα, aq takes values
in the set

tp1, 1q, p1, 2q, p2, 1q, . . . , pL, 2qu (C.1.7)

whereas pb, βq takes values in the set

tp0, 1q, . . . , p0, L0q, p1, 1q, . . . , p1, L1q, . . . , p3, L3qu . (C.1.8)

Note that, in order to simplify this derivation, this notation is in contrast to the one used in
the main text, where the rows of the determinant were labelled by pa, αq instead of pα, aq.
At the end we will convert back to the original ordering.

In [74] a determinant relation was used to extract the SoV matrix elements for the
measure, which in our notation corresponds to the case L0 “ L3 “ 0 and L1 “ L2 “ L.
For the general case we have the following updated determinant relation, valid for any two
tensors Ha,α,β and Ga,α,b, which reads

det
pα,aq,pb,βq

Ha,α,βGa,α,b “
ÿ

σ

p´1q|σ|

˜

ź

b

det
pα,aqPσ´1pbq,βb

Ha,α,βb

¸

ź

a,α

Ga,α,σa,α (C.1.9)

which is easy to derive. Here, σ is a permutation of

t0, . . . , 0
loomoon

L0

, . . . , 3, . . . , 3
loomoon

L3

u (C.1.10)

with σα,a denoting the number at position a` pN ´ 1qpα ´ 1q and

σ´1pbq “ tpα, aq : σa,α “ bu . (C.1.11)

We have βb P t1, . . . , Lbu and finally |σ| denotes the number of elementary permutations
needed to bring the set

Ť

b σ
´1pbq to the canonical ordering (C.1.7).

We now apply (C.1.9) to (C.1.4) by identifying

Ha,α,β “ wβ´1
α,a , Ga,α,b “ fbpwα,aqQ1,1`a

ˆ

wα,a `
i

2p3 ´ 2bq
˙

. (C.1.12)

Notice that detpα,aqPσ´1pbq,βb
Ha,α,βb

“ p´1q
Lb
2 pLb´1q∆b where ∆b denotes the Vandermonde

determinant built out of wα,a for which σα,a “ b, that is

∆b :“
ź

pα,aqăpα1,a1q

pwα,a ´ wα1,a1q (C.1.13)

where ă is to be understood in lexicographical ordering as explained above. The result
then reads

tptwα,au “ s1
L

ÿ

σ

p´1qσ|
ź

b

∆b

ź

α,a

fσa,αpwα,aqQ1,1`apwα,a ` i
2 ` isa,αq (C.1.14)
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where we have defined sα,a “ 1 ´ σα,a and

s1
L :“

ź

b

p´1q
Lb
2 pLb´1q (C.1.15)

Using the explicit form of fbpwq, which is (C.1.6), it is easy to verify that

ź

b

∆b

ź

α,a

fσa,αpwα,aq “
ź

b

∆ubYwσ´1pbq

∆ub

(C.1.16)

and hence we obtain

tptwα,auq “ s1
L

ÿ

σ

p´1q|σ|
ź

b

p´1q
Lb
2 pLb´1q

∆ubYwσ´1pbq

∆ub

ź

α,a

Q1,1`apwα,a ` i
2 ` isα,aq . (C.1.17)

We now symmetrise1 over the integration variables wα,1 and wα,2. The only factor in (C.1.4)
not invariant under this operation is tptwα,auq, so symmetrising it gives

sym
wα,1Øwα,2

tptwα,auq “
s1

L
2L

ÿ

σ

p´1q|σ|
ź

b

∆ubYwσ´1pbq

∆ub

ź

α

F
sα,1sα,2
α , (C.1.18)

where
F

sα,1sα,2
α “ det

1ďa,a1ď2
Q1,1`apwα,a1 ` i

2 ` isα,a1q . (C.1.19)

We will now derive this relation. We introduce the expression

hσ,α :“ p´1q|σ|
ź

b

∆ubYwσ´1pbq

∆ub

Q1,2pwα,1 ` i
2 ` isα,1qQ1,3pwα,2 ` i

2 ` isα,2q . (C.1.20)

Consider the interchange of wα,1 and wα,2. This produces

hσ,α Ñ p´1q|σ|
ź

b

∆̄ubYwσ´1pbq

∆ub

Q1,2pwα,2 ` i
2 ` isα,1qQ1,3pwα,1 ` i

2 ` isα,2q . (C.1.21)

where ∆̄ denotes that we have interchanged wα,1 and wα,2 inside the Vandermonde deter-
minant.

There are two possible types of σ. Either σα,1 “ σα,2 “ c for some c P t0, 1, 2, 3u or not.
First suppose σα,1 “ σα,2 “ c. Then sα,1 “ sα,2 and, since pα, 1q and pα, 2q are adjacent to
each other in the properly ordered set (C.1.7) we have

∆̄ucYwσ´1pcq
“ ´∆ucYwσ´1pcq

, ∆̄ubYwσ´1pbq
“ ∆ubYwσ´1pbq

, b ‰ c . (C.1.22)

1To avoid confusion, for any function fpu, vq we define the symmetrisation of f over u and v as being
sym
uØv

fpu, vq “ 1
2 pfpu, vq ` fpv, uqq, as used in Sections 5.2 and 5.3 of [74].
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Hence, after exchanging wα,1 and wα,2 for such a σ we obtain

hσ,α Ñ ´p´1q|σ|
ź

b

∆ubYwσ´1pbq

∆ub

Q1,2pwα,2 ` i
2 ` isα,2qQ1,3pwα,1 ` i

2 ` isα,1q . (C.1.23)

Hence for such a σ, after symmetrising over wα,1 and wα,2 we obtain

sym
wα,1Øwα,2

hσ,α “
1
2p´1q|σ|

ź

b

∆ubYwσ´1pbq

∆ub

F
sα,1sα,2
α . (C.1.24)

We now consider the case of σ such that σα,1 “ c1, σα,2 “ c2 with c1 ‰ c2. Note that there
is another (unique) permutation σ̃ with σ̃α,1 “ c2, σ̃α,2 “ c1 and σ̃α1,a1 “ σα1,a1 for all other
pairs pα1, a1q. Clearly since these two permutations are equivalent up to interchanging a
single pair we have p´1q|σ| “ ´p´1q|σ̃|. Denote s̃α,a “ 1´ σ̃α,a. Then it immediately follows
that under exchanging wα,1 and wα,2 we have

hσ,α Ñ ´p´1q|σ̃|
ź

b

∆ubYwσ̃´1pbq

∆ub

Q1,2pwα,2 ` i
2 ` is̃α,2qQ1,3pwα,2 ` i

2 ` is̃α,1q . (C.1.25)

Hence, after symmetrisation we have

sym
wα,1Øwα,2

phσ,α ` hσ̃,αq “
1
2

˜

p´1q|σ|
ź

b

∆ubYwσ´1pbq

∆ub

F
sα,1sα,2
α ` σ Ø σ̃

¸

. (C.1.26)

Of course, the conclusion is unchanged if hσ,α is multiplied by any function independent of
pα, aq and hence (C.1.18) immediately follows by sequentially symmetrising over pα, 1q and
pα, 2q for α “ 1, 2, . . . , L.

We now put (C.1.18) under the integration (C.1.4) and compute the integral by residues,
closing the contour in the upper-half plane. This produces a sum over poles at the locations
wα,a “ xα,a “ θα ` ips ` nα,aq, with nα,a ranging over all non-negative integers. If all nα,a

are distinct for a fixed α we can use the symmetry of the integrand to remove a factor of
2 for each α and restrict the summation to nα,1 ě nα,2. If some nα,a coincide for a fixed α
then removing the 2L factor will result in an overcounting which we must compensate for,
by introducing the factor Mα.

As a result, we obtain
ÿ

nα,1ěnα,2ě0

ź

α

1
Mα

ź

α,a

Q̃B
1 pxα,aq

rα,nα,a

rα,0

s1
L

ÿ

σ

p´1q|σ|
ź

b

∆ubYxσ´1pbq

∆ub

ź

α

det
1ďa,a1ď2

Q1,a`1pxα,a1 ` i
2 ` isα,aq .

(C.1.27)

We now compare with the general expression (C.1.1). We see that in order for a term
”

L0; u0

ˇ

ˇ

ˇ
L1; u1

ˇ

ˇ

ˇ
L2; u2

ˇ

ˇ

ˇ
L3; u3

ı

xy
(C.1.28)
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in the summand of the r.h.s. to be non-zero it must be possible to write each yα,a “

θα ` ips `mα,a ` 1 ´ aq, for each fixed α, as

yα,a “ xα,ρα
a

` isα,ρα
a ,, a “ 1, 2 (C.1.29)

where ρα is a permutation of t1, 2u and ρα
a :“ ραpaq and hence we require

mα,a ` 1 ´ a “ nα,ρα
a

` sα,ρα
a
. (C.1.30)

Since each of the numbers mα,a ` 1 ´a must be distinct, as otherwise the determinant built
from Q1,1`a will vanish, there is a unique permutation ρα (if such a permutation exists) for
which (C.1.30) holds. If such a permutation does not exist then the matrix element (C.1.28)
vanishes. The permutation ρα amounts to sorting the set tnα,1 ` sα,1, nα,2 ` sα,2u and so
we should keep track of the sign of this permutation. Hence, for a fixed permutation σ we
read off the following contribution to (C.1.28)

s1
Lp´1q

L
2 pL´1qpN´1q p´1q|σ|

∆2
θ

ź

α

p´1q|ρα|

Mα

ź

α,a

rα,nα,a

rα,0

ź

b

p´1q
Lb
2 pLb´1q

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

mα,a“nα,ρα
a

´σα,ρα
a

`a

(C.1.31)
where we have included the corresponding normalisation factor N . Finally, in order to
determine (C.1.28) we note that for a given set of xα,a and yα,a there can be many different
σ for which the relation (C.1.30) holds and we must sum over all such σ in (C.1.31) in order
to obtain (C.1.28). When there is a degeneracy in nα,a for fixed α there are multiple σ
that give the same result. Their number is exactly Mα, so we can simplify the expression
by only summing over k inequivalent permutations of nα,a within each α. We denote such
permutations permαn and hence obtain

xy|Ô|xy “ sLp´1q
L
2 pL´1qpN´1q

ÿ

k

p´1q|σ|

∆2
θ

ź

α,a

rα,nα,a

rα,0

ź

b

p´1q
Lb
2 pLb´1q

∆ubYxσ´1pbq

∆ub

ˇ

ˇ

ˇ

ˇ

ˇ

σα,a“kα,a´mα,a`a

.

(C.1.32)
Moving back to the original ordering of the rows of the determinant introduces a sign
p´1q

L
4 pN2´3N`2q which combines with s1

L to produce sL given by

sL :“ p´1q
LN

4 pL´1qpN´1q`
řN

n“0 Ln . (C.1.33)

Finally, the above argument is rigourous in the finite-dimensional setting. To pass to the
infinite-dimensional case we notice that the matrix elements are block diagonal with each
block having finite size. The spin s enters each block as a universal polynomial pre-factor.
Then, each block is fixed by analysing a finite-number of finite-dimensional representations
and the matrix elements can be analytically continued to values of s not being negative
half-integers. So the matrix elements we found are valid in the infinite-dimensional case as
well for generic s. Note that since the SoV basis vectors are polynomial in the spin s our
formula for the SoV matrix elements of the principal operators are valid for all values of s.
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This completes the derivation. The glN case is identical up to extending the range of
indices t1, 2u to t1, . . . , N ´ 1u but can be carried out in exactly the same way as was
demonstrated for the measure in [74]. Note that for a function fpwα,1, . . . , wα,N´1q we
define the symmetrisation over wα,1, . . . , wα,N´1 as

1
pN ´ 1q!

ÿ

pPσN´1

fpwα,pp1q, . . . , wα,ppN´1qq (C.1.34)

where σN´1 denotes the permutation group on N ´ 1 letters.



Appendix D

Technical details for Chapter 5

D.1 Alternative derivation

In this appendix we present an alternative derivation of (5.3.15) which avoids using Cramer’s
rule and hence avoids expressing the integral of motion eigenvalues IA

b1,β1 as a ratio with a
potentially vanishing denominator.

Our starting point is the following trivial equality

rpb1, β1q Ñ O:

As “ 0 . (D.1.1)

We then expand out O:

A

O:

A “
ÿ

b,β

p´1qbIA
b,βw

β´1DN´2b `

N
ÿ

r“0
χrO:

prq
(D.1.2)

and notice a number of cancellations. Indeed, in the sum
ÿ

b,β

p´1qbIA
b,βrpb1, β1q Ñ wβ´1DN´2bs (D.1.3)

only a single term will survive and it is precisely p´1qb1

IA
b1,β1rpb1, β1q Ñ wβ1´1DN´2b1

s. This
is a result of the anti-symmetry of the determinant as all other terms in the sum (D.1.3)
will produce two identical columns in the determinant and hence vanish.

As such we obtain the relation

p´1qbrpb1, β1q Ñ wβ1´1DN´2b1

sIA
b1,β1 “ ´

N
ÿ

r“0
rpb1, β1q Ñ O:

prq
s (D.1.4)

and see that the coefficient of IA
b1,β1 is precisely p´1qb1N xΨA|Ψ̃By. From here on the deriva-

tion proceeds exactly as in section 5.3. Since IA
b1,β1 is the eigenvalue of the integral of motion

183
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Îb1,β1 on the state xΨA| we can replace xΨA|Ψ̃ByIA
b1,β1 with xΨA|Îb1,β1 |Ψ̃By. Then, we expand

Îb1,β1 into a sum over characters χr to obtain

N
ÿ

r“0
χrxΨA|Îb1,β1 |Ψ̃By “

p´1qb1`1

N

N
ÿ

r“0
rpb1, β1q Ñ O:

prq
s . (D.1.5)

Finally, we equate the coefficients of the characters χr on both sides (character projection),
which was justified in section 5.3, and obtain the result

xΨA|Î
prq

b1,β1 |Ψ̃By “
p´1qb1`1

N
rpb1, β1q Ñ O:

prq
s . (D.1.6)

The derivation presented here is valid for any transfer matrix eigenstate xΨA| and any
factorisable state |Ψ̃By. These classes of states are enough to completely constrain the SoV
matrix elements xy|Î

prq

b1,β1 |xy (as is proven in Appendix C.1) and hence the formula (D.1.6)
is valid for any two factorisable states xΨA| and |Ψ̃By.

D.2 SoV basis

In this section we will demonstrate that knowledge of the structure of the SoV basis and
the FSoV approach allows one to derive the form of Sklyanin’s B operator.

We start by defining the SoV ground states |0y and x0| which correspond to the constant
polynomial 1. These states satisfy the following properties

Tj1pθα ` isq|0y “ 0 “ T1jpθα ` isq|0y “ 0, j “ 1, . . . , N, α “ 1, . . . , L . (D.2.1)

We can now follow the logic of [70] and build vectors by action of transfer matrices on x0|

and |0y. The key idea of [70] is that if such vectors form a basis then it is automatically
an SoV basis since the transfer matrix wave functions will factorise. We will choose the
following set of transfer matrices

T˚
µpuq :“ det

1ďj,kďµ1
Tµ1

j´j`k,1

ˆ

u´
i

2
`

µ1
1 ´ µ1 ´ µ1

j ` j ` k ´ 1
˘

˙

(D.2.2)

where Ta,1puq are the transfer matrices in anti-symmetric representations and µ denotes an
integer partition (Young diagram)

µ “ pµ1, . . . , µN´1, 0q (D.2.3)

and µ1
j denotes the height of the j-th column of the Young diagram. The states |yy are then

constructed as

|yy 9

L
ź

α“1
T˚

µα

ˆ

θα ` is `
i

2
`

µα
1 ´ µα,1

1
˘

˙

|0y (D.2.4)

and we label the constructed states by the L Young diagrams µα, α “ 1, . . . , L.
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We also construct a set of left vectors

xx| 9 x0|

L
ź

α“1

N´1
ź

j“1
TN´1,sα

j

ˆ

θα ` is ´
i

2pN ´ sα
j ´ 1q

˙

(D.2.5)

where pN ´ 1, sq denotes the Young diagram of height N ´ 1 and width s, that is µ “

ps, . . . , s
loomoon

N´1

, 0q and the corresponding transfer matrix is defined by the Cherednik-Bazhanov-

Reshetikhin (CBR) formula

Tµpuq “ det
1ďj,kďµ1

Tµ1
j´j`k,1

ˆ

u´
i

2
`

µ1
1 ´ µ1 ´ µ1

j ` j ` k ´ 1
˘

˙

. (D.2.6)

We now note two key properties of the constructed set of vectors. First, they are linearly
independent. This was proven in [73] and the argument relies on the fact that the twist
matrix (4.4.4) can be deformed slightly with N ´ 1 parameters w1, . . . , wN´1. Then, in
the limit where all wi are sent sequentially to infinity the constructed set of vectors reduce
to eigenvectors of the so-called Gelfand-Tsetlin algebra [73], a key object in representation
theory. Furthermore, the Gelfand-Tsetlin algebra has non-degenerate spectrum and it was
shown in [73] that a basis of eigenvectors are given by (D.2.5) and (D.2.4) in the above-
described limit. Hence, the vectors (D.2.5) and (D.2.4) form a basis, and the transfer matrix
wave functions are guaranteed to factorise.

The next key property is that the constructed set of vectors are independent of the twist
eigenvalues. This follows from the fact that all transfer matrices in our chosen reference
frame have the structure

T˚
µpuq “ T˚,0

µ puq `

N
ÿ

r“0
¨ ¨ ¨ ˆ χrTr1puq (D.2.7)

and

TN´1,spuq “ T0
N´1,spuq `

N
ÿ

r“0
χrT1,rpuq ˆ . . . (D.2.8)

where T0
µpuq denotes a part which is independent of the twist eigenvalues. The property

(D.2.1) then ensures that the twist-dependent part of the transfer matrices never con-
tributes, see [72–74].

We now exploit known relations for transfer matrices in terms of Baxter Q-functions.
The transfer matrix eigenvalues admit the form

xΨ|T˚
µα

ˆ

θα ` is `
i

2
`

µα
1 ´ µα,1

1
˘

˙

9

det
1ďa,a1ďN´1

Qa`1
ˆ

yα,a1 `
i

2 pN ´ 2q

˙

det
1ďa,a1ďN´1

Qa`1
ˆ

θα ` is `
i

2 pN ´ 2kq

˙xΨ|

(D.2.9)
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with yα,a “ θα ` ips ` µα
a ` 1 ´ aq and

L
ź

α“1

N´1
ź

a“1
TN´1,sα

a

ˆ

θα ` is ´
i

2pN ´ sα
j ´ 1q

˙

|Ψy 9

L
ź

α“1

N´1
ź

a“1

Q1pθα ` is ` isα
a q

Q1pxα,aq
|Ψy (D.2.10)

where xα,a “ θα ` ips ` sα
a q.

We can now write down the wave functions. By normalising xΨ| and |Ψy appropriately
we have

xΨ|yy “

L
ź

α“1
det

1ďa,a1ďN´1
Qj`1

ˆ

yα,a `
i

2 pN ´ 2q

˙

. (D.2.11)

Similarly, we have

xx|Ψy “

L
ź

α“1

N´1
ź

a“1
Q1pxα,aq (D.2.12)

Since the proposed sets of vectors form a basis we can write the scalar product between two
transfer matrix eigenstates as

xΨA|ΨBy “
ÿ

x,y
ΨBpxqMy,xΨApyq . (D.2.13)

We now turn to the FSoV construction which allows us to extract the measure (6.7.15) in
the two SoV bases. This is just a special case of the formula (5.3.30). Since the SoV bases
are independent of twist, the character projection trick is valid and all of the techniques
developed earlier in sections 5.3 and 5.4 can be carried out. In particular, we can compute
correlation functions of multi-insertions of principal operators. Following the logic of section
5.4.3 we see that there is a distinguished operator diagonalised in the basis |xy which then
must also be diagonalised in the basis xx| defined in (D.2.5). Hence, we have obtained
Sklyanin’s B operator, and the basis diagonalising it, starting solely from the FSoV approach
and the knowledge of the SoV basis.

D.3 Existence of basis of Bethe algebra eigenstates

In this appendix we will prove the existence of the decomposition used in (5.3.12) which
states that one can write a resolution of the identity as

1 “
ÿ

A

|ΨAyxΨ̄A| (D.3.1)

where each |ΨAy is a joint eigenvector of the transfer matrices t1puq , t2puq, xΨ̄A| is defined
by the property

xΨ̄A|ΨBy “ δAB (D.3.2)

and the index A in the sum labels all transfer matrix eigenstates.
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Outline of proof The proof is very similar in spirit to our proof in the paper [74] showing
that eigenstates of the SoV B operator form a basis of the representation space. An outline
of the steps we will take are as follows. We will begin by decomposing the representation
space H into a direct sum of finite-dimensional spaces Hk, k P Zě0 from which the identity
operator inherits the decomposition

1 “
ÿ

kě0
1k (D.3.3)

where 1k denotes the restriction of the identity operator to Hk. We will then prove that
each Hk admits a basis of transfer matrix eigenstates and as a result we can write

1k “
ÿ

Ak

|ΨAk
yxΨ̄Ak

| (D.3.4)

where the sum is over a finite number of certain transfer matrix eigenstates enumerated by
Ak to be specified later. Hence, the decomposition (D.3.1) holds with

1 “
ÿ

kě0

ÿ

Ak

|ΨAk
yxΨ̄Ak

| . (D.3.5)

Proof The representation space of the gl3 spin chain is the space of polynomials in xα, yα,
α “ 1, . . . , L. By definition, a vector in this space is a finite linear combination of monomials

L
ź

α“1
xnα

α ymα
α , nα,mα P Zě0 . (D.3.6)

In order to perform SLp3q (group)-valued linear transformations the representation space
must be extended from polynomials to analytic functions which can be represented as power
series in the above variables convergent in some neighbourhood of the origin, see [74] for a
discussion and examples. Hence, in order to show that a collection of vectors form a basis
of the representation space we must show that any such analytic function can be written as
an infinite series in those vectors with finite coefficients.

Note that there are legitimate questions about convergence of such infinite series and the
existence of the corresponding finite coefficients. Indeed even if one manages to construct
a basis for the original space of polynomials it does not necessarily extend to a basis of the
space of analytic functions.

Let us introduce the following operator E “ ´E11´L sˆ1 of the global Cartan subalgebra
of Upglp3qq, see (5.6.2) for the definition of E11. A direct calculation yields

E
L

ź

α“1
xnα

α ymα
α “

˜

L
ÿ

α“1
nα `mα

¸

L
ź

α“1
xnα

α ymα
α . (D.3.7)

Hence, we see that the spectrum of this operator is bounded from below and furthermore
each eigenvalue is non-negative. Hence the representation space H decomposes into a direct
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sum of eigenspaces Hk corresponding to the eigenvalue k

H “
à

kě0
Hk, Hk :“ tv P H : Ev “ k vu . (D.3.8)

Clearly, each Hk is finite-dimensional as there are only finitely many ways to write a given
non-negative integer k as a sum of non-negative integers nα and mα. Clearly the decomposi-
tion (D.3.8) is valid for the space of polynomials. However, since the space of regular at the
origin analytic functions admit a Taylor expansion into the variables xα, yα the decomposi-
tion (D.3.8) is also valid for this enlarged space. To complete the proof it remains to show
that each Hk admits a basis of transfer matrix eigenstates. To this end it suffices to show
that they have a distinct set of eigenvalues in each subspace the number of which matches
the dimension of that space. Since transfer matrix eigenvalues are algebraic functions of
the twist parameters it suffices to prove there are sufficiently many for some special value
of the twist to prove that it is true generically.

We will proceed as follows. Consider the transfer matrices with diagonal twist g “

diagpλ1, λ2, λ3q. As a result the transfer matrices commute with E and preserve the sub-
spaces Hk. We consider the singular twist limit λ1 " λ2 " λ3. In this limit t1puq and
t2puq reduce to the generators GT1puq and GT2puq of the Gelfand-Tsetlin subalgebra of the
Yangian whose properties are well-understood [43]. Let σ P C be a generic parameter and
consider the combination

tpuq “
1
λ1
t1puq `

σ

λ1λ2
t2puq . (D.3.9)

In the singular twist limit tpuq Ñ tGTpuq :“ GT1puq ` σ GT2puq. We will prove that this
operator has distinct eigenstates in each Cartan subspace, and hence so does tpuq and hence
so do the family t1puq and t2puq.

The eigenvectors of tGTpuq are well-understood for finite-dimensional representations
where s P t0,´1

2 ,´1, . . . u . In particular, they are all polynomial functions of the spin
s with each eigenvalue also being a polynomial in s. What is not obvious is that each
eigenvector remains an eigenvectors when analytically continued to non half-integer values
of s. Let us consider the expression

tGTpuq|Ψsy ´ τGTpuq|Ψsy (D.3.10)

where |Ψsy is an eigenvectors of tGTpuq for s P t0,´1
2 ,´1, . . . u. For such values of s this

expression equates to zero. However, for generic s the operator tGTpuq is a differential
operator with coefficients which are polynomial in s and hence the action of tGTpuq on |Ψsy

results in a vector which is polynomial in s and hence (D.3.10) vanishes for all values of
s. Hence, |Ψsy is an eigenvector for all s and is non-zero for generic s and tGTpuq has
distinct eigenvalue for each such eigenvector. Since each Hk can be obtained by considering
enough finite-dimensional representations with sufficiently large ´s we can promote a basis
of eigenvectors of Hk for s P t0,´1

2 , . . . u to a basis of eigenvectors for generic s. This
completes the proof.



Appendix E

Technical details for Chapter 6

E.1 Parity of the open transfer matrix

We will now prove that, up to a trivial prefactor, the open transfer matrix Tpuq built from
the Lax operators and boundary matrices is even in the spectral parameter.

This is quite simple to do once we establish a few identities.

Unitarity of Rt Just like the R-matrix, the Rt matrix is also unitary:

St i m
n lp2uqSt n k

j mp´2uq “ δi
jδ

k
l , (E.1.1)

where we are summing over repeated indices and S is the normalised rational R-matrix
introduced in (6.3.1).

KR identities We also need special identities between boundary matrices andR-matrices,
first found in [28]. They are given by:

St i n
m jp2uqK´

mn “ pKt
´qij , (E.1.2)

K`
mnS

t j n
m ip´2uq “

2u` i

´2u` i
pKt

`qij . (E.1.3)

In particular, the first can be immediately upgraded to an identity for the boundary mon-
odromy matrix Uijpuq:

St i n
m jp2uqU mnpuq “ pU tqijp´uq . (E.1.4)

Using these identities, we see that:

T̃puq “ K`
il Ulipuq “ K`

jkS
t n k

j mp´2uqSt m i
l np2uqUilpuq “ (E.1.5)

“ 2u`i
´2u`ipKt

`qnmpU tqmnp´uq “ 2u`i
´2u`i T̃p´uq , (E.1.6)

where in the last passage we have used the fact that trace is invariant under transposition
and that V 2 “ 1. Therefore, the quantity Tpuq ”

T̃puq

u`i{2 is even in u.
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Appendix F

Technical details for Chapter 8

F.1 Proof of Poisson-commutativity of Tpuq

In this appendix, we prove that the classical transfer matrix (8.3.14) forms a family of
mutually Poisson-commuting functions for any value of the spectral parameter and for any
J . We start by the J “ 0 case. We have that:

tTpuq,Tpvqu “tKabpuq,KαβpvquK̄bapuqK̄βαpvq ` KabpuqKαβpvqtK̄bapuq, K̄βαpvqu . (F.1.1)

Using (8.3.18) and its analog for K̄:

tTpuq,Tpvqu “ ´
K̄bapuqK̄βαpvq

ξpu` vq
rKβbpuqKαapvq ´ KbβpvqKaαpuqs `

`
K̄bapuqK̄βαpvq

ξpu´ vq
rKaβpuqKαbpvq ´ KaβpvqKαbpuqs ´

´
KabpuqKαβpvq

ξpu` vq

”

K̄αapuqK̄βbpvq ´ K̄aαpvqK̄bβpuq

ı

`

`
KabpuqKαβpvq

ξpu´ vq

”

K̄bαpuqK̄βapvq ´ K̄bαpvqK̄βapuq

ı

.

(F.1.2)

By relabelling indices appropriately, all terms cancel as expected.
For the rest of this section, we will use the shorthand notation:

pLqa
bpuq ” pL1puq.L2puq . . .LJ puqqa

b , pL̄q b
a puq ” pL´J puq.L´pJ´1qpuq . . .L´1puqq b

a .
(F.1.3)

It is easy to see that these matrices follow the same Poisson brackets as individual L-
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matrices. Thus, for general J we have that:

tTpuq,Tpvqu “tKabpuq,KαβpvqupL̄q a
c puqpL̄q α

γ pvqK̄dcpuqK̄δγpvqpLqb
dpuqpLq

β
δpvq`

KabpuqKαβpvqpL̄q a
c puqpL̄q α

γ pvqtK̄dcpuq, K̄δγpvqupLqb
dpuqpLq

β
δpvq`

` pPoisson brackets between Lq “

“ pL̄q a
c puqpL̄q α

γ pvqpLqb
dpuqpLq

β
δpvq

#

´
1

ξpu` vq

„

KβbpuqKαapvqK̄dcpuqK̄δγpvq ´ KbβpvqKaαpuqK̄dcpuqK̄δγpvq`

` KabpuqKαβpvqK̄γcpuqK̄δdpvq ´ KabpuqKαβpvqK̄cγpvqK̄dδpuq

ȷ

`

`
1

ξpu´ vq

„

KaβpuqKαbpvqK̄dcpuqK̄δγpvq ´ KaβpvqKαbpuqK̄dcpuqK̄δγpvq`

` KabpuqKαβpvqK̄dγpuqK̄δcpvq ´ KabpuqKαβpvqK̄dγpvqK̄δcpuq

ȷ

+

`

` pPoisson brackets between Lq .

(F.1.4)

We now relabel indices in order to collect the boundary reflection matrices as:

tTpuq,Tpvqu “KabpuqKαβpvqK̄dcpuqK̄δγpvq
#

´
1

ξpu` vq

„

pL̄q β
c puqpL̄q α

γ pvqpLqb
dpuqpLqa

δpvq´

´ pL̄q a
δ puqpL̄q α

γ pvqpLqb
dpuqpLqβ

cpvq`

` pL̄q a
c puqpL̄q α

d pvqpLqb
γpuqpLq

β
δpvq´

´ pL̄q a
c puqpL̄q b

γ pvqpLqα
dpuqpLq

β
δpvq

ȷ

`

`
1

ξpu´ vq

„

pL̄q a
c puqpL̄q α

γ pvqpLq
β
dpuqpLqb

δpvq´

´ pL̄q α
c puqpL̄q a

γ pvqpLqb
dpuqpLq

β
δpvq`

` pL̄q a
γ puqpL̄q α

c pvqpLqb
dpuqpLq

β
δpvq´

´ pL̄q a
c puqpL̄q α

γ pvqpLqb
δpuqpLq

β
dpvq

ȷ

+

`

` pPoisson brackets between Lq .

(F.1.5)
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The Poisson Brackets between L-matrices give:

tTpuq,Tpvqu “(Poisson brackets between Kq`

` KabpuqKαβpvqK̄dcpuqK̄δγpvq
«

tpL̄q a
c puq, pL̄q α

γ pvqupLqb
dpuqpLq

β
δpvq`

` pL̄q α
γ pvqtpL̄q a

c puq, pLq
β
δpvqupLqb

dpuq`

` pL̄q a
c puqpL̄q α

γ pvqtpLqb
dpuq, pLq

β
δpvqu`

` pL̄q a
c puqtpLqb

dpuq, pL̄q α
γ pvqupLq

β
δpvq

ff

.

(F.1.6)

Using the Poisson brackets:

ξ tpL´nq b
a puq, pL´mq d

c pvqu “
pL´nq d

a puqpL´nq b
c pvq ´ pL´nq b

c puqpL´nq d
a pvq

u´ v
δnm , (F.1.7)

ξ tpL´nq b
a puq, pLmqc

dpvqu “
pL´nq c

a puqpLnqb
dpvq ´ pL´nq b

d puqpLnqc
apvq

u` v
δm n , (F.1.8)

we get:

tTpuq,Tpvqu “(Poisson brackets between Kq`

` KabpuqKαβpvqK̄dcpuqK̄δγpvq
#

1
ξpu´ vq

„

pL̄q α
c puqpL̄q a

γ pvqpLqb
dpuqpLq

β
δpvq´

´ pL̄q a
γ puqpL̄q α

c pvqpLqb
dpuqpLq

β
δpvq`

` pL̄q a
c puqpL̄q α

γ pvqpLqb
δpuqpLq

β
dpvq´

´ pL̄q a
c puqpL̄q α

γ pvqpLq
β
dpuqpLqb

δpvq

ȷ

`

`
1

ξpu` vq

„

pL̄q β
c puqpL̄q α

γ pvqpLqb
dpuqpLqa

δpvq´

´ pL̄q a
δ puqpL̄q α

γ pvqpLqb
dpuqpLqβ

cpvq´

´ pL̄q a
c puqpL̄q b

γ pvqpLqα
dpuqpLq

β
δpvq`

` pL̄q a
c puqpL̄q α

d pvqpLqb
γpuqpLq

β
δpvq

ȷ

+

.

(F.1.9)

It is easy to verify that the terms from the Poisson Brackets of L-matrices cancel exactly
the ones from the Poisson brackets of K-matrices. Therefore, the transfer matrices form a
family of functions in convolution between themselves:

tTpuq,Tpvqu “ 0 . (F.1.10)
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F.2 Parity of quantum transfer matrices

In this appendix we will prove explicitly the parity of the quantum transfer matrices in all
the antisymmetric representations of the auxiliary space.

Parity of T4

We need to evaluate:

T̂4p´uq “ Trp
ˆ̄L4

J puq. ˆ̄L4
J´1puq . . . ˆ̄L4

1puq.K̂4p´uq.L̂4
1p´uq.L̂4

2p´uq . . . L̂4
J p´uq.G4. ˆ̄K4p´uq.G4 T q .

(F.2.1)
Transposing inside of the trace:

T̂4p´uq “TrpG4. ˆ̄K4 T p´uq.G4 T .L̂4 T
J p´uq.L̂4 T

J´1p´uq . . . L̂4 T
1 p´uq.

.K̂4 T p´uq. ˆ̄L4 T
1 puq. ˆ̄L4 T

2 puq . . . ˆ̄L4 T
J puqq .

(F.2.2)

Now since L̂4 T
j p´uq “ ´

ˆ̄L4
j p´uq and ˆ̄L4 T

j puq “ ´L̂4
1puq we get:

T̂4p´uq “ Trp
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

1p´uq.K̂4 T p´uq.L̂4
1puq.L̂4

2puq . . . L̂4
J puq.G4. ˆ̄K4 T p´uq.G4 T q .

(F.2.3)
We can now insert a pair of S̄-matrices near the K̂-operator using the unitarity condition
S̄p2uqS̄p´2uq “ I and then commute S̄p2uq through the L̂-operators using the Yang-Baxter
equation, obtaining:

T̂4p´uq “Trp
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

1p´uq.K̂4 T p´uq.S̄p´2uq.

.L̂4
1puq.L̂4

2puq . . . L̂4
J puq.G4.S̄p2uq. ˆ̄K4 T p´uq.G4 T q .

(F.2.4)

Using the following identities:

ᾱp2uqR̄c d
a bp2uqK̂4

cdp´uq “ K̂4
bapuq , (F.2.5)

ᾱp´2uqR̄a b
d cp´2uqp

ˆ̄K4qdcp´uq “ p
ˆ̄K4qbapuq , (F.2.6)

which in matrix notation are:

K̂4 T p´uq.S̄p2uq “ K̂4puq , (F.2.7)

S̄p´2uq. ˆ̄K4 T p´uq “
ˆ̄K4puq , (F.2.8)

we obtain that T̂4p´uq “ T̂4puq, thus seeing that T̂4 is even for any J .
We will now give a more detailed proof of the last passage above. We will use the

RTT relations (substituting Rp´uq with S̄puq), the unitarity condition SpuqSp´uq “ 1 and
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the identities (F.2.5) and (F.2.6). Starting from (F.2.3) we insert an identity and we use
unitarity to get:

T̂4p´uq “p
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

1p´uqq γ
a S̄δ α

ζ ηp2uqS̄ζ η
γ βp´2uqK̂4

αδp´uq

pL̂4
1puq.L̂4

2puq . . . L̂4
J puqq

β
hpG4. ˆ̄K4 T p´uq.G4 T qha .

(F.2.9)

We can now use (F.2.5) to get:

T̂4p´uq “p
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

1p´uqq γ
a S̄ζ η

γ βp´2uqK̂4
ζηpuq

pL̂4
1puq.L̂4

2puq . . . L̂4
J puqq

β
hpG4. ˆ̄K4 T p´uq.G4 T qha .

(F.2.10)

We now use the YBE (substituting Rp´uq with S̄puq) to commute the remaining S-matrix
through all the L̂i and ˆ̄Li, obtaining for i “ 1:

T̂4p´uq “p
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

2p´uqq ω
a S̄γ β

ϵ ωp´2uqL̂4 η
1 γpuqL̂4 ζ

1 β p´uqK̂4
ζηpuq

pL̂4
2puq . . . L̂4

J puqqϵ
hpG4. ˆ̄K4 T p´uq.G4 T qha .

(F.2.11)

Continuing this process for @i “ 2...J we obtain:

T̂4p´uq “p
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

1p´uq.K̂4puq.L̂4
1puq.L̂4

2puq . . . L̂4
J puqqϵ ω

S̄ϵ ω
h ap´2uqpG4. ˆ̄K4 T p´uq.G4 T qha .

(F.2.12)

Finally we use (F.2.6) and get:

T̂4p´uq “p
ˆ̄L4

J p´uq. ˆ̄L4
J´1p´uq . . . ˆ̄L4

1p´uq.K̂4puq.L̂4
1puq.L̂4

2puq . . . L̂4
J puqqϵ ω

pG4. ˆ̄K4puq.G4 T qω ϵ “ T̂4puq .
(F.2.13)

Parity of T6

Remembering that L̄6
i puq “ L6

i p´uq, we write:

T̂6puq “ Tr
´

L̂6
J puq . . . L̂6

1puq.K̂6puq.L̂6
1puq . . . L̂6

J puq.G6. ˆ̄K6puq.G6 T
¯

. (F.2.14)

Hence we have that:

T̂6p´uq “ Tr
´

L̂6
J p´uq . . . L̂6

1p´uq.K̂6p´uq.L̂6
1p´uq . . . L̂6

J p´uq.G6. ˆ̄K6p´uq.G6 T
¯

.

(F.2.15)
Taking a transpose inside the trace and noticing from definition (8.4.13) that L̂6 T

i p´uq “

L̂6
i puq:

T̂6p´uq “ Tr
´

L̂6
J puq . . . L̂6

1puq.K̂6 T p´uq.L̂6
1puq . . . L̂6

J puq.G6. ˆ̄K6 T p´uq.G6 T
¯

. (F.2.16)
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We now need identities analogous to (F.2.5) for 6 irrep. First, we need the S̄6-matrix.
Making the ansatz that it is formed by all compatible indices structures, we can fix the
relative coefficients by requiring that it satisfies the Yang-Baxter equation:

L̂6 B
Epuq

ˆ̄L6 D
F p´vqS̄6E F

A Cpu` vq “ S̄6B D
F Epu` vq

ˆ̄L6 E
C p´vqL̂6 F

Apuq . (F.2.17)

We get that:

S̄6 A C
B Dpuq “ cpuq

¨

˝δA
B δ

C
D ´

i

ξ u
δA

D δC
B `

i

ξ
´

u´ 2i
ξ

¯ηAC ηBD

˛

‚ . (F.2.18)

The overall coefficient cpuq is fixed by unitarity, S̄6 A C
B DpuqS̄6 B D

E F p´uq “ δA
E δ

C
F , as:

cpuq “
u

´

u´ 2i
ξ

¯

2
ξ2 ` u

´

u` i
ξ

¯ . (F.2.19)

The identities we need are:

K̂6 T p´uq.S̄6p2uq “ K̂6puq , (F.2.20)
S̄6p´2uq. ˆ̄K6 T p´uq “

ˆ̄K6puq . (F.2.21)

Hence, inserting into (F.2.16) a pair of S̄-matrices via unitarity and repeating the passages
of the section above, it is easy to prove that:

T̂6p´uq “ T̂6puq . (F.2.22)

Parity of T4̄

Using the definitions of section 8.4.3 one can rewrite T̂4̄puq in terms of L̂4-operators and
K̂4-operators as:

T̂4̄puq “ β̂puq Trp
ˆ̄L4

1puq . . . ˆ̄L4
J puq.pG4q´T .K̂4p´uq.pG4q´1.L̂4

J p´uq . . . L̂4
1p´uq. ˆ̄K4p´uqq .

(F.2.23)
Where β̂puq is an operator which is an even polynomial in u, composed by all the prefactors
appearing in the definitions of the 4̄ operators. Following the same passages used for the
parity of T4, it is then easy to prove that:

T4̄p´uq “ T4̄puq . (F.2.24)
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Parity of T1̄

From the definitions of section 8.4.3, it is evident that the L1̄-operators are even polynomials
in u. Also, since the K1̄-operators are proportional to the identity operator, we can move
them together through all L1̄. Their product is:

K1̄puqK̄1̄puq “

ˆ

u2 `
4
ξ2

˙ ˆ

u2 `
1
ξ2

˙2
u2 . (F.2.25)

Hence, T1̄puq is even as it is a product of even functions.

F.3 Explicit form of transfer matrices

J “ 0 case

The polynomials P that enter the transfer matrices for the J “ 0 case in (8.4.31) are

P 4 “ P 4̄ “ 4 cosφv2 ´ 8h` cosφ ,
P 6 “ p2 cos 2φ` 4qv4 ´ p4 ∆2 sin2 φ` 16h cosφqv2 ` 16h2 ,

(F.3.1)

where h “ ´ĝ2B´1. The above expressions lead to the Baxter equation (8.5.4).
In order to make a comparison with [25, 157] we introduce the notation for the final

difference operators Ô˘

Ô˘q ” qpuq
`

4ĝ2 ´ 2u2 cospϕq ˘ 2∆u sinpϕq
˘

` u2qpu´ iq ` u2qpu` iq . (F.3.2)

The second order equations used in [25, 157] was of the form Ô˘q “ 0. At the same time
the forth order equation (8.5.4) can we written as

´
1
u2 Ô`

1
u
Ô´q “ ´

1
u2 Ô´

1
u
Ô`q “ 0 . (F.3.3)

We see that the four independent solutions of the two second order equations Ô˘q “ 0 are
the 4 solutions of (8.5.4), which indeed demonstrates their equivalence.

J “ 1 case

For the J “ 1 case we explicitly built all 3 transfer matrices as differential operators acting
on the CFT wavefunction of 6 variables s, t, x⃗1. We verified the general analytic properties
outlined in the text in section 8.4.3. Furthermore, we found some additional relations
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between the coefficients as shown below

P 4 “ 4 cosφv4 ` a1 v
2 `

a1
4 ` 8h´

1
4 cosφ ,

P 6 “ p2 cos 2φ` 4q v8 ` 2
„

cosφ a1 ` c1
2 ` cos 2φ∆2 ´ p∆2 ` 1q

´ 2S2 sin2 φ

ȷ

v6 ` b2 v
4 ` b3 v

2 ` 16h2 ,

P 4̄ “ 4 cosφv4 ` c1 v
2 `

c1
4 ` 8h´

1
4 cosφ .

(F.3.4)

Here, h “ ´ĝ4B´1 » ´ĝ4 so we can see that the relation (8.4.26) does hold indeed. The
coefficients a1, c1, b2, b3 and h are complicated differential operators whose explicit form
can be computed if needed. There are no further simple relations we found between them
except for c1 ´ a1 “ 8 i S∆ sinφ, agreeing with (8.4.35). This implies that under spin
flipping S Ñ ´S, T4puq interchanges with T4̄puq up to the trivial explicit prefactor. We see
that in total we have 6 independent commuting operators a1, b2, b3, h, S,∆, which equates
the number of degrees of freedom in J “ 1 case.

The limit of straight line φ Ñ π is especially interesting as 1D Conformal symmetry
gets restored. The space naturally decomposes into a 1D line and the 3D space orthogonal
to it. The corresponding symmetry is thus SOp3q ˆ SOp2, 1q, and its representations are
parametrised by the spin S of SOp3q and the conformal weight ∆ of SOp2, 1q. Fixing ∆ and
S removes two variables in our CFT wavefunction out of 6. Furthermore, we can restrict
ourselves to Highest Weight states w.r.t. to both subgroups, which imposes on the wave
function 2 more conditions Kψ “ 0 and S`ψ “ 0, which can be used to further reduce the
number of variables from 4 to 2. In this reduced system B´1 and b3 remain two non-trivial
differential operators, whereas all others can be expressed explicitly in terms of ∆ and S. In
particular, a1 becomes 2pP1K1 ` ∆2 ´ ∆ ` 1q, where Kµ is the special conformal transfor-
mation generator and Pµ is the generator of translations, and thus simplifies considerably
for the primary operators in the 1D defect CFT, for which by definition K1 “ 0.

In the simplified case S “ 0 we get the following relations

P 4 “ ´4v4 `
`

2∆2 ´ 2∆ ` 2
˘

v2 `
1
4

`

2∆2 ´ 2∆ ` 3
˘

´ 8ĝ4 ,

P 6 “ `6v8 ´ p4p∆ ´ 1q∆ ` 6qv6 ` v4 `

p∆ ´ 1q2∆2 ` 16ĝ4˘

` b3v
2 ` 16ĝ8 ,

P 4̄ “ ´4v4 `
`

2∆2 ´ 2∆ ` 2
˘

v2 `
1
4

`

2∆2 ´ 2∆ ` 3
˘

´ 8ĝ4 ,

(F.3.5)

so there are only two non-trivial functions ∆pgq and b3pgq, which can only be deduced
numerically.

F.4 Generalisation: addition of impurities

In order to develop an SoV construction for this spin chain, it would be good to introduce
impurities like in [69]. This is done by introducing a dependence on some parameters
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tθiu, i “ 1 . . . J in the rapidities of the bulk particles. To preserve parity in the argument
u of the T -operators, the correct choice (up to a normalisation of the θi) amounts to:

T̂λ
θ puq “ Tr

´

L̂t λ
J p´u´ θJ q . . . L̂t λ

1 p´u´ θ1q.K̂λpuq.L̂λ
1pu´ θ1q . . . L̂λ

J pu´ θJ q.Gλ. ˆ̄Kλpuq.Gλ t
¯

,

(F.4.1)

where λ “ t4, 4̄,6, 1̄u. These transfer matrices form a family of mutually commuting
operators: this was verified explicitly up to the case J “ 1. However, they do not commute
with the original Hamiltonian H: this is expected, as introducing impurities changes the
physical system and thus the Hamiltonian as well.

The next step is to introduce the polynomials P λ
k and to write the Baxter equation.

In this case, the polynomials will acquire a tθiu dependence. Moreover, the prefactors
appearing in equations (8.4.32) will also be modified. We obtain that:

T1
θ pv, tζiuq “ 1 ,

T4
θ pv, tζiuq ”

P 4
J`1pv2, tζiuq

ξ2J`2 ,

T6
θ pv, tζiuq ” Ap2vq

v2 ` 1
v2

P 6
2J`2pv2, tζiuq

ξ4J`4 ,

T4̄
θ pv, tζiuq “ Ap2vqAp2v ` iqAp2v ´ iq

pv2 ` 9
4qpv2 ` 1

4q
śJ

i“1

´

ζ2
i `

`

v2 ´ ζ2
i ` 1

4
˘2

¯

P 4̄
J`1pv2, tζiuq

ξ6J`6 ,

T1̄
θ pv, tζiuq “ A2p2vqAp2v ` iqAp2v ´ iqAp2v ` 2iqAp2v ´ 2iq

pv2 ` 4qpv2 ` 1q2v2 śJ
i“1

´

`

v2 ´ ζ2
i

˘2
´

4ζ2
i `

`

v2 ´ ζ2
i ` 1

˘2
¯¯

ξ8J`8 ,

(F.4.2)

where v ” u ξ and ζi ” θi ξ. We can now rewrite the Baxter equation (5.2.2). Defining
ζ0 ” 0, ζ´i ” ´ζi and identifying:

Qpvq Ñ
Γp´ivq exppπpJ ` 1qvq qpvq ξ2ivpJ`1q

Γ
`

´iv ´ 1
2
˘

Γpiv ` 2q

J
ź

i“´J

`

Γpipv ` ζiq ` 1q´1˘

, (F.4.3)

we obtain:

P 6
2J`2pv2q

v2 śJ
i“´J pv ´ ζiq

qpvq “ ´

J
ź

i“´J

pv ` i´ ζiq qpv ` 2iq ´
v ` i

2
vpv ` iq

P 4
J`1

`

pv ` i
2q2˘

qpv ` iq

´

J
ź

i“´J

pv ´ i´ ζiq qpv ´ 2iq ´
v ´ i

2
vpv ´ iq

P 4̄
J`1

`

pv ´ i
2q2˘

qpv ´ iq .

A similar construction with inhomogeneities in the closed fishchain is introduced in [92].



200 APPENDIX F. TECHNICAL DETAILS FOR CHAPTER 8



Bibliography

[1] L. N. Lipatov, “Asymptotic behavior of multicolor qcd at high energies in connection
with exactly solvable spin models,” JETP Lett., vol. 59, pp. 596–599, 1994, [Pisma
Zh. Eksp. Teor. Fiz.59,571(1994)]. arXiv: hep-th/9311037 [hep-th].

[2] L. D. Faddeev and G. P. Korchemsky, “High-energy QCD as a completely integrable
model,” Phys. Lett., vol. B342, pp. 311–322, 1995. doi: 10.1016/0370-2693(94)
01363-H. arXiv: hep-th/9404173 [hep-th].

[3] J. A. Minahan and K. Zarembo, “The Bethe ansatz for N=4 superYang-Mills,”
JHEP, vol. 03, p. 013, 2003. doi: 10 . 1088 / 1126 - 6708 / 2003 / 03 / 013. arXiv:
hep-th/0212208 [hep-th].

[4] J. M. Maldacena, “The Large N limit of superconformal field theories and super-
gravity,” Int. J. Theor. Phys., vol. 38, pp. 1113–1133, 1999, [Adv. Theor. Math.
Phys.2,231(1998)]. doi: 10.1023/A:1026654312961,10.4310/ATMP.1998.v2.n2.
a1. arXiv: hep-th/9711200 [hep-th].

[5] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math.
Phys., vol. 99, pp. 3–32, 2012. doi: 10.1007/s11005-011-0529-2. arXiv: 1012.3982
[hep-th].

[6] A. Cavaglià, D. Fioravanti, N. Gromov, and R. Tateo, “Quantum Spectral Curve
of the N “ 6 Supersymmetric Chern-Simons Theory,” Phys. Rev. Lett., vol. 113,
no. 2, p. 021 601, 2014. doi: 10.1103/PhysRevLett.113.021601. arXiv: 1403.1859
[hep-th].

[7] A. Cavaglià, M. Cornagliotto, M. Mattelliano, and R. Tateo, “A Riemann-Hilbert
formulation for the finite temperature Hubbard model,” JHEP, vol. 06, p. 015, 2015.
doi: 10.1007/JHEP06(2015)015. arXiv: 1501.04651 [hep-th].

[8] D. Bombardelli, A. Cavaglià, D. Fioravanti, N. Gromov, and R. Tateo, “The full
Quantum Spectral Curve for AdS4{CFT3,” JHEP, vol. 09, p. 140, 2017. doi: 10.
1007/JHEP09(2017)140. arXiv: 1701.00473 [hep-th].

[9] R. Klabbers and S. J. van Tongeren, “Quantum Spectral Curve for the eta-deformed
AdS5xS5 superstring,” Nucl. Phys. B, vol. 925, pp. 252–318, 2017. doi: 10.1016/j.
nuclphysb.2017.10.005. arXiv: 1708.02894 [hep-th].

201



202 BIBLIOGRAPHY

[10] V. Kazakov, “Quantum Spectral Curve of γ-twisted N “ 4 SYM theory and fishnet
CFT,” M.-L. Ge, A. J. Niemi, K. K. Phua, and L. A. Takhtajan, Eds., pp. 293–342,
2018. doi: 10.1142/9789813233867_0016. arXiv: 1802.02160 [hep-th].

[11] A. Cavaglià, N. Gromov, B. Stefański Jr., Jr., and A. Torrielli, “Quantum Spectral
Curve for AdS3/CFT2: a proposal,” JHEP, vol. 12, p. 048, 2021. doi: 10.1007/
JHEP12(2021)048. arXiv: 2109.05500 [hep-th].

[12] S. Ekhammar and D. Volin, “Monodromy bootstrap for SU(2|2) quantum spectral
curves: from Hubbard model to AdS3/CFT2,” JHEP, vol. 03, p. 192, 2022. doi:
10.1007/JHEP03(2022)192. arXiv: 2109.06164 [math-ph].

[13] A. Cavaglià, S. Ekhammar, N. Gromov, and P. Ryan, “Exploring the Quantum
Spectral Curve for AdS3/CFT2,” Nov. 2022. arXiv: 2211.07810 [hep-th].

[14] N. Gromov, “Introduction to the Spectrum of N “ 4 SYM and the Quantum Spectral
Curve,” 2017. arXiv: 1708.03648 [hep-th].

[15] B. Basso, S. Komatsu, and P. Vieira, “Structure Constants and Integrable Bootstrap
in Planar N=4 SYM Theory,” p. 030, 2015. arXiv: 1505.06745.

[16] B. Basso, V. Goncalves, and S. Komatsu, “Structure constants at wrapping order,”
JHEP, vol. 05, p. 124, 2017. doi: 10.1007/JHEP05(2017)124. arXiv: 1702.02154
[hep-th].

[17] B. Basso and D.-L. Zhong, “Three-point functions at strong coupling in the BMN
limit,” JHEP, vol. 04, p. 076, 2020. doi: 10.1007/JHEP04(2020)076. arXiv: 1907.
01534 [hep-th].

[18] B. Basso, V. Goncalves, S. Komatsu, and P. Vieira, “Gluing Hexagons at Three
Loops,” Nucl. Phys. B, vol. 907, pp. 695–716, 2016. doi: 10.1016/j.nuclphysb.
2016.04.020. arXiv: 1510.01683 [hep-th].

[19] B. Basso, S. Komatsu, and P. Vieira, “Structure Constants and Integrable Bootstrap
in Planar N=4 SYM Theory,” May 2015. arXiv: 1505.06745 [hep-th].

[20] S. Caron-Huot, F. Coronado, A.-K. Trinh, and Z. Zahraee, “Bootstrapping n=4 sym
correlators using integrability,” doi: 10 . 1007 / JHEP02(2023 ) 083. arXiv: 2207 .
01615v1.

[21] C. Bercini, A. Homrich, and P. Vieira, “Structure constants in n = 4 sym and sepa-
ration of variables,” arXiv: 2210.04923v2.

[22] A. Cavaglià, N. Gromov, J. Julius, and M. Preti, “Bootstrability in defect cft: In-
tegrated correlators and sharper bounds,” doi: 10.1007/JHEP05(2022)164. arXiv:
2203.09556v2.

[23] J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett., vol. 80,
pp. 4859–4862, 1998. doi: 10.1103/PhysRevLett.80.4859. arXiv: hep-th/9803002
[hep-th].



BIBLIOGRAPHY 203

[24] Ö. Gürdoğan and V. Kazakov, “New Integrable 4D Quantum Field Theories from
Strongly Deformed Planar N “ 4 Supersymmetric Yang-Mills Theory,” Phys. Rev.
Lett., vol. 117, no. 20, p. 201 602, 2016, [Addendum: Phys.Rev.Lett. 117, 259903
(2016)]. doi: 10.1103/PhysRevLett.117.201602. arXiv: 1512.06704 [hep-th].

[25] A. Cavaglia, N. Gromov, and F. Levkovich-Maslyuk, “Quantum spectral curve and
structure constants in N=4 SYM: cusps in the ladder limit,” JHEP, vol. 10, p. 060,
2018. doi: 10.1007/JHEP10(2018)060. arXiv: 1802.04237 [hep-th].

[26] N. Gromov, N. Primi, and P. Ryan, “Form-factors and complete basis of observables
via separation of variables for higher rank spin chains,” doi: 10.1007/JHEP11(2022)
039. arXiv: 2202.01591v3.

[27] N. Gromov, N. Primi, and P. Ryan, “Functional separation of variables for twisted
yangian and open spin chains,” to appear,

[28] N. Gromov, J. Julius, and N. Primi, “Open fishchain in n=4 supersymmetric yang-
mills theory,” doi: 10.1007/JHEP07(2021)127. arXiv: 2101.01232v2.

[29] E. Sklyanin, “Separation of variables. new trends,” doi: 10.1143/PTPS.118.35.
arXiv: solv-int/9504001.

[30] G. Arutyunov, Elements of Classical and Quantum Integrable Systems. Springer
Cham, 2019, isbn: 978-3-030-24198-8.

[31] H. Goldstein, Classical Mechanics. Addison-Wesley, 1980.
[32] C. M. Bender and S. Boettcher, “Real spectra in nonHermitian Hamiltonians hav-

ing PT symmetry,” Phys. Rev. Lett., vol. 80, pp. 5243–5246, 1998. doi: 10.1103/
PhysRevLett.80.5243. arXiv: physics/9712001.

[33] N. Gromov, V. Kazakov, G. Korchemsky, S. Negro, and G. Sizov, “Integrability of
Conformal Fishnet Theory,” JHEP, vol. 01, p. 095, 2018. doi: 10.1007/JHEP01(2018)
095. arXiv: 1706.04167 [hep-th].

[34] S. J. Parke, “Absence of Particle Production and Factorization of the S Matrix
in (1+1)-dimensional Models,” Nucl. Phys. B, vol. 174, pp. 166–182, 1980. doi:
10.1016/0550-3213(80)90196-0.

[35] F. Loebbert, “Lectures on yangian symmetry,” doi: 10.1088/1751-8113/49/32/
323002. arXiv: 1606.02947v2.

[36] V. G. Drinfel’d, “Quantum groups,” Journal of Soviet Mathematics, vol. 41, no. 2,
pp. 898–915, 1988. doi: 10.1007/BF01247086. [Online]. Available: https://doi.
org/10.1007/BF01247086.

[37] H. .-. Doebner and J. .-. Hennig, Eds., Introduction to quantum groups, Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1990, pp. 3–28, isbn: 978-3-540-46647-5.

[38] V. G. Drinfeld, “A New realization of Yangians and quantized affine algebras,” Sov.
Math. Dokl., vol. 36, pp. 212–216, 1988.



204 BIBLIOGRAPHY

[39] H. Bethe, “Zur theorie der metalle. i. eigenwerte und eigenfunktionen der linearen
atomkette,” Zeitschrift für Physik, vol. 71 (3–4), pp. 205–226, doi: 10.1007/BF01341708.

[40] L. D. Faddeev, “How algebraic bethe ansatz works for integrable model,” arXiv:
9605187.

[41] N. Slavnov, “Algebraic bethe ansatz,” arXiv: 1804.07350v2.
[42] P. Ryan, “Integrable systems, separation of variables and the yang-baxter equation,”

arXiv: 2201.12057v1.
[43] A. Molev, Yangians and Classical Lie Algebras. American Mathematical Society,

2007, isbn: 978-0-8218-4374-1.
[44] L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan, “The Quantum Inverse Problem

Method. 1,” Teor. Mat. Fiz., vol. 40, pp. 194–220, 1979.
[45] N. Kitanine, K. Kozlowski, J. Maillet, N. Slavnov, and V. Terras, “Form factor

approach to dynamical correlation functions in critical models,” doi: 10.1088/1742-
5468/2012/09/P09001. arXiv: 1206.2630v1.

[46] V. E. Korepin, “CALCULATION OF NORMS OF BETHE WAVE FUNCTIONS,”
Commun. Math. Phys., vol. 86, pp. 391–418, 1982. doi: 10.1007/BF01212176.

[47] N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in
the framework of the alcebraic bethe ansatz,” Theoretical and Mathematical Physics,
vol. 79, no. 2, pp. 502–508, 1989. doi: 10.1007/BF01016531. [Online]. Available:
https://doi.org/10.1007/BF01016531.

[48] S. Belliard and N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz
have determinant representation,” JHEP, vol. 10, p. 103, 2019. doi: 10 . 1007 /
JHEP10(2019)103. arXiv: 1908.00032 [math-ph].

[49] S. Belliard et al., “Algebraic Bethe ansatz for scalar products in SU(3)-invariant
integrable models,” J. Stat. Mech., vol. 1210, P10017, 2012. doi: 10.1088/1742-
5468/2012/10/P10017. arXiv: 1207.0956 [math-ph].

[50] S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Form factors in quantum integrable
models with GL(3)-invariant R-matrix,” Nucl. Phys. B, vol. 881, pp. 343–368, 2014.
doi: 10.1016/j.nuclphysb.2014.02.014. arXiv: 1312.1488 [math-ph].

[51] S. Z. Pakulyak, E. Ragoucy, and N. A. Slavnov, “Scalar products in models with the
GLp3q trigonometric R-matrix: General case,” Theor. Math. Phys., vol. 180, pp. 795–
814, 2014. doi: 10.1007/s11232-014-0180-z. arXiv: 1401.4355 [math-ph].

[52] S. Pakuliak, E. Ragoucy, and N. Slavnov, “Determinant representations for form fac-
tors in quantum integrable models with the gl(3)-invariant r-matrix,” Theor. Math.
Phys. 181, 2014. arXiv: 1406.5125.

[53] N. A. Slavnov, “Scalar products in GL(3)-based models with trigonometric R-matrix.
Determinant representation,” J. Stat. Mech., vol. 1503, no. 3, P03019, 2015. doi:
10.1088/1742-5468/2015/03/P03019. arXiv: 1501.06253 [math-ph].



BIBLIOGRAPHY 205

[54] N. A. Slavnov, “Determinant Representations for Scalar Products in the Algebraic
Bethe Ansatz,” Theor. Math. Phys., vol. 197, no. 3, pp. 1771–1778, 2018. doi: 10.
1134/S0040577918120073.

[55] S. Pakuliak, E. Ragoucy, and N. Slavnov, “Nested Algebraic Bethe Ansatz in in-
tegrable models: recent results,” SciPost Phys. Lect. Notes, vol. 6, p. 1, 2018. doi:
10.21468/SciPostPhysLectNotes.6. arXiv: 1803.00103 [math-ph].

[56] D. Chernyak, S. Leurent, and D. Volin, “Completeness of wronskian bethe equations
for rational gl(m|n) spin chains,” doi: 10 . 1007 / s00220 - 021 - 04275 - 9. arXiv:
2004.02865v2.

[57] N. Gromov, V. Kazakov, S. Leurent, and D. Volin, “Quantum Spectral Curve for
Planar N “ 4 Super-Yang-Mills Theory,” Phys. Rev. Lett., vol. 112, no. 1, p. 011 602,
2014. doi: 10.1103/PhysRevLett.112.011602. arXiv: 1305.1939 [hep-th].

[58] R. Hirota, “Discrete analogue of a generalized toda equation,” Journal of the Physical
Society of Japan, vol. 50, 1981.

[59] I. V. Cherednik, “An analogue of the character formula for hekke algebras,” Func-
tional Analysis and Its Applications, vol. 21, no. 2, pp. 172–174, 1987. doi: 10.1007/
BF01078042. [Online]. Available: https://doi.org/10.1007/BF01078042.

[60] V. Bazhanov and N. Reshetikhin, “Restricted solid-on-solid models connected with
simply laced algebras and conformal field theory,” Journal of Physics A: Mathemat-
ical and General, vol. 23, no. 9, p. 1477, 1990. doi: 10.1088/0305-4470/23/9/012.
[Online]. Available: https://dx.doi.org/10.1088/0305-4470/23/9/012.

[61] V. Kazakov and P. Vieira, “From characters to quantum (super)spin chains via
fusion,” JHEP, vol. 10, p. 050, 2008. doi: 10.1088/1126- 6708/2008/10/050.
arXiv: 0711.2470 [hep-th].

[62] O. Lipan, P. Wiegmann, and A. Zabrodin, “Fusion rules for quantum transfer ma-
trices as a dynamical system on Grassmann manifolds,” Mod. Phys. Lett. A, vol. 12,
pp. 1369–1378, 1997. doi: 10.1142/S0217732397001394. arXiv: solv-int/9704015.

[63] R. J. Baxter, Exactly solved models in statistical mechanics. 1982.
[64] R. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic

heisenberg chain. i. some fundamental eigenvectors,” Annals of Physics, vol. 76, no. 1,
pp. 1–24, 1973, issn: 0003-4916. doi: https://doi.org/10.1016/0003-4916(73)
90439-9. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0003491673904399.

[65] V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, “Integrable structure of
conformal field theory. 2. Q operator and DDV equation,” Commun. Math. Phys.,
vol. 190, pp. 247–278, 1997. doi: 10.1007/s002200050240. arXiv: hep-th/9604044.

[66] E. K. Sklyanin, “Separation of variables in the classical integrable SL(3) magnetic
chain,” Commun. Math. Phys., vol. 150, pp. 181–192, 1992. doi: 10.1007/BF02096572.
arXiv: hep-th/9211126.



206 BIBLIOGRAPHY

[67] E. K. Sklyanin, “Separation of variables in the quantum integrable models related
to the Yangian Y[sl(3)],” Zap. Nauchn. Semin., vol. 205, pp. 166–178, 1993. doi:
10.1007/BF02362784. arXiv: hep-th/9212076.

[68] E. K. Sklyanin, “Separation of variables in the Gaudin model,” Zap. Nauchn. Semin.,
vol. 164, pp. 151–169, 1987. doi: 10.1007/BF01840429.

[69] N. Gromov, F. Levkovich-Maslyuk, and G. Sizov, “New Construction of Eigenstates
and Separation of Variables for SU(N) Quantum Spin Chains,” JHEP, vol. 09, p. 111,
2017. doi: 10.1007/JHEP09(2017)111. arXiv: 1610.08032 [hep-th].

[70] J. Maillet and G. Niccoli, “On quantum separation of variables,” J. Math. Phys.,
vol. 59, no. 9, p. 091 417, 2018. doi: 10 . 1063 / 1 . 5050989. arXiv: 1807 . 11572
[math-ph].

[71] A. Roy Chowdhury, Quantum integrable systems. Chapman and Hall, 2004, isbn:
1584883804.

[72] P. Ryan and D. Volin, “Separated variables and wave functions for rational gl(N)
spin chains in the companion twist frame,” J. Math. Phys., vol. 60, no. 3, p. 032 701,
2019. doi: 10.1063/1.5085387. arXiv: 1810.10996 [math-ph].

[73] P. Ryan and D. Volin, “Separation of variables for rational gl(n) spin chains in any
compact representation, via fusion, embedding morphism and Backlund flow,” Feb.
2020. arXiv: 2002.12341 [math-ph].

[74] N. Gromov, F. Levkovich-Maslyuk, and P. Ryan, “Determinant Form of Correlators
in High Rank Integrable Spin Chains via Separation of Variables,” Nov. 2020. arXiv:
2011.08229 [hep-th].

[75] A. Liashyk and N. Slavnov, “On bethe vectors in gl3-invariant integrable models,” J.
High Energ. Phys. 2018, 18 (2018), doi: https://doi.org/10.1007/JHEP06(2018)
018.

[76] J. M. Maillet and G. Niccoli, “Complete spectrum of quantum integrable lattice
models associated to Y(gl(n)) by separation of variables,” SciPost Phys., vol. 6,
no. 6, p. 071, 2019. doi: 10.21468/SciPostPhys.6.6.071. arXiv: 1810.11885
[math-ph].

[77] J. M. Maillet and G. Niccoli, “Complete spectrum of quantum integrable lattice
models associated to uq(gl(n)) by separation of variables,” J. Phys. A, 52 (2019),
doi: 10.1088/1751-8121/ab2930.

[78] J. M. Maillet and G. Niccoli, “On quantum separation of variables beyond funda-
mental representations,” SciPost Phys., vol. 10, no. 2, p. 026, 2021. doi: 10.21468/
SciPostPhys.10.2.026. arXiv: 1903.06618 [math-ph].

[79] J. M. Maillet, G. Niccoli, and L. Vignoli, “Separation of variables bases for integrable
glM|N and Hubbard models,” SciPost Phys., vol. 9, p. 060, 2020. doi: 10.21468/
SciPostPhys.9.4.060. arXiv: 1907.08124 [math-ph].



BIBLIOGRAPHY 207

[80] J. M. Maillet, G. Niccoli, and L. Vignoli, “On Scalar Products in Higher Rank
Quantum Separation of Variables,” SciPost Phys., vol. 9, p. 086, 2020. doi: 10.
21468/SciPostPhys.9.6.086. arXiv: 2003.04281 [math-ph].

[81] N. Gromov, F. Levkovich-Maslyuk, P. Ryan, and D. Volin, “Dual Separated Variables
and Scalar Products,” Phys. Lett. B, vol. 806, p. 135 494, 2020. doi: 10.1016/j.
physletb.2020.135494. arXiv: 1910.13442 [hep-th].

[82] A. Cavaglià, N. Gromov, and F. Levkovich-Maslyuk, “Separation of variables and
scalar products at any rank,” JHEP, vol. 09, p. 052, 2019. doi: 10.1007/JHEP09(2019)
052. arXiv: 1907.03788 [hep-th].

[83] N. Slavnov, “Algebraic bethe ansatz,” arXiv: 1804.07350.
[84] E. Sklyanin, “Quantum inverse scattering method. selected topics,” Quantum Group

and Quantum Integrable Systems: Nankai Lectures, vol. 1991 (World Scientific 1992),
pp. 63–97, eprint: [hep-th/9211111].

[85] J. Maillet and V. Terras, “On the quantum inverse scattering problem,” Nucl. Phys.
B, pp. 627–644, doi: 10.1016/S0550-3213(00)00097-3. arXiv: 9911030.

[86] G. Niccoli, H. Pei, and V. Terras, “Correlation functions by separation of variables:
The xxx spin chain,” SciPost Phys. (2021) no.1, doi: 10.21468/SciPostPhys.10.
1.006. arXiv: 2005.01334.

[87] E. Sklyanin, “The quantum toda chain,” Lect. Notes Phys. 226, 196,
[88] E. R. S. Belliard S. Pakuliak and N. A. Slavnov, “Form factors in su(3)-invariant

integrable models,” J. Stat. Mech., 2013. arXiv: 1211.3968.
[89] S. Pakuliak, E. Ragoucy, and N. Slavnov, “Form factors in quantum integrable mod-

els with GLp3q-invariant r-matrix,” Nuclear Physics B 881, 2014. arXiv: 1312.1488.
[90] C. Marboe and D. Volin, “Fast analytic solver of rational bethe equations,” J. Phys.

A 50, 2017. arXiv: 1608.06504.
[91] S. Belliard and N. A. Slavnov, “Overlap between usual and modified bethe vectors,”

arXiv: 2106.00244.
[92] A. Cavaglia, N. Gromov, and F. Levkovich-Maslyuk, “Separation of variables in

ads/cft: Functional approach for the fishnet cft,” arXiv: 2103.15800.
[93] A. Cavaglià, D. Grabner, N. Gromov, and A. Sever, “Colour-Twist Operators I:

Spectrum and Wave Functions,” 2020. arXiv: 2001.07259 [hep-th].
[94] E. K. Sklyanin, “Boundary conditions for integrable quantum systems,” Journal of

Physics A: Mathematical and General, vol. 21, no. 10, pp. 2375–2389, May 1988.
doi: 10.1088/0305-4470/21/10/015.

[95] N. Guay and V. Regelskis, “Twisted yangians for symmetric pairs of types b, c, d,”
doi: 10.1007/s00209-016-1649-2. arXiv: 1407.5247v5.

[96] N. Guay, V. Regelskis, and C. Wendlandt, “Representations of twisted yangians of
types b, c, d: I,” doi: 10.1007/s00029-017-0306-x. arXiv: 1605.06733v4.



208 BIBLIOGRAPHY

[97] N. Guay, V. Regelskis, and C. Wendlandt, “Twisted yangians of small rank,” doi:
10.1063/1.4947112. arXiv: 1602.01418v2.

[98] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces. Academic
Press, 1978, isbn: 978-0821828489.

[99] J. Maillet and G. Niccoli, “On separation of variables for reflection algebras,” doi:
10.1088/1742-5468/ab357a. arXiv: 1904.00852v1.

[100] A. Molev and E. Ragoucy, “Representations of reflection algebras,” arXiv: 0107213.
[101] M. Nazarov and G. Olshanski, “Bethe subalgebras in twisted yangians,” arXiv:

9507003.
[102] D. Arnaudon, N. Crampe, A. Doikou, L. Frappat, and E. Ragoucy, “Analytical bethe

ansatz for open spin chains with soliton non preserving boundary conditions,” arXiv:
0503014.

[103] A. Gerrard, N. MacKay, and V. Regelskis, “Nested algebraic bethe ansatz for open
spin chains with even twisted yangian symmetry,” doi: 10.1007/s00023-018-0731-
1. arXiv: 1710.08409v2.

[104] R. Frassek and I. Szecsenyi, “Q-operators for the open heisenberg spin chain,” doi:
10.1016/j.nuclphysb.2015.10.010. arXiv: 1509.04867v3.

[105] I. Bena, J. Polchinski, and R. Roiban, “Hidden symmetries of the ads5 x s5 super-
string,” Phys.Rev.D69:046002, 2004.

[106] A. Cavaglià, N. Gromov, J. Julius, and M. Preti, “Integrability and conformal boot-
strap: One dimensional defect conformal field theory,” Phys. Rev. D, vol. 105, no. 2,
p. L021902, 2022. doi: 10 . 1103 / PhysRevD . 105 . L021902. arXiv: 2107 . 08510
[hep-th].

[107] A. Cavaglià, N. Gromov, J. Julius, and M. Preti, “Integrated correlators from inte-
grability: Maldacena-Wilson line in N = 4 SYM,” JHEP, vol. 04, p. 026, 2023. doi:
10.1007/JHEP04(2023)026. arXiv: 2211.03203 [hep-th].

[108] B. Basso, A. Georgoudis, and A. K. Sueiro, “Structure Constants of Short Opera-
tors in Planar N=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett., vol. 130,
no. 13, p. 131 603, 2023. doi: 10.1103/PhysRevLett.130.131603. arXiv: 2207.
01315 [hep-th].

[109] B. Basso, J. Caetano, and T. Fleury, “Hexagons and Correlators in the Fishnet
Theory,” JHEP, vol. 11, p. 172, 2019. doi: 10. 1007/ JHEP11(2019) 172. arXiv:
1812.09794 [hep-th].

[110] M. F. Sohnius and P. C. West, “Conformal Invariance in N=4 Supersymmetric Yang-
Mills Theory,” Phys. Lett. B, vol. 100, p. 245, 1981. doi: 10.1016/0370-2693(81)
90326-9.

[111] A. Zamolodchikov, “Fishnet’ diagrams as a completely integrable system,” Phys.
Lett. B, vol. 97, pp. 63–66, 1980. doi: 10.1016/0370-2693(80)90547-X.



BIBLIOGRAPHY 209

[112] M. Alfimov, G. Ferrando, V. Kazakov, and E. Olivucci, “Checkerboard CFT,” Nov.
2023. arXiv: 2311.01437 [hep-th].

[113] V. Kazakov, F. Levkovich-Maslyuk, and V. Mishnyakov, “Integrable Feynman Graphs
and Yangian Symmetry on the Loom,” Apr. 2023. arXiv: 2304.04654 [hep-th].

[114] D. Bak and S.-J. Rey, “Integrable Spin Chain in Superconformal Chern-Simons
Theory,” JHEP, vol. 10, p. 053, 2008. doi: 10.1088/1126- 6708/2008/10/053.
arXiv: 0807.2063 [hep-th].

[115] J. Caetano and T. Fleury, “Three-point functions and su p1|1q spin chains,” JHEP,
vol. 09, p. 173, 2014. doi: 10.1007/JHEP09(2014)173. arXiv: 1404.4128 [hep-th].

[116] B. Basso and L. J. Dixon, “Gluing Ladder Feynman Diagrams into Fishnets,” Phys.
Rev. Lett., vol. 119, no. 7, p. 071 601, 2017. doi: 10.1103/PhysRevLett.119.071601.
arXiv: 1705.03545 [hep-th].

[117] D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, and D.-l. Zhong, “Yangian Sym-
metry for Fishnet Feynman Graphs,” Phys. Rev. D, vol. 96, no. 12, p. 121 901, 2017.
doi: 10.1103/PhysRevD.96.121901. arXiv: 1708.00007 [hep-th].

[118] D. Grabner, N. Gromov, V. Kazakov, and G. Korchemsky, “Strongly γ-Deformed
N “ 4 Supersymmetric Yang-Mills Theory as an Integrable Conformal Field The-
ory,” Phys. Rev. Lett., vol. 120, no. 11, p. 111 601, 2018. doi: 10.1103/PhysRevLett.
120.111601. arXiv: 1711.04786 [hep-th].

[119] F. Loebbert, “Integrability for Feynman Integrals,” Dec. 2022. arXiv: 2212.09636
[hep-th].

[120] V. Kazakov and E. Olivucci, “The loom for general fishnet CFTs,” JHEP, vol. 06,
p. 041, 2023. doi: 10.1007/JHEP06(2023)041. arXiv: 2212.09732 [hep-th].

[121] N. Gromov and A. Sever, “The Holographic Dual of Strongly γ-deformed N=4 SYM
Theory: Derivation, Generalization, Integrability and Discrete Reparametrization
Symmetry,” 2019. arXiv: 1908.10379 [hep-th].

[122] J. K. Erickson, G. W. Semenoff, and K. Zarembo, “Wilson loops in N=4 supersym-
metric Yang-Mills theory,” Nucl. Phys., vol. B582, pp. 155–175, 2000. doi: 10.1016/
S0550-3213(00)00300-X. arXiv: hep-th/0003055 [hep-th].

[123] D. Grabner, N. Gromov, and J. Julius, “Excited States of One-Dimensional Defect
CFTs from the Quantum Spectral Curve,” JHEP, vol. 07, p. 042, 2020. doi: 10.
1007/JHEP07(2020)042. arXiv: 2001.11039 [hep-th].

[124] N. Drukker, “Integrable Wilson loops,” JHEP, vol. 10, p. 135, 2013. doi: 10.1007/
JHEP10(2013)135. arXiv: 1203.1617 [hep-th].

[125] D. Correa, J. Maldacena, and A. Sever, “The quark anti-quark potential and the
cusp anomalous dimension from a TBA equation,” JHEP, vol. 08, p. 134, 2012. doi:
10.1007/JHEP08(2012)134. arXiv: 1203.1913 [hep-th].



210 BIBLIOGRAPHY

[126] N. Gromov and F. Levkovich-Maslyuk, “Quantum Spectral Curve for a cusped Wil-
son line in N “ 4 SYM,” JHEP, vol. 04, p. 134, 2016. doi: 10.1007/JHEP04(2016)
134. arXiv: 1510.02098 [hep-th].

[127] J. K. Erickson, G. W. Semenoff, R. J. Szabo, and K. Zarembo, “Static potential
in N=4 supersymmetric Yang-Mills theory,” Phys. Rev., vol. D61, p. 105 006, 2000.
doi: 10.1103/PhysRevD.61.105006. arXiv: hep-th/9911088 [hep-th].

[128] D. Correa, J. Henn, J. Maldacena, and A. Sever, “The cusp anomalous dimension at
three loops and beyond,” JHEP, vol. 05, p. 098, 2012. doi: 10.1007/JHEP05(2012)
098. arXiv: 1203.1019 [hep-th].

[129] N. Gromov and A. Sever, “Derivation of the Holographic Dual of a Planar Conformal
Field Theory in 4D,” Phys. Rev. Lett., vol. 123, no. 8, p. 081 602, 2019. doi: 10.
1103/PhysRevLett.123.081602. arXiv: 1903.10508 [hep-th].

[130] N. Gromov and A. Sever, “Quantum fishchain in AdS5,” JHEP, vol. 10, p. 085, 2019.
doi: 10.1007/JHEP10(2019)085. arXiv: 1907.01001 [hep-th].

[131] S. Giombi, R. Roiban, and A. A. Tseytlin, “Half-BPS Wilson loop and AdS2/CFT1,”
Nucl. Phys., vol. B922, pp. 499–527, 2017. doi: 10.1016/j.nuclphysb.2017.07.
004. arXiv: 1706.00756 [hep-th].

[132] D. Mazac and M. F. Paulos, “The analytic functional bootstrap. Part I: 1D CFTs
and 2D S-matrices,” JHEP, vol. 02, p. 162, 2019. doi: 10.1007/JHEP02(2019)162.
arXiv: 1803.10233 [hep-th].

[133] D. Mazac and M. F. Paulos, “The analytic functional bootstrap. Part II. Natu-
ral bases for the crossing equation,” JHEP, vol. 02, p. 163, 2019. doi: 10.1007/
JHEP02(2019)163. arXiv: 1811.10646 [hep-th].

[134] F. A. Dolan and H. Osborn, “Conformal Partial Waves: Further Mathematical Re-
sults,” 2011. arXiv: 1108.6194 [hep-th].

[135] D. Mazac, “Analytic bounds and emergence of AdS2 physics from the conformal
bootstrap,” JHEP, vol. 04, p. 146, 2017. doi: 10.1007/JHEP04(2017)146. arXiv:
1611.10060 [hep-th].

[136] M. Beccaria, S. Giombi, and A. Tseytlin, “Non-supersymmetric wilson loop in N = 4
sym and defect 1d cft,” JHEP, vol. 03, p. 131, 2018. doi: 10.1007/JHEP03(2018)131.
arXiv: 1712.06874 [hep-th].

[137] M. Kim, N. Kiryu, S. Komatsu, and T. Nishimura, “Structure Constants of Defect
Changing Operators on the 1/2 BPS Wilson Loop,” JHEP, vol. 12, p. 055, 2017.
doi: 10.1007/JHEP12(2017)055. arXiv: 1710.07325 [hep-th].

[138] M. Cooke, A. Dekel, and N. Drukker, “The Wilson loop CFT: Insertion dimensions
and structure constants from wavy lines,” J. Phys., vol. A50, no. 33, p. 335 401, 2017.
doi: 10.1088/1751-8121/aa7db4. arXiv: 1703.03812 [hep-th].



BIBLIOGRAPHY 211

[139] D. Correa, J. Henn, J. Maldacena, and A. Sever, “An exact formula for the radiation
of a moving quark in n=4 super yang mills,” JHEP, vol. 06, p. 048, 2012. doi:
10.1007/JHEP06(2012)048. arXiv: 1202.4455 [hep-th].

[140] N. Drukker and V. Forini, “Generalized quark-antiquark potential at weak and strong
coupling,” JHEP, vol. 06, p. 131, 2011. doi: 10.1007/JHEP06(2011)131. arXiv:
1105.5144 [hep-th].

[141] J. M. Henn and T. Huber, “The four-loop cusp anomalous dimension in N “ 4 super
Yang-Mills and analytic integration techniques for Wilson line integrals,” JHEP,
vol. 09, p. 147, 2013. doi: 10.1007/JHEP09(2013)147. arXiv: 1304.6418 [hep-th].

[142] N. Drukker and S. Kawamoto, “Small deformations of supersymmetric wilson loops
and open spin-chains,” JHEP, vol. 07, p. 024, 2006. doi: 10.1088/1126-6708/2006/
07/024. arXiv: hep-th/0604124 [hep-th].

[143] Y. Makeenko, P. Olesen, and G. W. Semenoff, “Cusped SYM Wilson loop at two
loops and beyond,” Nucl. Phys., vol. B748, pp. 170–199, 2006. doi: 10.1016/j.
nuclphysb.2006.05.002. arXiv: hep-th/0602100 [hep-th].

[144] N. Drukker and D. J. Gross, “An Exact prediction of N=4 SUSYM theory for string
theory,” J. Math. Phys., vol. 42, pp. 2896–2914, 2001. doi: 10.1063/1.1372177.
arXiv: hep-th/0010274 [hep-th].

[145] D. Correa, M. Leoni, and S. Luque, “Spin chain integrability in non-supersymmetric
Wilson loops,” JHEP, vol. 12, p. 050, 2018. doi: 10.1007/JHEP12(2018)050. arXiv:
1810.04643 [hep-th].

[146] B. Fiol, B. Garolera, and A. Lewkowycz, “Exact results for static and radiative fields
of a quark in N=4 super Yang-Mills,” JHEP, vol. 05, p. 093, 2012. doi: 10.1007/
JHEP05(2012)093. arXiv: 1202.5292 [hep-th].

[147] L. F. Alday and J. Maldacena, “Comments on gluon scattering amplitudes via
AdS/CFT,” JHEP, vol. 11, p. 068, 2007. doi: 10.1088/1126-6708/2007/11/068.
arXiv: 0710.1060 [hep-th].

[148] R. Brüser, S. Caron-Huot, and J. M. Henn, “Subleading Regge limit from a soft
anomalous dimension,” JHEP, vol. 04, p. 047, 2018. doi: 10.1007/JHEP04(2018)
047. arXiv: 1802.02524 [hep-th].

[149] N. Gromov and A. Sever, “Analytic Solution of Bremsstrahlung TBA,” JHEP,
vol. 11, p. 075, 2012. doi: 10.1007/JHEP11(2012)075. arXiv: 1207.5489 [hep-th].

[150] N. Gromov, F. Levkovich-Maslyuk, and G. Sizov, “Analytic Solution of Bremsstrahlung
TBA II: Turning on the Sphere Angle,” JHEP, vol. 10, p. 036, 2013. doi: 10.1007/
JHEP10(2013)036. arXiv: 1305.1944 [hep-th].

[151] G. Sizov and S. Valatka, “Algebraic Curve for a Cusped Wilson Line,” JHEP, vol. 05,
p. 149, 2014. doi: 10.1007/JHEP05(2014)149. arXiv: 1306.2527 [hep-th].



212 BIBLIOGRAPHY

[152] M. Beccaria and G. Macorini, “On a discrete symmetry of the Bremsstrahlung func-
tion in N=4 SYM,” JHEP, vol. 07, p. 104, 2013. doi: 10.1007/JHEP07(2013)104.
arXiv: 1305.4839 [hep-th].

[153] A. Dekel, “Algebraic Curves for Factorized String Solutions,” JHEP, vol. 04, p. 119,
2013. doi: 10.1007/JHEP04(2013)119. arXiv: 1302.0555 [hep-th].

[154] R. A. Janik and P. Laskos-Grabowski, “Surprises in the AdS algebraic curve con-
structions: Wilson loops and correlation functions,” Nucl. Phys. B, vol. 861, pp. 361–
386, 2012. doi: 10.1016/j.nuclphysb.2012.03.018. arXiv: 1203.4246 [hep-th].

[155] Z. Bajnok, J. Balog, D. H. Correa, Á. Hegedüs, F. I. Schaposnik Massolo, and G. Zsolt
Tóth, “Reformulating the TBA equations for the quark anti-quark potential and their
two loop expansion,” JHEP, vol. 03, p. 056, 2014. doi: 10.1007/JHEP03(2014)056.
arXiv: 1312.4258 [hep-th].

[156] A. C. Ipsen, M. Staudacher, and L. Zippelius, “The One-Loop Spectral Problem of
Strongly Twisted N “ 4 Super Yang-Mills Theory,” JHEP, vol. 04, p. 044, 2019.
doi: 10.1007/JHEP04(2019)044. arXiv: 1812.08794 [hep-th].

[157] N. Gromov and F. Levkovich-Maslyuk, “Quark-anti-quark potential in N “ 4 SYM,”
JHEP, vol. 12, p. 122, 2016. doi: 10.1007/JHEP12(2016)122. arXiv: 1601.05679
[hep-th].

[158] N. Gromov, F. Levkovich-Maslyuk, and G. Sizov, “Quantum Spectral Curve and the
Numerical Solution of the Spectral Problem in AdS5/CFT4,” JHEP, vol. 06, p. 036,
2016. doi: 10.1007/JHEP06(2016)036. arXiv: 1504.06640 [hep-th].

[159] G. Niccoli, “Antiperiodic spin-1/2 xxz quantum chains by separation of variables:
Complete spectrum and form factors,” Nucl. Phys. B 870 (2013), doi: 10.1016/j.
nuclphysb.2013.01.017.

[160] H. Pei and V. Terras, “On scalar products and form factors by separation of variables:
The antiperiodic xxz model,” Journal of Physics A: Mathematical and Theoretical
55 (2021), arXiv: 2011.06109.

[161] B. Pozsgay, “Current operators in integrable spin chains: Lessons from long range
deformations,” SciPost Phys. 8 (2020), doi: 10.21468/SciPostPhys.8.2.016.
arXiv: 1910.12833.

[162] B. Pozsgay, Y. Jiang, and G. Takács, “Tbar t-deformation and long range spin
chains,” JHEP 03 (2020), doi: 10.1007/JHEP03(2020)092. arXiv: 1911.11118.

[163] G. Ferrando, R. Frassek, and V. Kazakov, “Qq-system and weyl-type transfer matri-
ces in integrable so(2r) spin chains,” JHEP 02 (2021), doi: 10.1007/JHEP02(2021)
193. arXiv: 2008.04336.

[164] S. Ekhammar, H. Shu, and D. Volin, “Extended systems of baxter q-functions and
fused flags i: Simply-laced case,” arXiv: 2008.10597.

[165] V. Kazakov and E. Olivucci, “Biscalar integrable conformal field theories in any
dimension,” arXiv: 1801.09844.



BIBLIOGRAPHY 213

[166] B. Basso, G. Ferrando, V. Kazakov, and D. Zhong, “Thermodynamic bethe ansatz
for biscalar conformal field theories in any dimension,” arXiv: 1911.10213.

[167] N. Kitanine, J. M. Maillet, G. Niccoli, and V. Terras, “The open XXX spin chain in
the SoV framework: scalar product of separate states,” J. Phys. A, vol. 50, no. 22,
p. 224 001, 2017. doi: 10.1088/1751-8121/aa6cc9. arXiv: 1606.06917 [math-ph].

[168] N. Kitanine, J. M. Maillet, G. Niccoli, and V. Terras, “The open XXZ spin chain in
the SoV framework: scalar product of separate states,” J. Phys. A, vol. 51, no. 48,
p. 485 201, 2018. doi: 10.1088/1751-8121/aae76f. arXiv: 1807.05197 [math-ph].

[169] G. Niccoli, “Correlation functions for open XXX spin 1/2 quantum chains with
unparallel boundary magnetic fields,” May 2021. arXiv: 2105.07992 [math-ph].

[170] G. Niccoli and V. Terras, “On correlation functions for the open XXZ chain with
non-longitudinal boundary fields : the case with a constraint,” Aug. 2022. arXiv:
2208.10097 [math-ph].

[171] G. Niccoli and V. Terras, “Correlation functions for open XXZ spin 1/2 quan-
tum chains with unparallel boundary magnetic fields,” J. Phys. A, vol. 55, no. 40,
p. 405 203, 2022. doi: 10.1088/1751-8121/ac7ca1. arXiv: 2202.12870 [math-ph].

[172] J. Caetano and S. Komatsu, “Functional equations and separation of variables for
exact g-function,” arXiv: 2004.05071.

[173] T. Gombor and B. Pozsgay, “On factorized overlaps: Algebraic bethe ansatz, twists,
and separation of variables,” arXiv: 2101.10354.

[174] S. Komatsu and Y. Wang, “Non-perturbative defect one-point functions in planar n
= 4 super-yang-mills,” arXiv: 2004.09514.

[175] T. Gombor and C. Kristjansen, “Overlaps for matrix product states of arbitrary
bond dimension in ABJM theory,” Phys. Lett. B, vol. 834, p. 137 428, 2022. doi:
10.1016/j.physletb.2022.137428. arXiv: 2207.06866 [hep-th].

[176] T. Gombor and Z. Bajnok, “Boundary states, overlaps, nesting and bootstrapping
ads/dcft,” arXiv: 2004.11329.

[177] J. Caetano and S. Komatsu, “Crosscap states in integrable field theories and spin
chains,” arXiv: 2111.09901.

[178] I. Buhl-Mortensen, M. de Leeuw, C. Kristjansen, and K. Zarembo, “One-point Func-
tions in AdS/dCFT from Matrix Product States,” JHEP, vol. 02, p. 052, 2016. doi:
10.1007/JHEP02(2016)052. arXiv: 1512.02532 [hep-th].

[179] M. De Leeuw, C. Kristjansen, and G. Linardopoulos, “Scalar one-point functions and
matrix product states of AdS/dCFT,” Phys. Lett. B, vol. 781, pp. 238–243, 2018.
doi: 10.1016/j.physletb.2018.03.083. arXiv: 1802.01598 [hep-th].

[180] M. De Leeuw, T. Gombor, C. Kristjansen, G. Linardopoulos, and B. Pozsgay, “Spin
Chain Overlaps and the Twisted Yangian,” JHEP, vol. 01, p. 176, 2020. doi: 10.
1007/JHEP01(2020)176. arXiv: 1912.09338 [hep-th].



214 BIBLIOGRAPHY

[181] C. Kristjansen, D. Müller, and K. Zarembo, “Overlaps and fermionic dualities for in-
tegrable super spin chains,” JHEP, vol. 03, p. 100, 2021. doi: 10.1007/JHEP03(2021)
100. arXiv: 2011.12192 [hep-th].

[182] C. Kristjansen, D. Muller, and K. Zarembo, “Duality relations for overlaps of inte-
grable boundary states in ads/dcft,” arXiv: 2106.08116.

[183] C. Kristjansen, D.-L. Vu, and K. Zarembo, “Integrable domain walls in ABJM the-
ory,” JHEP, vol. 02, p. 070, 2022. doi: 10.1007/JHEP02(2022)070. arXiv: 2112.
10438 [hep-th].

[184] J. McGovern, “Scalar Insertions in Cusped Wilson Loops in the Ladders Limit of
Planar N=4 SYM,” 2019. arXiv: 1912.00499 [hep-th].

[185] G. Ferrando, A. Sever, A. Sharon, and E. Urisman, “A large twist limit for any
operator,” doi: 10.1007/JHEP06(2023)028. arXiv: 2303.08852v1.

[186] N. Drukker et al., “Roadmap on Wilson loops in 3d Chern–Simons-matter theories,”
J. Phys. A, vol. 53, no. 17, p. 173 001, 2020. doi: 10.1088/1751- 8121/ab5d50.
arXiv: 1910.00588 [hep-th].

[187] N. Bai, H.-H. Chen, S. He, J.-B. Wu, W.-L. Yang, and M.-Q. Zhu, “Integrable Open
Spin Chains from Flavored ABJM Theory,” JHEP, vol. 08, p. 001, 2017. doi: 10.
1007/JHEP08(2017)001. arXiv: 1704.05807 [hep-th].

[188] D. H. Correa, V. I. Giraldo-Rivera, and G. A. Silva, “Supersymmetric mixed bound-
ary conditions in AdS2 and DCFT1 marginal deformations,” JHEP, vol. 03, p. 010,
2020. doi: 10.1007/JHEP03(2020)010. arXiv: 1910.04225 [hep-th].

[189] L. Bianchi, G. Bliard, V. Forini, L. Griguolo, and D. Seminara, “Analytic bootstrap
and Witten diagrams for the ABJM Wilson line as defect CFT1,” JHEP, vol. 08,
p. 143, 2020. doi: 10.1007/JHEP08(2020)143. arXiv: 2004.07849 [hep-th].

[190] J. Caetano, Ö. Gürdoğan, and V. Kazakov, “Chiral limit of N = 4 SYM and ABJM
and integrable Feynman graphs,” JHEP, vol. 03, p. 077, 2018. doi: 10 . 1007 /
JHEP03(2018)077. arXiv: 1612.05895 [hep-th].


