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A B S T R A C T   

The objective of this paper is to compare Modelled Pursuits (MoP), a recently developed iterative signal 
decomposition method, with more established matrix based subspace methods used to aid or automate medical 
percussion diagnoses. 

Medical percussion is a technique used by clinicians to aid the diagnosis of pulmonary disease. It requires 
considerable expertise, so it is desirable to automate this process where possible. Previous work has examined the 
application of modal decomposition techniques, since medical percussion signals (MPS) can be intuitively 
characterised as combinations of exponentially decaying sinusoidal (EDS) vibrations. Best results have typically 
been reported with matrix based subspace methods such as Estimation of Signal Parameters via Rotational 
Invariance Techniques (ESPRIT) and the Matrix Pencil Method (MPM). 

Since ESPRIT and MPM are computationally expensive, this paper investigates whether an iterative method 
such as MoP can produce similar results with less computation and/or memory overheads. Using randomly 
generated synthetic signals designed to replicate typical ‘tympanic’ and ‘resonant’ percussion signals, we 
compared each method: MoP, ESPRIT, and MPM, for accuracy, speed and memory usage. 

We find that for low Signal to Noise Ratios (SNRs) MoP gives less accuracy than both ESPRIT and MPM, 
however for high SNRs (as would be typically encountered in a clinical setting) it is more accurate than MPM but 
less accurate than ESPRIT. We conclude that in embedded clinical applications where both operations-per-second 
and memory-usage are a factor, MoP is less computationally intensive than ESPRIT and thus is worth considering 
for use in those contexts.   

1. Introduction 

1.1. Focus of this paper 

The specific focus of this paper is to introduce to the field of MPS 
modelling, a recently developed method, MoP, which was originally 
developed for resource-efficient audio analysis of impulse responses. We 
compare its effectiveness and resource requirements with two more 
established methods (ESPRIT and MPM) in the analysis of damped 
vibrational systems such as the human chest cavity with percussive 
input, i.e. Medical Percussion. In order to evaluate this over a significant 
number of runs, an approach to the parametrisation and synthesis of 
many thousands of synthetic medical percussion signals (MPS) in two 
broad clinical categories is described. 

1.2. Medical percussion 

For over 250 years medical percussion has been used to detect ab-
normalities within the human thorax and abdomen. Trained physicians 
are able to recognize many different kinds of percussion sounds, the 
main three of which are widely known as “resonant,” “tympanic,” and 
“dull”[1]. Changes in the presence of air or liquid affects the acoustic 
properties of the area being percussed, for instance over normal lung 
tissue, low-pitch, hollow resonant sounds are typically heard, whereas if 
the patient has, for example, pneumothorax (air outside the lungs) a 
more drum-like tympanic sound is heard. 

The quality of diagnosis using manual percussion techniques remains 
highly variable, being dependent on the clinician’s skills, experience and 
subjective evaluation [2,3]. If the sound of the percussion is recorded 
and digitised resulting in a medical percussion signal, it should be 
possible to perform an automated, or assisted analysis with the aim of 
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reducing variability and subjectivity and improving the quality and ef-
ficiency of the diagnostic process. 

1.3. Earlier work in MPS analysis 

A variety of percussion signal capture and analysis techniques are 
described in the literature [e.g. 1,2,4]. These techniques model the 
captured medical percussion signals (which are the response of the body 
to the percussive input) as sums of exponentially decaying sinusoids 
(EDS), since this model is an intuitive and efficient way of describing the 
impulse responses (IRs) of vibrational systems. 

More recently, there has been interest in the development of self- 
contained devices that mechanically produce their own medical per-
cussion and can capture and analyse the resultant vibrations from the 
human body. In [5] a self-contained system for the analysis and classi-
fication of percussion signals in the non-invasive diagnosis of acute chest 
syndrome in sufferers of sickle cell disease is described. This uses a de-
vice (known as a Tabla [3]) to impart a percussion signal into the ster-
num. The transmitted signal is then picked up via an Eko digital 
stethoscope and analysed by an associated smartphone app [6]. In [7], a 
general system for automatic percussion, capture and analysis, iApp 
(iApp: An Autonomous Inspection, Auscultation, Percussion, and Palpation 
Platform) is proposed for telediagnosis. In [8] the effectiveness of a 
system based around a portable embedded computing system (the 
Nvidia Jetson) for classification of captured thoracic percussion 
response signals into categories of dull, resonant and tympanic is 
explored. 

In general a trend can be observed in these examples and elsewhere, 
for deployment on processing and memory-constrained portable de-
vices, such as smart phones, whose convenience and low-power re-
quirements might be suitable in a much wider range of clinical 
scenarios, rather than fixed, specialist equipment. Because of this trend, 
it is important that computational efficiency with respect to processing 
speed and memory usage is maximised. 

All the systems described above use some form of frequency, time-
–frequency or time-scale (wavelet) model in the pipeline between signal 
capture and classification. Modelling in this way converts a time-domain 
MPS into a smaller set of descriptive parameters that can later be used in 
classification to aid diagnosis. 

1.4. Impulse responses and the exponentially damped sinusoidal [EDS] 
model 

When considering medical percussion of the chest cavity, the cavity 
can be considered an unvarying resonator being excited by impulsive- 
like input. Any linear time-invariant vibrational system can be 
described by its impulse response. In a digital system a single non-zero 
sample is an impulse that contains equal energy at all frequencies up 
to the Nyquist limit. Medical percussion involves introducing energy 
into the bodily region of interest by tapping with the fingers [4]. A single 
tap is an impulse-like signal (although it is certainly not perfectly 
impulsive - it will likely be much longer in duration than a single non- 
zero sample and therefore will have less energy at high frequencies 
due to the integrating effect of that longer duration), and so is likely to 
excite all vibrational modes of the object, or objects, being investigated. 

In a vibrational system, energy is dissipated via damping of the 
medium(s) through which that energy passes, and that damping effect 
can be frequency dependent. Where there is an impedance change then 
energy will be reflected or diffracted and so may pass through a single 
point many times. The amount of energy lost due to damping is directly 
proportional to the amount of energy remaining in the signal and so it is 
seen to decay exponentially over time (it is a recursive, i.e. feedback, 
process). The frequencies of vibrational modes depend on the di-
mensions of the vibrating object and the speed of sound through its 
medium(s). Therefore the impulse responses of vibrating objects can be 
intuitively characterised as a sum of exponentially decaying sinusoids at 

different frequencies and with different amplitude and decay rates. 
Such a sum ̃s(t) can be described for digital systems as: 

s̃(t) =
∑M

m=1

eam+jφm−t(αm+j2πfm) + ε (1)  

where M is the total number of components in the model, am is the 
starting amplitude of the mth component, φm is the starting phase, αm is 
the exponential amplitude change rate (decay-rate) in Nepers, fm is the 
frequency of the component and ε is the experimental noise component. 
For digital signals and systems, which are the focus of this paper, time is 
represented by indices which are spaced by a time period of 1/Fs, where 
Fs is the sample rate of the system. Throughout this paper we refer to 
such sampled signals as a vector (e.g. s of length N, or its constituent 
samples sn). The generic signal type described by equation (1) is referred 
to in the literature as the EDS model [9]. It can also be viewed as the IR 
of a single resonant filter where ea+jφ is the complex amplitude and 
e(α+j2πf) is the complex pole of the filter. 

By modelling a signal as a sum of EDS, i.e. estimating the modelled 
parameters from the noisy data (as described later in this paper), it is 
possible to transform the signal from a stream of time-domain samples to 
an array of parameters. The set of four parameters f, a, α and φ for a 
given n (representing a single exponentially decaying sinusoid) are 
referred to as an “atom”. 

There exist different methods for obtaining these parameter 
estimates. 

1.5. Summary of existing EDS parameter estimation methods 

When seeking the combination of EDS that best fits an input signal, a 
typical approach is to use methods from linear algebra (LA), since the 
component atoms of the EDS sum are independent of each other, i.e. the 
addition or removal of one component does not affect the other com-
ponents. For each atom, its EDS component signal at some time t can be 
completely determined if the atom’s parameter values are known. 
Generating a time domain signal from atom parameters is called resyn-
thesis. Conversely, using LA, the signal data can be manipulated in ma-
trix form such that it can be ’solved’ (like a simultaneous equation) to 
produce its constituent atom parameters. In the presence of noise it is 
only possible to estimate the parameters rather than calculate them 
exactly. Various methods to do this have been presented, each having 
advantages and disadvantages in their estimation accuracy and effi-
ciency. Matrix methods in general have computational complexity 
proportional to N3, where N is length of the signal. In this paper we 
discuss two LA methods: ESPRIT and MPM, which are computationally 
expensive but are capable of delivering excellent results in atomic 
decomposition of EDS [2,10]. These techniques are also applied in other 
fields and their development is an ongoing research activity in areas 
such as 6G communication [11] and radar [12]. 

There are methods that use a single orthogonal transform such as 
Fourier [2] or wavelet [8] to analyse the signal in one pass, but although 
these are cheap in terms of processing requirements, they typically 
perform poorly [13]. Matching Pursuits (MP) [4,14] is an iterative 
approach to signal decomposition that can use any dictionary (or dic-
tionaries) of atoms. These dictionaries can be (and usually are) ‘over- 
complete’ (i.e. the number of dictionary elements is greater than the 
number of samples in the signal being analysed) in order to create a 
decomposition that is optimal in some way. The optimal decomposition 
is often deemed to be the one that is sparsest, since this suggests that its 
atoms are best matched to the signal. MP is an iterative process: the atom 
which has the most energetic correlation with the signal is chosen and 
subtracted from the signal, leaving a residual. This process is repeated 
on the residual and so on. Provided the signal is in the space spanned by 
the dictionary (guaranteed for over-complete dictionaries which contain 
at least one set of orthogonal elements) the algorithm converges (i.e. the 
residual energy approaches zero as the algorithm progresses). Although 
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it can yield an optimal (sparse) representation the iterative nature of the 
method means it is more computationally expensive than Fourier or 
wavelet methods. 

Modelled Pursuits (MoP) [13] is an iterative method similar to 
Matching Pursuits which estimates the parameters of the highest 
magnitude component using an initial fast Fourier transform (FFT) of 
the zero-padded signal, synthesises the component in the time domain 
from those estimates, and subtracts it from the signal, leaving a residual. 
This residual is then analysed iteratively in the same way (requiring a 
new FFT to be calculated.) This iteration process is continued until a 
stopping criterion is reached, e.g. the number of atoms has reached some 
threshold, or the residual energy increases instead of decreasing. Each 
iteration produces an estimate of the frequency, amplitude, phase and 
decay rate of that iteration’s component atom. 

This ‘maximum atoms’ threshold is useful in the cases where the 
actual number of EDS in the original signal is known to be low. In these 
cases, MoP can significantly out-perform both LA based methods and 
dictionary-based iterative methods. This is particularly significant in the 
case of MPS analysis (see below.) 

1.6. Contribution of this paper 

It is of interest in many fields to understand the relative trade-offs in 
employing LA, Fourier or hybrid methods to solve signal analysis and 
processing problems, e.g. [11,12]. This paper examines how three EDS 
decomposition methods perform with MPS in the presence of different 
levels of noise. In [2] the MPM algorithm is compared with FFT-based 
algorithms for the modal analysis of MPS, and in previous work, the 
second author of this paper considered how MoP and ESPRIT compare 
for acoustic IRs [13]. 

In [4] the author states that ’a small number of low frequency atoms 
can be sufficient for classification of MPS’. In cases where it is known a 
priori that the number of EDS in the original signal is small, a modelling 
process can be used that only calculates the first few most significant 
atoms rather than the maximum possible by that modelling method. If, 
upon re-synthesis, such a short set of atoms yields a good approximation 
of the original signal (without noise), then that modelling process can be 
deemed to have efficiently and intuitively modelled the signal. 

The specific novel contribution of the work reported here is to 
compare MPM, MoP and ESPRIT with the short duration, lower reso-
lution signals which are typical of MPS. In order to do this in a robust, 
parametrised manner over many (nearly two million) tests, we develop a 
method for generating synthetic MPS which embody the statistics of real 
MPS described in existing literature. This enables rigorous bench-
marking of a cheaper, in terms of computation and memory re-
quirements, method against two particular examples of state of the art, 
but which are expensive matrix based approaches. We do this using 
synthetic signals which embody the qualities of clinical signals, whilst 
giving us sufficient experimental control. These synthetic signals are 
divided into two broad groups: ‘tympanic’ and ‘percussive’. 

The rest of the paper is organised as follows. In the next section 
established methods for EDS modelling of signals, including the recently 
introduced MoP method, are surveyed. Section 3 outlines the experi-
mental procedure for comparing the methods described in the previous 
section. Section 4 presents the results from this procedure, in terms of 
both signal estimation quality, and computational cost in terms of 
execution time and memory requirements. In the final section the results 
are discussed and conclusions drawn about the potential suitability of 
MoP for analysis of medical percussion signals, compared with already 
established approaches. 

2. Methods 

2.1. MPM and ESPRIT: Background for exact algorithms used in this 
paper 

MPM [15,16,17] and ESPRIT [18] have their basis in Prony’s orig-
inal technique for matrix decomposition of mixed EDS signals [19]. In 
their original references, one of the major differences was that MPM 
acted directly on the signal data, whereas ESPRIT first formed a 
covariance matrix and acted upon that. Subsequent developments of 
both methods have led to some degree of convergence especially in the 
use or not of Singular Value Decomposition (SVD), and in later papers 
there is no universal agreement as to exactly which algorithmic steps are 
used when MPM or ESPRIT are mentioned. The main difference in our 
MPM and ESPRIT implementations is the matrices from which the poles 
are estimated. For MPM, steps 5 and 6 (Algorithm 1, described in Section 
2.2.1) operate on matrices derived from a Hankel matrix of the input 
signal. For ESPRIT, the equivalent steps (8 and 9 in Algorithm 2, 
described in Section 2.3.1) operate on matrices derived from the signal 
subspace, calculated as the singular value decomposition (SVD) of the 
input signal Hankel matrix (H). The columns of the matrix output of this 
SVD are the eigenvectors of HH* which represents the covariance of the 
signal. 

In this paper we have used the most recent and fullest documented 
algorithms for ’standard’ MPM and ESPRIT methods that could be ob-
tained following a literature review. Our algorithmic steps for each are 
shown below, and our Matlab source code is available [20] to allow 
readers to examine the detail of the exact algorithms we have used. For 
each algorithm we present the memory requirements for the input, 
output and internal structures and the computational complexity of each 
stage. 

2.2. Matrix pencil method 

The Matrix Pencil Method involves forming an (N − L)x(L + 1) 
Hankel matrix Y from the noisy data vector length N, where L is the 
pencil parameter, described as the “free moving window length,” that is 
“closely related to the polynomial degree or polynomial prediction order” 

[17]. 
From this matrix, the parameters of up to L atoms can be estimated 

by solving a generalized eigenvalue problem. To do this, two new 
matrices are calculated from the Hankel matrix, Y1 with the last column 
deleted, and Y2 with the first column deleted. A Moore-Penrose pseudo 
inverse is calculated from Y1, then a complex eigenvalue matrix Yþ is 
calculated from this matrix multiplied by Y2. From Yþ, the amplitude, 
frequency, decay rate and phase can be calculated. 

For maximum accuracy in the presence of noise, L should be in the 
range N/3 to (N/2)-1 [17].  

Algorithm 1: MPM Estimation  
Step Memory Complexity 

1. Input: s = [s1, s2,…, sN], L N + 1  
2. Y = hankel(s(1:(N - L)),s((N - L):N)); NL – L2 + N - L  
3. Y1 = Y(:, 1:L); NL – L2  

4. Y2 = Y(:, 2:L + 1); NL – L2  

5. Y+
¼ pinv(Y1)*Y2 (N – L)2 O((N-L)2L) 

6. p = eig(Y+); N - L O((N-L)3) 
7. Z = zeros(N, L); NL  
8. for ii = 1:length(p)   
9. Z(:,ii) = transpose(p(ii).^(0:N-1));  O(N + L) 
10. end for   
11. a = Zs; L O(N2L) 
12. Output: p = [p1,…pL], a = [a1,…aL]    

The exact algorithm used is adapted from the Matlab code provided in 
[15]. This method does not compute an SVD explicitly, however it does 
compute a pseudo inverse which requires an SVD. In order to meet the 
MPM optimal noise rejection criterion for L, the pencil parameter is set 

K.I. Brown and J.J. Wells                                                                                                                                                                                                                     



Biomedical Signal Processing and Control 89 (2024) 105777

4

to N/3 + 1, and the resulting atoms truncated during post-processing to 
the desired quantity M. 

At post-processing the complex poles and amplitudes obtained from 
the MPM algorithm are converted into standard atom parameters 
(denoted f, a, α and φ), removing duplicate (but negative frequency and 
phase) atoms, then sorting into decreasing energy order and truncating 
to the required number of atoms. 

The function atan2 is the four quadrant inverse tangent. The function 
sortDEORemoveNegFreqAtomsAndTrimtoM sorts the atom arrays into 
descending energy order, removes those atoms which have negative 
frequencies, and trims the resulting arrays to length M (or the number of 
remaining atoms, whichever is the smaller.) It must double the ampli-
tude of the positive frequency atom corresponding to any negative fre-
quency atoms it deletes. 

2.3. ESPRIT 

ESPRIT as described in [19] is similar to MPM in that it first forms a 
Hankel matrix from the signal, except the pencil length is fixed at (N/2)- 
1. It uses singular value decomposition (SVD) to remove the rows and 
columns of estimated noise components, before calculating the EDS 
parameters (as complex arrays of poles and amplitudes) from the ei-
genvalues of this new (smaller) matrix. 

The exact algorithm used in this paper is adapted from the DESAM 
Toolbox [21], namely HR_Analysis.m, which explicitly computes an SVD.  

Algorithm 2: ESPRIT Estimation  
Step Memory Complexity 

1. Input: s = [s1, s2, …, sN], M N + 1  
2. Nx = ceil(N/2) + 1; 1  
3. Ny = floor(N/2); 1  
4. H = hankel(s(1:Nx), s(Ny:N)); N2/4 + N/2  
5. U = svd(H,’econ’); N2/4 + N/2 O(Ny2Nx) 
6. W1 = U(1:Nx-1, 1:M); Nx M/2  
6. W2 = U(2:Nx, 1:M); Nx M/2  
8. W+ = pinv(W(1: M−1,:)) * W(2: M,:);  O(Nx2M) 
9. p = eig(W+); M O(M3) 
10. V = zeros(N, M); NM  
11. for m = 1: M  O(MN) 
12. if abs(p(m)) < 1   
13. V(:, m) = p(m).^((0: N-1)’);   
14. else   
15. V(:, m) = p(m).^((-(N-1): 0)’);   
16. end if   
17. end for   
18. a = pinv(V) * s M O(N2M) 
19. Output: p = [p1,…pM], a = [a1,…aM]    

Post-processing is similar to MPM, however the set of atoms produced 
does not need to be truncated after sorting, because the algorithm allows 
the specification of the order (number of atoms to produce) as part of the 
algorithm. To allow for the fact that this implementation generates 
symmetric positive and negative frequencies, an order of M*2 is 
specified. 

2.4. Modelled Pursuits 

The Modelled Pursuits algorithm used in this paper is as described in 
[13] except we have modified it to halt once M atoms have been found. 
Note that MoP may still halt before the limit of M atoms is reached, if an 
increase in residual energy is detected during an iteration (which would 
indicate a mis-detection of parameters and does not meet the require-

ment for a monotonic decrease in residual energy). 

2.5. Summary 

Each method has a different performance in terms of the quality of 
parameter estimation and the computational time and resources 
required. This paper compares the SNR, complexity and memory re-
quirements (provided in the preceding algorithm descriptions), along 
with execution time of each method within a common framework, 
Matlab [9], to give a real-world performance comparison. 

3. Comparison methodology 

If the number of expected EDS is small then a significant data 
reduction after modelling can be expected. Also the modelling process 
can be optimised in comparison with obtaining the maximum possible 
number of EDS. The categories of MPS that this paper focusses on are so- 
called resonant and tympanic, since these are best described in the 
literature. For these signals there are only a few EDS components in the 
signal. Hence a small fixed number of modelled atoms Mresynth is used for 
modelling in this paper, that number being chosen as the maximum of 
the number typically observed in these MPS categories. 

This study utilises synthetic MPS. This is to enable data gathering 
based on a large set of individually unique signals that each broadly 
adhere to the observed properties of real signals reported in the 
literature. 

The methodology is briefly as follows:  

• Generate Mtest synthetic EDS components with parameters randomly 
selected from ranges that match the type of MPS as observed in [2,4]. 

Algorithm 1b: MPM Post Processing  
Step Memory Complexity 

1. Input: poles = [p1, p2, …, pN], amplitudes = [a1, a2, …, aN], Ts, M, lenIR N + 1  
2. α = log(abs(poles))/Ts; N O(N) 
3. f = atan2(imag(poles), real(poles))/(2*pi*Ts); N O(N) 
4. a = abs(amplitudes); N O(N) 
5. φ = atan2(imag(amplitudes),real(amplitudes)); N O(N) 
6. [f, a, α, φ] = sortDEORemoveNegFreqAtomsAndTrimtoM(f, a, α, φ, M);  O(Nlog(N)) 
7. Output: α = [α1] α2,⋯αm], f = [f1, f2,…,fM], φ = [φ 1, φ 2, …, φ M], a = [A1, A2, …, AM]      

Algorithm 3: Modelled Pursuits Estimation  
Step Memory Complexity 

1. Input: s = [s1, s2, …, sN], M N + 1  
2. Initialize: m = 0, residual r0 = s. N + 1  
3. while (m < M or ||s-rm||>ε) and ||rm-1||-||rm||≥ 0 do 1 O(MNlog(N)) 
4. S ¼ DFT(rm) N  
5. Select km:⃒⃒Skm

⃒⃒
argmaxS 

N  
6. Estimate αm, φm, fm and am 4 M  
6. Synthesise gm =eam+jφm−t(αm+j2πfm) N  
8. rm+1 = rm- gm   
9. end while   
10. Output: α = [α1, α2, αM], f = [f1, f2, …, fM], φ = φ1, φ2, 

…, φM], a = [a1, a2, …, aM]     
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• Add white Gaussian noise (WGN) to simulate the additive noise that 
contaminates MPS when they are captured.  

• Perform an atomic EDS decomposition of the noisy signal using each 
of the three methods under test and produce a resynthesis from the 
Mresynth derived model parameters.  

• Calculate the signal to noise ratio (SNR) of the resynthesised signal 
and compare it to the original. 

The strategy used to generate a synthetic EDS signal of a given 
category is to form a ’template’ (see Algorithm 4) based on the mean and 
standard deviation of the atom parameters from examples in the pub-
lished literature. The examples’ atoms were not initially ordered in a 
way ameliorable to this, thus it was necessary to match atoms between 
examples using an exhaustive search of best fits of a Euclidean distance 
metric calculated from frequency and energy (a function of amplitude 
and decay), ignoring phase. From these now best-matched ordered lists 
of atom parameters, the mean and standard deviation (SD) are calcu-
lated. Each test (see Algorithm 5) can randomly simulate any of the EDS 
components in a new synthetic signal as if they had been drawn from the 
same population as the published signal examples. 

3.1. Evaluation procedure  

Algorithm 4: Template Generation 
1. for signal categories sc= {resonant, tympanic} 
2. sigatoms = load relevant examples of atom sets for this signal category 
3. Mmax = max(number of atoms per example in sigatoms) 
4. metrics = calcEuclidianDistanceMetricFreqEnergy (sigatom) 
5. matchedatoms = findBestMatch(sigatoms, metrics) 
6. for m = 1:Mmax 
7. components = {F, a, α } of each matchedatoms’ atom index m 
8. for each component index compind 
9. TPLMEANs(sc, m, compind) = mean(components) 
10. TPLSTDs(sc, m, compind) = std(components) 
11. end for 
12. end for 
13. end for 

(continued on next column)  

(continued ) 
Algorithm 4: Template Generation 
11. The resulting template is a matrix of sc signal categories, each containing its 

relevant Mmax atoms’ component means and standard deviations. 
12. Store a minimum Mmin and maximum Mmax to use in generation per sc (see next 

paragraph), and global minima and maxima per component e.g. f > 0; a > 0, α 

< -0.5, etc.  

The number of atoms in the published examples of resonant and tym-
panic signals are 14, 11 and 12, 8 respectively. Based on observations of 
significant EDS [2] in a typical tympanic signal, the number of atoms 
that can be chosen for that category is in the range one to four. For the 
resonant signals that range is between five and ten atoms. 

Using each template, the following steps are performed to generate 
one synthetic signal to be used in testing:  

Algorithm 5: Generate Random EDS from template 
1. Choose the first Mtest atoms from the relevant template, where Mtest is chosen 

randomly between that template’s minimum and maximum M. 
2. Deviate each of these atoms’ components {f, a, α} by max(N(mean, SD), 0.05) 

where N is the normal distribution. 
3. The phase φ per atom is selected from U(0, 2π) where U is the uniform 

distribution. 
4. From the resulting Mtest atoms obtained, a total signal is generated that is the 

sum of each atom’s resynthesised EDS signal. The result is the noise-free ground- 
truth signal x to be compared-to after analysis.  

The test parameters are based on existing published findings and syn-
thetic signals [2]. As well as the specification of the synthetic signals 
above, the choice of appropriate sample rate, test signal duration and 
number of atoms to extract from each model is determined as follows. A 
sample rate of 2 kHz is employed since we are only interested in fre-
quencies below 1 kHz [2]. Despite an assumption in a previous study 
that windows of 40 ms are sufficient to capture MPS [22], analysis of the 
slowest decay rate of the six EDS components in synthetic signals in [2] 
shows that the −90 dB point is only reached after approx. 1000 samples, 
and so therefore 0.5s is chosen as the total signal duration in this study. 
For each unknown test signal the maximum number of atoms Mresynth to 
request from the modeller (after post processing) is chosen to be 10, in 

Fig. 1. Relative execution times. a) (left) Resonant template: MoP, MPM and ESPRIT, b) (right) Tympanic template: MoP, MPM and ESPRIT.  

K.I. Brown and J.J. Wells                                                                                                                                                                                                                     



Biomedical Signal Processing and Control 89 (2024) 105777

6

line with the maximum number of significant EDS components found in 
[22]. 

The test SNRs used are −20 dB to +90 dB in steps of 10 dB (12 
different SNRs.) where: 

SNR = 10*log10

(∑N

n=1x2
n∑N

n=1ε2
n

)
(2) 

xn are the reference test signal samples, εn are the (white Gaussian) 
noise samples and N is the number of samples. At each SNR level 5000 
random atom-sets are synthesised using equation [13] from each of the 
two signal category templates. The total number of tests (noisy signals 
modelled by each modeller) is thus 2 [signal categories] * 5000 [random 
sets of atoms] * 12 [different SNRs] * 16 [repeats of different random 
noise at same SNR] = 1,920,000 (N) total test signals generated. 

The tests were performed on the University of York Viking high 
speed computing cluster (see acknowledgements), running Matlab 2019 
[9]. Each of the test signals was modelled with the MoP, MPM and 
ESPRIT algorithms described previously, each resulting in a model 
containing up to 10 atoms. 

The produced atoms are resynthesised, according to equation (1), to 
produce a signal y which is the sum of each atom generated from the 
estimated parameters. Then SNRmod (in dB) is calculated using the 
following equation, where x is the original random test signal (prior to 
any noise being added): 

SNRmod = 10*log10

( ∑N

n=1x2
n∑N

n=1

(
yn − xn

)2

)
(3)  

4. Results 

4.1. Execution times 

Fig. 1 shows boxplots of the execution time in seconds taken to model 
each of the test signals by each modeller MoP, ESPRIT and MPM. The left 
hand plot shows the results for the set of resonant test signals, and the 
right hand plot, those from the set of tympanic test signals. In this figure, 
the top and bottom of each blue box represents the upper and lower 
quartiles of the data respectively. The black whiskers extend to the most 
extreme data points not considered outliers, and the outliers are plotted 

individually using the red ’+’ symbol. Points are deemed outliers if they 
are greater than q3 + (1.5 × (q3 – q1)) or less than q1 – (1.5 × (q3 – q1)), 
where q1 and q3 are the 25th and 75th percentiles of the sample data, 
respectively. The mean is plotted as a green diamond symbol, and the 
mean plus one standard deviation and mean minus one standard devi-
ation are plotted as green x symbols. 

Fig. 1b uses the same data as Fig. 1, but normalised so as to corre-
spond with Table 1 and with outliers clipped at a maximum of 22.5 to 
show more detail. 

To allow for easier comparison, the mean execution time and its 
standard deviation (for each method and signal category) is listed below 
in Table 1, after first normalising each with respect to the shortest mean 
per signal category (that of MoP in both cases.) 

4.2. Accuracies 

Fig. 2 shows the mean (with error bars at plus and minus one stan-
dard deviation) of the modelled SNR in decibels on the vertical axis, 
against the actual SNR in decibels on the horizontal axis, for the set of 
resonant (left hand plot) and tympanic (right hand plot) test signals. In 
each plot, MoP is shown in dashed black, MPM dotted red, and EPSRIT 
dot-dashed blue. For reference, a plot of equal modelled SNR against 
actual SNR is shown as a solid grey line with x markers. 

5. Discussion 

MoP is clearly the cheapest of the three methods in terms of execu-
tion time for the short length signals discussed in this paper. The large 

Fig. 1b. Relative execution times as Fig. 1 but normalised so as to correspond with Table 1 and with outliers clipped at a maximum of 22.5 to show detail.  

Table 1 
Mean and standard deviation (SD) of execution times per test (number of tests: 
1,920,000).   

Signal Category  
Resonant Tympanic 

Modeller Mean SD Mean SD 
MoP  1.00  0.271  1.00  0.268 
MPM  15.0  1.65  14.9  1.63 
ESPRIT  2.54  0.259  2.51  0.256  
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difference between the execution times of MPM and ESPRIT can be 
accounted for by the fact that ESPRIT uses singular value decomposition 
(SVD) as an early step in the algorithm, which significantly reduces the 
size of the matrices on which subsequent operations such as pseudo 
inverse and eigenvalue are deployed. Therefore the overall computation 
for ESPRIT is significantly less than it is for MPM. 

It can be seen from Table 1 that there is no significant difference 
between the execution times of the resonant signal category and the 
tympanic signal category, for any of the methods under test. This is to be 
expected because the algorithms under test do not attempt any deriva-
tion of the underlying number of noise free EDS in the original signals, 
and that is the main difference between the two synthetic test signal 
categories. The outliers can be reasonably explained by random per-
turbations in the timing system used due to operating system influence. 

It can be seen in Fig. 2 that ESPRIT performs the best in terms of 
accuracy. It is in all cases able to recover a SNR greater than the actual 
SNR by about 12 to 13 dB. MPM can only recover an SNR approximately 
equal to that of the added noise for tympanic signals, and is slightly 
worse for resonant signals, having a reasonably constant slope that starts 
at about 1.5 dB better for minus 20 dB actual SNR, and finishes at about 
11 dB worse than the actual SNR at an actual SNR of plus 90 dB. 

MoP can, for SNRs less than approx. 20 dB, recover the signal with a 
better SNR than the test signal, but this tails off rapidly, shelving at 
approximately 22 dB for resonant and 33 dB for tympanic signals. This 
upper limit of the performance of MoP for high SNRs is due to errors in 
the atom parameter estimation from individual Fourier spectrum com-
ponents, as opposed to their derivation from a global, matrix-based, 
minimisation approach. The lower error bar of MoP for the resonant 
test signal category is roughly the same SNR as that for tympanic signals, 
however in the tympanic case, the upper error bar and mean are higher, 
indicating that MoP performs better for signals with fewer EDS com-
ponents (as in the tympanic case.). 

6. Conclusions 

ESPRIT and MPM do better overall than MoP in terms of parameter 
estimation, an expected result since the first two are matrix decompo-
sition methods. The implication is that they would be better in clinical 
situations where signals can be captured with a very high signal to noise 
ratio and where ample computation resources are available. However, in 
noisy conditions (lower than 20 dB SNR) MoP performs as well as 

ESPRIT and MPM but requiring considerably less memory. In such sit-
uations the data that we have produced indicates that MoP offers the 
best compromise between computational demands and effectiveness. 
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