
Decremental Sensitivity Oracles for Covering and1

Packing Minors2

Lawqueen Kanesh ¡3

Indian Institute of Technology Jodhpur, India4

Fahad Panolan ¡5

School of Computing, University of Leeds, UK6

M. S. Ramanujan ¡7

University of Warwick, UK8

Peter Strulo ¡9

University of Warwick, UK10

Abstract11

In this paper, we present the first decremental fixed-parameter sensitivity oracles for a number12

of basic covering and packing problems on graphs. In particular, we obtain the first decremental13

sensitivity oracles for Vertex Planarization (delete k vertices to make the graph planar) and14

Cycle Packing (pack k vertex-disjoint cycles in the given graph). That is, we give a sensitivity15

oracle that preprocesses the given graph in time f(k, `)nO(1) such that, when given a set of ` edge16

deletions, the data structure decides in time f(k, `) whether the updated graph is a positive instance17

of the problem. These results are obtained as a corollary of our central result, which is the first18

decremental sensitivity oracle for Topological Minor Deletion (cover all topological minors in19

the input graph that belong to a specified set, using k vertices).20

Though our methodology closely follows the literature, we are able to produce the first explicit21

bounds on the preprocessing and query times for several problems. We also initiate the study of22

fixed-parameter sensitivity oracles with so-called structural parameterizations and give sufficient23

conditions for the existence of fixed-parameter sensitivity oracles where the parameter is just the24

treewidth of the graph. In contrast, all existing literature on this topic and the aforementioned25

results in this paper assume a bound on the solution size (a weaker parameter than treewidth for26

many problems). As corollaries, we obtain decremental sensitivity oracles for well-studied problems27

such as Vertex Cover and Dominating Set when only the treewidth of the input graph is28

bounded. A feature of our methodology behind these results is that we are able to obtain query29

times independent of treewidth.30

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact31

algorithms; Theory of computation → Dynamic graph algorithms32

Keywords and phrases Sensitivity oracles, Data Structures, FPT algorithms33

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.2834

Funding M. S. Ramanujan: Supported by the Engineering and Physical Sciences Research Council35

(grant numbers EP/V007793/1 and EP/V044621/1).36

© Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, Peter Strulo;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov; Article No. 28;
pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lawqueenkanesh091@gmail.com
https://orcid.org/0000-0001-9274-4119
mailto:fahad.panolan@gmail.com
https://orcid.org/0000-0001-6213-8687
mailto:joanrpublic@dummycollege.org
https://orcid.org/0000-0002-2116-6048
mailto:Peter.Strulo@warwick.ac.uk
https://orcid.org/0000-0003-0555-9500
https://doi.org/10.4230/LIPIcs.STACS.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Decremental Sensitivity Oracles for Covering and Packing Minors

1 Introduction37

The study of basic graph problems on dynamic inputs has been a central aspect of algorithmics38

for several decades. A well-studied model in this line of research is the “fault tolerance39

model”. In this model, one assumes that the network at hand is susceptible to a bounded40

number of faulty network components (i.e., failing nodes or links) at any given time. The41

goal is to efficiently preprocess the network and produce a sufficiently small data structure so42

that once the set of faulty nodes or links is given (or equivalently, the corresponding vertices43

or edges in the graph are deleted), one can recover various properties of the network from the44

stored data structure without recomputing these from scratch. The fault tolerance model has45

been a hugely successful setting for various advances on fundamental data structures such46

as spanners [39] and distance sensitivity oracles [21]. The “dimensions” of interest in such47

data structures are: the time needed by the preprocessing algorithm, the space complexity of48

the data structure, the time required to query the data structure in order to recover various49

properties of the input graph minus the set of failed elements and in some cases, the time50

required to update the data structure to reflect the failures.51

The primary focus of research in the fault tolerance model has been on polynomial-time52

solvable problems. However, in a recent paper, Bilò et al. [6] extended the fault tolerance53

model to NP-complete graph problems by introducing a notion of decremental fixed-parameter54

sensitivity oracles (FSO). For an edge (respectively, vertex) decremental sensitivity oracle for55

a fixed-parameter tractable (FPT) problem Π, the input is an instance (G, k) of Π, where56

G is an n-vertex input graph and k is the parameter and a number `, and the goal is to57

develop a preprocessing algorithm A that builds a data-structure (i.e., the oracle) that, when58

queried on a set F of at most ` edges (respectively, vertices), decides whether (G− F, k) is a59

positive instance of the problem, using a query algorithm Q. The goal here is to ensure that60

the preprocessing time is f(k, `)nO(1) and the query time is g(k, `)no(1) for some functions61

f and g. Unless otherwise specified, one allows both edge and vertex failures. Using this62

framework, Bilò et al. [6] gave the first edge decremental FSO for several problems including63

Long Path and Vertex Cover. Subsequently, Alman and Hirsch [3] extended the work64

of Bilò et al. [6] to also account for edge additions, by introducing a fully dynamic notion of65

sensitivity oracles. Moreover, Alman and Hirsch [3] define a notion of efficient sensitivity66

oracles, where the preprocessing time is f(k)nO(1), and the query time is `O(1)g(k)no(1).67

That is, the dependence on ` in both the preprocessing and query time is polynomial. By68

developing a dynamic variant of the extensor coding method [12], they show that Long69

Path has a fully dynamic efficient sensitivity oracle even on directed graphs.70

These advances made by Bilò et al. [6] and Alman and Hirsch [3] for individual problems71

pose some natural questions: Could we prove general statements that provide a unified72

explanation of the existence of fixed-parameter sensitivity oracles (FSOs) for families of73

problems? Could we obtain efficient FSOs for these problems and give explicit bounds on74

the preprocessing and query times? These questions at the intersection of data structures75

and parameterized algorithms are our main motivation.76

In this paper, we make significant progress towards answering these questions by presenting77

meta-theorems from which decremental FSOs for a number of basic covering and packing78

problems on graphs can be derived.79

1.1 Our contributions I: FSOs for vertex deletion problems80

Many important NP-hard graph optimization problems can be phrased as a vertex deletion81

problem to a graph class satisfying some property P . Here, the input is a graph G on82

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:3

n vertices and the task is to find a minimum size vertex subset S such that the graph83

G− S obtained from G by removing S and its incident edges has the property P . By the84

well-known result of Lewis and Yannakakis [40] such problems are NP-complete for hereditary85

properties. For this reason the study of these problems is an integral part of the areas of86

approximation algorithms, exact-exponential algorithms and parameterized complexity, and87

has been responsible for the development of many classic algorithmic techniques.88

Hence, the family of vertex deletion problems provide a natural candidate for us to develop89

meta-theorems. This brings us to the Topological Minor Deletion (TM-Deletion)90

problem which is a vertex deletion problem that directly generalizes numerous well-known91

problems vertex deletion problems including Vertex Cover, Feedback Vertex Set92

(delete at most k vertices to obtain a forest) and Vertex Planarization, to name a few.93

In TM-Deletion, the input is an undirected graph G, a family F of undirected graphs94

such that every graph in F has at most h(F) vertices, and an integer k. The parameter is95

k + h(F) and the goal is to decide whether there exists S ⊆ V (G) of size at most k such96

that G − S contains no graph from F as a topological minor. A graph H is a topological97

minor of G if H can be obtained from G by deleting vertices or edges, and then contracting98

edges as long as each such edge is incident to at least one vertex of degree precisely 2. The99

expressive power of TM-Deletion naturally implies that an FSO for this problem would100

enable us to obtain as a consequence, FSOs for a host of other problems.101

I Theorem 1. Topological Minor Deletion has a decremental fixed-parameter sensit-102

ivity oracle.103

As a consequence of Theorem 1, we obtain decremental FSOs1 for many well-studied104

parameterized problems, thus extending the scope of sensitivity oracles for NP-complete105

graph problems significantly beyond the state of the art. We refer the reader to the appendix106

for the definitions of problems not defined here and to Section 2 for the formal definition of107

treewidth and (topological) minors.108

I Corollary 2. The following problems have FSOs as a consequence of Theorem 1.109

1. Feedback Vertex Set (FVS). Or more generally, η-Treewidth Modulator, i.e.,110

decide whether we can delete at most k vertices from the input graph to obtain a graph111

with treewidth at most η.112

2. Vertex Planarization. Or more generally, Minor Deletion, i.e., for a set F of113

graphs, decide whether we can delete at most k vertices from the input graph to obtain a114

graph that excludes every graph in F as a minor.115

3. Cycle Packing. Or more generally, Topological Minor Packing, i.e., for a set116

F of graphs, decide whether the input graph contains k vertex disjoint topological-minor117

models of graphs in F .118

4. Long Path and Long Cycle. That is, decide whether there is a path (or a cycle,119

respectively) of length at least k in the input graph.120

A useful feature of our proof techniques is that it allows for easy (albeit rough) estimations121

of the preprocessing and query times of most of the FSOs in the above statement. As a122

result, without much additional effort, one can prove the following bounds on specific FSOs123

in Corollary 2.124

1 Since we only deal with the decremental setting in this paper, we drop the explicit reference to this
term in the rest of the paper and simply say, FSO.

STACS 2024

28:4 Decremental Sensitivity Oracles for Covering and Packing Minors

I Theorem 3. The following bounds can be obtained.2125

1. Feedback Vertex Set has an FSO with preprocessing time tow(3,O((k+ `)11))n4 and126

query time tow(2,O((k + `)11)).127

2. Cycle Packing has an FSO with preprocessing time tow(3,O((k + `)20))n4 and query128

time tow(2,O((k + `)20)).129

3. Long Path and Long Cycle have FSOs with preprocessing time tow(2,O(k log(`)))n4
130

and query time tow(2,O(k log(`))).131

Note that these are the first concrete bounds for Cycle Packing. However, the bounds132

for Long Path implied by our meta-theorem are significantly worse than that of Bilò et133

al. [6] and Alman and Hirsch [3], which is not surprising since we obtain these bounds by134

instantiating a general-purpose theorem. For instance, the former get query time upper135

bounded by O(`(` + k)) and the latter, `22kkO(1). However, we prove the bounds in the136

above theorem in order to illustrate how to use our methodology to obtain explicit bounds137

for specific problems.138

1.2 Our contributions II: A meta-theorem for efficient FSOs139

Algorithmic meta-theorems are general algorithmic results applicable to a whole range of140

problems. Many prominent algorithmic meta-theorems are about model checking; such141

theorems state that for certain kinds of logic L, and all classes of structures C that have a142

certain property, there is an algorithm that takes as input a formula φ ∈ L and a structure143

S ∈ C and efficiently determines whether S |= φ. One of the most famous results in this144

direction is the seminal theorem of Courcelle [16, 14, 15] for model checking of Monadic145

Second Order Logic (MSO) on graphs of bounded treewidth (see also [1, 5, 11, 17, 22]).146

Courcelle’s theorem (which also extends to a fragment called Counting Monadic Second Order147

Logic or CMSO) is a crucial component of the parameterized complexity toolbox because148

numerous well-studied graph problems can be expressed in this particular fragment of logic.149

Classic examples of CMSO-definable graph properties are Hamiltonicity and 3-Colorability.150

We refer the reader to Section 2.2 for a formal description of CMSO-definability. Consequently151

a natural question arises – “Does an analogue of Courcelle’s theorem hold in the fault-tolerant152

setting?” An affirmative answer is implied by existing results in the literature on query153

testing MSO formulas on bounded-treewidth graphs (see, for instance, Theorem 6.1.3 in [37]).154

These results build upon Courcelle’s approach of reducing model checking MSO sentences on155

bounded-treewidth graphs to model checking MSO sentences on labelled trees. However, in156

the quest for efficient FSO (recall that we want preprocessing and query time polynomial in157

the number of failures), this approach does not yield a positive outcome since it involves a158

reduction to MSO model checking on graphs, where the formula size now depends on the159

number of failures and so, the query algorithm may take time exponential in the number of160

failures.161

In this paper, we prove the following meta-theorem giving a sufficient condition for the162

existence of efficient FSOs with the additional property that the query times are actually163

independent of input size n (although the definition allows for sublinear dependence on n).164

I Theorem 4. Every CMSO-definable graph problem has an efficient non-uniform FSO with165

query time independent of input size, when parameterized by the treewidth of the input graph166

and size of the CMSO-sentence defining it.167

2 The notation tow(p, q) indicates a runtime that is exponential in q, where q is on top of a tower of
iterated exponentials of height p.

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:5

A non-uniform FSO is simply an FSO where one is allowed to have, for every value of168

the parameter k and number ` of permitted failures, a distinct preprocessing algorithm Ak,`169

and query algorithm Qk,`.170

Theorem 4 forms a crucial component of our proof of Theorem 1. Essentially, we use171

Theorem 4 to handle “low-treewidth” instances of TM-Deletion. However, notice that172

Theorem 4 only guarantees a non-uniform FSO whereas Theorem 1 has no such caveat.173

Hence, a few remarks are in order here. Often, in the literature on non-uniform FPT174

algorithms, it has been demonstrated that the non-uniformity can be omitted either through175

self-reducibility arguments or by a case-by-case understanding of the combinatorics behind176

each problem. We are able to provide such arguments regarding Theorem 4 that essentially177

suggest that as long as one could solve the CMSO-definable problem under consideration178

using an explicit dynamic programming algorithm on bounded-treewidth graphs, i.e., the vast179

majority of natural CMSO-definable problems in the literature, then one can actually infer180

an FSO for the problem on bounded-treewidth graphs without the caveat of non-uniformity.181

Moreover, this approach can lead to obtaining explicit running time bounds. This is also182

why we avoid resorting to the aforementioned black-box results on query testing in the183

literature to handle the low treewidth case. In this paper, we formally exemplify our strategy184

of eliminating the non-uniformity resulting from the invocation of Theorem 4 for the special185

case of TM-Deletion, which enables us to prove Theorem 1. Though we only deal with186

TM-Deletion, our arguments can be easily seen to extend to other problems, which we use187

to obtain explicit bounds for some of them. We believe that Theorem 4 will be a crucial188

component of designing FSOs for more problems, especially in conjunction with techniques189

such as irrelevant vertex removal [25].190

In this context, it is important to mention the work of Courcelle and Vanicat [18]. They191

prove a meta-theorem that implies an efficient FSO for all CMSO-definable problems when192

parameterized by the treewidth of the input graph and size of the CMSO-sentence defining193

it. We note that their query times have a logarithmic dependence on n. It is known in the194

community (although not explicitly published to the best of our knowledge) that the log(n)195

dependence can be removed with appropriate preprocessing. However, we believe that the196

methodology behind Theorem 4 is useful as it enables us to easily obtain concrete bounds in197

our applications, which does not appear to be straightforward from the result of [18].198

1.3 Our contributions III: Edge FSOs parameterized only by treewidth199

We demonstrate the further applicability of the proof technique behind Theorem 4 to obtain a200

meta-theorem that gives sufficient conditions on a problem to have an edge FSO parameterized201

by the treewidth alone. Notice that all our results and those in the literature up to this202

point have the solution size as the parameter either explicitly or implicitly. In particular, in203

Theorem 4 the parameter also includes the size of the MSO formula, which in turn often204

depends on the solution size in the case of specific problems. Moreover, we highlight the fact205

that the oracles in this section have query time with a polynomial dependence on ` (in fact,206

only O(`2)). Moreover, the query times are independent of the treewidth. However, they are207

not efficient oracles as the preprocessing algorithm has exponential dependence on `.208

We give the following (non-exhaustive) exemplifications of our meta-thereom.209

I Theorem 5. The following hold.210

1. Vertex Cover admits an edge FSO parameterized by the treewidth k with preprocessing211

time `O(2k) · nO(1), and query time O(`2).212

STACS 2024

28:6 Decremental Sensitivity Oracles for Covering and Packing Minors

2. Dominating Set admits an edge FSO parameterized by the treewidth k with preprocessing213

time `O(3k) · nO(1), and query time O(`2).214

Note that since the treewidth of a graph is at most the size of the minimum vertex215

cover, the first statement directly implies an edge FSO for Vertex Cover parameterized216

by solution size.217

Here also, the work of Courcelle and Vanicat [18] is relevant as they prove an optimization218

version of their meta-theorem. However, their query time depends on the treewidth whereas219

we are able to obtain FSOs with query times independent of the treewidth.220

1.4 Related work221

Alman and Hirsch [3] note that the work of van den Brand and Saranurak [46] (see full version222

[47]) on distance sensitivity oracles in combination with standard color-coding techniques223

also imply a fully dynamic sensitivity oracle for Long Path on directed graphs, but with a224

worse dependence on k and `. We note that though a no(1) multiplicative factor in the query225

time is permitted in the definition of FSO, this is not exploited in their results and similar226

to our results, the queries of both Alman and Hirsch [3] as well the alternate oracle implied227

by Brand and Saranurak [46] run in time independent of the input size.228

In other recent work, Pilipczuk et al. [44] gave a sensitivity oracle that answers s-t229

connectivity in constant time if a constant number of vertex failures occur. Interestingly,230

Pilipczuk et al. [44] show that the techniques they use to obtain their result can be used to231

design a model checking algorithm for the recently introduced separator logic [10] which is232

more expressive than First Order Logic but less expressive than MSO. This is a promising233

sign that advances on sensitivity oracles can have a much broader impact beyond the specific234

problem for which they are developed. We also note that the Arxiv version of [44] contains235

the tools (MSO query testing on trees) required to prove Kazana’s result [37] on MSO query236

testing on bounded-treewidth graphs.237

In recent years, spurred by the first systematic exploration of the intersection of paramet-238

erized and dynamic graph algorithms by Alman et al. [4], there has been a significant amount239

of work combining techniques from these two areas. Of special interest in the context of our240

paper is the work of Dvorak et al. [23] (improved upon by Chen et al. [13]) and Majewski et241

al. [42], who gave fully dynamic data structures that are able to maintain CMSO properties.242

That is, they obtain a data structure that is stronger than just a sensitivity oracle, but at243

the cost of weaker parameters than the one we use (i.e., treewidth).244

Finally, on the topic of intersecting parameterized complexity and fault-tolerant data245

structures, Lochet et al. [41], in a work preceding the work of Bilò et al. [6], studied fault-246

tolerant spanners in directed graphs by choosing parameters expressing certain types of247

structure. Recently, Misra [43] initiated the study of computing fault-tolerant solutions (e.g.,248

a solution that remains a feedback vertex set of the graph even if one vertex is removed from249

the solution) for NP-hard problems, with follow up work by Blazej et al. [7].250

2 Preliminaries251

2.1 Graphs252

Given a graph G, let V (G) and E(G) denote the vertex and edge set of G, respectively. We253

only deal with simple graphs in this paper. When G is clear from the context, let n and254

m denote |V (G)| and |E(G)|, respectively. For a graph G, paths(G) denotes the set of all255

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:7

simple paths in G. For a set A ⊆ V (G), we denote by E(A) the set of those edges in G with256

both endpoints in A.257

Formally, the treewidth of a graph is defined as follows.258

I Definition 6 (Tree decomposition). A tree decomposition of a graph G is a pair (T, β)259

of a tree T and β : V (T) → 2V (G), such that: (i)
⋃
t∈V (T) β(t) = V (G), (ii) for any edge260

e ∈ E(G), there exists a node t ∈ V (T) such that both endpoints of e belong to β(t), and (iii)261

for any vertex v ∈ V (G), the subgraph of T induced by the set Tv = {t ∈ V (T) : v ∈ β(t)}262

is a tree. We say a tree decomposition is nice if it additionally satisfies the conditions on263

page 161 of [19]. The width of (T, β) is maxv∈V (T){|β(v)|} − 1. The treewidth of G is the264

minimum width of a tree decomposition of G.265

Let (T, β) be a tree decomposition of a graph G. We refer to the vertices of the tree T266

as nodes. We always assume that T is a rooted tree and so, we have a natural parent-child267

and ancestor-descendant relationship among nodes in T . The set β(t) is called the bag268

at t. For two nodes u, t ∈ T , we say that u is a descendant of t, denoted u � t, if t lies269

on the unique path connecting u to the root. Note that every node is its own descendant.270

If u � t and u 6= t, then we write u ≺ t. For a tree decomposition (T, β) we also have a271

mapping γ : V (T)→ 2V (G) defined as γ(t) =
⋃
u�t β(u). For every t ∈ V (T), we also define272

β̂(t) = β(t)∪E(β(t)) and γ̂(t) = γ(t)∪E(γ(t)). Recall that for a vertex set S, E(S) denotes273

the set of all edges with both endpoints in S. We call a tree decomposition nice if it satisfies274

the conditions in section 7.2 of [20].275

There is an algorithm that, given a graph G on n vertices and an integer w, runs in time276

O(f(w)n3) and either correctly answers that G has treewidth more than w or outputs a tree277

decomposition of G of optimal width [8].278

We next recall the classic notions of minors and topological minors.279

I Definition 7 (Minors). A graph H is a minor of G if there exists a function φ : V (H)→280

2V (G) with the following properties: (i) for every h ∈ V (H), G[φ(h)] is a connected graph,281

(ii) for all distinct h, h′ ∈ V (H), φ(h) ∩ φ(h′) = ∅, and (iii) for all {h, h′} ∈ E(H), there282

exist u ∈ φ(h) and v ∈ φ(h′) such that {u, v} ∈ E(G). The function φ is called a minor283

model of H in G.284

I Definition 8 (Topological minors). Let G and H be two graphs. We say that H is a285

topological minor of G if there exist injective functions φ : V (H)→ V (G) and ϕ : E(H)→286

paths(G) such that287

for every e = {h, h′} ∈ E(H), the endpoints of ϕ(e) are φ(h) and φ(h′),288

for every distinct e, e′ ∈ E(H), the paths ϕ(e) and ϕ(e′) are internally vertex-disjoint,289

there does not exist a vertex v in the image of φ and an edge e ∈ E(H) such that v is an290

internal vertex on ϕ(e).291

We say that (φ, ϕ) is a topological-minor model of H in G.292

Note that if H is a topological minor of G, then it is also a minor of G. However, the293

converse does not hold.294

Boundaried graphs. Roughly speaking, a boundaried graph is a graph where some vertices295

are labeled. A formal definition is as follows.296

I Definition 9 (Boundaried graph). A boundaried graph is a graph G with a set ∂(G) ⊆297

V (G) of distinguished vertices called boundary vertices, and an injective labeling λG : ∂(G)→298

N. The set ∂(G) is the boundary of G, and the label set of G is Λ(G) = {λG(v) | v ∈ ∂(G)}.299

STACS 2024

28:8 Decremental Sensitivity Oracles for Covering and Packing Minors

Given a finite set I ⊆ N, GI denotes the class of all boundaried graphs whose label set is300

I, and G⊆I =
⋃
I′⊆I GI′ . A boundaried graph in G⊆[t] is called a t-boundaried graph. Note301

that if G is a boundaried graph and x ∈ V (G) is a vertex in the boundary, then G− x is a302

boundaried graph that inherits its boundary and labeling from G in the natural way. That303

is, we simply remove x and preserve the labeling of the remaining vertices.304

2.2 Counting Monadic Second Order Logic305

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives306

∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices and sets of edges, the quantifiers307

∀ and ∃, which can be applied to these variables, and the binary relations: (i) u ∈ U , where308

u is a vertex variable and U is a vertex set variable; (ii) d ∈ D, where d is an edge variable309

and D is an edge set variable; (iii) inc(d, u), where d is an edge variable, u is a vertex310

variable, and the interpretation is that the edge d is incident to u; (iv) equality of variables311

representing vertices, edges, vertex sets and edge sets.312

An MSO sentence is an MSO formula without free variables. Counting Monadic Second313

Order Logic (CMSO) extends MSO by including atomic sentences testing whether the314

cardinality of a set is equal to q modulo r, where q and r are integers such that 0 ≤ q < r and315

r ≥ 2. That is, CMSO is MSO with the following atomic sentence: cardq,r(S) = true if and316

only if |S| ≡ q (mod r), where S is a set. We refer to [5, 16, 15] for a detailed introduction317

to CMSO. We note that what we refer to as CMSO in this paper is sometimes called CMSO2318

in the literature to indicate that quantifying over edge sets is permitted.319

I Definition 10 (Property). A property is a function σ from the set of all graphs to320

{true, false}. For a CMSO sentence ψ, the property σψ is defined as follows. Given a graph321

G, σψ(G) equals true if and only if G |= ψ.322

I Definition 11 (CMSO-definable property). A property σ is CMSO-definable if there323

exists a CMSO sentence ψ such that σ = σψ. In this case, we say that ψ defines σ.324

We next recall an implication of the classic Courcelle’s Theorem [16, 14, 15] proof (see325

also [17]). This fact, which is a central component in the proof of Theorem 4, says that a326

certain canonical equivalence relation over boundaried graphs has finite index. We first need327

to identify precisely those pairs of graphs that could potentially be related by the canonical328

equivalence and so, we define the compatibility equivalence relation ≡c on boundaried graphs329

as follows. We write Gα ≡c Gβ and say that Gα is compatible with Gβ if Λ(Gα) = Λ(Gβ).330

Now, we define the canonical equivalence relation ≡σ on boundaried graphs.331

I Definition 12 (Canonical equivalence). Given a property σ of graphs, the canonical332

equivalence relation ≡σ on boundaried graphs is defined as follows. For two boundaried333

graphs Gα and Gβ, we say that Gα ≡σ Gβ if (i) Gα ≡c Gβ, and (ii) for every boundaried334

graphs Gγ compatible with Gα (and thus also with Gβ), we have: σ(Gα ⊕ Gγ) = true ⇔335

σ(Gβ ⊕Gγ) = true.336

Here, the gluing operator ⊕ identifies equally-labeled vertices of the two boundaried337

graphs.338

A property σ of graphs has finite state if ∀I ⊆ N, the set of equivalence classes of ≡σ339

when restricted to G⊆I is finite. Given a CMSO sentence ψ, the canonical equivalence340

relation associated with ψ is ≡σψ , and for simplicity, we denote this relation by ≡ψ.341

We are now ready to state the required consequence of Courcelle’s Theorem (see, for342

example, [16, 14, 15, 9]).343

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:9

I Proposition 13. Every CMSO-definable property on graphs has finite state.344

We use the RAM model (see Harel and Tarjan [29]) with addition and uniform cost345

measure. Each word holds O(logn) bits and each basic operation on a word is assumed to346

take constant time.347

3 Technical overview348

In this section, we give an overview of our techniques, omitting details where necessary due349

to space constraints.350

Since we effectively use Theorem 4 in our proof of Theorem 1, we first describe our proof351

of this result and how it implies a (uniform) FSO for TM-Deletion parameterized by the352

treewidth of the input graph in addition to the standard parameterization comprising the353

deletion set size k and the size of the largest graph in the family F that we want to exclude354

as topological minors.355

3.1 The FSO for CMSO-definable problems on bounded-treewidth356

graphs357

We first give an overview of our proof of Theorem 4. For every CMSO formula ψ, one can358

define a canonical equivalence relation (see Definition 12) over the set of all boundaried359

graphs. A boundaried graph is simply a graph where some vertices are called boundary360

vertices and are assigned labels from a finite label set. A graph is t-boundaried if the label361

set has size at most t. The Myhill-Nerode equivalence for ψ on boundaried graphs says that362

if we take two t-boundaried graphs G1 and G2 then they are equivalent if and only if their363

boundary labels are equal and moreover, for any t-boundaried graph whose boundary labels364

are the same as those of G1 (and hence also of G2), if we glue the graphs G1 and H along the365

boundaries by identifying equally labeled vertices and similarly, if we glue the graphs G2 and366

H along the boundaries in this way, either both resulting graphs model ψ or neither one does.367

It is known (e.g., from the proof of Courcelle’s theorem itself) that for every CMSO formula368

ψ and every t, the number of equivalence classes induced by this relation over t-boundaried369

graphs is a function of ψ and t alone (a property called finite state). This implies that there370

is an r ∈ N that depends only on ψ and t (in our context, t will be 1 plus the treewidth of the371

graph), such that both the number of equivalence classes and the length of the encoding of a372

smallest boundaried graph in each equivalence class is upper bounded by r. If ψ and t are373

fixed, then r is constant. Now, suppose that R is the set comprising a smallest boundaried374

graph from each of the equivalence classes (having fixed ψ and t) and suppose we know R.375

Our key insight is the following. Suppose we take a nice tree decomposition of the input376

graph and pick a bag. Now, consider the boundaried graph obtained by taking the graph377

induced by those vertices that appear in this bag or below it and making the vertices in the378

bag the boundary. Then, we observe that (a) this boundaried graph is equivalent to one379

of the graphs in R and (b) regardless of the element failures in this boundaried graph, the380

resulting graph will still be equivalent to one of the graphs in R. The only catch here is that381

before the query is given, one cannot know the representative of the “future” equivalence382

class. Hence, our preprocessing strategy aims to keep track, for each boundaried subgraph of383

the input graph obtained in the way we described above, all possible canonical equivalence384

classes that this graph can fall into, upon the removal of the failed vertices or edges given by385

the query in future. Our querying strategy, on the other hand, is a dynamic-programming386

algorithm. Depending on the at-most-` queried edges and vertices, we identify a set of O(`)387

STACS 2024

28:10 Decremental Sensitivity Oracles for Covering and Packing Minors

boundaried graphs that we have preprocessed and by examining the possible different ways388

in which the equivalence classes of only these specific boundaried graphs can be impacted by389

the failures, we are able to produce a correct answer to the query. This gives us Theorem 4.390

The non-uniformity comes from the assumption of knowing R.391

To overcome the non-uniformity aspect while applying Theorem 4, one must avoid the392

requirement of knowing R. Instead, it is sufficient if, for every bounded-treewidth boundaried393

graph, we could efficiently compute an equivalent (under the Myhill-Nerode equivalence)394

boundaried graph whose size is bounded by some computable function of ψ and treewidth.395

This approach, which was first introduced in order to obtain constructive versions of396

meta-algorithmic results on kernelization [26], has proved useful in several other instances in397

the literature [24, 25]. We show that this approach is indeed applicable to TM-Deletion398

and in fact our arguments suggest that it is generally applicable as long as one has an explicit399

dynamic programming algorithm on bounded-treewidth graphs. Hence, we are able to obtain400

an FSO for TM-Deletion parameterized by the deletion set size k, the treewidth of the401

input graph, and the size of the largest graph in the family F that we want to exclude as402

topological minors.403

The same idea is also used to obtain the bounds in Theorem 3. That is, we essentially404

reuse the non-uniform oracles given by the proof of Theorem 4 (while avoiding the only source405

of non-uniformity) to handle low-treewidth instances of these specific problems. We then use406

a win-win argument to extend to FSOs with explicit bounds. In the win-win argument, we407

use the fact that if the treewidth of the input graph is already high, we get a trivial oracle408

that always answers either yes or no depending on the problem.409

As an illustration, we describe the proof of the consequence for Cycle Packing in410

Corollary 2. That is, Cycle Packing has an FSO parameterized by the solution size k.411

Towards this, we first show that there is an FSO for this problem parameterized by k and412

treewidth. Let us assume that the treewidth bound is the max of treewidth and k, and let413

it be w. Then, we show that there is an FSO for this problem parameterized by w with414

preprocessing time tow(3,O(w2)) · n4 and query time tow(2,O(w2)) + `O(1). This is done by415

showing that the size of the set R and maximum size of a graph in R are computable and then416

using Theorem 4. Intuitively, the bound on the size of the set R comes from the size of the417

table at a bag when performing the standard dynamic programming over tree decompositions.418

The same fact can be used to also obtain a bound on the size of the graphs in R. That is, if419

the subgraph “rooted” at a bag is larger than some computable function of w, then one can420

find a pair of ancestor-descendant bags that have the same dynamic programming tables,421

implying that these two graphs are equivalent. Now, a standard replacement operation of422

“cutting” the subgraph below the ancestor and “pasting” the subgraph below the descendant423

gives a strictly smaller equivalent graph and this process can be repeated.424

Now, consider a general graph G. If G has treewidth greater than s(k, `) for some function425

s (from grid-minor theorem), we can conclude that G has a sufficiently large grid, implying426

sufficiently many vertex-disjoint cycles. One can argue that after removing at most ` vertices427

or edges we will still have at least k vertex-disjoint cycles and hence we will have a positive428

instance of Cycle Packing. So we simply output an oracle that always answers yes to429

any query. If G has a smaller treewidth, then we can apply the above argument for low430

treewidth graphs, giving us a preprocessing time of tow(3,O((k + `)O(1))) and a query time431

of tow(2,O((k + `)O(1))).432

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:11

3.2 The FSO for Topological Minor Deletion in general graphs433

We now give an overview of the proof of Theorem 1 assuming that we have an FSO for TM-434

Deletion parameterized by k, treewidth of the input graph and the size of the largest graph435

in the family F that we want to exclude as topological minors. Recall that, here the input is436

(G, k,F) and an integer `, and we want our preprocessing algorithm to essentially encode the437

answers to the input instances (G− F, k,F) of TM-Deletion for any F ⊆ V (G) ∪E(G) of438

size at most ` such that these answers can be retrieved efficiently by the query algorithm.439

Towards the preprocessing of (G, k,F) we use the results about “irrelevant vertices” for the440

TM-Deletion problem by Fomin et al. [25]. As these irrelevant vertex results are for the441

vertex deletion problem, as a first step we construct an “equivalent” instance (G′, k,F ′) for442

the FSO, where all the edge failures in the original instance can be replaced with appropriate443

vertex failures in the new instance. This allows to restrict ourselves to handling vertex444

failures alone. More formally, for each H ∈ F , we define H ′ to be the graph obtained from445

H by adding three pendant (i.e., degree-1) vertices adjacent to each vertex v of H. Then, we446

set F ′ = {H ′ : H ∈ F}. The graph G′ is constructed from G as follows. First we subdivide447

each edge in G. For each e ∈ E(G), let ue be the subdivision vertex in G′ corresponding to448

e. Then for each vertex v ∈ V (G) we add three pendant vertices adjacent to v. Then, each449

edge e failing in G can be thought of as a vertex ue failing in G′. We prove that it is enough450

to give a vertex FSO for the instance (G′, k,F ′). Then, the preprocessing algorithm A uses451

the template of Fomin et al. [25] which in turn was built on the approach introduced by452

Robertson and Seymour for Disjoint Paths [45]. Their approach has found applications in453

many significant results in the area [28, 30, 34, 31, 33, 36, 35, 32, 27]. In the template of454

Fomin et al. [25], we have three exhaustive cases.455

Case 1. The treewidth of the input graph G is upper bounded by a function of k, `, and F ′.456

In this case we use our fault-tolerance oracle for TM-Deletion parameterized by k, F ′457

and the treewidth which we have outlined in the previous subsection.458

Case 2. The input graph G has a clique minor whose size is lower bounded by a computable459

function of k, `, and F ′. In this case Fomin et al. [25] gave an algorithm to find an460

irrelevant vertex v with respect to “any” vertex deletion set of size k+ `. That is, for any461

vertex subset S ⊆ V (G′), the topological minors of size at most δ in G−S and G−S− v462

are same. Here, we set δ to be the maximum size of a graph in F ′.463

Case 3. Case 1 and 2 are not applicable. In this case the “weak structure theorem” [45]464

implies that the graph G contains a “large flat wall”. Here, large means that its size is465

lower bounded by a function of k, `, and F ′. In this case as well Fomin et al. [25] gave an466

algorithm to find an irrelevant vertex v with respect to “any” vertex deletion set of size467

k + `.468

In our preprocessing algorithm, as long as Case 2 or Case 3 is applicable, we delete the469

irrelevant vertices computed and finally we end up with a graph with bounded treewidth,470

which places us in Case 1, which we have described how to handle.471

Corollaries of Theorem 1.472

We now argue that the assertions made in Corollary 2 hold.473

I Proposition 14 ([2, 38]). For every η ∈ N, there is a set Fη of graphs such that a graph474

has treewidth at most η if and only if it excludes the graphs in Fη as a minor.475

We also require the following simple fact.476

STACS 2024

28:12 Decremental Sensitivity Oracles for Covering and Packing Minors

I Proposition 15. For every family F of graphs, there is a set F ′ of graphs such that any477

graph contains a minor model of a graph from F if and only if it contains a topological-minor478

model of a graph from F ′.479

We note that the families Fη in Proposition 14 and F ′ in Proposition 15 are constructive.480

In combination with these two propositions, Theorem 1 implies the first two statements of481

Corollary 2. That is, η-treewidth modulator is precisely TM-Deletion where the family482

F ′ of forbidden topological minors is obtained by first using η as “input” to Proposition 14 to483

obtain Fη, and then plugging in Fη as input to Proposition 15 to obtain the required family484

F ′. Similarly, Minor Deletion where F is the family of graphs to exclude as minors can be485

written as TM-Deletion, where the forbidden family of topological minors is obtained by486

plugging F in to Proposition 15. We now proceed to the remaining statements of Corollary 2.487

Let us now consider the dual problem to TM-Deletion, i.e., Topological Minor488

Packing (TM-Packing), which is formally defined as follows.489

490

Input: An undirected graph G, a family of undirected graphs F such that every graph
in F has at most h∗ vertices, and an integer k.

Parameter: k + h∗.
Problem: Does there exist k vertex-disjoint topological-minor models of graphs in F?

Topological Minor Packing (TM-Packing)

491

492

I Theorem 16. TM-Packing has an FSO.493

Proof. Let (G,F , k, `) be the input of TM-Packing. Now we define a family F ′ as follows.494

F ′ = {H | ∃H1, . . . ,Hk ∈ F : H is the disjoint union of H1, . . . ,Hk}

Then, notice that any subgraph of G contains k vertex-disjoint topological-minor models495

from F if and only if the same subgraph of G contains a graph from F ′ as topological minor.496

Moreover, |F ′| ≤ |F|k and the largest graph in F ′ has size at most k · h(F).497

Now, we are ready to give an FSO (A,Q) for TM-Packing by using an FSO (A′,Q′)498

for TM-Deletion (Theorem 1) as a subroutine.499

The preprocessing algorithm A: Let the input to A be an instance (G,F , k) of
TM-Packing and ` ∈ N0.

Step 1: Construct the family F ′ defined above.

Step 2: Run the algorithm A′ on input (G,F ′, 0) and ` and return its output.

This completes the description of the preprocessing algorithm.500

The query algorithm Q: Let the input be F ⊆ V (G) ∪ E(G).

Step 1: Use the query algorithm Q′ to decide whether (G− F,F ′, 0) is a yes-instance of
TM-Deletion.

Step 2: If Q′ answers YES, then Q answers NO. Else, Q answers YES.

This completes the description of the query algorithm.501

Notice that the family F ′ can be computed in time bounded by a function of h(F) + k.502

Moreover, since (A′,Q′) is an FSO for TM-Deletion, it follows that A′ is an FPT algorithm503

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:13

parameterized by h(F ′)+k ≤ k ·(h(F)+1). Since these are the only two steps in A, it follows504

that A is also an FPT algorithm parameterized by h(F) + k. Similarly, since Q′ runs in time505

f ′(h(F) + k) for some computable function f ′, it follows that Q runs in time f(h(F ′) + k)506

for some computable function f . Finally, the correctness of the pair (A,Q) follows from507

the fact that for every F ⊆ V (G) ∪ E(G), the instance (G− F,F , k) of TM-Packing is a508

yes-instance if and only if the instance (G− F,F ′, 0) of TM-Deletion is a no-instance. J509

Finally, notice that Long Path and Long Cycle are both special cases of TM-packing.510

Hence, the final statement of Corollary 2 can also be obtained as a consequence of Theorem 1.511

3.3 Edge FSOs parameterized by treewidth alone512

We employ the same high-level approach as that used for Theorem 4 (see Section 3.1).513

However, instead of considering equivalence among boundaried graphs, we aim to identify514

equivalent sets of failure edges for the boundaried graph obtained at each bag. This idea can515

be summarized as follows. First, assume that the problem satisfies certain properties that are516

typically satisfied by problems for which there is an explicit dynamic programming algorithm517

over a given tree decomposition. This includes well-known problems such as Vertex Cover518

and Dominating Set. Further, suppose that when any set of ` edges are deleted below a519

bag B and we were to re-run the dynamic programming algorithm on the graph induced by520

the vertices in this bag and its descendants, then the dynamic programming table computed521

at the bag B is only a “small” perturbation of the dynamic programming table that was522

initially computed at this bag. In our context, “small” simply means that the entries in the523

cells change (either increase or decrease) by at most `. For instance, in the case of Vertex524

Cover, deleting ` edges will not change any of the partial solutions by more than `. Now,525

since the size of the bag is bounded by the treewidth, this implies a bounded number of526

equivalence classes for the set of all edge failures of size at most `. This fact is then used to527

keep a representative of each equivalence class and also a solution corresponding to them.528

Finally, we show how the query algorithm can identify the equivalence class of the given529

query efficiently.530

Formally, we prove the result below. The terms in the theorem statement build upon the531

notation of Garnero et al. [26] and are explained in the subsequent paragraphs.532

I Theorem 17. Consider a subset problem Π. If Π has an encoder ξ that admits a gap533

function g, a gap signature computation algorithm, an FPT exact algorithm, and Π is DP534

effective, then Π admits an edge FSO parameterized by the treewidth.535

Here, a parameterized graph problem Π is called a subset problem if there exists a language536

LΠ associated with Π that comprises of pairs (G,S) where, for every graph G and S ⊆ V (G),537

(G,S) ∈ LΠ if and only if S is a solution to Π on G.538

The following definitions encapsulate the idea of the standard dynamic programming539

algorithms on treewidth. The boundary of G will be a bag of the tree decomposition so the540

vertices of the boundary will be the only way that some solution S can “interact” with the541

rest of the graph. C(|Λ(G)|) represents the space of possible interactions and S is compatible542

with some encoding R from this space if it does in fact interact as specified by R.543

I Definition 18 (Encoder). Consider a subset problem Π. An encoder ξ of Π is a pair (C, LC),544

where:545

1. C : N0 → 2Σ∗ is a computable function, , with C(0) = ε. Here, Σ is some finite alphabet546

depending on Π.547

STACS 2024

28:14 Decremental Sensitivity Oracles for Covering and Packing Minors

2. LC is a language that comprises of triples (G,S,R), where G is a boundaried graph,548

S ⊆ V (G), and R ∈ C(|Λ(G)|). If (G,S,R) ∈ LC, then we say that S is compatible with549

R under ξ.550

3. For every 0-boundaried graph G and S ⊆ V (G), the triple (G,S, ε) ∈ LC if and only if551

(G,S) ∈ LΠ.552

For example, an encoder of Vertex Cover sets C(k) to the power set of [k] representing553

subsets of the boundary and (G,S,R) ∈ LC iff S is a vertex cover of G and S ∩ ∂(G) ⊇ R.554

That is S is compatible with R when S “agrees” with R on the boundary. Thus, the encoder555

describes the space that the dynamic programming is over.556

We now define the function that such a dynamic programming algorithm would calculate.557

I Definition 19 (Family of nice functions associated to an encoder). Consider a subset problem
Π with an encoder ξ = (C, LC). For a boundaried graph G, we define a nice function
ηξG : C(|Λ(G)|)→ N0 as follows: For every R ∈ C(|Λ(G)|),

ηξG(R) =
{
|V (G)|+ 1 if {S : (G,S,R) ∈ LC} = ∅
min{|S| : (G,S,R) ∈ LC} otherwise.

Note that since min{|S| : (G,S, ε) ∈ LC} = min{|S| : (G,S) ∈ LΠ}, this means that for558

all p ∈ N, ηξG(ε) ≤ p iff (G, p) ∈ Π.559

Continuing our Vertex Cover example, if ξ is the encoder described above, then ηξG(R)560

is the size of the minimum vertex cover of G that contains every vertex from R. In the561

standard dynamic programming algorithm for Vertex Cover parameterized by treewidth,562

the table entry indexed by some x ∈ V (T) and R ⊂ β(x) is exactly ηξ
G↓x

(R).563

We now wish to bound how much the answer can change due to edge failures. For564

example, in Vertex Cover the size of the solution will never decrease by more than the565

number of edge failures.566

I Definition 20 (Gap function for encoder). Consider a subset problem Π with an encoder
ξ = (C, LC). We say that ξ admits a gap function g : N→ N, if for every boundaried graph
G, for every F ⊆ E(G), and for every R ∈ C(|Λ(G)|), we have

|ηξG(R)− ηξG−F (R)| ≤ g(|F |).

From now onwards we will consider a subset problem Π and assume it has an encoder ξ that567

admits a gap function g.568

I Definition 21 (Gap signature). For all boundaried graphs G, and sets F ⊆ E(G), the
gap signature of F in G is the function σFG : C(|Λ(G)|)→ {−g(|F |), . . . g(|F |)}, defined as
follows: for every R ∈ C(|Λ(G)|),

σFG(R) = ηξG(R)− ηξG−F (R).

Bounding the amount the answer changes allows us to keep track of exactly how much569

the answer changes for each failure set with the gap signature. However, notice that the570

number of possible gap signatures for any set F ⊆ E(G) is (2g(|F |) + 1)|C(|Λ(G)|)|, that is it571

only depends on the size of boundary of G and the size of F . Being able to calculate the gap572

signature will be a key part of our algorithm.573

I Definition 22 (Gap signature computation algorithm). A gap signature computation al-574

gorithm takes as an input (i) a graph G, (ii) a nice tree decomposition of G, (T, β) with575

width k, (iii) a node x ∈ V (T), and (iv) a set of edges, F ⊆ E(G↓x,T) of size `, runs in time576

fgs(k, `)nO(1) and outputs σF
G↓
x,T

, where fgs is a computable function.577

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:15

Since we are mostly interested in the gap signature of a given failure set we introduce the578

following equivalence relation.579

I Definition 23 (Equivalence relation ≡G). For all boundaried graphs G, and sets F1, F2 ⊆580

E(G), we say that F1 ≡G F2 if and only if all of the following statements hold.581

1. σF1
G = σF2

G . That is, for every R ∈ C(|Λ(G)|), σF1
G (R) = σF2

G (R).582

2. F1 ∩
(
∂(G)

2
)

= F2 ∩
(
∂(G)

2
)
, that is, F1 and F2 coincide on the set of edges with both583

endpoints in ∂(G).584

3. |F1| = |F2|.585

Since there are only a small number of possible gap signatures, there are also not many586

equivalence classes. More precisely, if the sets F1 and F2 are of size at most ` then there587

are at most O(`|∂(G)|2) equivalence classes for each gap signature. We would like to exploit588

this by pre-calculating solutions on one element from each equivalence class. To this end we589

define a set consisting of exactly one element from each equivalence class.590

In the following, for a set X and ` ∈ N, by P`(X), we denote the set of all the subsets591

of X of size at most `. Given a nice tree decomposition (T, β), for all (u, v) ∈ E(G) let592

Highest((u, v)) be the unique highest node t in T such that β(t) contains both u and v.593

For each x ∈ V (T), we define χ(x) = {e ∈ E(G) : x = Highest(e)} and χ↓(x) = ∪y≺xχ(y).594

Note that χ(x) ⊆ E(G[β(x)]) and χ↓(x) ⊆ E(G↓x). Also χ is a partition of E(G), that is595

χ(x) ∩ χ(y) = ∅ for all x 6= y and χ↓(root(T)) = ∪x∈V (T)χ(x) = E(G).596

I Definition 24 (Type representative family). Consider a graph G, a nice tree decomposition597

(T, β) of G, and ` ∈ N. For every node x ∈ V (T), we define a type representative family598

<(x) ⊆ P`(χ↓(x)) such that:599

1. For every F1, F2 ∈ <(x), if F1 ≡G↓x F2 then F1 = F2, and600

2. For every F ∈ P`(χ↓(x)), there exists F ′ ∈ <(x) such that F ′ ≡G↓x F .601

Note that since χ↓(root(T)) = E(G↓root(T)) = E(G), <(root(T)) contains a representative from
each equivalence class of failure sets. Also note that if F1 ⊆ χ(x) then, for all F2 ∈ P`(χ↓(x)),
we have F1 ≡G↓x F2 if and only if F1 = F2 so P`(χ(x)) ⊆ <(x). Let

fR(k, `) = ` · k2 · (2g(`) + 1)|C(k)|

then the size of <(x) is at most O(fR(k, `)) where k is the width of (T, β). However there602

are O(n`) possible failure sets that could be in <(x) which is too many to calculate a603

representative from each equivalence class by brute force. So we will split the failure set604

into smaller subproblems and use the following property to calculate the representatives by605

dynamic programming. Intuitively this says that, when doing dynamic programming on the606

treewidth, the equivalence ‘carries through’, that is, if we have some representatives of the607

equivalence classes of the failure set below y1 and y2 rather than the actual failure set, we608

can use these to construct a representative of the whole failure set below x.609

I Definition 25 (DP effective). We say that our subset problem Π is DP effective if, for610

every graph G, and nice tree decomposition (T, β) of G, the following holds: For every611

x, y1, y2 ∈ V (T) such that x is a common ancestor of y1 and y2, and for every Fx ⊆ χ(x),612

F1, F
∗
1 ⊆ χ↓(y1), and F2, F

∗
2 ⊆ χ↓(y2), it holds that if F ∗1 ≡G↓y1

F1 and F ∗2 ≡G↓y2
F2 , then613

(Fx ∪ F1 ∪ F2) ≡G↓x (Fx ∪ F ∗1 ∪ F ∗2).614

From now onwards we will work on a given graph G, and failure set size `, and assume615

we know a nice tree decomposition (T, β) of G of width at most k and size O(kn) = O(n2).616

The following lemma shows that we can calculate a type representative family for each node617

STACS 2024

28:16 Decremental Sensitivity Oracles for Covering and Packing Minors

quickly. Recall that fR(k, `) is a bound on the size of any such family and that fgs(k, `) is618

the superpolynomial component of the runtime of the gap signature computation algorithm.619

The proof can be found in the appended full version.620

I Lemma 26. If Π admits a gap signature computation algorithm and is DP effective, then621

we can compute a type representative family <(x) for all x ∈ V (T) in time 2k2 · fR(k, `)3 ·622

fgs(k, `) · nO(1).623

We now have, at each node x ∈ V (T), a small set of possible failure sets that together624

cover every equivalence class. The only remaining obstacle is that we cannot calculate which625

of these edge sets is equivalent to our actual failure set at query time since the gap signature626

computation algorithm is too slow. To this end we define the following tables. Together with627

DP effectiveness they will allow us to calculate a representative of the true failure set from628

the bottom up.629

I Definition 27. Suppose <(x) is a type representative family for all x ∈ V (T). Let x, y1,630

y2 ∈ V (T) such that x is an ancestor of y1 and y2 and x 6= y1. Then, for every set Fx ⊆ χ(x),631

F1 ∈ <(y1), and F2 ∈ <(y2) we define the following.632

1. H1[x, y1, Fx, F1] = Qx, where Fx ∪ F1 ≡G↓x Qx and Qx ∈ <(x).633

2. If y1 6= y2 and x is the lowest common ancestor of y1 and y2, then define634

H2[x, y1, y2, Fx, F1, F2] = Qx, where Fx ∪ F1 ∪ F2 ≡G↓x Qx and Qx ∈ <(x).635

I Lemma 28. If Π admits a gap signature computation function and is DP effective, then the636

tables H1 and H2 described in Definition 27 can be filled in time 2k2 ·fR(k, `)3 ·fgs(k, `) ·nO(1).637

Moreover, H1 and H2 both have size at most 2k2 · fR(k, `)2 · nO(1).638

Finally we will need to use an exact algorithm for the problem on the original graph as a639

black box. This is a very weak assumption since an FSO is itself an exact algorithm (simply640

call it with F = ∅) so we expect an exact algorithm to be easier to obtain than an FSO.641

I Definition 29. An FPT exact algorithm takes as input a graph G and a nice tree decom-642

position of G, with width k, runs in time fopt(k)nO(1) and outputs ηξG(ε).643

4 Concluding remarks644

Parameterized sensitivity oracles provide a fertile middle ground of study between static645

FPT algorithms (where many problems are well-understood) and dynamic FPT algorithms646

(where many problems turn out to be hard) and deserve a thorough exploration. Along with647

the work of Bilò et al. [6], Alman and Hirsch [3] and Pilipczuk et al. [44], this paper furthers648

our understanding of the capabilities of state-of-the-art algorithm design techniques used in649

parameterized complexity. Indeed, Alman and Hirsch [3] in their paper ask whether there650

examples of techniques other than extensor coding, that are used to solve static versions651

of parameterized problems and which can be used to design faster dynamic algorithms or652

sensitivity oracles. Our three main results (Theorem 4, Theorem 1 and Theorem 17) provide653

useful classification tools to study other problems in this framework and importantly, gives a654

road map for obtaining explicit bounds. The possibility of obtaining similar classification655

results in the fully dynamic setting is a natural direction for future work.656

Acknowledgements.657

We thank anonymous reviewers for the pointers to [18, 37].658

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:17

References659

1 Karl Abrahamson and Michael Fellows. Finite automata, bounded treewidth and well-660

quasiordering. In Graph structure theory (Seattle, WA, 1991), volume 147 of Contemp. Math.,661

pages 539–563, Providence, RI, 1993. Amer. Math. Soc. URL: http://dx.doi.org/10.1090/662

conm/147/01199, doi:10.1090/conm/147/01199.663

2 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proceedings664

of the 19th annual ACM-SIAM symposium on Discrete algorithms (SODA 2008), pages 641–650.665

SIAM, 2008. URL: http://portal.acm.org/citation.cfm?id=1347082.1347153.666

3 Josh Alman and Dean Hirsch. Parameterized sensitivity oracles and dynamic algorithms using667

exterior algebras. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,668

49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July669

4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl - Leibniz-670

Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.9, doi:671

10.4230/LIPIcs.ICALP.2022.9.672

4 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized673

problems and algorithms. ACM Trans. Algorithms, 16(4):45:1–45:46, 2020. URL: https:674

//doi.org/10.1145/3395037, doi:10.1145/3395037.675

5 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable676

graphs. Journal of Algorithms, 12:308–340, 1991.677

6 Davide Bilò, Katrin Casel, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, J. A. Gregor678

Lagodzinski, Martin Schirneck, and Simon Wietheger. Fixed-parameter sensitivity oracles.679

In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference,680

ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs,681

pages 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https:682

//doi.org/10.4230/LIPIcs.ITCS.2022.23, doi:10.4230/LIPIcs.ITCS.2022.23.683

7 Václav Blazej, Pratibha Choudhary, Dusan Knop, Jan Matyás Kristan, Ondrej Suchý, and684

Tomás Valla. Constant factor approximation for tracking paths and fault tolerant feed-685

back vertex set. In Jochen Könemann and Britta Peis, editors, Approximation and On-686

line Algorithms - 19th International Workshop, WAOA 2021, Lisbon, Portugal, Septem-687

ber 6-10, 2021, Revised Selected Papers, volume 12982 of Lecture Notes in Computer Sci-688

ence, pages 23–38. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-92702-8_2,689

doi:10.1007/978-3-030-92702-8_2.690

8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.691

SIAM J. Comput., 25(6):1305–1317, 1996.692

9 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,693

and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. URL:694

http://dl.acm.org/citation.cfm?id=2973749.695

10 Mikolaj Bojanczyk. Separator logic and star-free expressions for graphs. CoRR, abs/2107.13953,696

2021. URL: https://arxiv.org/abs/2107.13953, arXiv:2107.13953.697

11 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time698

algorithms from predicate calculus descriptions of problems on recursively constructed graph699

families. Algorithmica, 7:555–581, 1992.700

12 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Ilias Diakonikolas,701

David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT702

Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,703

2018, pages 151–164. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188902, doi:704

10.1145/3188745.3188902.705

13 Jiehua Chen, Wojciech Czerwinski, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,706

Wojciech Nadara, Marcin Pilipczuk, Michal Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski,707

and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to708

detecting long paths and cycles. In Dániel Marx, editor, Proceedings of the 2021 ACM-709

SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,710

STACS 2024

http://dx.doi.org/10.1090/conm/147/01199
http://dx.doi.org/10.1090/conm/147/01199
http://dx.doi.org/10.1090/conm/147/01199
http://dx.doi.org/10.1090/conm/147/01199
http://portal.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.4230/LIPIcs.ICALP.2022.9
http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.9
http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.9
http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.9
https://doi.org/10.1145/3395037
https://doi.org/10.1145/3395037
https://doi.org/10.1145/3395037
http://dx.doi.org/10.1145/3395037
https://doi.org/10.4230/LIPIcs.ITCS.2022.23
https://doi.org/10.4230/LIPIcs.ITCS.2022.23
https://doi.org/10.4230/LIPIcs.ITCS.2022.23
http://dx.doi.org/10.4230/LIPIcs.ITCS.2022.23
https://doi.org/10.1007/978-3-030-92702-8_2
http://dx.doi.org/10.1007/978-3-030-92702-8_2
http://dl.acm.org/citation.cfm?id=2973749
https://arxiv.org/abs/2107.13953
http://arxiv.org/abs/2107.13953
https://doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.1145/3188745.3188902

28:18 Decremental Sensitivity Oracles for Covering and Packing Minors

2021, pages 796–809. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.50,711

doi:10.1137/1.9781611976465.50.712

14 B. Courcelle. The monadic second-order logic of graphs. III. Tree-decompositions, minors and713

complexity issues. RAIRO Inform. Théor. Appl., 26(3):257–286, 1992.714

15 B. Courcelle. The expression of graph properties and graph transformations in monadic715

second-order logic. In Handbook of graph grammars and computing by graph transformation,716

Vol. 1, pages 313–400. World Sci. Publ, River Edge, NJ, 1997. URL: http://dx.doi.org/10.717

1142/9789812384720_0005, doi:10.1142/9789812384720_0005.718

16 Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite719

graphs. Inform. and Comput., 85:12–75, 1990.720

17 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A721

Language-Theoretic Approach. Cambridge University Press, 2012.722

18 Bruno Courcelle and R. Vanicat. Query efficient implementation of graphs of bounded723

clique-width. Discret. Appl. Math., 131(1):129–150, 2003. URL: https://doi.org/10.1016/724

S0166-218X(02)00421-3, doi:10.1016/S0166-218X(02)00421-3.725

19 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin726

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.727

URL: https://doi.org/10.1007/978-3-319-21275-3, doi:10.1007/978-3-319-21275-3.728

20 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin729

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.730

21 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.731

Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.732

22 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.733

Texts in Computer Science. Springer, 2013.734

23 Zdenek Dvorák, Martin Kupec, and Vojtech Tuma. A dynamic data structure for MSO735

properties in graphs with bounded tree-depth. In Andreas S. Schulz and Dorothea Wagner,736

editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland,737

September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science,738

pages 334–345. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44777-2_28,739

doi:10.1007/978-3-662-44777-2_28.740

24 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket Saurabh.741

Solving d-sat via backdoors to small treewidth. In Piotr Indyk, editor, Proceedings of the742

Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,743

CA, USA, January 4-6, 2015, pages 630–641. SIAM, 2015. URL: https://doi.org/10.1137/744

1.9781611973730.43, doi:10.1137/1.9781611973730.43.745

25 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.746

Hitting topological minors is FPT. In Konstantin Makarychev, Yury Makarychev, Madhur747

Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM748

SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-749

26, 2020, pages 1317–1326. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384318,750

doi:10.1145/3357713.3384318.751

26 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear752

kernels via dynamic programming. SIAM J. Discret. Math., 29(4):1864–1894, 2015. URL:753

https://doi.org/10.1137/140968975, doi:10.1137/140968975.754

27 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological755

subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on Theory756

of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 479–488, 2011. URL:757

http://doi.acm.org/10.1145/1993636.1993700, doi:10.1145/1993636.1993700.758

28 Martin Grohe, Ken-ichi Kawarabayashi, and Bruce A. Reed. A simple algorithm for the759

graph minor decomposition - logic meets structural graph theory. In Proceedings of the760

Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New761

https://doi.org/10.1137/1.9781611976465.50
http://dx.doi.org/10.1137/1.9781611976465.50
http://dx.doi.org/10.1142/9789812384720_0005
http://dx.doi.org/10.1142/9789812384720_0005
http://dx.doi.org/10.1142/9789812384720_0005
http://dx.doi.org/10.1142/9789812384720_0005
https://doi.org/10.1016/S0166-218X(02)00421-3
https://doi.org/10.1016/S0166-218X(02)00421-3
https://doi.org/10.1016/S0166-218X(02)00421-3
http://dx.doi.org/10.1016/S0166-218X(02)00421-3
https://doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-44777-2_28
http://dx.doi.org/10.1007/978-3-662-44777-2_28
https://doi.org/10.1137/1.9781611973730.43
https://doi.org/10.1137/1.9781611973730.43
https://doi.org/10.1137/1.9781611973730.43
http://dx.doi.org/10.1137/1.9781611973730.43
https://doi.org/10.1145/3357713.3384318
http://dx.doi.org/10.1145/3357713.3384318
https://doi.org/10.1137/140968975
http://dx.doi.org/10.1137/140968975
http://doi.acm.org/10.1145/1993636.1993700
http://dx.doi.org/10.1145/1993636.1993700

L. Kanesh, F. Panolan, M. S. Ramanujan, P. Strulo 28:19

Orleans, Louisiana, USA, January 6-8, 2013, pages 414–431. SIAM, 2013. URL: https:762

//doi.org/10.1137/1.9781611973105.30, doi:10.1137/1.9781611973105.30.763

29 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.764

SIAM J. Comput., 13(2):338–355, 1984. URL: https://doi.org/10.1137/0213024, doi:765

10.1137/0213024.766

30 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization767

algorithm. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete768

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1802–1811, 2014.769

31 Naonori Kakimura and Ken-ichi Kawarabayashi. Fixed-parameter tractability for subset770

feedback set problems with parity constraints. Theor. Comput. Sci., 576:61–76, 2015. URL:771

https://doi.org/10.1016/j.tcs.2015.02.004, doi:10.1016/j.tcs.2015.02.004.772

32 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th Annual773

IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,774

Atlanta, Georgia, USA, pages 639–648. IEEE Computer Society, 2009. URL: https://doi.775

org/10.1109/FOCS.2009.45, doi:10.1109/FOCS.2009.45.776

33 Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for the subset777

feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B, 102(4):1020–778

1034, 2012. URL: https://doi.org/10.1016/j.jctb.2011.12.001, doi:10.1016/j.jctb.779

2011.12.001.780

34 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem781

in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012. URL: https://doi.org/782

10.1016/j.jctb.2011.07.004, doi:10.1016/j.jctb.2011.07.004.783

35 Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd cyles784

transversal. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete785

Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 365–378. SIAM, 2010.786

URL: https://doi.org/10.1137/1.9781611973075.31, doi:10.1137/1.9781611973075.31.787

36 Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with788

parity conditions. In IEEE 52nd Annual Symposium on Foundations of Computer Science,789

FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 27–36. IEEE Computer790

Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.52, doi:10.1109/FOCS.2011.52.791

37 Wojciech Kazana. Query evaluation with constant delay. (L’évaluation de requêtes avec un792

délai constant). PhD thesis, École normale supérieure de Cachan, Paris, France, 2013. URL:793

https://tel.archives-ouvertes.fr/tel-00919786.794

38 Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,795

Ser. B, 73(1):7–40, 1998. URL: https://doi.org/10.1006/jctb.1997.1788, doi:10.1006/796

jctb.1997.1788.797

39 Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Efficient algorithms for constructing798

fault-tolerant geometric spanners. In Proceedings of the Thirtieth Annual ACM Symposium799

on Theory of Computing, STOC ’98, pages 186–195, New York, NY, USA, 1998. Association800

for Computing Machinery. URL: https://doi.org/10.1145/276698.276734, doi:10.1145/801

276698.276734.802

40 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties803

is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. URL: https://doi.org/10.1016/804

0022-0000(80)90060-4, doi:10.1016/0022-0000(80)90060-4.805

41 William Lochet, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, Roohani Sharma,806

and Meirav Zehavi. Fault tolerant subgraphs with applications in kernelization. In Thomas807

Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,808

January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 47:1–47:22.809

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/810

LIPIcs.ITCS.2020.47, doi:10.4230/LIPIcs.ITCS.2020.47.811

42 Konrad Majewski, Michal Pilipczuk, and Marek Sokolowski. Maintaining cmso properties812

on dynamic structures with bounded feedback vertex number. In Petra Berenbrink, Pa-813

STACS 2024

https://doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1137/1.9781611973105.30
http://dx.doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1137/0213024
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1137/0213024
https://doi.org/10.1016/j.tcs.2015.02.004
http://dx.doi.org/10.1016/j.tcs.2015.02.004
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
http://dx.doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/j.jctb.2011.12.001
http://dx.doi.org/10.1016/j.jctb.2011.12.001
http://dx.doi.org/10.1016/j.jctb.2011.12.001
http://dx.doi.org/10.1016/j.jctb.2011.12.001
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
http://dx.doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1137/1.9781611973075.31
http://dx.doi.org/10.1137/1.9781611973075.31
https://doi.org/10.1109/FOCS.2011.52
http://dx.doi.org/10.1109/FOCS.2011.52
https://tel.archives-ouvertes.fr/tel-00919786
https://doi.org/10.1006/jctb.1997.1788
http://dx.doi.org/10.1006/jctb.1997.1788
http://dx.doi.org/10.1006/jctb.1997.1788
http://dx.doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1145/276698.276734
http://dx.doi.org/10.1145/276698.276734
http://dx.doi.org/10.1145/276698.276734
http://dx.doi.org/10.1145/276698.276734
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.4230/LIPIcs.ITCS.2020.47
https://doi.org/10.4230/LIPIcs.ITCS.2020.47
https://doi.org/10.4230/LIPIcs.ITCS.2020.47
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.47

28:20 Decremental Sensitivity Oracles for Covering and Packing Minors

tricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International814

Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023,815

Hamburg, Germany, volume 254 of LIPIcs, pages 46:1–46:13. Schloss Dagstuhl - Leibniz-816

Zentrum f"ur Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.STACS.2023.46,817

doi:10.4230/LIPIcs.STACS.2023.46.818

43 Pranabendu Misra. On fault tolerant feedback vertex set. CoRR, abs/2009.06063, 2020. URL:819

https://arxiv.org/abs/2009.06063, arXiv:2009.06063.820

44 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre821

Vigny. Algorithms and data structures for first-order logic with connectivity under vertex822

failures. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th823

International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8,824

2022, Paris, France, volume 229 of LIPIcs, pages 102:1–102:18. Schloss Dagstuhl - Leibniz-825

Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.102,826

doi:10.4230/LIPIcs.ICALP.2022.102.827

45 Neil Robertson and Paul D. Seymour. Graph minors .XIII. the disjoint paths problem. J.828

Comb. Theory, Ser. B, 63(1):65–110, 1995. URL: https://doi.org/10.1006/jctb.1995.1006,829

doi:10.1006/jctb.1995.1006.830

46 Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles831

for large batch updates. In David Zuckerman, editor, 60th IEEE Annual Symposium on832

Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,833

2019, pages 424–435. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.834

2019.00034, doi:10.1109/FOCS.2019.00034.835

47 Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles for836

large batch updates. CoRR, abs/1907.07982, 2019. URL: http://arxiv.org/abs/1907.07982,837

arXiv:1907.07982.838

https://doi.org/10.4230/LIPIcs.STACS.2023.46
http://dx.doi.org/10.4230/LIPIcs.STACS.2023.46
https://arxiv.org/abs/2009.06063
http://arxiv.org/abs/2009.06063
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034
http://dx.doi.org/10.1109/FOCS.2019.00034
http://arxiv.org/abs/1907.07982
http://arxiv.org/abs/1907.07982

	1 Introduction
	1.1 Our contributions I: FSOs for vertex deletion problems
	1.2 Our contributions II: A meta-theorem for efficient FSOs
	1.3 Our contributions III: Edge FSOs parameterized only by treewidth
	1.4 Related work

	2 Preliminaries
	2.1 Graphs
	2.2 Counting Monadic Second Order Logic

	3 Technical overview
	3.1 The FSO for CMSO-definable problems on bounded-treewidth graphs
	3.2 The FSO for Topological Minor Deletion in general graphs
	3.3 Edge FSOs parameterized by treewidth alone

	4 Concluding remarks

