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Abstract 

Background 

The aim was to predict survival of glioblastoma at eight months after radiotherapy (a period allowing 

for completing a typical course of adjuvant temozolomide), by applying deep learning to the first 

brain MRI after radiotherapy completion. 

Methods 

Retrospective and prospective data were collected from 206 consecutive glioblastoma, IDH-wildtype 

patients diagnosed between March 2014-February 2022 across 11 UK centers. Models were trained 

on 158 retrospective patients from three centers. Holdout test sets were retrospective (n=19; internal 

validation), and prospective (n=29; external validation from eight distinct centers). 

Neural network branches for T2-weighted and contrast-enhanced T1-weighted inputs were 

concatenated to predict survival. A non-imaging branch (demographics/MGMT/treatment data) was 

also combined with the imaging model. We investigated the influence of individual MR sequences; 

non-imaging features; and weighted dense blocks pretrained for abnormality detection. 

Results 

The imaging model outperformed the non-imaging model in all test sets (area under the receiver-

operating characteristic curve, AUC p=0.038) and performed similarly to a combined imaging/non-

imaging model (p>0.05). Imaging, non-imaging, and combined models applied to amalgamated test 

sets gave AUCs of 0.93, 0.79, and 0.91. Initializing the imaging model with pretrained weights from 

10,000s of brain MRIs improved performance considerably (amalgamated test sets without 

pretraining 0.64; p=0.003). 

Conclusions 



A deep learning model using MRI images after radiotherapy, reliably and accurately determined 

survival of glioblastoma. The model serves as a prognostic biomarker identifying patients who will 

not survive beyond a typical course of adjuvant temozolomide, thereby stratifying patients into those 

who might require early second-line or clinical trial treatment. 
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Key Points: 

• A deep learning model predicted post-radiotherapy survival of glioblastoma from MRIs. 

• An imaging model was generalizable on internal and prospective external test data. 

• Performance was considerably better when initial weights were pretrained on 10,000s of 

MRIs. 

 

Importance of the Study: 

• A deep learning model that used MRI images after radiotherapy, and that was pretrained on 

10,000s of brain MRIs, reliably and accurately determined survival of isocitrate 

dehydrogenase (IDH) wildtype glioblastoma patients after radiotherapy. 

  



Introduction  

Glioblastoma is the most aggressive adult primary brain cancer1. MRI plays a key role in diagnosis, 

treatment planning, and treatment response assessment2. MRI images can also act as prognostic 

biomarkers with studies predicting survival from pre-operative MRIs using classical3 and deep4,5 

machine learning models. However, by the time radiotherapy finishes, considerable intervention 

potentially confounds survival predictions obtained at the pre-operative time point. Survival 

predictions from images obtained after radiotherapy could be more accurate. To our knowledge, 

machine learning has not been applied to the first MRI images after radiotherapy completion to 

identify patients who will not survive beyond a typical course of adjuvant temozolomide (TMZ). In 

this scenario, an accurate and generalizable prognostic biomarker would stratify patients into those 

requiring early second-line treatment or clinical trial enrollment. Additionally, all subsequent tumor 

boards held during the course of adjuvant TMZ would have an accurate a priori survival prediction, 

therefore improving management decision confidence. This is relevant as often follow-up imaging 

findings are non-specific and treatment response assessment is not definitive; even when findings are 

specific, utility is based on low-level evidence6.  

Optimal treatment involves surgical resection, followed by radiotherapy with concomitant TMZ, then 

adjuvant TMZ7,8 (see Appendix A for an illustration of treatment and imaging pathways). Modified 

treatment may be planned for patients who are elderly or have tumors in eloquent areas, or who 

cannot tolerate optimal treatment1,2. This often includes a shorter course and lower dose of 

radiotherapy, where a longer course of adjuvant chemotherapy may be prescribed. Whilst 99% of US 

patients ≥66 years undergoing post-surgical treatment receive radiotherapy, just 57% receive TMZ9. 

Only 34% of UK patients between 20-70 years complete optimal treatment1. To inform patient 

management, MRIs are often performed after initial surgery, during radiotherapy planning, and at 2-3 

monthly intervals (or if clinically deteriorating) during subsequent follow-up2,9,10,11. However imaging 

studies, including those predicting survival3-5,12, typically sample patients only from the optimally-

treated population limiting biomarker applicability. The unmet need to improve outcomes of patients 

undergoing modified treatment, highlighted at national strategic level13,14 (and study stakeholder 



feedback; Appendix B), motivated our biomarker design to be applicable to both optimal and 

modified treatment populations.  

This study aimed to apply deep learning to the first brain MRI after radiotherapy, in glioblastoma, 

IDH-wildtype15 patients undergoing optimal or modified treatment, to predict survival at eight months 

after completing radiotherapy (a period allowing for completion of a typical course of adjuvant TMZ). 

For imaging-based biomarkers to be valuable in the clinic, it is rational that predictions should either 

be more accurate than those derived from freely available non-imaging information known to be 

associated with poorer patient survival, or are enhanced when combined. We hypothesized that 

prediction based on imaging would outperform prediction using only available non-imaging 

information (demographic, pathological, and treatment-related variables).  

  



Methods 

Study reporting followed the Checklist for Artificial Intelligence in Medical Imaging (CLAIM)16. The 

UK’s Health Research Authority provided ethical approval (ref:18/LO/1873); data were anonymized 

before analyses.  

 

Patient characteristics  

Patient cohort  

This study included consecutive retrospective and prospective data from 11 ZGBM (zeugmatography 

for glioblastoma) consortium centers17, with diagnoses between March 2014 and February 2022 (a 

CONSORT diagram displaying the flow of patients included in analyses is presented in Appendix C). 

The study was pragmatic; imaging regimens were not standardized and were expected to vary over 

centers and time18. Inclusion criteria consisted of adults diagnosed with glioblastoma, IDH-wildtype15; 

who underwent radiotherapy after first surgery; and subsequent MRI with contrast-enhanced T1-

weighted (T1c) and T2-weighted (T2) sequences; and could be identified as being deceased or not at 

eight months post-radiotherapy (labeled as short-term or long-term survival, respectively).  

Long-term survivors who received second-line or trial treatment within eight months were excluded to 

prevent confounding from that treatment. As the classifier is designed to help decision-making on 

expediting early trial or second-line treatment, we excluded those rare patients whose first post-

radiotherapy MRI occurred either after second-line treatment started (to prevent confounding), or 

beyond 24 weeks (arbitrary time threshold). T1c and T2 sequences were selected to maximize the 

clinical applicability of developed models, as these are acquired in routine clinical settings18 and were 

available for all patients in this cohort. It should be noted that other MR sequences such as FLAIR are 

informative images and are commonly acquired. However, 18.5% (23/124) of patients in the largest 

retrospective cohort (the KCH cohort) reported here did not have FLAIR imaging during the first 

post-radiotherapy MRI study. 



Of 206 patients included (Table 1), 64 (31.1%) were short-term survivors (<8 months survival). The 

amalgamated test set consisted of all prospective external data (henceforth prospective test set; n=29) 

and 10.7% of holdout retrospective data (retrospective test set; n=19/177). Stratified sampling into 

training and test sets was performed on retrospective data to avoid bias from imbalances in survival 

outcome and MRI acquisition dimensionality across sites. We sampled 89.3% of retrospective 

patients (n=158/177) as the training set, and the remaining were held out for testing. No further 

variables were stratified due to low patient numbers after controlling for three variables. Description 

of sample sizes and sampling error associated with survival outcome, acquisition dimension, and 

variables associated with survival (including age, initial surgery type, and MGMT methylation status) 

are presented in Appendix D1.  

Co-variates  

Non-imaging information associated with poorer survival includes patients who are older (>60 years), 

or have tumors which are unmethylated, have minimal O6-methylguanine-DNA methyltransferase 

(MGMT) methylation, are deep-seated (midbrain/thalamus/callosum) or have undergone biopsy 

alone19-22. These, and other demographic, histologic, tumor-related, and prior treatment variables were 

included in non-imaging models (Table 2). Of available data, the Eastern Cooperative Oncology 

Group (ECOG)23 performance status did not differ between short-term and long-term survivors within 

KCH training patients (p>0.05) (median=0; range=0-2); such formal assessments are not regularly 

administered and, when applied, can be subjective in choice and nature6. Performance status was 

therefore excluded. Mean/mode imputation was used for missing data; labels were added identifying 

imputed inputs. Numeric attributes were standardized to unit variance using training data. Categoric 

variables were one-hot encoded. MGMT methylation was handled in two ways. Firstly, a numeric 

variable identified the MGMT methylation percentage. Secondly, three distinct categoric variables 

were added identifying if patients had methylated, unmethylated, or unknown (missing) MGMT 

methylation status. Distributions of non-imaging variables were compared between short-term and 

long-term survivors using Mann-Whitney U and Chi-squared tests. Significance was set at p≤0.05 for 

all analyses.  



 

Non-imaging models  

Machine learning models (logistic regression, linear and gaussian support vector classifiers (SVC), 

and decision tree classifiers) were applied to training data with sequential feature selection using 

scikit-learn24. Tuned parameters were logistic regression and SVC regularization parameters, gaussian 

SVC gamma coefficients, and decision tree gini and entropy criteria. We also applied fully-connected 

neural networks to non-imaging features alone (Appendix E1).  

  

Imaging and combined models  

Whole-brain T1c and T2 images were co-registered and minimally pre-processed using a similar 

approach to that for a model25,26 applied for pretraining. MRI inputs were converted from DICOM 

into NIfTI format. T2 scans were registered to the corresponding T1c image for each patient and MRI 

study. Images were resampled to common voxel sizes (1 mm3), and subsequently cropped or padded 

to a final 3D array of shape 130 x 130 x 130 for inputs to deep learning models. Resampling was 

performed to address differences in slices thickness and spacing between images. Cropping/padding 

was performed to preserve aspect ratios of images when resizing to the final shape. Image pre-

processing was conducted with niftyreg27 and MONAI28.  

  

Network architectures  

Model architectures (Fig.1a) were modified from DenseNet12129 and abnormality detection 

models25,26 (Appendix E2 describes an alternative architecture considered). Input images were the 

final 3D array of shape 130 x 130 x 130. Dense blocks were initialized with weights pretrained on a 

large dataset containing all neurological abnormalities (10,695 and 50,523 T1c and T2 scans, 

respectively). The T1c-branch has four pretrained dense blocks. Outputs are flattened to a 1x1920-

dimensional vector via pooling, then passed through two linear layers (providing prediction 



probabilities). The T2-branch performs the analogous process for T2 inputs. Outputs from the first 

linear layer per branch are concatenated (merged branch); this vector is passed through a linear layer 

that outputs a 1x2-dimensional vector with prediction probabilities. Since each branch can predict 

survival separately, distinct loss functions are applied per branch. Outputs from the merged branch 

were selected as final predictions.  

A separate combined model adds a non-imaging branch with 1x27-dimensional inputs alongside the 

T1c and T2 branches (Fig.1b); the non-imaging branch of this combined model additionally included 

the duration between radiotherapy completion and imaging (Table 2). The merged prediction is 

obtained by concatenating T1c, T2, and non-imaging vectors.  

Final (hyper-)parameters of model training and tuning (Appendix E3) were selected by mean 

validation area under the receiver-operating characteristic curve (AUC) across training folds. All 

models incorporating imaging were developed with both PyTorch30 and the PyTorch-based MONAI28 

framework.  

 

Test set analysis  

Five-fold cross-validation was used on training data (stratified by outcome/dimension/center) 

(Appendix D1). To determine generalizability, individual imaging, non-imaging, and combined 

models were trained on all training data and assessed on holdout test data.  

To check for dependencies between features and outcomes, a permutation test was performed with 

test set inputs per patient shuffled before determining model performance. Ablation studies were 

conducted to investigate the relative importance of individual branches and use of pretrained weights. 

Model explainability was further pursued using a guided backpropagation approach25 modified to 

obtain saliency maps from merged branch weights and multiple sequences. As an overview, guided 

backpropagation is intended to highlight regions of input images which, if modified slightly, would 

change predictions obtained from the model. The method returns gradient arrays that match 

dimensions of the original 3D input images. For visualization purposes of volumetric saliency maps, 



axial slices that most contributed to model survival predictions were automatically selected and 

presented, following the methodology reported by Wood et al. (2022)25.  

The primary outcome measure was AUC. We used DeLong’s test to compare model performances 

(pROC R package)31. Subgroup analyses considered retrospective/prospective collection, surgery 

type, age (>60years), sex, and acquisition dimension. Code is available at 

https://github.com/lyshc/glioblastoma-survival-classifier.  

  

  



Results 

Patient characteristics  

The dataset included 206 consecutive patients (Tables 1 and 2; Appendix C). The mean age was 57.4 

(standard deviation: 10.6); 72 patients were female and 134 were male. Missing data for at least one 

variable (age, MGMT status, MGMT methylation percentage, radiotherapy dose, or TMZ dose) were 

noted in 57/206 (27.7%) patients. For 13 patients, the MGMT status was known while the exact 

methylation percentage was missing (methylated, n=7; unmethylated, n=6); the percentage was 

imputed based on the mean percentage for other patients with the same methylation status.  

Longer survival was associated with tumors that have higher MGMT methylation percentage, are not 

deep-seated, are resected and undergo Stupp dose radiotherapy and TMZ (Table 2), supporting prior 

research19-22. It was also related to having a later post-radiotherapy MRI.  

 

Non-imaging models  

Among all non-imaging machine learning models, logistic regression with reduced features was 

selected as the optimal classifier based on the highest validation AUC. The optimal logistic regression 

model had regularization parameter (C) set to 1.0 and ten features retained (male sex, methylated 

MGMT status, unmethylated MGMT status, unknown MGMT status, initial biopsy, initial resection, 

standard radiotherapy dose, reduced radiotherapy dose, reduced TMZ dose, and no TMZ). These were 

all one-hot encoded categoric variables (for example, separate variables encoded if a patient had 

methylated, unmethylated, or unknown MGMT status). The AUCs for retrospective, prospective and 

amalgamated test sets were 0.76, 0.78 and 0.79, respectively (Table 3); performances did not differ 

between test sets (all p>0.05). To aid with assessments of model performances and generalizability 

across test sets, Figure 2 shows receiver-operating characteristic (ROC) curves for all models 

(imaging, combined, and non-imaging) on the amalgamated, retrospective, and prospective test sets.  



 

 

Imaging and combined models  

Parameters used to optimize the imaging model are shown in Appendix F1. Initializing the imaging 

model with pretrained weights from 10,000s of brain MRIs25,26 improved performance considerably 

(with and without pretraining on amalgamated test set gave AUCs of 0.93 and 0.64 respectively; 

p=0.003). Therefore, performances of imaging (and combined) models initialized with pretrained 

weights are reported (Table 3). The imaging model AUCs for retrospective, prospective and 

amalgamated test sets were 0.92, 0.93 and 0.93, respectively, and did not differ in performance 

between sets (p>0.05) (Figure 2).  

For the combined model, AUCs for retrospective, prospective and amalgamated test sets were 0.94, 

0.89 and 0.91, respectively; performances did not differ across test sets (p>0.05).  

All models applied a survival classification threshold of 0.50; an analysis of decision threshold 

selection is presented in Appendix F2. Description of the interval between radiotherapy completion 

and the first post-radiotherapy MRI study for patients in the amalgamated test set is presented in 

Appendix G1.  

 

Model comparison  

One way for imaging-based biomarkers to be valuable in the clinic is that, when compared to freely-

available non-imaging biomarkers, there is an incremental increase in predictive accuracy when 

biomarkers are combined. An incremental increase in performance was not clearly proven for the 

combined model. We found that whilst there was a trend for enhanced performance in the 

amalgamated test set (AUC 0.91 vs 0.79, p=0.07), in retrospective and prospective test sets this was 

less clear (Figure 2) (p=0.11 and p=0.16).  



Another, plausibly optimal, way for imaging-based biomarkers to be valuable clinically is that, when 

compared to freely-available non-imaging biomarkers, the predictive accuracy is higher. The 

advantage of using an imaging model alone is that it can be applied in isolation, without needing 

additional information gathering. The imaging model outperformed the non-imaging model in 

amalgamated and prospective test sets (AUC, p≤0.05) (Table 3 and Figure 2). However, performances 

did not significantly differ on the retrospective test set (p=0.14); comparison of receiver-operating 

characteristic curves suggest that this may be related to the smaller retrospective test set size 

(retrospective test n=19) (Appendix G2). The combined model was not superior to the imaging model 

in any test set (p>0.05), despite the combined model incorporating information on the interval 

between radiotherapy completion and follow-up imaging (the interval was different in the two 

groups). To further assess whether the model could complement evaluations made in routine hospital 

settings, we performed a comparison against expert clinical raters reported in Appendix H.  

 

Imaging model explainability  

Based on the findings that available non-imaging features did not improve predictive performances, 

and that the combined model was not superior to the imaging model, the imaging model was selected 

over non-imaging and combined counterparts for further analysis. ROC curves showing results from 

the permutation test and ablation studies are provided in Figure 3. Model performances are plotted 

separately for sample subgroups (initial surgery type, age group, sex, and T1c acquisition dimension; 

Figure 3). Further detail on imaging model results from the permutation test and ablation studies, 

along with performances disaggregated for sample subgroups is provided in Appendix G2. The 

permutation test AUC of 0.49 indicates that the model was not performing by chance.  

Ablation studies showed that test set performance using the merged branch was similar to using the 

T2 branch alone (comparison of AUCs across amalgamated test set, p=0.19), but better than the T1c 

branch alone (p=0.048). Performances were similar when using only one sequence (T1c versus T2 

branches, p=0.41). Together, this suggests that on the rare occasion that a patient does not receive 



gadolinium (for example, due to high-grade renal failure, or patient refusal), predictions may remain 

accurate with only the T2 sequence. We found that test set performance dropped considerably when 

not training with transfer learning, where initial weights were pretrained on a brain MRI dataset x100 

larger than the training dataset (AUCs with and without pretraining 0.93 and 0.64, respectively; 

p=0.003). This shows that medical image classifiers with high-dimensional and high-resolution inputs 

such as brain MRIs may benefit from pretraining on larger datasets.  

Saliency maps based on predicted survival outcome from the imaging model are presented in Figure 

4. These show examples of short-term and long-term survivors from retrospective and prospective 

external test sets, along with erroneous predictions of both survival outcomes. Across patients, there 

appears to be variation in the location, size and number of brain areas that are salient. For example, 

some maps seemingly display coarse localization of tumor regions, as well as ventricles. It is plausible 

that it may be more difficult to interpret appearances associated with long-term compared to short-

term survival in MRIs and saliency maps (i.e., to identify the absence of expected deterioration). 

Nonetheless we can make some tentative observations. Patient 2, for example, was correctly predicted 

to have subsequent long-term survival. In this case the presented slices suggest relatively greater 

contribution from ventricular areas than the treated tumor region. This suggests that both tumor and 

non-tumor regions provide informative features for deep learning models, and jointly contribute to 

survival predictions. Among misclassified patients, it is conceivable that model weights associate 

ventriculomegaly with short-term survival (for example, patient 5). Further analysis of saliency maps 

is presented in Appendix I. However, it should be noted that saliency maps alone do not identify 

features that are easily interpretable to human readers32. 

  



Discussion 

We present the first known model that uses imaging to distinguish short-term and long-term survivors 

within eight months of completing radiotherapy. Eight months represents the period of time to 

complete adjuvant chemotherapy. Using a multi-center cohort we built a model with T1c and T2 

inputs. The transfer learning approach improved predictions. There was no clear benefit of generating 

predictions with non-imaging data. Using the T2 scan alone was not inferior to using both sequences. 

The imaging model seemed to generalize both to retrospective and external, prospective test data.  

One strength of this study is providing insight into the extent to which neural networks predicting 

post-treatment survival generalized across multiple external centers. External, prospective sites 

showed a higher proportion of 2D scanning and short-term survivors than retrospective data which 

may have been a potential source of bias. Therefore, we stratified data to allow better evaluation of 

predictions on short-term and long-term survivors, and both 2D and 3D acquisitions. Based on similar 

performances across the retrospective and external prospective datasets, the imaging model may be 

robust to variations in imaging protocols and class imbalances.  

Another key contribution is the finding that transfer learning can offer a strong benefit to models with 

large numbers of parameters and small training samples. This accords with other research evaluating 

benefits of transfer learning for MRIs of glioma patients. For example, one study combining low-

grade and high-grade gliomas found that pre-training improved classification accuracy of a deep 

learning radiogenomic model33. Another study combined classical radiomics features with those 

extracted from a pre-trained neural network to predict overall survival of glioblastoma34. These 

studies used natural images for pre-training, and predicted outcomes from cropped 2D slices of tumor 

regions from pre-operative MRIs. In comparison, the model used for pre-training in our study was 

trained on thousands of brain MRIs and was highly successful at detecting abnormalities25,26.  

Previous research that successfully applied machine learning to predict survival of glioblastoma has 

largely focused on pre-treatment timepoints. One study used a DenseNet-based network with multiple 

branches to predict three-year survival from 2D T1c and T2 slices4. Another applied a neural network 



to quantify the temporalis muscle; this predicted survival in distinct datasets5. Several studies with 

multi-center data extracted radiomics features from pre-operative tumor segmentations and applied 

machine learning to predict survival3. To our knowledge, prior studies have not demonstrated benefits 

of classical or deep machine learning methods on predicting outcomes from post-treatment 

timepoints, and with whole-brain inputs requiring minimal pre-processing.  

Our imaging model is a contribution towards developing networks that could be applied to aid 

decision-making in hospitals. The two-year survival rate of glioblastoma is just 18%35. Such models 

could prompt closer MRI surveillance of suspected short-term survivors, compared with patients 

expected to show initial treatment response. Large prospective studies replicating high predictive 

performances in clinical settings are now desirable. If validated, studies assessing improvements to 

patient management are required. Researchers could also investigate extending model applicability 

using, for example, curated second-line therapy trial datasets.  

Our model predicted post-radiotherapy survival using imaging as a prognostic biomarker which can 

be used to stratify patients into those requiring early second-line treatment or trial enrollment. An 

alternative model might predict tumor treatment response using imaging as a monitoring biomarker6. 

While not the focus of our study which incorporates all patients consecutively (including complete 

response, partial response, stable disease, progression, and pseudoprogression), interpreting post-

radiotherapy structural MRIs in clinical settings is typically challenging due to difficulty in 

distinguishing recurrent disease from treatment-related effects – particularly for 

pseudoprogression2,3,6,11,17,36,37,38. However, labelling progression – and pseudoprogression – requires 

availability of repeated T1c imaging obtained in a timely manner per patient, accompanied by 

accurate measurements of bidirectional diameters of contrast-enhancing tumors37-38. Prior research has 

reported that there can be substantial inter-rater variability in these measurements, however, which 

can confound evaluations of treatment response39-41. One reason for measurement variability is the 

irregular shape at the tumor margin3, whilst another relates to similarities in signal intensity between 

tumor and non-tumor if pre-contrast T1c scans are not studied carefully42. To rule out factors that 

potentially confound assessments, data on prescribed steroids and longitudinal patient symptom 



profiles are additionally needed. In contrast, the approach presented here uses overall survival as the 

reference standard, free from inter-rater variability and requirements for RANO-compliant 

longitudinal data collection. Our study was not designed to identify the first occurrence of true tumor 

progression (and thereby rule out pseudoprogression, which is expected to be associated with longer 

survival). However, our approach has the potential to provide all tumor boards monitoring patients at 

all time periods after radiotherapy with an accurate a priori survival prediction gained at the first post-

radiotherapy scan, thereby improving management decision confidence, including for example, the 

challenging scenario of pseudoprogression.  

While predictions did not improve when incorporating non-imaging features, we had a limited 

number of these variables. Combined models with a greater range of tumor-related data might show 

better performances (e.g., Ki67 percentage, ATRX status, genomic variables). Models could also 

integrate earlier MRI studies which may contain useful features for improving prognostic predictions, 

for example pre-surgical and pre-radiotherapy studies. For now, a model that could translate most 

easily across centers would likely benefit from a pragmatic approach that requires collecting widely 

available non-imaging features and cross-sectional (rather than longitudinal) imaging.  

A potential limitation is that we did not consider other MRI sequences that may provide insights into 

tumor recurrence (e.g., diffusion or perfusion imaging)43. However, our models used T1c and T2 

sequences to maximize clinical utility and translation across hospitals. These sequences were 

consistently acquired at all centers; conversely, more advanced MRIs are less commonly 

available17,18. Incorporating other anatomical sequences desirable for brain tumor imaging, such as 

FLAIR sequences, was not also pursued as it would have reduced the patient cohort in this UK-based 

study where FLAIR imaging was not always performed. A downstream constraint of building a model 

without the most common MRI sequences is that it reduces the potential for clinical translation. 

Nonetheless, future models could investigate the extent to which models built with alternative 

imaging protocols (for example, advanced imaging as well as FLAIR) can predict post-treatment 

survival.  



Another limitation is that we used a small dataset whereas DenseNet29 is a large model and whole-

brain images provide many inputs per patient. Beyond pretraining, future research could use smaller 

inputs, e.g., bounding boxes cropped to initial tumor sites. This was not pursued because: (i) 

extracranial information is linked with overall survival5; (ii) contrast-enhancing masses remote to the 

initial site signal recurrence (and shorter survival); (iii) data pre-processing that aligned with 

pretraining pre-processing was favored25; and (iv) whole-brain images require minimal pre-processing 

(plausibly reducing barriers to translation).  

In this multi-center study, we developed a model that predicts survival within eight months of 

completing radiotherapy. The model is intended for use for patients undergoing optimal treatment as 

well as the under-studied cohort of patients undergoing modified treatments. A neural network with 

T1c and T2 branches showed generalizable classification on both retrospective and external, 

prospective test cohorts. If validated in large prospective studies, such approaches could be used to 

distinguish patients who show initial response to radiotherapy from those requiring closer image-

based monitoring and second-line treatments (or termination of ineffective treatment).  
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Figures 

 



Figure 1. Architectures for dense neural networks. (a) Imaging model: The model inputs whole brain 

contrast-enhanced T1-weighted sequences, and T2-weighted sequences as separate branches (T1c and 

T2 branches). These are passed through dense blocks with pretrained weights. Outputs are flattened 

and reduced before feature concatenation. Predictions are obtained from the merged linear layer 

(concatenating vectors from T1c and T2 branches). (b) Combined model: Modified version of the 

architecture with an additional branch consisting of non-imaging inputs and linear layers.  

For illustrative purposes, 3D MR volumes are shown as 2D images and 4D dense blocks as 3D 

representations.  

 

 

 

Figure 2. Receiver-operating characteristic curves for imaging, combined, and non-imaging models 

on holdout test data. (a) Model performances on the amalgamated test set. AUCs were 0.93, 0.91 and 

0.79 for the imaging, combined, and non-imaging models respectively. (b) Model performances on 

the retrospective test set. AUCs were 0.92, 0.94 and 0.76 for the imaging, combined, and non-imaging 

models respectively. (c) Model performances on the external, prospective test set. AUCs were 0.93, 

0.89 and 0.78 for the imaging, combined, and non-imaging models respectively. 

AUC: area under the receiver-operating characteristic curves. 

 

 



 

Figure 3. Receiver-operating characteristic curves displaying imaging model performances for 

additional analyses run on the amalgamated test set. (a) Permutation test results (full imaging model, 

AUC = 0.93; permutation test, AUC = 0.49*). (b) Results from ablation studies (full imaging model, 

AUC = 0.93; predictions from T1c branch, AUC = 0.83*; predictions from T2 branch, AUC = 0.85; 

trained model initializing random weights – i.e., with no pre-training, AUC = 0.64*). Panels (c) to (f) 

show imaging model results disaggregated for sample subgroups. (c) Performances based on the 

initial surgery type (biopsy-alone, AUC = 0.89; resection, AUC = 0.87). (d) Curves plotted separately 

for age at first diagnosis (> 60 years, AUC = 0.98; ≤ 60 years, AUC = 0.89). (e) Performances based 

on sex (female, AUC = 0.96; male = 0.89). (f) Performances split by the acquisition dimension of the 

input T1c MRI (2D, AUC = 0.90; 3D, AUC = 0.98). 

AUC: area under the receiver-operating characteristic curves. T1c: contrast-enhanced T1-weighted 

MRI. T2: T2-weighted MRI. 

*: significantly different AUC compared to the full imaging model using DeLong’s test with a 

threshold of p ≤ 0.05. 

 



 



Figure 4. Saliency maps from guided backpropagation on the merged branch of imaging models 

using T1c and T2 inputs. Patients from retrospective and prospective test sets were selected including 

erroneous classification predictions (patients 5 and 6).  

T1c: contrast-enhanced T1-weighted MR sequence. T2: T2–weighted MR sequence.  

 

 

 

 

  



Tables 

Table 1. Patient cohort described by center, data collection period (retrospective/prospective), outcome 

(short/long-term survival), and MRI acquisition dimension (2D/3D). The amalgamated holdout test set consists 

of a prospective test set (all patients from eight prospective centers, n=29) and a retrospective test set (n=19 

patients from two centers; of which KCH n=13, LTHT n=6). 

    Survival Outcome  T1c Acquisition Dimension  

Centre  N total   
(% of 

dataset)  

Short-term N   
(% of center)  

Long-term N   
(% of center)  

2D N   
(% of center)  

3D N   
(% of center)  

Retrospective data collection  

    KCH  124 (70.1%)  35 (28.2%)  89 (71.8%)  39 (31.5%)  85 (68.5%)  

    LTHT  47 (26.6%)  14 (29.8%)  33 (70.2%)  41 (87.2%)  6 (12.8%)  

    UCLH 6 (3.4%)  2 (33.3%)  4 (66.7%)  1 (16.7%)  5 (83.3%)  

Total  177 (85.9%)  51 (28.8%)  126 (71.2%)  81 (45.8%)  96 (54.2%)  

Prospective data collection  

    BSUH  2 (1.0%)  1 (50.0%)  1 (50.0%)  2 (100.0%)  0 (0.0%)  

    Christie   7 (3.4%)  1 (14.3%)  6 (85.7%)  7 (100.0%)  0 (0.0%)  

    HEY   8 (3.9%)  6 (75.0%)  2 (25.0%)  5 (62.5%)  3 (37.5%)  

    ICHT   4 (1.9%)  1 (25.0%)  3 (75.0%)  1 (25.0%)  3 (75.0%)  

    LTHTR   2 (1.0%)  1 (50.0%)  1 (50.0%)  2 (100.0%)  0 (0.0%)  

    Marsden   1 (0.5%)  0 (0.0%)  1 (100.0%)  0 (0.0%)  1 (100.0%)  

    NUH   1 (0.5%)  0 (0.0%)  1 (100.0%)  1 (100.0%)  0 (0.0%)  

    NUTH   4 (1.9%)  3 (75.0%)  1 (25.0%)  4 (100.0%)  0 (0.0%)  

Total  29 (14.1%)  13 (44.8%)  16 (55.2%)  22 (75.9%)  7 (24.1%)  

Total  206 (100%) 64 (31.1%)   142 (68.9%)  103 (50%)  103 (50%)  

KCH: King's College Hospital NHS Foundation Trust; patients were treated across KCH, Guy's and St Thomas' 

NHS Foundation Trust, and the Kent Oncology Centre. LTHT: Leeds Teaching Hospitals NHS Trust. UCLH: 
University College London Hospitals NHS Foundation Trust. BSUH: Brighton and Sussex University Hospitals 

NHS Trust. Christie: The Christie NHS Foundation Trust. HEY: Hull University Teaching Hospitals NHS Trust. 

ICHT: Imperial College Healthcare NHS Trust. LTHTR: Lancashire Teaching Hospitals NHS Foundation Trust. 

Marsden: The Royal Marsden NHS Foundation Trust. NUH: Nottingham University Hospitals NHS Trust. 

NUTH: Newcastle upon Tyne Hospitals NHS Foundation Trust.  

  



Table 2. Patient characteristics described overall (all patients), and by survival outcome (short-term or long-

term survivors defined as ≤ or > eight months survival from end of radiotherapy, respectively).  

Variable  All patients   

(n=206)  

Short-term 

survivors  

(n=64)  

Long-term 

survivors  

(n=142)  

P value a 

Survival   

Deceased date, n (%)  

    Known  

    Unknown  

  

183 (88.8%)  

23   (11.2%)  

  

64 (100.0%)  

0   (0.0%)  

  

119 (57.8%)  

23   (11.2%)b  

- 

 

Survival time from end of 

radiotherapy, in weeks  

     Mean (SEc)  

  

  

73.1 (4.1)   

  

  

21.9 (1.1)  

  

  

96.2 (4.8)  

- 

Demographic variables   

Sex, n (%)  

     Female  

     Male  

  

72   (35.0%)  

134 (65.0%)  

  

17 (26.6)  

47 (73.4%)  

  

55 (38.7%)  

87 (61.3%)  

0.12 

Age at first diagnosis, in years  

     Mean (SE)  

     Unknown, n (%)  

  

57.4 (0.7)  

1       (0.5%)  

  

59.0 (1.13)  

0       (0.0%)  

  

56.7 (0.9)  

1       (0.7%)  

0.28 

 

Histologic variables   

MGMTd status, n (%)  

     Methylated  

     Unmethylated  

     Unknown  

  

87   (42.2%)  

114 (55.3%)  

5     (2.4%)  

  

21 (32.8%)  

42 (65.6%)  

1   (1.6%)  

  

66 (46.5%)  

72 (50.7%)  

4   (2.8%)  

0.13 

MGMT methylation percentage  

     Mean (SE)  

     Unknown, n (%)  

  

16.4 (1.4)  

26    (12.6%)  

  

10.9 (1.9)  

10    (26.6%)  

  

18.7 (1.8)  

16    (12.0%)  

0.04 

Tumor location   

Deep-seated locatione, n (%)  

     Deep-seated  

     Not deep-seated  

  

25   (12.1%)  

181 (87.9%)  

 

11 (17.2%)  

53 (82.8%)  

  

14   (9.9%)  

128 (90.1%)  

0.21 

Treatment variables   

Surgery type, n (%)  

     Biopsy-only  

     Resection  

  

48   (23.3%)  

158 (76.7%)  

  

25 (39.1%)  

39 (60.9%)  

  

23   (16.2%)  

119 (83.8%)  

<0.001 

Radiotherapy dose, n (%)  

     Stupp dosef  

     Reduced dose  

     Not documented  

  

160 (77.7%)  

36   (17.5%)  

10   (4.9%)  

  

43 (67.2%)  

18 (28.1%)  

3   (4.7%)  

  

117 (82.4%)  

18   (12.7%)  

7     (4.9%)  

0.03 

Concomitant temozolomide 

dose, n (%)  

     Stupp dose  

     Reduced dose  

     No temozolomide  

     Not documented  

  

 

126 (61.2%)  

26   (12.6%)  

23   (11.2%)  

31   (15.0%)  

  

  

29 (45.3%)  

15 (23.4%)  

11 (17.2%)  

9   (14.1%)  

  

  

97 (68.3%)  

11 (7.7%)  

12 (8.5%)  

22 (15.5%)  

0.001 

Imaging-related variables   

Duration between radiotherapy 

and input MRI, in weeksg  

     Mean (SE)  

  

 

8.7 (0.3)  

 

  

7.5 (0.6)  

  

  

9.2 (0.4)  

0.02 

Scanner manufacturer, n (%)  

     General Electric  

     Mirada  

     Philips  

     Siemens  

     Toshiba  

  

55    (26.7%)  

1      (0.5%)  

8      (3.9%)  

141 (68.4%)  

1      (0.5%)  

  

14 (21.9%)  

0   (0.0%)  

3   (4.7%)  

46 (71.9%)  

1   (1.6%)  

  

41 (28.9%)  
1   (0.7%)  

5   (3.5%)  

95 (66.9%)  

0   (0.0%)  

0.43 



T1c dimension, n (%)  

     2D  

     3D  

  

103 (50.0%)  

103 (50.0%)  

  

35 (54.7%)  

29 (45.3%)  

  

68 (47.9%)  

74 (52.1%)  

0.45 

a P values reflect statistical significance of distributions for demographic, histologic, tumour location, treatment-

related, and imaging-related variables between short-term and long-term survivors, calculated with Mann-

Whitney U and Chi-squared tests.  
b Albeit known to be alive beyond eight months post-radiotherapy.   
c SE: standard error.  
d MGMT: O6-methylguanine-DNA methyltransferase methylation. Methylated status refers to an MGMT 

methylation percentage above a 10% cutoff point. 
e Deep-seated location: tumour infiltrates midbrain, thalamus, or callosum.  
f Stupp dose: radiotherapy dose of 60 Gy delivered in 30 fractions.  
g A histogram showing time between radiotherapy and first MRI images after radiotherapy completion is 

presented in Appendix B2.
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Table 3. Holdout test set performances from imaging, combined (imaging/non-imaging), and non-imaging models. The retrospective test set is an internal validation dataset. 

The prospective test set is an external validation dataset using data from geographically distinct sites. The amalgamated test set refers to the combination of the retrospective 

and prospective test sets.  

Description  AUCa  Precision  Recall  F1  Specificity  NPVb   BARc   Accuracy  

Amalgamated test set (n=48 patients, from 10 centers)  

Imaging model    0.93 ± 0.07* 0.77  0.89  0.83  0.83  0.92  0.86  0.85  

Combined model  0.91 ± 0.08  0.63  1.00  0.78  0.62  1.00  0.81  0.77  

Non-imaging model  0.79 ± 0.12  0.67  0.32  0.43  0.90  0.67  0.61  0.67  

Retrospective test set (n=19 patients, from 2 centers)  

Imaging model  0.92 ± 0.12  0.67  1.00  0.80  0.77  1.00  0.88  0.84  

Combined model  0.94 ± 0.11  0.55  1.00  0.71  0.62  1.00  0.81  0.74  

Non-imaging model  0.76 ± 0.19  0.67  0.33  0.44  0.92  0.75  0.62  0.74  

Prospective test set (n=29 patients, from 8 centers)  

Imaging model   0.93 ± 0.09*  0.85  0.85  0.85  0.88  0.88  0.86  0.86  

Combined model  0.89 ± 0.11  0.68  1.00  0.81  0.63  1.00  0.81  0.79  

Non-imaging model  0.78 ± 0.15  0.57  0.31  0.4  0.81  0.59  0.56  0.59  

aAUC: area under the receiver operating characteristic curve. The key results for machine learning models are the generalizability of holdout test set values. We also compute 

the sample size-based 95% confidence intervals using Bernoulli trials formula (𝑧 × √
𝐴𝑈𝐶×(1−𝐴𝑈𝐶)

𝑛
). 

bNPV: negative predictive value.  
cBAR: balanced accuracy rate.  

Bold rows are those with highest AUC scores.  

*: significantly different AUC compared to the non-imaging model using DeLong’s test with a threshold of p≤0.05. 
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Supplementary Material 

 

Appendix A. Overview of the treatment and imaging pathway for glioblastoma 

 

 

Figure A1. Simplified illustration of the recommended treatment and imaging pathway for glioblastoma. 

Some patients may not tolerate recommended post-surgical therapies, and therefore undergo an altered 

course of treatment. Circles are illustrative of recommended interval imaging timepoints. To inform 

patient management, MRIs are often performed after initial surgery, during radiotherapy planning, and at 

three-monthly intervals (or if clinically deteriorating) during follow-up after radiotherapy completion1,2,3,4. 

(a) Pathway for patients receiving the optimal treatment (i.e., completing the “Stupp” protocol, which 

consists of surgical resection, followed by radiotherapy with concomitant TMZ, then adjuvant TMZ)5,6. 

(b) Pathway for patients receiving a common modified treatment. Modified treatment, as shown in this 

example, often includes a shorter course of CCRT with a lower dose of radiotherapy; a longer course of 

adjuvant chemotherapy may be prescribed.  

CCRT: radiotherapy and concomitant chemotherapy. TMZ: temozolomide.  
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Appendix B. Patient and Public Feedback  

The research proposal was presented to the Next Generation Medical Imaging Advisory Group at King’s 

College London (January 2021), and the Guy’s Cancer Group at Guy's and St Thomas' Hospital (February 

2021).  

Based on feedback, this study considered (i) the influence of non-imaging features on model 

development, and (ii) in addition to patients undergoing optimal treatment  (i.e., completing the “Stupp” 

protocol, which consists of surgical resection, followed by radiotherapy with concomitant TMZ, then 

adjuvant TMZ), inclusion of patients without optimal treatment (e.g., those who could not tolerate full-

dose of radiotherapy or temozolomide chemotherapy, or who had an initial biopsy without a maximal safe 

resection). Test evaluation focused on the area under the receiver operating characteristic curve (AUC) 

metric. Groups commented that multi-center, prospective test data would provide greater reassurance of 

detecting post-treatment changes in an evidence-based manner.  
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Appendix C. Patient Cohort  

 

CONSORT diagram displaying flow of patients included in analyses. Also demonstrated is the different 

contrast-enhanced T1-weighted (T1c) sequences categorized as 3D or 2D.  
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Appendix D. Dataset sampling  

Appendix D1. Patient characteristics in full and test datasets.  

To check for potential bias(es) in the overall dataset sampling strategy, we compared the portion of 

patients in the test set to the full dataset and measured the sampling error for the following variables: 

survival outcome, contrast-enhanced T1-weighted acquisition dimension (2D or 3D), initial surgery type 

(biopsy or maximal safe resection), MGMT methylation status at first diagnosis, and age at first 

diagnosis. These findings are presented in Table B1 below. Sampling for validation folds stratified 

outcome, acquisition dimension, and acquisition center (KCH/LTHT/UCLH) in training data. Surgery 

type, MGMT methylation status, and age are reported here as these factors are related to survival of 

glioblastoma7-10; these were not stratified during cross-validation due to low patient numbers after 

stratifying for three variables.  
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Table D1. Patient characteristics of the full dataset compared to test data described by survival outcome, MRI 

acquisition dimension, surgery type, MGMT status, and age group. Test set sampling error is relative to the full 

dataset.  

Stratified   

variable  

All 

patients, 

N=206  

Combined  

test set,  

N=48  

Retrospective   

test set,   

N=19  

Prospective   

test set,   

N=29  

N (%)  N (%)  
Sampling 

error  
N (%)  

Sampling 

error  
N (%)  

Sampling 

error  

Survival 

outcome  

Short-

term  

64   

(31.1%)   

19 

(39.6%)  

27.4  6   

(31.6%)  

1.64  13 

(44.8%)  

44.29  

Long-

term  

142   

(68.9%)  

29   

(60.4%)  

-12.4   13 

(68.4%)  

-0.74  16 

(55.2%)  

-19.96  

Acquisition 

dimension  

2D  103   

(50.0%)  

31 

(64.6%)  

29.17  9 (47.4%)  -5.26  22 

(75.9%)  

51.72  

3D  103   

(50.0%)  

17   

(35.4%)  

-29.17  10 

(52.6%)  

5.26  7 (24.1%)  -51.72  

Surgery   

type  

Biopsy  48   

(23.3%)  

13   

(27.1%)  

16.23  4  

(21.1%)  

-9.65  9  

(31.0%)  

33.19  

Resecti

on  

158  

(76.7%)  

35 

(72.9%)  

-4.93  15  

(78.9%)  

2.93  20 

(69.0%)  

-10.08  

MGMT 

status  

Methyla

ted  

87  

(42.2%)  

20  

(41.6%)  

-1.34  8  

(42.1%)  

-0.30  12  

(41.4%)  

-2.02  

Unmeth

ylated  

114  

(55.3%)  

28  

(58.3%)  

5.41  11  

(57.9%)  

4.62  17  

(58.6%)  

5.93  

Unkno

wn  

5  

(2.4%)  

0  

(0.0%)  

-  0  

(0.0%)  

-  0  

(0.0%)  

-  

Age at first 

diagnosis  

≤ 60 

years  

89  

(43.2%)  

32  

(66.7%)  

17.38  14  

(73.7%)  

29.73  18  

(62.1%)  

9.28  

> 60 

years  

117  

(56.8%)  

16  

(33.3%)  

-22.85  5  

(26.3%)  

-39.09  11  

(37.9%)  

-12.20  

  

 

Appendix D2  

A visualization of the distribution of time between radiotherapy completion and the first MR study (used 

as inputs to imaging/combined models) is presented in Figure B1, split by survival outcome.  The study 

was pragmatic, and imaging was carried out in line with local practice, and at a time dictated by clinical 

protocols, or additional clinical concerns. Detail on local UK imaging protocols is shown in the GIN CUP 

study11.  
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Figure D1. Histogram showing time between end of radiotherapy and the first MRI examination for all patients, stratified 

by survival outcome. The first MRI images after radiotherapy completion are used as inputs for the imaging model, as well 

as the duration between end of radiotherapy and the scan.  
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Appendix E. Further information on survival classifiers  

Appendix E1. Description of non-imaging models 

Description of non-imaging classical machine learning models 

Four types of machine learning models were applied to training data with parameter tuning. Logistic 

regression models, linear support vector classifiers (SVCs) and gaussian SVCs were run with tuning of 

the regularization parameter (C) (range of C: 0.1 to 1000). For the gaussian SVC, gamma coefficients 

were additionally tuned using grid search (range of gamma: 0.1 to 100). Finally, decision tree classifiers 

were developed with selection between gini and entropy criteria for evaluating partitions. Based on 

validation performances, backward sequential feature selection was applied until the area under the 

receiver-operating characteristic curve (AUC) decreased. 

Numeric variables were standardized to unit variance using training data, and categoric variables were 

one-hot encoded. Where data were missing, three approaches were used: (i) mean/mode imputation was 

used with labels added identifying imputed inputs, (ii) patients with missing data were excluded, (iii) 

variables with missing data were excluded. 

 

Description of non-imaging fully-connected neural networks 

As an additional baseline measure, we trained shallow neural networks to predict survival outcomes from 

available non-imaging features alone (demographic, histologic, tumor-related, and prior treatment 

variables). These non-imaging features were passed through either one or two fully-connected linear 

layers before providing the binary survival prediction. Tuned parameters were the number of linear layers, 

learning rate and schedule, and probability of dropout; where there were two linear layers, the size of 

linear layers was also tuned (range=4-24). The fully-connected neural networks did not have a higher 



Manuscript number: N-O-D-23-00692R1 

46 

 

validation performance than corresponding machine learning models, so were not pursued further. Models 

were developed with PyTorch12. 

 

Appendix E2. Description of alternative imaging model. 

Instead of splitting contrast-enhanced T1-weighted (T1c) and T2-weighted (T2) MR sequence inputs 

across branches, we also tested a version of the model with both sequences joined as two channels (one 

branch). Pretrained weights were combined by either taking the average weight per convolutional layer 

and block, or by selecting the maximum weight. These models were not pursued further as they displayed 

poorer performances than counterparts with separate branches per input MR sequence.  

  

 

Appendix E3. Procedure for training and tuning imaging and combined models.  

Models were trained measuring cross-entropy loss weighted by class, and with the Novograd optimizer. 

Tuned (hyper-)parameters included: learning rate and schedule, linear layer sizes, number frozen/updated 

pretrained blocks, loss weighting per branch, dropout, pooling, and degree/probability of augmentation.   
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Appendix F.  

Appendix F1. Parameters for the optimal imaging model  

After tuning the imaging model, pretrained weights were frozen for the first convolutional layer and two 

dense blocks per branch. Blocks were flattened via maximum pooling; flattened feature vectors were 

mapped to a 1x56 then 1x2 vector per branch; the SeLU activation function was used. The merged branch 

therefore inputs a 1x112 vector. Losses were weighted for T1c, T2, and merged branches at a ratio of 

1:1:3 respectively. The probability for each augmentation was 0.65. Applied augmentations included 

random left-right flipping, zooming, shearing, translation, rotation, adjusting intensity, adjusting contrast, 

adding Gaussian noise, and adding coarse dropout. A cyclical learning rate was applied (range: 4-8-2-5). 

The model was trained for 170 epochs before frozen and evaluated on holdout test data.  

  

Appendix F2. Selecting the classification threshold   

Description of threshold analysis  

All models applied a classification threshold of 0.50 to determine the survival prediction label. 

As an additional analysis to investigate the optimal decision threshold, Youden’s J statistic was calculated 

on validation folds for the imaging model; the mean threshold was selected.  

Test set results when applying Youden’s J threshold  

The Youden’s J analysis suggested a threshold of 0.35. Applying this decision threshold to test set 

predictions did not improve imaging model performances (AUC=0.75; balanced accuracy rate=0.74). 

Therefore, a threshold of 0.50 was retained for all models (imaging/combined/non-imaging). 
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Appendix G. Additional analyses of test set predictions 

 

Appendix G1. Interval between radiotherapy completion and MRI study used for survival prediction 

As a supplementary analysis, we investigated whether survival predictions may be influenced by the interval between radiotherapy completion and 

the MRI study used as model inputs. For potential clinical translation, it is important to assess if there is a potential source of bias, where patients 

with a longer duration between radiotherapy completion and the first MRI may be predicted as long-term survivors and vice versa. For example, 

rather than identifying features related to future survival in neuroimaging, the model may be identifying that patients who are less well are brought 

in for MRI follow-up sooner than those who are responding to treatment. This possibility remains despite model inputs being limited to those 

MRIs obtained within 24-weeks of radiotherapy completion. We therefore further investigated patients with erroneous survival predictions. 

The amalgamated test set has n=48 patients, of whom 19 were short-term survivors (39.6%). The imaging model made erroneous predictions for 

7/48 patients (85.4% accuracy). The interval between radiotherapy completion and the MRI study used as model inputs is shown for the test set, 

based on the survival outcome: 
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Figure G1. Interval between radiotherapy completion and the MRI study used as imaging (and combined) model inputs. (a) The interval for the 

amalgamated test set, split by survival outcome. (b) Intervals for patients with erroneous prognostic predictions (where long-term survivors were 

misclassified as short-term survivors, and vice versa). 

 

Importantly, we found that the combined model did not perform significantly better than the imaging model, despite receiving this interval as an 

input variable. Furthermore, based on the overlapping intervals between misclassified short-term and long-term survivors in panel (b) of Figure 

G1, it is not overtly evident that the imaging model is biased due to variations in the duration between radiotherapy completion and the first post-

radiotherapy MRI study. Further research should verify this expectation with a larger test set however, particularly for patients with the first MRI 

study obtained between 20-24 weeks after radiotherapy completion. 
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Appendix G2. Imaging model performances for additional analyses run on the amalgamated test set 

Performance of the imaging model on the amalgamated test set is further described in Table G2. Additional analyses were performed including 

permutation testing, ablation studies, and grouping predictions by sample characteristics. 

Table G2. Imaging model performances for additional analyses run on the amalgamated test set (the amalgamation of the retrospective and prospective test sets). 

Performances are shown for the permutation test and ablation studies; they are also reported disaggregated for sample subgroups (surgery type, age (>60years), 

sex, and acquisition dimension).  

Description  AUCa  Precision  Recall   F1  Specificity  NPVb   BARc  Accuracy  

Full imaging model  

Imaging model  0.93  0.77  0.89  0.83  0.83  0.92  0.86  0.85  

Permutation test results    

Shuffled T1cd and T2e inputs    0.49*  0.40  1.00  0.57  0.00  0.00  0.50  0.40  

Ablation studies  

Predictions from T1c branch    0.83*  0.65  0.89  0.76  0.69  0.91  0.79  0.77  

Predictions from T2 branch  0.85  0.67  0.63  0.65  0.79  0.77  0.71  0.73  

Train model initializing random 

weights  
  0.64*  0.50  0.21  0.30  0.86  0.63  0.54  0.60  

Initial surgery type (n)    

Biopsy-alone (13) 0.89  0.89  0.89  0.89  0.75  0.75  0.82  0.85  

Resection (35)  0.87  0.69  0.90  0.78  0.84  0.95  0.87  0.86  

Age at diagnosis (n) (missing n=1)    

>60 years (16)  0.98  0.78  1.00  0.88  0.78  1.00  0.89  0.88  

≤60 years (31)  0.89  0.77  0.83  0.80  0.84  0.89  0.84  0.84  

Sex (n)    

Female (20)  0.96  0.71  0.83  0.77  0.86  0.92  0.85  0.85  

Male (28)  0.89  0.80  0.92  0.86  0.80  0.92  0.86  0.86  

T1c acquisition dimension (n)  

2D (31)  0.90  0.79  0.85  0.81  0.83  0.88  0.84  0.84  

3D (17)  0.98  0.75  1.00  0.86  0.82  1.00  0.91  0.88  
a AUC: area under the receiver operating characteristic curve.  
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b NPV: negative predictive value.  
c BAR: balanced accuracy rate.  
d T1c: contrast-enhanced T1-weighted MRI. 
e T2: T2-weighted MRI.  

* : significantly different AUC compared to the full imaging model using DeLong’s test with a threshold of p≤0.05 
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Appendix H. Comparative predictions from expert clinical raters 

In the main manuscript, we provided a comparison of predictions from artificial intelligence models based on imaging-alone, combined 

information, and non-imaging clinical variables alone. The imaging model was selected for further analysis, based on the observation that using 

non-imaging features did not improve model performances. Readers may also be interested in how the selected model performs in comparison to 

physicians’ interpretation of the same imaging data. It is acknowledged that such a prediction of long- or short-term survival is not expected when 

reporting on neuroimaging in clinical settings. Nonetheless, such a comparison might help to determine whether the model could be 

complementary in routine hospital practice.  

To provide this comparison, we conducted a blinded study with predictions obtained from expert clinicians reviewing patient imaging. Three 

senior neuroradiologists (UK consultant grade; US attending equivalent) who present the imaging at the joint neuro-oncology meeting (UK multi-

disciplinary meeting; US tumor board) at three UK neuro-oncology centers, made the equivalent survival predictions as the image-based model 

presented here, using the same T1 post-contrast (T1c) and T2 MRIs.  

Predictive performance of each rater on the amalgamated test set is presented in Table H1, in addition to performance based on inter-rater 

consensus (i.e., the mode/majority vote). Since raters were predicting the binary survival outcome rather than providing prediction probabilities 

per class, no receiver-operating characteristic curves are presented (equivalently, the area under the receiver-operating characteristic curve metric 

was not calculated). The precision and recall of the imaging model were 0.77 and 0.89 on the amalgamated test set respectively. In comparison, we 

found that predictions made by consensus had a precision of 0.79 (range across raters: 0.70-0.85) and recall of 0.79 (range: 0.58-0.84). A Fleiss 

Kappa score of 0.74 was obtained for inter-rater agreement. 
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We acknowledge that the three senior neuroradiologists had as much time as required to make the decision. We also acknowledge that consensus 

readings cannot be obtained routinely in the clinic and therefore our clinical comparator is an optimal scenario which may not be reflected in a 

routine clinical setting. Nonetheless, based on the consensus predictions and range in inter-rater predictive performances, the presented model 

(which returns predictions immediately and only requires images alone) performs at least similarly to the consensus of three experts given the 

same imaging. We therefore expect that the proposed deep learning model could provide relevant information for routine clinical practice, by 

distinguishing those patients who are and are not expected to survive the eight-month window after radiotherapy completion. Studies validating 

imaging model performance in clinical settings are required to test this possibility. 

 

Table H1. Comparison of imaging model performance to those obtained by expert clinical raters on the amalgamated test set (the amalgamation of the 

retrospective and prospective test sets). Performances are shown for predictions made by each reader based on the same images used as inputs to the reported 

imaging model. Performance of predictions based on consensus agreement across raters is also provided (based on mode/majority vote). 

Description  Precision  Recall   F1  Specificity  NPVa   BARb  Accuracy  

Imaging model  0.77  0.89  0.83  0.83  0.92  0.86  0.85  

 Predictions from clinical experts, based on T1c and T2 post-radiotherapy imaging 

Reader 1 0.85 0.58 0.69 0.93 0.77 0.75 0.79 

Reader 2 0.70 0.84 0.76 0.76 0.88 0.80 0.79 

Reader 3 0.70 0.74 0.72 0.79 0.82 0.76 0.77 

Consensus vote 0.79 0.79 0.79 0.86 0.86 0.83 0.83 
a NPV: negative predictive value.  
b BAR: balanced accuracy rate.  
c T1c: contrast-enhanced T1-weighted MRI. 
dT2: T2-weighted MRI.  
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Appendix I. Further analysis of saliency maps 

Appendix I1. Analysis of saliency maps in relation to model predictions and tumor appearances 

As a further analysis, we investigated the relationship between imaging model predictions, axially-

selected slices of 3D saliency maps for the predicted outcome, and tumor-related regions in input MRI 

scans (including treated/resected tumour areas). 

In Table I1 below, we show amalgamated test set patient numbers grouped by (a) prediction accuracy 

of survival outcome from the imaging model (accurately versus inaccurately classified) and (b) 

whether any visible heatmap points in axially-selected slices of volumetric saliency maps overlay 

tumor-related regions in T1c/T2 slices (intersection of (i) tumor regions in MRI scans, and (ii) visible 

“hot” heatmap area after thresholding to remove the lowest 10% of values). 

 

Intersection between salient heatmap points in 

automatically selected axial slices and tumor 

region(s) in T1c/T2 MRIs 

Predictive 

accuracy 

(imaging model) 

 Intersection No Intersection 

True positive 

(short-term survival) 
15 2 

True negative 

(long-term survival) 
13 11 

False positive 
4 1 

False negative 
1 1 

 

As noted in the main manuscript, saliency maps alone should not be interpreted as showing task-

related features that are easily interpretable to human readers13. In this test set, 29/48 patients were 

long-term survivors (60.4%). It is conceivable, for example, that anatomical appearances reflecting 

long-term survival may be difficult to interpret. Indicators of longer survival may relate to the absence 

of features that signify more marked disease progression. Indeed, the tumor region in long term 

survivors (true negatives) appears less likely to contribute to the decision making (a relatively smaller 

portion of patients have MRI scans where the “hot” heatmap points intersects with the tumor). 
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Appendix I2. Saliency maps for patients misclassified as short-term survivors 

We further reviewed all cases where patients with long-term survival after radiotherapy were 

mistakenly predicted as short-term survivors by the imaging model. There were five patients in the 

amalgamated test set in this category. All cases are presented in Figure I2 below to explore the 

possibility that these patients show signs of pseudoprogression, where the model mistakenly predicted 

short-term survival given treatment-related effects in MRIs. Since the maps do not consistently 

suggest that contrast-enhancing tumor regions contributed greatly to predictions, it is not evident that 

the mistaken predictions of short-term survival could relate to pseudoprogression in all cases. Further 

comments on the challenging and clinically important scenario of pseudoprogression are presented in 

the Discussion section of the main manuscript. 
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Figure I2. Visualization of saliency map, T1c, and T2 axial slices for all cases where patients with 

long-term survival were mistakenly predicted as short-term survivors. 

T1c: contrast-enhanced. T1-weighted MR sequence. T2: T2–weighted MR sequence.   
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