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Spatiotemporal Fuzzy-Observer-based Feedback
Control for Networked Parabolic PDE Systems

Jun-Wei Wang, Yun Feng, Stevan Dubljevic, and Hak-Keung Lam

Abstract—Assisted by the Takagi-Sugeno (T-S) fuzzy model-
based nonlinear control technique, nonlinear spatiotemporal
feedback compensators are proposed in this article for exponen-
tial stabilization of parabolic partial differential dynamic systems
with measurement outputs transmitted over a communication
network. More specifically, an approximate T-S fuzzy partial
differential equation (PDE) model with C∞-smooth membership
functions is constructed to describe the complex spatiotemporal
dynamics of the nonlinear partial differential systems, and its
approximation capability is analyzed via the uniform approxima-
tion theorem on a real separable Hilbert space. A spatiotempo-
rally asynchronous sampled-data measurement output equation
is proposed to model the transmission process of networked
measurement outputs. By the approximate T-S fuzzy PDE model,
fuzzy-observer-based nonlinear continuous-time and sampled-
data feedback compensators are constructed via the spatiotem-
porally asynchronous sampled-data measurement outputs. Given
that sufficient conditions presented in terms of linear matrix
inequalities are satisfied, the suggested fuzzy compensators can
exponentially stabilize the nonlinear system in the Lyapunov
sense. Simulation results are presented to show the effectiveness
and merit of the suggested spatiotemporal fuzzy compensators.

Index Terms—Networked control systems, sampled-data sys-
tems, exponential stabilization, partial differential equation, spa-
tiotemporal Takagi-Sugeno fuzzy model.

I. INTRODUCTION

A. Research Background

NETWORKED CONTROL SYSTEMS (NCSs) are a class
of cyber-physical systems where the cyber-layer (e.g.,

controller) is interconnected with the physical system through
some form of communication networks, see Fig. 1, which
is significantly different from traditional point-to-point con-
trol systems whose components are attached directly to the
physical plant. Compared with traditional control systems,
main merits of NCSs come from their modular and flexible
system design, fast implementation, and distribution [1]–[3].
Consequently, NCSs have been widely used nowadays in
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Fig. 1: The schematic map of networked control systems [1]

spacecrafts, industrial manufacturing processes, vehicles and
other complicated control systems [4], [5]. But some disadvan-
tages such as time delay in data transmission may also degrade
the closed-loop system performance and should be fully used
in the design procedure. The key issue of NCSs is how to
deal with the network-induced delay including the sensor-to-
controller τsc and the controller-to-actuator τca. A common
model for NCSs subject to network-induced delays consists
of a continuous-time plant and a discrete-time controller [1],
[3], [4], [7], in which both the sensor-to-controller delay τsc
and the controller-to-actuator one τca are lumped together as
τ = τsc + τca for performance analysis purposes. The closed-
loop form of NCSs is generally modeled as sampled-data
control systems [7].

On the other hand, industrial control processes have severe
nonlinear characteristics [3], [6], which make their design and
performance analysis more difficult. It has been shown from
considerable theoretical/applied research results that fuzzy
control, especially Takagi-Sugeno (T-S) fuzzy-model-based
control [8], offers an effective framework to deal with the
control synthesis problem of complex dynamic systems [9]–
[13]. Over the past few decades, with the aid of fuzzy model,
fruitful results of analysis and synthesis have been reported
for nonlinear NCSs [3], [14]–[19] and nonlinear sampled-
data control system [20]–[25], whose system dynamics only
depends on time and mathematical model is represented by
ordinary differential-difference equations (ODdEs). Despite
the above gratifying progress, practical engineering appli-
cations raise a class of more complex dynamic processes
with spatiotemporal dynamic behaviors [26]–[30], which are
completely distinct from the ones discussed in [3], [14]–[25].
Such complex spatiotemporal dynamic processes are modeled
by partial differential equations (PDEs) and referred to be
distributed parameter systems (DPSs). In this article, we will
deal with the nonlinear spatiotemporal feedback compensator
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design for nonlinear networked parabolic PDE systems by the
spatiotemporal T-S fuzzy-model-based control technique.

B. Literature Review and Discussion

Recently, numerous researchers have paid attention to the
investigation of nonlinear NCSs [3], [14]–[19]. Shen et al. [15]
have addressed the issue of reliable output feedback control for
nonlinear networked semi-Markov jump systems via the fuzzy-
model-based control method and proposed a control strategy
with redundant channels to reduce the adverse effect caused by
packet dropouts. Lian et al. [16] have discussed the problem
of dynamic hybrid-triggered control for nonlinear networked
control systems and developed a resilient control scheme to
improve network resource utilization and system performance
against cyberattacks for the underlying systems. In [18], the
authors have proposed an event-based static output feedback
fuzzy tracking control scheme for discrete-time nonlinear
networked systems subject to dynamic quantization. Sun et al.
[19] have discussed security control of T-S fuzzy networked
systems subject to cyberattacks and successive packet losses
in the sensor-controller and controller-actuator channels.

Due to the fact that the closed-loop form of NCSs can be
modeled as sampled-data control systems [1], [7], the issue of
sampled-data/event-triggered control system design and per-
formance analysis have received a great deal of attention from
the control system community [20]–[25]. In [22], the issue of
event-triggered state feedback control has been addressed for
interval type-2 fuzzy systems subject to the fading channel. An
input delay approach has been adopted in [23] to address the
sampled-data output-feedback control issue for nonlinear sys-
tems represented by T-S fuzzy affine models. Wang and Yang
[24] have dealt with the issue of robust filtering for continuous-
time T-S fuzzy systems with bounded external disturbances
via premise-region-dependent event-triggered mechanisms. In
[25], an improved fuzzy-dependent adaptive event-triggered
mechanism has been discussed for sampled-data-based control
of T-S fuzzy systems. It must be pointed out that the complex
dynamics of nonlinear plants in the above works are modeled
by T-S fuzzy ordinary differential equation (ODE) model.

For the sampled-data control design of DPSs, some effec-
tive methods have been reported in [31]–[41]. For example,
by resorting to the modal decomposition technique, some
finite-dimensional sampled-data control designs were reported
for parabolic PDE systems [31]–[34]. However, notice that
the model truncation before control design in the finite-
dimensional control design may result in an inaccurate control
performance. To overcome such drawback, PDE-based design
methods were developed for linear sampled-data controllers
of semi-linear parabolic systems [35]–[38]. In [39]–[41], an
infinite-dimensional nonlinear sampled-data control design has
been recently developed via the exact T-S fuzzy PDE model.
Note that the design methods in [39]–[41] were developed
under a strong assumption that control actions cover the
entire spatial domain. This strong assumption was removed in
[42], [43] by resorting to the observer-based output feedback
control technique. More recently, event-triggered fuzzy control
schemes have been reported in [44]–[46] for semi-linear

parabolic PDE systems. Moreover, the exact T-S fuzzy model
proposed in [39]–[41], [44]–[46] requires the precise dynamics
of the nonlinear PDEs. Generally, it is very difficult to obtain
the precise system dynamics for real application problems.
Hence, the study on infinite-dimensional fuzzy-model-based
feedback compensator design is very necessary for sampled-
data/networked parabolic PDE systems with local piecewise
control and imprecise nonlinear dynamics, which motivates
the present work.

C. Main Results and Technical Contributions of This Article

In this study, on the basis of the authors’ previous works
[39], [42], [43], we further deal with the problem of infinite-
dimensional fuzzy-model-based feedback compensator design
for nonlinear parabolic PDE systems with local piecewise
control and measurement outputs over network. The new
features and novelties of this study are summarized as follows

1) Lyapunov-based Spatiotemporal Fuzzy Control Design
of Networked Parabolic PDE Systems: In the observer-
based feedback control framework, a Lyapunov-based
design of spatiotemporal fuzzy continuous-time and
sampled-data compensators is solved for parabolic PDE
systems with local piecewise control and the networked
measurement outputs. The main results are presented
in terms of standard linear matrix inequalities (LMIs)
and are checked by the feasp solver in MATLAB’s LMI
Control Toolbox [47].

2) Networked Parabolic PDE Systems: Different from the
existing networked control systems [3], [4], [7], [15]–
[19], where the complex system dynamic behaviour
is modeled by ODEs, the main difficulty of feedback
control design for networked parabolic PDE systems lies
in the spatiotemporal evolution dynamics described by
sampled-data parabolic PDEs.

3) Approximate Spatiotemporal T-S Fuzzy Model: Com-
pared to the exact fuzzy model in [33], [34], [39]–
[41], [44]–[46], [48], [49], this article proposes an
approximate T-S fuzzy PDE model with C∞-smooth
membership functions for the representation of complex
nonlinear spatiotemporal evolution dynamics of parabol-
ic PDE systems. Different from the work [50], this
article analyzes the approximation performance of the
suggested approximate T-S fuzzy model via the uniform
approximation theorem for continuous functions on a
real separable Hilbert space.

D. Organization and Notation

Organization: Section II formulates the control design prob-
lem addressed in this article, which includes system descrip-
tion of nonlinear parabolic dynamic systems, approximate T-
S fuzzy PDE model and its approximation capability anal-
ysis, and the spatiotemporal fuzzy-observer-based nonlinear
compensator’s structure. Section III constructs two types of
fuzzy-observer-based feedback compensators (i.e., continuous-
time control and sampled-data control) via the networked mea-
surement outputs. Numerical simulation results are presented
in Section IV to validate the effectiveness and merit of the
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Fig. 2: Sampled-data control in space

proposed fuzzy compensators. Finally, Section V provides
some brief concluding discussions.

Notation: ℜ, ℜn and ℜm×n are respectively used for sets of
real numbers, n-dimensional Euclidean space, and m×n ma-
trices. For a given scalar L > 0, L2

n([0, L]) , L2([0, L];ℜn) is
a separable Hilbert space of square integrable vector functions

ζ(x) with ∥ζ(·)∥2 ,
√∫ L

0
ζT (x)ζ(x)dx. Hk̄

n((0, L)) ,
W k̄,2((0, L);ℜn) is a Sobolev space of absolutely continuous
vector functions ζ(x) with square integrable derivatives dk̄ζ(x)

dxk̄

of the order k̄ (a given integer) and ∥ζ(·)∥Hk̄
n((0,L)) ,√∫ L

0

∑k̄
i=0

diωT (x)
dxi

diζ(x)
dxi dx. For ϖ(·, t) ∈ H2

n((0, L)), the
partial derivatives ∂ϖ(x, t)/∂t and ∂ϖ(x, t)/∂x are denoted
by ϖt(x, t) and ϖx(x, t), respectively. The transpose oper-
ation is denoted by the superscript ‘T ’ for a vector or a
matrix. A block diagonal matrix created by M matrices Ci, i ∈
{1, 2, · · · ,M} is denoted by Block-diag{C1,C2, · · · ,CM}.

II. PROBLEM FORMULATION

A. System description

This article considers a nonlinear parabolic dynamic system
zt(x, t) = Θzxx(x, t) + f(z(x, t)) + G(x)u(t),

x ∈ (0, L), t > t0,
z(0, t) = z(L, t) = 0, t ≥ t0,
z(x, t0) = z0(x), x ∈ [0, L],

(1)

where z(x, t) , [z1(x, t) z2(x, t) · · · zn(x, t)]
T ∈ D is

the state (D is an open subset of L2
n([0, L]) and contains the

equilibrium profile z(·, t) = 0), x ∈ [0, L] ⊂ ℜ and t ≥ t0 (t0
is the initial time) are spatial position and time coordinates,
respectively. The diffusion coefficient matrix 0 < Θ ∈ ℜn×n

is known, and the nonlinear function f(z) with f(0) = 0 is
continuous with respect to z. The integrable matrix function
G(x) , [g1(x) g2(x) · · · gm(x)] ∈ ℜn×m with

gκ(x) ,
{ gκ

∆xκ
x ∈ [xL

κ , x
R
κ ],

0 otherwise,
κ ∈ M, (2)

in which ∆xκ , xR
κ − xL

κ , M , {1, 2, · · · ,m} model the
distribution of m actuators over (0, L), [xL

κ , x
R
κ ] is the κ-th

actuator’s active area. These actuators provide the control input
u(t) , [u1(t) u2(t) · · · um(t)]T ∈ ℜm. The chosen
function G(x) produces m zones of spatially sampled-data
control over [xL

κ , x
R
κ ], κ ∈ M (see Fig. 2).

Remark 1: Define Aȳ(x) , Θd2 ȳ(x)
dx2 with D(A) ,{

ȳ ∈ H2
n((0, L)) : ȳ(0) = ȳ(L) = 0

}
. Since A is a linear,

symmetric, and compact operator in L2
n([0, L]), its eigen-

value problem Aỹι(x) = λιỹι(x), ι ∈ {1, 2, · · · ,∞}

1, ( )out
ty , ( )m out

ty
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ty
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Fig. 3: Industrial-internet-based remote monitoring of chemi-
cal reaction process

( )
m
y t1( )y t 2 ( )y t

1̂

L
x

0 L

1x 2x 3x m
x 1m

x
 

x

1̂

R
x 2

ˆLx 2
ˆRx ˆL

m
x ˆR

m
x

Fig. 4: Asynchronous sampled-data observation in space

can be solved analytically. All real eigenvalues λι are or-
dered (i.e., λι+1 ≤ λι) and the eigenfunctions ỹι(x) for-
m an orthonormal basis for D(A). For example, if Θ is
an identify one and the eigenfunction ỹι(x) is chosen as√

2
L sin(ιπL−1x)[1 1 · · · 1n]

T ∈ ℜn, then the eigen-

value is λι = − ι2π2

L2 . By the Hilbert-Schmidt theorem [51],
the eigenfunctions ỹι(x), ι ∈ {1, 2, · · · ,∞} constitute a set
of bases for L2

n([0, L]). That is, L2
n([0, L]) is separable.

The measurement outputs yκ,out(t), κ ∈ M are transmitted
over the communication network (see Fig. 3). Due to the
network-induced time delays, the networked measurement
outputs can be modeled by the following sampled-data mea-
surement output equations

yκ,out(t) =
∫ L

0

cκ(x)z(x, tk)dx, κ ∈ M,

t ∈ [tk, tk+1), k ∈ N , {0, 1, 2, · · · }, (3)

where cκ(x) is defined as

cκ(x) ,
{

(∆x̂κ)
−1 x ∈ [x̂L

κ x̂
R
κ ],

0 otherwise, (4)

with ∆x̂κ , x̂R
κ − x̂L

κ , which produces the spatially sampled-
data observation over [x̂L

κ , x̂
R
κ ], κ ∈ M (see Fig. 4). The mea-

surement output signals yκ,out(t), κ ∈ M are kept constant
during the sampling period [tk, tk+1), k ∈ N via the zero-
order holder (ZOH) and are allowed to change only at the
sampling moments tk, k ∈ N, in which tk+1 − tk ≤ To,
k ∈ N and To > 0 is a constant given in advance. Note that the
sampling between control and observation is spatiotemporally
asynchronous as [xL

κ , x
R
κ ] ̸= [x̂L

κ , x̂
R
κ ], κ ∈ M and the

asynchronous sampling in time between control input and
observation output.

Remark 2: The PDE model (1) with the spatiotemporally
asynchronous sampled-data measurement outputs (3) can be
used to describe the complex dynamic behaviour of the
industrial-internet-based remote monitoring of a class of in-
dustrial process subject to reaction-diffusion phenomena (e.g.,
thermal diffusion processes, chemical processes, and oil plume
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propagation, etc). The measurement outputs of the industrial
process are transmitted over the industrial network and are
provided by some sensors active over some local areas of
spatial domain, whose distribution in the spatial domain (0, L)
can be modeled by the equation (4).

B. Approximate T-S fuzzy PDE model and its approximation
capability analysis

A T-S fuzzy PDE model of the following form is given
to approximate the complex spatiotemporal dynamics of the
semi-linear PDE in (1):

Model Rule i:
IF ζ1 is Mi1 and · · · and ζd is Mid, THEN

zt(x, t) = Θzxx(x, t) + Aiz(x, t) + G(x)u(t),
x ∈ (0, L), t > t0, i ∈ S, (5)

where ζj and Mij , i ∈ S , {1, 2, · · · , s}, j ∈ {1, 2, · · · , d}
are premise variables and fuzzy sets, respectively, Ai ∈ ℜn×n,
i ∈ S, and s is the fuzzy rule number. We assume that the
premise variables are functions of z and represented by ζj(z).

For any i ∈ S, j ∈ {1, 2, · · · , d}, the grade of the
membership of ζj(z) in Mij is denoted by Oij(ζj(z)). De-
fine ζ(z) , [ζ1(z) ζ2(z) · · · ζd(z)]T and wi(ζ(z)) ,∏d

j=1 Oij(ζj(z))∑s
i=1

∏d
j=1 Oij(ζj(z)) , i ∈ S. For any i ∈ S, we assume∏d

j=1 Oij(ζj(z)) > 0, which means that

wi(ζ(z)) ≥ 0, i ∈ S and
s∑

i=1

wi(ζ(z)) = 1. (6)

Via the fuzzy membership functions in (6), the overall dynamic
expression of the above fuzzy PDE model is given by

zt(x, t) = Θzxx(x, t) +
s∑

i=1

wi(ζ(z))Aiz(x, t)

+ G(x)u(t), x ∈ (0, L), t > t0, (7)

which can be interpreted as an interpolation of s linear PDEs
via the membership functions wi(ζ(z)) to approximate the
PDE in (1). Hence, the PDE in (1) is rewritten as

zt(x, t) = Θzxx(x, t) +
s∑

i=1

wi(ζ(z))Aiz(x, t) + G(x)u(t)

+ ∆f(z(x, t)), x ∈ (0, L), t > t0, (8)

where ∆f(z(x, t)) , f(z(x, t))−
∑s

i=1 wi(ζ(z))Aiz(x, t) is the
approximation error of the fuzzy PDE model (7). Obviously,
the error ∆f(z) depends on the fuzzy rule number s and is
used to measure the performance of the fuzzy model (7).

To analyze the approximation capability of the T-S fuzzy
PDE model (7), we make the following assumption for the
membership function wi(ζ(z)) in (7):

Assumption 1: For any i ∈ S, the membership function
wi(ζ(z)) is a C∞-smooth mapping in ζ.

Under Assumption 1, the fuzzy PDE model (7) is C∞-
smooth in z(x, t). By Lemma 2 [52], for every continuous
function f(z) defined on the open subset D and every contin-
uous positive function ε(z), there exists a C∞-smooth fuzzy

mapping
∑s

i=1 wi(ζ(z))Aiz such that (∆f(z))T∆f(z) < ε(z)
is fulfilled for all z ∈ D. Without loss of generality, Assump-
tion 2 is thus made for the approximation error ∆f(z).

Assumption 2: There is a scalar ε > 0 such that the
inequality (∆f(z))T∆f(z) < εzT z holds for all z ∈ D.

Remark 3: Assumption 2 only ensures the existence of the
constant ε > 0. A natural question arises in the analysis of
fuzzy control design. One may ask how to determine the
specific value of ε > 0. A practical and feasible method
for determining the value of ε > 0 is to define ε ,
supz∈D

{
(∆f(z))T∆f(z)

zT z

}
for a given fuzzy rule number s, which

can be approximately calculated via the interpolation method.
On the other hand, the approximate fuzzy PDE model (e.g.,
the value of the fuzzy rule number s) can be optimized via
the least-square method by minimizing the error ∆f(z) [50].

C. Problem formulation

To estimate the spatiotemporal coupling state z(x, t) of
the PDE model (1), the following Luenberger-type PDE state
observer is constructed via the T-S fuzzy PDE model (5)

Observer Rule q:
IF ζ̂1 is Mq1 and · · · and ζ̂d is Mqd, THEN

ẑt(x, t) = Θẑxx(x, t) + Aiẑ(x, t) + G(x)u(t)
+ Lκq[yκ,out(t)− ŷκ,out(t)],
x ∈ (xκ, xκ+1), t > t0, q ∈ S, κ ∈ M, (9)

where Lκq is the observer gain for the q-th observation
rule (q ∈ S and κ ∈ M), the premise variables ζ̂j , j ∈
{1, 2, · · · , d} are functions of ẑ and represented by ζ̂j(ẑ), the
boundary estimate ẑ(0, t) = ẑ(L, t) = 0, t ≥ t0, the initial
estimate ẑ(x, t0) = ẑ0(x), x ∈ [0, L], the observer outputs
ŷκ,out(t) =

∫ L

0
cκ(x)ẑ(x, tk)dx, κ ∈ M, t ∈ [tk, tk+1),

k ∈ N, and [x̂L
κ , x̂

R
κ ] ⊂ (xκ, xκ+1), κ ∈ M (see Fig. 2).

The overall fuzzy PDE observer (9) is expressed as

ẑt(x, t) =Θẑxx(x, t) +
s∑

q=1

wq(ζ̂(ẑ))Aq ẑ(x, t) + G(x)u(t)

+
s∑

q=1

wq(ζ̂(ẑ))Lκq[yκ,out(t)− ŷκ,out(t)],

x ∈ (xκ, xκ+1), t > t0, κ ∈ M, (10)

where ζ̂(ẑ) , [ζ̂1(ẑ) ζ̂2(ẑ) · · · ζ̂d(ẑ)]T and
wq(ζ̂(ẑ)), q ∈ S satisfy

wq(ζ̂(ẑ)) ≥ 0, q ∈ S and
s∑

q=1

wq(ζ̂(ẑ)) = 1. (11)

In the subsequent statements, wi(ζ(z)) and wq(ζ̂(ẑ)) are
respectively denoted by wi(ζ) and wq(ζ̂) for brevity.

The corresponding estimation error e(x, t) is defined by

e(x, t) , z(x, t)− ẑ(x, t), (12)
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Fig. 5: A schematic diagram of the spatiotemporal fuzzy-
observer-based nonlinear continuous-time compensator (14)
with (10) and networked measurement outputs modeled by
sampled-data equation (3)

which is subject to

et(x, t) = Θexx(x, t) +
∑s

q=1 wq(ζ̂)Aqe(x, t) + ∆f(z(x, t))
+
∑s

i,q=1 wi(ζ)wq(ζ̂)[Ai − Aq]z(x, t)
−
∑s

q=1 wq(ζ̂)Lκq

∫ L

0
cκ(x)e(x, tk)dx,

k ∈ N, x ∈ (xκ, xκ+1), t > t0, κ ∈ M,
e(0, t) = e(L, t) = 0, t ≥ t0,
e(x, t0) = e0(x), x ∈ [0, L].

(13)
On the basis of the fuzzy model (8) with Assumptions 1 and

2, the aim of the present study is to propose an effective design
method of the spatiotemporal fuzzy-observer-based nonlinear
feedback compensators for the semi-linear parabolic system
(1) such that the exponential stability of the resulting closed-
loop augmented fuzzy PDE system.

III. SPATIOTEMPORAL FUZZY-OBSERVER-BASED
COMPENSATORS VIA NETWORKED MEASUREMENTS

Two types of spatiotemporal fuzzy compensators (i.e.,
continuous-time control and sampled-data control) are con-
structed in this section via the networked measurement outputs
modeled by sampled-data equation (3). The continuous-time
control method is applicable to the case when control signals
are fed to actuators directly, while the sampled-data control
approach can be used to solve the case when control signals
are transmitted over networks.

A. Continuous-time control

A fuzzy state feedback controller is proposed via the esti-
mated spatiotemporal coupling state ẑ(x, t)

uκ(t) =

s∑
q=1

∫ xκ+1

xκ

wq(ζ̂)kTκq ẑ(x, t)dx, κ ∈ M, (14)

in which the parameters kκq ∈ ℜn, κ ∈ M, q ∈ S
are to be determined, and [xL

κ , x
R
κ ] ⊂ (xκ, xκ+1), κ ∈ M

(
∪

κ∈M[xκ, xκ+1] = [0, L], see Fig. 2). Fig. 5 provides a
schematic diagram of the proposed spatiotemporal fuzzy-
observer-based feedback controller via networked measure-
ment outputs modeled by sampled-data equation (3).

By substituting the fuzzy controller (14) into the fuzzy PDE
model (8) and considering G(x) in (2), and (12), we get the

resulting closed-loop augmented fuzzy PDE system as the
form (13) and the following PDE:

zt(x, t) = Θzxx(x, t) +
∑s

i=1 wi(ζ)Aiz(x, t) + ∆f(z(x, t))
+ gκ(x)

∫ xκ+1

xκ

∑s
q=1 wq(ζ̂)kTκq[z(x, t)− e(x, t)]dx,

x ∈ (0, L), t > t0, κ ∈ M,
z(0, t) = z(L, t) = 0, t ≥ t0,
z(x, t0) = z0(x), x ∈ [0, L].

(15)
Definition 1 ( [48], [49]): The resulting closed-loop fuzzy

coupled PDEs (13) and (15) are exponentially stable in the
sense of ∥ · ∥2 if

√
∥z(·, t)∥22 + ∥e(·, t)∥22 ≤ β1 exp(−β2t),

where β1 > 0 and β2 > 0 are two known constants.
Consider a Lyapunov–Krasovskii functional candidate for

the closed-loop augmented fuzzy PDE system (13) and (15):

V (t) = V0(t) + V1(t) + V2(t) + V3(t), t ∈ [tk, tk+1), k ∈ N,
(16)

where

V0(t) = ν

∫ L

0

zT (x, t)P1z(x, t)dx, (17)

V1(t) =

∫ L

0

eT (x, t)P1e(x, t)dx, (18)

V2(t) =

∫ L

0

eTx (x, t)P2ex(x, t)dx, (19)

V3(t) = To

∫ L

0

∫ t

tk

(s− t+ To)eTs (x, s)P3es(x, s)dsdx,

(20)

with ν > 0 is a given design parameter, and 0 < Pj , j ∈
{1, 2, 3} are n× n Lyapunov matrices to be determined.

Theorem 1: Consider the semi-linear PDE system (1)-(4)
and the approximate fuzzy model (8) with Assumptions 1 and
2. Given an integer m > 0, some constants L > 0, To > 0,
xL
κ , xR

κ , x̂L
κ , x̂R

κ , xκ, κ ∈ M, and xm+1 (0 = x1 < x2 <
x3 < · · · < xm < xm+1 = L, [xL

κ , x
R
κ ] ⊂ (xκ, xκ+1), and

[x̂L
κ , x̂

R
κ ] ⊂ (xκ, xκ+1), κ ∈ M) and design parameters ν > 0,

σ > 0, and ε > 0 (Assumption 2), if there exist matrices
0 < Xj ∈ ℜn×n, j ∈ {1, 2, 3}, Yκq ∈ ℜn×n and vectors
oκq ∈ ℜn, κ ∈ M, q ∈ S satisfying the following LMIs:

Φ1 , [ΘX1 + ∗] > 0, (21)

Φκiq ,


νΦ1κiq Φ4κiq Φ7iq Φ9 Φ10

ΦT
4κiq Φ2κq Φ5κq Φ8 0

ΦT
7iq ΦT

5κq Φ3κq Φ6 0
ΦT

9 ΦT
8 ΦT

6 −σI 0
ΦT

10 0 0 0 − I
σε

 < 0,

κ ∈ M, i, q ∈ S, (22)

where I is an identity matrix of appropriate dimension, and

Φ1κiq ,
[

[AiX1 + ∗]− π2

4φκ
Φ1

π2

4φκ
Φ1 + gκoTκq

π2

4φκ
Φ1 + oκqgTκ − π2

4φκ
Φ1

]
,

Φ2κq ,
[

[AqX1 + ∗]− π2

4ϕκ
Φ1

π2

4ϕκ
Φ1 − Yκq

π2

4ϕκ
Φ1 − YT

κq − π2

4ϕκ
Φ1

]
,

Φ3κq ,

 −[X2Θ+ ∗] X2Θ −Yκq

ΘX2 T 2
o X3 − 2X1 Yκq

−YT
κq YT

κq −∆x̂κX3

∆x̄κ

 ,
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Φ4κiq ,
[

X1[Ai − Aq]
T 0

0 −νgκoTκq

]
,

Φ5κq ,
[

−X1AT
q X1AT

q Yκq

YT
κq −YT

κq 0

]
, Φ10 ,

[
X1

0

]
,

Φ6 ,

 −I
I
0

 ,Φ8 ,
[

I
0

]
,Φ9 ,

[
νI
0

]
,

Φ7iq ,
[

−X1[Ai − Aq]
T X1[Ai − Aq]

T 0
0 0 0

]
,

in which

∆x̄κ , xκ+1 − xκ, κ ∈ M,

φκ , max{(xR
κ − xκ)

2, (xκ+1 − xL
κ )

2}, κ ∈ M,

ϕκ , max{(x̂R
κ − xκ)

2, (xκ+1 − x̂L
κ )

2}, κ ∈ M, (23)

then there is a spatiotemporal fuzzy-observer-based nonlin-
ear compensator (10) and (14) exponentially stabilizing the
nonlinear networked PDE system (1)-(4), where the gain
parameters kκq , Lκq , κ ∈ M, q ∈ S are given by

kTκq = oTκqX−1
1 , Lκq = YκqX−1

1 , κ ∈ M, q ∈ S. (24)

Proof: Given that the LMIs (22)-(24) are feasible for
scalars ν > 0, σ > 0, ε > 0, matrices 0 < X1 ∈ ℜn×n,
0 < X2 ∈ ℜn×n, 0 < X3 ∈ ℜn×n, Yκq ∈ ℜn×n, and vectors
oκq ∈ ℜn, κ ∈ M, q ∈ S. Set

X1 = P−1
1 , X2 = P−1

2 , X3 = P−1
1 P3P−1

1 ,

oTκq = kT
κqX1, Yκq = LκqX1, κ ∈ M, q ∈ S. (25)

Via the property of the matrix Φ1 and P1 > 0 and (25), the
inequality (21) means

Ψ1 , [P1Θ+ ∗]> 0. (26)

Similarly to the proof of Theorem 2 [49], in the light of
integration by parts and Lemma 2 [49] with the inequality
(26) and [xL

κ , x
R
κ ] ⊂ (xκ, xκ+1), κ ∈ M, along the solution to

the system (15), for any t ∈ [tk, tk+1), k ∈ N, the following
inequality is derived by taking derivative of V0(t) in (17):

V̇0(t) ≤ ν

m∑
κ=1

∫ xκ+1

xκ

ẑTκ (x, t)Ψ̄1κ(ζ, ζ̂)ẑκ(x, t)dx

+ 2ν
m∑

κ=1

∫ xκ+1

xκ

zT (x, t)P1∆f(z(x, t))dx

− 2ν
m∑

κ=1

zTκ (t)
∫ xκ+1

xκ

s∑
q=1

wq(ζ̂)P1gκkTκqe(x, t)dx,

(27)

where ẑκ(x, t) , [zT (x, t) zTκ (t)]T , zκ(t) ,
1

∆xκ

∫ xR
κ

xL
κ

z(x, t)dx and

Ψ̄1κ(ζ, ζ̂) ,
s∑

i,q=1

wi(ζ)wq(ζ̂)

×

[
[P1Ai + ∗]− π2

4φκ
Ψ1

π2

4φκ
Ψ1 + P1gκkTκq

π2

4φκ
Ψ1 + kκqgTκ P1 − π2

4φκ
Ψ1

]
,

in which φκ, κ ∈ M are defined by (23).

Define

ēκ(t, tk) ,
∫ L

0

cκ(x)

∫ t

tk

es(x, s)dsdx

=

∫ xκ+1

xκ

∫ t

tk

es(x, s)dsdx, κ ∈ M, k ∈ N, (28)

where cκ(x), κ ∈ M are defined by (4). Similarly, applying
Lemma 2 [49] with (26) and [x̂L

κ , x̂
R
κ ] ⊂ (xκ, xκ+1) again and

using (28) and
∪

κ∈M[xκ, xκ+1] = [0, L], along the solution to
the system (13), for any t ∈ [tk, tk+1), k ∈ N, the following
inequality is obtained by taking the derivative of V1(t) in (18)

V̇1(t) ≤
m∑

κ=1

∫ xκ+1

xκ

êTκ (x, t)Ψ̄2κ(ζ̂)êκ(x, t)dx

+ 2
m∑

κ=1

∫ xκ+1

xκ

eT (x, t)P1∆f(z(x, t))dx

+ 2
m∑

κ=1

∫ xκ+1

xκ

eT (x, t)P1

s∑
i,q=1

wi(ζ)wq(ζ̂)

× [Ai − Aq]z(x, t)dx

+ 2
m∑

κ=1

∫ xκ+1

xκ

eT (x, t)P1

s∑
q=1

wq(ζ̂)Lκqdxēκ(t, tk),

(29)

where êκ(x, t) , [eT (x, t)
∫ L

0
cκ(x)eT (x, t)dx]T ,

Ψ̄2κ(ζ̂) ,
s∑

q=1

wq(ζ̂)

×

[
[P1Aq + ∗]− π2

4ϕκ
Ψ1

π2

4ϕκ
Ψ1 − P1Lκq

π2

4ϕκ
Ψ1 − LT

κqP1 − π2

4ϕκ
Ψ1

]
,

and ēκ(t, tk), κ ∈ M, k ∈ N are defined in (28).
Via integration by parts and

∪
κ∈M[xκ, xκ+1] = [0, L],

along the solution to the system (13), for any t ∈ [tk, tk+1),
k ∈ N, the following expression is obtained by differentiating
V2(t) defined in (19):

V̇2(t) = −
m∑

κ=1

∫ xκ+1

xκ

eTxx(x, t)[P2Θ+ ∗]exx(x, t)dx

− 2

m∑
κ=1

∫ xκ+1

xκ

s∑
q=1

wq(ζ̂)eTxx(x, t)P2Aqe(x, t)dx

+ 2

m∑
κ=1

∫ xκ+1

xκ

eTxx(x, t)P2

s∑
q=1

wq(ζ̂)Lκqdx

×
∫ L

0

cκ(x)e(x, t)dx

− 2
m∑

κ=1

∫ xκ+1

xκ

eTxx(x, t)P2∆f(z(x, t))dx

− 2
m∑

κ=1

∫ xκ+1

xκ

eTxx(x, t)P2

s∑
i,q=1

wi(ζ)wq(ζ̂)

× [Ai − Aq]z(x, t)dx

− 2
m∑

κ=1

∫ xκ+1

xκ

eTxx(x, t)P2

s∑
q=1

wq(ζ̂)Lκqdxēκ(t, tk). (30)
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The following inequality holds for t ∈ [tk, tk+1), P3 > 0
and x ∈ [0, L] [39]∫ t

tk

eTs (x, s)P3es(x, s)ds ≥
1

To

∫ t

tk

eTs (x, s)dsP3

∫ t

tk

es(x, s)ds,

(31)

where the equality is fulfilled when t = tk. Utilizing∪
κ∈M[xκ, xκ+1] = [0, L] and (31), the time derivative of

V3(t) defined in (20) is obtained for any t ∈ [tk, tk+1), k ∈ N

V̇3(t) ≤ T 2
o

m∑
κ=1

∫ xκ+1

xκ

eTt (x, t)P3et(x, t)dx

−
m∑

κ=1

∫ xκ+1

xκ

∫ t

tk

eTs (x, s)dsP3

∫ t

tk

es(x, s)dsdx. (32)

Through the Jensen’s inequality [53], the following expression
is derived for any [x̂L

κ , x̂
R
κ ] ⊂ (xκ, xκ+1), κ ∈ M and any

t ∈ [tk, tk+1), k ∈ N

−
∫ xκ+1

xκ

∫ t

tk

eTs (x, s)dsP3

∫ t

tk

es(x, s)dsdx

< −∆x̂κēTκ (t, tk)P3ēκ(t, tk). (33)

Substitution of (33) into (32) gives

V̇3(t) < T 2
o

m∑
κ=1

∫ xκ+1

xκ

eTt (x, t)P3et(x, t)dx

−
m∑

κ=1

∆x̂κ

∆x̄κ

∫ xκ+1

xκ

ēTκ (t, tk)P3ēκ(t, tk)dx, (34)

where ∆x̂κ and ∆x̄κ, κ ∈ M are defined by (4) and (23).
Moreover, by

∪
κ∈M[xκ, xκ+1] = [0, L], from (13) and (28),

we have the following expression for any t ≥ 0

0 = 2
m∑

κ=1

∫ xκ+1

xκ

eTt (x, t)P1Θexx(x, t)dx

+ 2
m∑

κ=1

∫ xκ+1

xκ

s∑
q=1

wq(ζ̂)eTt (x, t)P1Aqe(x, t)dx

− 2
m∑

κ=1

∫ xκ+1

xκ

eTt (x, t)P1

s∑
q=1

wq(ζ̂)Lκqdx

×
∫ L

0

cκ(x)e(x, t)dx

− 2

m∑
κ=1

∫ xκ+1

xκ

eTt (x, t)P1et(x, t)dx

+ 2

m∑
κ=1

∫ xκ+1

xκ

eTt (x, t)P1∆f(z(x, t))dx

+ 2
m∑

κ=1

∫ xκ+1

xκ

eTt (x, t)P1

s∑
i,q=1

wi(ζ)wq(ζ̂)

× [Ai − Aq]z(x, t)dx

+ 2
m∑

κ=1

∫ xκ+1

xκ

eTt (x, t)P1

s∑
q=1

wq(ζ̂)Lκqdxēκ(t, tk). (35)

Under Assumption 2, the following inequality is fulfilled
for any z(·, t) ∈ D and any constant σ > 0

σεzT (x, t)z(x, t)− σ(∆f(z(x, t)))T∆f(z(x, t))> 0. (36)

By using (27), (29), (30), and (34)-(36), and∪
κ∈M[xκ, xκ+1] = [0, L], for any t ∈ [tk, tk+1), k ∈ N, the

time derivative of V (t) defined by (16) is arranged as

V̇ (t) <

m∑
κ=1

∫ xκ+1

xκ

χT
κ (x, t, tk)Ψ̄κ(ζ, ζ̂)χκ(x, t, tk)dx, (37)

where χκ(x, t, tk) , [̂zTκ (x, t) ξTκ (x, t, tk) (∆f(z(x, t)))T ]T ,

Ψ̄κ(ζ, ζ̂) ,
νΨ̄1κ(ζ, ζ̂) +

[
σεI 0
0 0

]
Ψ̄4κ(ζ̂) Ψ̄7(ζ, ζ̂) Ψ̄9

Ψ̄T
4κ Ψ̄2κ(ζ̂) Ψ̄5κ(ζ̂) Ψ̄8

Ψ̄T
7 (ζ, ζ̂) Ψ̄T

5κ(ζ̂) Ψ̄3κ(ζ̂) Ψ̄6

Ψ̄T
9 Ψ̄T

8 Ψ̄T
6 −σI

 ,

with

ξκ(x, t, tk) ,
[
êTκ (x, t) eTxx(x, t) eTt (x, t) ēTκ (t, tk)

]T
,

Ψ̄3κ(ζ̂) ,
s∑

q=1

wq(ζ̂)

×

 −[P2Θ+ ∗] ΘP1 −P2Lκq

P1Θ T 2
o P3 − 2P1 P1Lκq

−LT
κqP2 LT

κqP1 −∆x̂κP3

∆x̄κ

 ,

Ψ̄4κ(ζ, ζ̂) ,
s∑

i,q=1

wi(ζ)wq(ζ̂)

×
[

[Ai − Aq]
T P1 0

0 −νP1gκkTκq

]
,

Ψ̄5κ(ζ̂) ,
s∑

q=1

wq(ζ̂)

[
−AT

q P2 AT
q P1 P1Lκq

LT
κqP2 −LT

κqP1 0

]
,

Ψ̄6 ,

 −P2

P1

0

 , Ψ̄8 ,
[

P1

0

]
, Ψ̄9 ,

[
νP1

0

]
,

Ψ̄7(ζ, ζ̂) ,
s∑

i,q=1

wi(ζ)wq(ζ̂)

 −P2[Ai − Aq] 0
P1[Ai − Aq] 0

0 0

T

.

Pre- and post-multiplying Ψ̄κ(ζ, ζ̂) with a block-diagonal
matrix Block-diag{X1,X1,X1,X1,X2,X1,X1, I}, we have

Φ̄κ(ζ, ζ̂) ,
s∑

i,q=1

wi(ζ)wq(ζ̂)

×


νΦ1κiq +

[
σεX2

1 0
0 0

]
Φ4κiq Φ7iq Φ9

ΦT
4κiq Φ2κq Φ5κq Φ8

ΦT
7iq ΦT

5κq Φ3κq Φ6

ΦT
9 ΦT

8 ΦT
6 −σI

 .

By applying Schur complement and using (6) and (11), one
can conclude that the following inequalities must be satisfied
if the LMIs (22) are feasible:

Φ̄κ(ζ, ζ̂) < 0, κ ∈ M. (38)



8

 

ˆ( , )x tz

The semi-linear

PDE system (1)
ZOH

T-S fuzzy PDE

observer (10)

Fuzzy state feedback

controller (14)

1, ( )
out
ty

, ( )
m out

ty

1

2

( )

( )

( )
m

u t

u t

u t

2, ( )out
ty

 !

ZOH

Fuzzy sampled-data

state feedback

controller (39)

Fig. 6: A block diagram of the spatiotemporal fuzzy-observer-
based nonlinear sampled-data compensator (39) with (10) and
sampled-data measurement outputs

Via Theorem 3 in [54] and Theorem 1 in [55], we can conclude
the exponential stability of the closed-loop augmented fuzzy
PDE system (13) and (15) given that the inequalities (38) are
fulfilled. From (25), we obtain (24).

Remark 4: Although only Dirichlet boundary conditions
z(0, t) = z(L, t) = 0 are addressed in this article, the
proposed design method is also applicable to the Neuman-
n boundary conditions zx(x, t)|x=0 = zx(x, t)|x=L = 0,
the mixed Dirichlet-Neumann boundary conditions z(0, t) =
zx(x, t)|x=L = 0, or the mixed Neumann-Dirichlet boundary
conditions zx(x, t)|x=0 = z(L, t) = 0. This is because
L2
n([0, L]) is also separable for above boundary conditions.

Moreover, the exponential stabilization ability of the fuzzy
feedback compensator (10) can be enhanced by the inequality
relaxation technique in Lemma 4 [39] or Lemma 3 [49].

B. Sampled-data control

Via the LMI-based design method in the above subsection,
this subsection will discuss the design method development for
the spatiotemporal fuzzy observer-based sampled-data feed-
back compensator that is used to model networked control,
where control signals are transmitted from controller to actua-
tors through the industrial internet. In this situation, the fuzzy
state feedback controller (14) is fed into a ZOH (see Fig. 6)
and the ZOH’s output is revised as

uκ(t) =
s∑

p=1

∫ xκ+1

xκ

w̄p(ζ̂(t̄k))kTκpẑ(x, t̄k)dx, κ ∈ M,

t ∈ [t̄k, t̄k+1), k ∈ N, (39)

where w̄p(ζ̂(t̄k)) ,
∫ xκ+1

xκ
wp(ζ̂(ẑ(x, t̄k)))dx, p ∈ S, the

parameters kκp ∈ ℜn, κ ∈ M, p ∈ S are to be determined, and
the control signals uκ(t) are kept constant during the sampling
period [t̄k, t̄k+1), k ∈ N via the ZOH and are allowed to
change only at the sampling moments t̄k, k ∈ N, in which
t̄k+1 − t̄k ≤ Tu, k ∈ N and Tu > 0 is a constant given in
advance. Moreover, the functions gκ(x) are revised as follows

gκ(x) =
{ gκ

∆x̄κ
x ∈ (xκ, xκ+1),

0 otherwise,
κ ∈ M, (40)

where ∆x̄κ, κ ∈ M are defined in (23).
By plugging the fuzzy controller (39) in the fuzzy PDE

model (8) and considering G(x) in (40), and (12), we get

the resulting closed-loop augmented fuzzy PDE system as the
form (13) and the following PDE:

zt(x, t) = Θzxx(x, t) +
∑s

i=1 wi(ζ)Aiz(x, t) + ∆f(z(x, t))
+ gκ(x)

∫ xκ+1

xκ

∑s
q=1 w̄q(ζ̂(t̄k))kTκq

×[z(x, t̄k)− e(x, t̄k)]dx,
x ∈ (0, L), t ∈ [t̄k, t̄k+1), k ∈ N, κ ∈ M,

z(0, t) = z(L, t) = 0, t ≥ t0,
z(x, t0) = z0(x), x ∈ [0, L].

(41)
Definition 2 ( [43]): The closed-loop fuzzy coupled PDEs

(13) and (41) are exponentially stable in the norm ∥·∥H1
n((0,L))

if for any t > t0, one can find an integer k , ⌊tT−1
u ⌋ (k ,

⌊tT−1
u ⌋ is a largest integer that is less than tT−1

u ) and four
constants β3 > 0, β4 > 0, β5 > 0 and β6 > 0 satisfying

∥z(·, t)∥2H1
n((0,L)) + ∥e(·, t)∥2H1

n((0,L))

≤ β4∥z0(·)∥2H1
n((0,L)) exp(−β3t)

+ (β5 + β6k exp(β3T
−1
u ))∥e(·)∥2H1

n((0,L)) exp(−β3t)

+ β6∥e(·)∥2H1
n((0,L)) exp(−β3t̄k), t ∈ [t̄k, t̄k+1).

Theorem 2: Consider the nonlinear PDE system (1), (3),
(4), and (40) as well as the approximate fuzzy model (8) with
Assumptions 1 and 2. Given an integer m > 0, some scalars
L > 0, To > 0, Tu > 0, x̂L

κ , x̂R
κ , xκ, κ ∈ M, and xm+1 (0 =

x1 < x2 < x3 < · · · < xm < xm+1 = L, and [x̂L
κ , x̂

R
κ ] ⊂

(xκ, xκ+1), κ ∈ M) and design parameters σ > 0 and ε > 0
(Assumption 2), if the LMI (21) and the following LMIs

Φ4 , [ΘX4 + ∗] > 0, (42) Φ2κq Φ5κq Φ8

ΦT
5κq Φ3κq Φ6

ΦT
8 ΦT

6 −σI

 < 0, κ ∈ M, q ∈ S, (43)


Υ1κip Υ2κip Φ8 Υ4

ΥT
2κip Υ3κp Φ6 0
ΦT

8 ΦT
6 −σI 0

Υ4 0 0 − I
2σε

 < 0, κ ∈ M, i, p ∈ S,

(44)

where

Υ1κip ,
[

[AiX4 + ∗]− π2

(∆x̄κ)2
Φ4

π2

(∆x̄κ)2
Φ4 + gκōTκp

π2

(∆x̄κ)2
Φ4 + ōκpgTκ − π2

(∆x̄κ)2
Φ4

]
,

Υ3κp ,

 −[X5Θ+ ∗] X5Θ gκōT
κp

ΘX5 T 2
uX6 − 2X4 −gκōTκp

ōκpgTκ −ōκpgT
κ −X6

 ,

Υ2κip ,
[

−X4AT
i X4AT

i −gκōTκp
−ōκpgTκ ōκpgTκ 0

]
, Υ4 ,

[
X4

0

]
,

are fulfilled for matrices 0 < Xj ∈ ℜn×n, j ∈ {1, 2, 3, 4, 5, 6},
Yκq ∈ ℜn×n and vectors ōκp ∈ ℜn, κ ∈ M, p, q ∈ S, then
one can construct a spatiotemporal fuzzy-observer-based non-
linear sampled-data compensator (10) and (39) exponentially
stabilizing the networked PDE system (1), (3), (4), and (40) in
the norm ∥ · ∥H1

n((0,L)), where the gain parameters kκp, Lκq,
κ ∈ M, p, q ∈ S are given by

kTκp = ōTκpX−1
4 , Lκq = YκqX−1

1 , κ ∈ M, p, q ∈ S. (45)
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Proof: This proof can be completed by replacing V0(t)
in (17) by

V0(t) =

∫ L

0

zT (x, t)P4z(x, t)dx

+

∫ L

0

zTx (x, t)P5zx(x, t)dx

+ Tu

∫ L

0

∫ t

t̄k

(s− t+ Tu)zTs (x, s)P6zs(x, s)dsdx,

where Pj > 0, j ∈ {4, 5, 6} are n × n Lyapunov matrices to
be determined, and following proofs of Theorem 1, Theorem
1 [39], and Theorem 3.2 [43].

Remark 5: It has been pointed out in [43] that as the
spatiotemporal asynchronous sampling in control input and
observation output (i.e., [x̂L

κ , x̂
R
κ ] ⊂ (xκ, xκ+1) and t̄k ̸=

tk), Theorem 2 presents exponential stabilization via the
spatiotemporal fuzzy-observer-based nonlinear sampled-data
compensator (10) and (39) for the networked PDE system
(1), (3), (4), and (40) in the sense of ∥ · ∥H1

n((0,L)), which is
different from the exponential stabilization in Theorem 1 via
the spatiotemporal fuzzy-observer-based nonlinear continuous-
time compensator (10) and (14) for the networked PDE system
(1), (3), (4), and (2) in the norm ∥ · ∥2.

IV. SIMULATION STUDY

For the sake of demonstrating the control performance of
the spatiotemporal fuzzy compensators, we address feedback
compensator of a multi-variable parabolic PDE system

z1,t(x, t) = z1,xx(x, t) + 10z1(x, t)− z2(x, t)

−z31(x, t) +
∑4

κ=1 ḡκ(x)uκ(t),
z2,t(x, t) = z2,xx(x, t) + 0.45z1(x, t)− 0.1z2(x, t)
zi(0, t) = zi(1, t) = 0, i ∈ {1, 2},
zi(x, t0) = zi,0(x), i ∈ {1, 2},

(46)

where z1(x, t), z2(x, t) and uκ(t), κ ∈ {1, 2, 3, 4} are
state variables and manipulated inputs, respectively, the
distribution of these control inputs over the spatial do-
main (0, 1) is described by ḡκ(x) of the form ḡκ(x) ={

1
∆xκ

x ∈ [xL
κ , x

R
κ ]

0 otherwise
, with xL

1 = 0.2, xR
1 = 0.3, xL

2 = 0.4,

xR
2 = 0.5, xL

3 = 0.6, xR
3 = 0.7, xL

4 = 0.8, and xR
4 = 0.9.

When z1(x, t) is near zero, the nonlinear PDEs in (46) can be
simplified as a linear PDE

z1,t(x, t) = z1,xx(x, t) + 10z1(x, t)− z2(x, t)

+
∑4

κ=1 ḡκ(x)uκ(t),
z2,t(x, t) = z2,xx(x, t) + 0.45z1(x, t)− 0.1z2(x, t).

(47)

In the domain D(Ā) ,
{

ȳ ∈ H2
2((0, L)) : ȳ(0) = ȳ(L) = 0

}
,

let define an operator Ā as Aȳ(x) , d2ȳ(x)/dx2 + Aȳ(x),

where ȳ(x) , [ȳ1(x) ȳ2(x)]
T and A ,

[
10 −1
0.45 −0.1

]
.

The open-loop PDE of (47) is written as ż(t) = Āz(t), where
z(t) , {z(·, t) : z(x, t), x ∈ [0, L]}. By a simple but standard
calculation, the first eigenvalue for Ā is 0.0856. Hence, the
open-loop PDE of (47) is unstable.

Set t0 = 0 and the initial conditions zi,0(x), i ∈ {1, 2}
in (46) to be z1,0(x) = x3 cos(0.5πx) and z2,0(x) = 0.

The spatiotemporally asynchronous sampled-data observation
outputs yκ,out(t), κ ∈ {1, 2, 3, 4} are chosen of the form
(3) with (4), where To = 0.5, x̂L

1 = 0.1, x̂R
1 = 0.2,

x̂L
2 = 0.3, x̂R

2 = 0.4, x̂L
3 = 0.5, x̂R

3 = 0.6, x̂L
4 = 0.8,

and x̂R
4 = 0.9. Fig. 7 provides evolution profiles of zi(x, t),

i ∈ {1, 2} and trajectories of |zi(·, t)|2, i ∈ {1, 2}, ∥yκ,out(t)∥,
κ ∈ {1, 2, 3, 4} for the open-loop case. The simulation results
in Fig. 7 show the instability of the system (46)’s steady
profiles and z1(·, t) ∈ (0, 0.4), t ≥ 0. The open set D is
chosen as D = (−0.4, 0.4)× (−∞,∞).

A. Approximate T-S fuzzy PDE model

When z1(x, t) is near ±0.4, the nonlinear PDEs in (46) are
simplified as

z1,t(x, t) = z1,xx(x, t) + (10− 3 ∗ 0.392)z1(x, t)
−z2(x, t) +

∑4
κ=1 ḡκ(x)uκ(t),

z2,t(x, t) = z2,xx(x, t) + 0.45z1(x, t)− 0.1z2(x, t).
(48)

Note that (47) and (48) are now linear PDEs. We arrive at the
following fuzzy PDE system based on the linear PDEs:

Model Rule 1:
IF z1 is about zero, THEN{

zt(x, t) = zxx(x, t) + A1z(x, t) + G(x)u(t),
z(0, t) = z(1, t) = 0, z(x, t0) = z0(x),

Model Rule 2:
IF z1 is about ±0.4 (−0.4 < z1(·, t) < 0.4), THEN{

zt(x, t) = zxx(x, t) + A2z(x, t) + G(x)u(t),
z(0, t) = z(1, t) = 0, z(x, t0) = z0(x),

where z(x, t) , [z1(x, t) z2(x, t)]
T , u(t) ,

[u1(t) u2(t) u3(t) u4(t)]
T , m = 4, gκ = [1 0]T ,

κ ∈ {1, 2, 3, 4}, and

A1 =

[
10 −1
0.45 −0.1

]
and A2 =

[
10− 3 ∗ 0.392 −1

0.45 −0.1

]
.

Under Assumption 1, the membership functions for Rules 1
and 2 can be chosen as w1(z1) = exp

(
−5z21

)
and w2(z1) =

1− w1(z1), then the overall expression is written as zt(x, t) = zxx(x, t) +
∑2

i=1 wi(z1)Aiz(x, t)
+G(x)u(t) + ∆f(z(x, t)),

z(0, t) = z(1, t) = 0, z(x, t0) = z0(x),
(49)

where the error ∆f(z) is presented as ∆f(z) , [−z31 +
0.392w2(z1)3z1 0]T . It has been verified that the error ∆f(z)
satisfies (∆f(z))T∆f(z) − εzT z < 0 for all z ∈ D and
ε > 0.009.

B. Continuous-time control

Set ε = 0.1, x1 = 0, x2 = 0.3, x3 = 0.5, x4 = 0.7,
and x5 = 1. Let σ = 1, ν = 1, and To = 0.5. By solving
LMIs (21) and (22) with Θ = I and using (24), the gain
parameters kTκq and Lκq, κ ∈ {1, 2, 3, 4}, q ∈ {1, 2} for the
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(a) (b) (c)

Fig. 7: Simulation results for the open-loop case: (a) evolution profiles of zi(x, t), i ∈ {1, 2}, (b) trajectories of |zi(·, t)|2,
i ∈ {1, 2}, and (c) trajectories of ∥yκ,out(t)∥, κ ∈ {1, 2, 3, 4}.

fuzzy observer-based continuous-time feedback compensator
(10) and (14) are given as


kT
11

kT
21

kT
31

kT
41

 =


−0.1181 0.0246
−0.1337 0.0113
−0.1337 0.0113
−0.1337 0.0113

 ,


kT
12

kT
22

kT
32

kT
42

 =


−0.0446 0.0144
−0.1172 0.0087
−0.1172 0.0087
−0.1171 0.0087

 ,

L11 = L41 =

[
0.0230 −0.0043
0.0007 0.0057

]
,

L21 = L31 =

[
0.0349 −0.0064
0.0011 0.0082

]
,

L12 =

[
0.0221 −0.0043
0.0007 0.0057

]
,

L22 = L32 =

[
0.0335 −0.0064
0.0011 0.0082

]
,

L42 =

[
0.0221 −0.0042
0.0007 0.0057

]
.

By applying the fuzzy observer-based continuous-time feed-
back compensator (10) and (14) with the above gain param-
eters to the nonlinear system (46), Fig. 8 presents simulation
results for the closed-loop case: evolution profiles of zi(x, t),
i ∈ {1, 2}, and trajectories of |zi(·, t)|2, i ∈ {1, 2}, u(t),
and ∥yκ,out(t)∥, κ ∈ {1, 2, 3, 4}. The simulation results in
Fig. 8 validate that the system (46) is stabilized by the fuzzy
observer-based feedback controller (10) and (14).

C. Sampled-data control

Set ε = 0.5, x1 = 0, x2 = 0.3, x3 = 0.5, x4 = 0.7, and
x5 = 1. Let σ = 1, To = 0.2, and Tu = 0.1. By solving
LMIs (21) and (42)-(44) with Θ = I and using (45), the gain
parameters kTκp and Lκq, κ ∈ {1, 2, 3, 4}, p, q ∈ {1, 2} for the
nonlinear observer-based sampled-data feedback compensator

(10) and (39) are given as
kT11
kT21
kT31
kT41

 =


−0.4821 0.0632
−0.2145 0.0289
−0.2145 0.0289
−0.4821 0.0632

 ,


kT12
kT22
kT32
kT42

 =


−0.4821 0.0632
−0.2145 0.0289
−0.2145 0.0289
−0.4821 0.0632

 ,

L11 = L41 =

[
0.0694 −0.0139
0.0019 0.0229

]
,

L21 = L31 =

[
0.1043 −0.0208
0.0028 0.0328

]
,

L12 = L42 =

[
0.0665 −0.0138
0.0019 0.0229

]
,

L22 = L32 =

[
0.0997 −0.0206
0.0028 0.0328

]
.

For the nonlinear systems (46) driven by the fuzzy observer-
based sampled-data feedback compensator (10) and (39) with
the above gain parameters, Fig. 9 presents the corresponding
closed-loop simulation results: evolution profiles of zi(x, t),
i ∈ {1, 2}, and trajectories of |zi(·, t)|H1

1((0,1))
, i ∈ {1, 2},

u(t), and ∥yκ,out(t)∥, κ ∈ {1, 2, 3, 4}. These simulation
results support that the system (46) is stabilized by the
fuzzy observer-based sampled-data feedback controller (10)
and (39). Moreover, the simulation results in Figs. 8 and 9
reveal that the control performance for the continuous-time
control is degraded for the case of sampled-data control.

D. Comparison study

To show the merit of the proposed fuzzy design method,
this subsection provides a comparison study between the
proposed fuzzy design method in Theorem 2 and a sampled-
data proportional-derivative (PD) control law of the form:

uκ(t) = kTP,κyκ,out(t̄k) + kTD,κẏκ,out(t̄k),
t ∈ [t̄k, t̄k+1), κ ∈ {1, 2, 3, 4}, (50)

where kP,κ = [−0.6 0.02]T , kD,κ = [0.1 0.1]T , and t̄k = 0.1k.
Here we assume that the measurement outputs yκ,out(t̄k),
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(a) (b) (c) (d)

Fig. 8: Simulation results for the closed-loop case: (a) evolution profiles of zi(x, t), i ∈ {1, 2}, (b) trajectories of |zi(·, t)|2,
i ∈ {1, 2}, and (c) trajectories of ∥yκ,out(t)∥, κ ∈ {1, 2, 3, 4}.

(a) (b) (c) (d)

Fig. 9: Simulation results for the closed-loop case: (a) evolution profiles of zi(x, t), i ∈ {1, 2}, (b) trajectories of
|zi(·, t)|H1

1((0,1))
, i ∈ {1, 2}, and (c) trajectories of ∥yκ,out(t)∥, κ ∈ {1, 2, 3, 4}.

Fig. 10: Closed-loop trajectory of ∥z(·, t)∥2 driven by the
sampled-data PD control law (50) and the spatiotemporal
fuzzy sampled-data control law (39) with (10).

κ ∈ {1, 2, 3, 4} are exposed to the disturbance 0.1 sin(t).
Fig. 10 shows the closed-loop trajectory of ∥z(·, t)∥2 driven
by the sampled-data PD control law (50) and the spatiotem-
poral fuzzy sampled-data control law (39) with (10) and
Tu = To = 0.1, whose gain parameters are chosen the
same as the ones in above sampled-data control subsection.
Simulation result in Fig. 10 reveals that compared to the PD
control law, the proposed fuzzy control law performs a better
robust performance to the measurement disturbances due to
the existence of observer modular.

V. CONCLUSIONS

Based on the authors’ previous works, from an estimation
and fuzzy control perspective, this article has further dealt with

nonlinear compensator design for stabilization of networked
parabolic partial differential dynamic systems. An approximate
T-S fuzzy PDE model with C∞-smooth membership functions
is proposed, which does not require the premise nonlinear dy-
namics. With the help of the approximate T-S fuzzy PDE mod-
el, spatiotemporal fuzzy-observer-based nonlinear continuous-
time/sampled-data feedback compensators are constructed via
the networked measurement outputs. Different from the exact
T-S fuzzy PDE model, the approximate T-S fuzzy PDE model
not only simplifies the T-S fuzzy model but also makes
the suggested fuzzy compensator applicable to the nonlinear
networked PDE systems with imprecise nonlinear dynamics.
Moreover, the current work indicates that the observer-based
feedback control technique can effectively surmount the de-
sign difficulty caused by the spatiotemporally asynchronous
sampling in control and observation.

On the other hand, calculation consumption and perfor-
mance optimization are very necessary and important for
practical application. Different from the periodic sampled-data
control methods, event-triggered control approaches transmit
signals only when the user-designed triggering condition is
violated, which greatly reduces the use of resources. Recently,
adaptive dynamic programming (ADP) has appeared as an
efficient method for optimal control of nonlinear systems to
design approximate optimal control by using neural network-
based function approximation. Although the spatiotemporal
fuzzy control scheme of this article is proposed for sampled-
data control of parabolic PDE systems on a simple 1-D space
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domain, it is feasible to further deal with the spatiotemporal
fuzzy optimal control design issue of nonlinear parabolic PDE
systems on a general N -D space domain in the framework
of event-triggered ADP. Moreover, it is also very interesting
to discuss how to establish a general spatiotemporal fuzzy
PDE model with continuous fuzzy membership functions and
analyzing its approximation capability in a functional space.
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