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a b s t r a c t

A common goal of kinematic studies on disordered speech is the identification of speech motor impairments that

negatively impact speech function. Although it is well-known that the kinematic contours of speakers with speech

disorders often deviate considerably from those of neurotypical speakers, systematic quantitative assessments of

these impairment-related movement disturbances remain challenging. Kinematic measurement approaches are

commonly grounded in models and theories that have emerged exclusively from observations of healthy speakers.

However, often these models cannot accommodate the deviant articulatory behaviors of speakers with speech

motor impairment. In the present paper, we address this problem. By considering noise as a factor in

Articulatory Phonology/Task Dynamics (AP/TD), we can account for articulatory behaviors that are known to occur

in healthy speakers (e.g., during slow speech) as well as in speakers with motor speech impairments. In a proof of

concept, we descriptively compare modeled articulatory behaviors that include noise at various levels with empir-

ical data. We view such an extension of the AP/TD as a first step towards a more comprehensive speech produc-

tion model that can serve as a theoretical framework to study the speech production mechanism in healthy

speakers and speakers with motor speech impairments.

� 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A common goal of kinematic studies on disordered speech

is the identification of speech motor impairments that nega-

tively impact speech function (e.g., articulatory precision,

speaking rate, speech intelligibility). Although it is well-known

that the kinematic contours of speakers with motor speech

impairments often deviate considerably from those of neu-

rotypical speakers, systematic quantitative assessments of

these impairment-related movement disturbances remain chal-

lenging. One major obstacle is that traditional kinematic mea-

surement approaches are often grounded in models and

theories that have emerged exclusively from observations of

healthy speakers, which often cannot accommodate the devi-

ant articulatory behaviors of speakers with speech motor

impairment. Most importantly, speech pathologists and pho-

neticians currently cannot fully benefit from each other’s work

although their overall research goals do overlap considerably.

The large research field of speech pathology deals with

many different types of speech motor impairments. Commonly,

these investigations seek to answer questions such as “what

articulatory behaviors are essential to produce intelligible

speech?”, “how do articulatory behaviors change in response

to various speech demands (loudness, rate, speech clarity)?”,

“how do articulatory behaviors change over time due to speech

motor development, motor learning, and/or degenerative dis-

ease processes?”. Answers to these questions are critical to

an understanding of the articulatory basis of speech intelligibil-

ity, changes due to maturation, therapeutic interventions, and

neurological disorders. However, when trying to answer such

questions, fundamental problems arise in how to characterize

articulatory behaviors. For example, one major challenge is the

continuous nature of articulatory movements during running

speech. In addition, articulatory behavior is also highly variable
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across individuals. Thus, it is difficult to identify a specific seg-

ment of articulatory behavior that can serve as a basic unit of

speech and fulfil two important scientific research demands:

1) well-defined boundaries that can be reliably identified in

the kinematic signal of neurotypical speakers as well as speak-

ers with speech impairment and 2) a meaningful link to percep-

tual measures of speech (e.g., articulatory precision and

speech intelligibility).

There are very powerful speech production models for

describing speech motor control (Miller & Guenther, 2021):

One of the most promising solutions to handling highly variable

speech kinematics across speakers is the use of dynamical

systems such as Articulatory Phonology based on Task

Dynamics (henceforth AP/TD).1 By defining the articulatory

gesture as the basic unit of speech production, this theory fully

integrates discrete symbolic representations and the continuous

representations of the speech system (Browman & Goldstein,

1992; Gafos & Benus, 2006; Goldstein et al., 2006; Mücke

et al., 2020; Nam et al., 2009; Shaw et al., 2011). However, mod-

els and theories like AP/TD have been predominantly applied to

the kinematic analysis of healthy speakers, and their flexibility

has been recently described as being insufficient in accounting

for perturbed or highly noisy speech movement contours com-

monly observed in speakers with speech motor impairment

(Parrell & Lammert, 2019). This incompatibility is particularly

problematic when the goal of the kinematic investigation is to

identify articulatory deficits that negatively impact perceptual

aspects of speech.

Despite the previously described shortcomings of AP/TD for

the analysis of disordered speech, we would like to argue in

the present paper that AP/TD can serve as a useful model in

the field of motor speech disorders/clinical linguistics. One

major benefit of AP/TD is that it is a clearly defined mathemat-

ical model, which provides opportunities to test theoretically-

grounded hypotheses about impaired as well as typical articu-

latory behaviors. However, we suggest that the gestural

approach of AP/TD may require additional variables to be

included in the model to more accurately represent the wide

variety of articulatory behaviors that can be observed across

typical speakers as well as speakers with speech impairment.

As a first step, we focus on stochastic noise as a newly added

variable within the gestural model. Stochastic noise is

described as a parameter to model random fluctuations in

movement patterns in gross motor control (Haken, 1977;

Tilsen, 2022). Further, it is described as being a very useful

parameter in speech motor control, responsible for natural vari-

ability observed in surface patterns: “An essential characteris-

tic of natural speech is that it is unavoidably stochastic, and as

a consequence, no two utterances are identical” (Tilsen, 2022,

p. 15). In neurotypical speakers as well as speakers with

speech impairment, the occurrence of noise is a well-

accepted phenomenon at various levels of the motor control

process (e.g., noise within the central nervous system, noise

during execution in the periphery; Fitts, 1954). In the data of

subjects with speech impairment, the level of variability is con-

siderably higher. The question of which role stochastic noise

should play in modelling this speech behavior is hence of par-

ticular interest when dealing with impaired speech. However,

the AP/TD model in its current form does not explicitly consider

it.

The current study incorporates some tutorial elements

regarding speech as a dynamical system. It offers insights into

dynamical models to current problems in clinical linguistics and

the research of neurotypical speech. We illustrate the basics of

dynamic modeling in terms of a gestural approach to show how

the model can be used to make predictions that are related to

the observations in our kinematic signals. In a proof of concept,

we will demonstrate how the addition of stochastic noise to dif-

ferent levels of the dynamical system improves our ability to

model deviant articulatory movement patterns that are

observed in impaired speech. Specifically, we will show an

interpretation of the dynamical control parameters (e.g., stiff-

ness, target, and activation interval) as inherently noisy can

produce patterns that qualitatively resemble those of speakers

with speech motor impairment. We will also demonstrate that

the amount of noise becomes an important characteristic on

its own in this version of the model. Our goal is to extend the

AP/TD so that it can be used to make predictions about artic-

ulatory behavior when dealing with different degrees of vari-

ability that can be found in impaired speech. This type of

prediction can help to build linguistic and clinical hypotheses

and to characterize the empirical results systematically. We will

also highlight and discuss several challenges with the quantifi-

cation of articulatory behaviors to motivate AP/TD model

extensions. We conclude with a discussion of why we think

that noise at a certain level of a dynamical system model is

an appropriate approach for the study of motor speech disor-

ders as well as a wide range of articulatory behaviors in neu-

rotypical speakers that can occur under various speech

conditions.

2. The gestural model

2.1. Introducing the gestural model

One of the most intriguing questions in linguistics is how the

discrete, abstract categories of sound are related to the contin-

uous, physical manifestation of speech, such as articulatory

movements and sound waves. This question lies at the heart

of the debate around the relation between phonology and pho-

netics, a debate that has inspired the development of numer-

ous theoretical perspectives. One of these is the framework

of AP/TD, that is built upon a fundamentally dynamical descrip-

tion of language and speech (Iskarous, 2017; Iskarous &

Pouplier, 2022). The term “dynamical” is not an empty buz-

zword here, but refers to the fact that AP/TD uses dynamical

systems as the basic theoretical building blocks. The introduc-

tion of dynamics into the conceptualization of phonetics and

phonology is a groundbreaking solution to the phonetics-

phonology divide, because dynamical systems combine dis-

creteness and continuity in a non-dualistic description. This

means, that any theory that conceptualizes on the one hand

continuous phonetic patterns and on the other hand discrete

cognitive representations of phonological forms must define

a permissible range of speech output characteristics (Gafos

1 Another important model is the (GO)DIVA model, which has been transformed from a

somatosensory/auditory model into a neural imaging model over time (e.g., Miller &

Guenther, 2021). In the present paper, we aim to model kinematic contours directly in a

gestural account. It is not our aim to compare the gestural model of AP/TD with the (GO)

DIVA model.
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& Benus, 2006; Mücke et al., 2017; Roessig, 2021; Shaw et al.,

2011). In this view, many phonological processes, such as

assimilation and deletion, can be viewed as inherently contin-

uous where categorical patterns emerge at the extremes of the

continua. For example, assimilation may be conceptualized as

gestural overlap with infinite intermediate stages and complete

overlap as an extreme case (Browman & Goldstein, 1989).

An introduction to dynamical systems is beyond the scope

of this paper. Readers are referred to Fuchs (2013) for a gen-

eral introduction to dynamical systems theory and to Iskarous

(2017) for an introduction to the application of dynamical sys-

tems in AP/TD. We will, however, briefly describe the basic

concepts to create a logical flow and cohesiveness within this

paper. To get a better understanding of dynamical systems,

consider the simple differential equation _x ¼ �kx. We say that

the variable x is the state variable of the system. The equation

lets us find _x, the change in time of the system for a given state

x: In other words, it tells us for a given x, what the value of this

variable x will be in the future. If we set k, we can solve the

equation and observe how the system evolves over time.

Fig. 1 illustrates this. We use k = 0.33 and k = 1.0. Regardless

of the initial state and how we set k, the trajectories always

converge to zero. This state is the attractor of the system.

The parameter k governs how quickly the system converges

the attractor. k and the attractor at zero are time-invariant, dis-

crete parameters, but the trajectory is continuous in time.

AP/TD uses a very similar, only slightly more complicated

dynamical system to model what is at the core of the theory:

the gesture (see equation in (1)). This system is a second-

order dynamical system, and hence not only contains the

change of x, namely _x; but also the change of _x, namely €x.

We call _x the velocity of the system and €x the acceleration.

m€x þ b _x þ k x � Tð Þ ¼ 0 ð1Þ

The behavior of this system is that of a mass-spring system:

A mass m is attached to a spring with a stiffness k: Depending

on the damping b, the system will exhibit fundamentally differ-

ent patterns of behaviors. If b ¼ 0, the system will oscillate

eternally. For values of b > 0, the system will converge to a

resting position T , which is comparable with the target position.

Articulatory gestures are not well described by oscillatory

movements. That is why the damping parameter b is chosen

so that the system is critically damped (the damping constant

is b ¼
ffiffiffiffiffiffiffiffiffiffi

4mk
p

). Critically damped systems approach the resting

position without oscillations. The time history of the critically

damped system with different initial values is shown in Fig. 2

(upper panel). All parameters are constant throughout the sim-

ulations for this figure: m ¼ 1; k ¼ 1; b ¼
ffiffiffiffiffiffiffiffiffiffi

4mk
p

¼ 2;T ¼ 5:

Therefore, all trajectories converge to a single attractor at the

target T = 5, regardless of the initial state.

The lower panel of Fig. 2 shows another important aspect of

the model: Each gesture is associated with an activation inter-

val. During this interval it influences the tract variable.2 For

example, the gesture responsible for the opening of the lips in

the syllable [ba] acts on the tract variable lip aperture in the inter-

val of its activation. The activation function that turns the gesture

on and off can be integrated into the gestural equation as shown

in equation (2) (cf. Saltzman & Munhall, 1989; Sorensen &

Gafos, 2016). Note that we use the damped anharmonic oscilla-

tor put forward by Sorensen and Gafos (2016). The anharmonic

oscillator is similar to the harmonic oscillator of the original AP/

TD model; however, it offers more naturalistic velocity profiles

of the gestures than the “standard” dynamical system, and

hence, provides a solution for a long-standing problem in the

modeling details of AP/TD.

Activations may be modeled using different functions, the

simplest being a step function that abruptly changes between

“0 = no activation” and “1 = full activation”. Other proposals

include linear or sigmoidal ramping functions. In this example,

the activation function is linearly ramped in the beginning and

end of the activation interval. Note that we follow Tilsen (2018)

in calling the target T instead of x0 to avoid potential confusion

with the initial state of x (at t = 0).

m€x þ A tð Þðb _x þ k x � Tð ÞÞ ¼ 0 ð2Þ

This system describes the continuous trajectory towards an

invariant linguistic goal (moving to the point attractor at T )

while at the same time incorporating context dependency

(the different initial states). The initial states may be conceptu-

alized as different gestural environments, for example, the ton-

gue is lowered from /i/ to /e/ but raised from /a/ to /e/. In this

way, the system is able to describe coarticulation in an elegant

way (Browman & Goldstein, 1992; Hawkins, 1992).

2.2. Using the gestural model to make predictions about articulatory

behavior

One of themain advantages of amathematical model like the

gestural model is that it can be used to make predictions about

articulatory behavior. These predictions help to evaluate kine-

matic measures, to build linguistic and clinical hypotheses,

and to characterize the empirical results in a systematic way.

This section briefly demonstrates one way in which the model

makes predictions. It is inspired by work on the interplay of artic-

ulation and prosody. The ideas outlined here are, however, far

more general and extend beyond the domain of prosody

research.

Research on prosody has shown that articulatory move-

ments are influenced to a large degree by the position in the

phrase or by accentuation (Cho, 2006; Fougeron, 2001;

Krivokapić et al., 2017; Mücke & Grice, 2014; Roessig &

Mücke, 2019). These effects are quantifiable in spatial and

temporal features of the articulatory trajectories and thus to

measurable effects in the acoustic signal. In the gestural

model, these observations inspired the idea that prosody

may be able to influence the parameters of a gesture, as illus-

trated in Fig. 3. For example, a gesture may be less stiff in cer-

tain contexts, e.g., at the end of a phrase (Byrd & Saltzman,

1998). In this case, the gestural model would include a smaller

value for k (Fig. 3, middle panel). Another change could be that

the target T changes, such that when a pitch accent is placed

on a syllable, the gestures of that syllable exhibit larger ampli-

tudes and more extreme target positions (Fig. 3, left panel). A

further modification that has been described in this context is

the modification of intergestural timing. In this case, the next

2 In AP/TD, articulatory gestures determine the motions of tract variables involved in

organ groups, rather than the movement of individual articulators (Browman & Goldstein,

1992). The organ groups are organized in coordinative structures, being expressed by the

motion of the tract variable.

D. Mücke et al. / Journal of Phonetics 102 (2024) 101292 3



gesture starts earlier and truncates the gesture under investi-

gation (Fig. 3, right panel). In terms of the AP/TD model, this

change refers to the length of the gestural activation interval.3

In fact, gestural modifications are a critical component to

understanding the articulatory basis of speech and speech

changes that for example lead to intelligibility loss and gains

in speakers with speech impairment. As the gestural model

offers an elegant approach to separate phonetics from phonol-

ogy, we argue that the basic concept of gestural modifications

in typical speech can also be applied to describe impaired

speech. Before we present examples of impaired speech

and modeling approaches, we will illustrate the effects of

parameter modifications in the model on gestures in more

detail.

To better exemplify this point, let us consider how articula-

tory behavior changes when gestural parameters (i.e., stiff-

ness, target, and duration of the gestural activation interval)

are manipulated. The model provides a clear, structured way

to test the predictions by using simulations. Target modifica-

tions lead to a more or less extreme target position (or dis-

placement of the gesture). Increases in stiffness lead to an

Fig. 1. Solutions over time for the simple dynamical system _x ¼ �kx with different initial states.

Fig. 2. Evolution of AP/TD gestures with the target T = 5 and different initial states (top). Activation interval for all gestures (bottom).

3 To modify the parameter specifications of a set of articulatory gestures in the temporal

and/or spatial domain, Articulatory Phonology uses an approach involving abstract

gestures modulating temporal and spatial properties of co-active consonantal and vocalic

gestures in the domain where they are active (Byrd & Saltzman, 2003; Saltzman et al.,

2008). Modulation gestures are not directly related to any specific vocal tract actions that

are typical for the production of consonants and vowels. While the prosodic gesture (p-

gesture) affects vocal tract gestures at prosodic boundaries, the modulation gesture (m-

gesture) modifies articulation under the influence of lexical stress.

4 D. Mücke et al. / Journal of Phonetics 102 (2024) 101292



earlier achievement of the target while decreases in stiffness

result in a later achievement of the target. Consequently, dura-

tions from the trajectory onset to the target are shorter or

longer, respectively. Lastly, for intergestural timing modifica-

tion, the model suggests changes in duration as well as target

position (Fig. 3, right panel). To differentiate between the speci-

fic parameter modifications, it is important to consider the tar-

get position and the duration between onset and target in

context with each other rather than in isolation. Manipulating

relevant parameters in the model can help us to better reflect

the movement characteristics of the empirical data on the

one hand. On the other hand, we can also predict empirical

findings based on our knowledge about the impact of specific

model parameters.

But how can parameter modifications be tested in a simula-

tion process? In what follows, we present simulations in which a

range of values for each of the three parameters mentioned

above (stiffness, target, and activation duration) is tested. For

each of the parameters, we tested 21 successive values on

an increasing continuum. The code can be freely accessed

on OSF (https://osf.io/qzcsf/?view_only=6f230fecbbe6438

b85c 2bcbdc04d20f3). The procedure documents the effect of

the parameter change on the following measurements:

All of these measurements in Fig. 4 are commonly used in

articulatory research by phoneticians and speech pathologists

when identifying a movement segment such as a bilabial clo-

sure of the lips during the production of /p/ in sequences like

/apa/ or /ipi/. The annotation of the kinematic speech curves

by using single landmarks is in a broader sense equivalent

to a process of segmentation. At least in theory, single move-

ment segments can be captured by the onset and target of

the movement, the peak velocity and the related physical

descriptions of displacement, duration, acceleration phase,

and the ratio of displacement and peak velocity. The peak

velocity refers to the maximum instantaneous velocity of the

articulator while moving towards a target. The displacement

refers to the movement amplitude between the onset and tar-

get of the movement, and it captures the way the articulator

travels. The time-to-peak velocity refers to the time from the

onset to the peak velocity of a movement. The duration refers

to the temporal interval from the onset to the target of the

movement, and it captures the time the articulator travels.

The ratio of peak velocity/displacement captures the move-

ment amplitude normalized by peak velocity. It is the relative

speed of the movement (Munhall et al., 1985). In the AP/TD

framework, the time time-to-peak velocity refers to the oscilla-

tion frequency of an articulatory movement, i.e., the stiffness of

a gesture (Hawkins, 1992).4

Figs. 5–7 show the simulation results of gestures with vary-

ing values for the parameters target, stiffness, and the duration

of the activation interval. The individual panels show how peak

velocity, displacement (movement amplitude), time-to-peak

velocity (from movement onset), duration, and the ratio of peak

velocity / displacement change in response to each parameter

manipulation. Note that the offset of the gesture (i.e., the “tar-

get” that can be measured) is defined as the point where veloc-

ity falls under threshold of 0.05. In the case of gestural

activation, we manipulate the length of the activation interval

by manipulating the end of it; the start remains constant.5

The simulation results are summarized in Table 1. This table

lets us evaluate both directions: First, from parameter modifi-

cations to measurement changes; second, from measurement

changes to parameter changes. When we choose the direction

“parameter modifications to measurement changes”, we see

that each parameter modification is associated with a unique

set of changes in the measurements. When we choose the

opposite direction, “measurement changes to parameter mod-

ifications”, there is no one-to-one relation between the mea-

surement and the underlying parameter change. For

example, the duration and ratio of peak velocity/displacement

are both changed by manipulations of stiffness and activation

interval duration. This observation is particularly interesting

when comparing time-to-peak velocity to ratio of peak veloc-

ity/displacement since both have been proposed as assess-

ments of stiffness. The model simulations here show that, in

the context of the gestural model, time-to-peak velocity may

perform as a better estimation of stiffness. This is because a

change in ratio displacement/peak velocity may be caused

by a change in stiffness or, alternatively, an earlier truncation

of the gesture by a following gesture, i.e., a shorter gestural

activation interval in the simulation.

Fig. 3. Gestural modifications proposed for prosodic strengthening (cf. Cho, 2006). The dotted line shows the respective modifications: a more extreme target (left), lower stiffness

(middle) and truncation (right).

4 Stiffness is reported as an important dynamical control parameter for several temporal

and prosodic modifications in speech. A decrease in stiffness is related to a decrease in the

global articulation rate. Furthermore, stiffness is reported as a key property in prominence

marking by initiating a local slowing down within the accented syllable (de Jong, 1995;

Mücke & Grice, 2014) or to mark lexical stress (Beckman et al., 1992). In addition,

Ackermann et al. (1995) suggested that stiffness is an important factor to differentiate

between different types of speech disorders. And, last but not least, Roon et al. (2021)

suggested stiffness as a predictor for overlap in consonant clusters.
5 We tested 21 sequential values for each parameter: (i) Stiffness: [500, . . ., 1000], (ii)

Target: [0.7, . . ., 1], and (iii) Activation end point: [0.15, . . ., 0.40]. For the gestural activation,

we use a ramped function with sigmoidal increase / decrease of activation.

D. Mücke et al. / Journal of Phonetics 102 (2024) 101292 5



This short demonstration of the correlation of model param-

eters and measurable effects in kinematics illustrates a major

strength of employing a modeling approach in articulation

research. A downside to this approach is, however, that we

consider all parameters separately. Yet, they likely occur simul-

taneously in nature, which challenges the interpretation of

empirical findings. Nevertheless, the ability to manipulate

parameters in isolation and observe their impact on articulatory

behaviors provides us with a starting point of a conceptual

framework for the interpretation of the highly complex empirical

findings that we observe in empirical data. The evaluation

becomes more challenging when we consider the possibility

that multiple parameters change at the same time. The main

point, nevertheless, remains the same, it may even be

strengthened in this scenario: The model puts us in a situation

where we can make predictions about the data that we can use

to better describe and classify our empirical findings with

respect to neurotypical and impaired speech.

Fig. 4. Measurements for kinematic contours.

Fig. 5. Simulation results for target manipulation. Larger target values lead to higher peak velocities and larger displacements. The “gesture” panel gives the actual position of the

gesture for the parameter range in the simulation. The “activation” panel shows the activation interval of the gesture over time.

6 D. Mücke et al. / Journal of Phonetics 102 (2024) 101292



3. Stochasticity in the model

3.1. Using the gestural model with added noise

So far, we have treated the parameters of the model as sca-

lar values that may be prone to systematic variation, for exam-

ple, due to prosodic or other speech demands. However, it is

also plausible that for a certain pattern of impairment or proso-

dic location, parameter values are fixed. In theory, this would

result in the same movement trajectory for each realization.

Of course, this is not what we observe empirically. Indeed,

the concept of trial-to-trial variability is well-established in the

literature. Yet, the underlying sources of this variability is still

not fully understood. The notion that trial-to-trial variability

can be attributed to noise is not new but has been established

more than 60 years ago. That is, Fitts (1954) claimed that the

motor behavior always encodes “the entire receptor-neural-

effector system”. In the speech motor control literature, how-

ever, the size and shape of distributions of a specific gestural

control parameter (e.g., target) have rarely been studied (but

see Mefferd, 2019; Perkell & Cohen, 1989; Whalen & Chen,

2019). As a first step, we can account for variability in our

model by making the gestural parameters “noisy” in the simu-

lations, by randomly drawing the parameter value from a Gaus-

sian distribution.

The parameters (target, stiffness, activation duration,

activation strength) were drawn from the Gaussian distribu-

tions for each pair of opening-closing gestures. The stan-

dard deviation of the distributions governs how much

stochasticity is introduced. An increase in the standard

deviation would lead to an increase in the deviation from

the unperturbed contour (cf. Appendix 1). In an additional

simulation, noise was added to the differential equation

describing the acceleration of the gesture over time (cf.

Appendix 1). Note that we use Gaussian distributions here

as a first step; however, we acknowledge that this approach

will require further refinements in the future as noise is likely

not random but distributed in systematic ways (see Mefferd,

2019).

In this section, we use the basic unit of the AP/TD frame-

work, namely the gesture, modeled as a critically damped har-

monic oscillator to demonstrate some possible outcomes of

Fig. 6. Simulation results for stiffness manipulation. Higher stiffness values lead to higher peak velocities, shorter time-to-peak velocity lags (time2peak), higher ratios of peak velocity

to displacement, as well as shorter durations. The “gesture” panel gives the actual position of the gesture for the parameter range in the simulation. The “activation” panel shows the

activation interval of the gesture over time.
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the inclusion of stochasticity in this model. Fig. 8 shows simu-

lations of a sequence of opening and closing gestures of the

lips as they can be found in [papapa. . .]. The first four rows

of the figure show simulations with noise on the parameters

target, stiffness, activation duration and activation strength. In

these simulations, we add noise to the parameters of each

gesture before the simulation of that gesture starts. Once the

gesture evolves, these parameters are not altered in the simu-

lation anymore.

The fifth row from the top shows what happens if we add a

noise in every step of the simulation of each gesture (which

essentially renders the gestural system a non-deterministic

system, see Appendix 1). Here, the parameters are not noisy.

The sixth row shows the simulation with noise on all parts of

the model considered here: noise on the parameters target,

stiffness, activation duration, activation strength, and noise

over time to the gestural equation. The Gaussian noise distri-

butions used in the simulations are shown next to the simula-

tion panels in the inner columns (center of the figure). Note that

distributions for higher noise levels are flatter than those with

moderate noise levels (i.e., more spread in the distributions).

This means that the variance of the parameter will be greater

when the noise level is higher. More details about the simula-

tion can be found in Appendix 1. The last row, labelled “No

noise”, shows a simulation without any noise for comparison.

3.1.1. Kinematic contours: Simulations and speakers’ behavior

In the application of dynamical systems to speech kinematic

analysis, various challenges arise. This can be illustrated in

fast syllable repetition tasks, also known as oral diadochoki-

netic tasks (DDKs), such as /papapa/ or /tatata/. These tasks

elicit easily identifiable movement cycles, at least when pro-

duced by neurotypical speakers. DDKs have frequently been

used in early speech kinematic research to investigate typical

and impaired articulatory behaviors (Flanagan & Dembowski,

2002; Hertrich & Ackermann, 1997; Hirose et al., 2009;

Hixon & Hardy, 1964; Jaeger et al., 2000; Nelson et al., 1984).

Presumably, articulatory behaviors elicited during DDK

tasks should be best aligned with the kinematic description

of speech movements because they inherit well-defined

boundaries of a basic unit (e.g., movement cycle). However,

comparisons of recorded DDK data from neurotypical speak-

ers and speakers with motor speech impairment (Fig. 9) sug-

gest that the contours generated by the model incorporating

noise (Fig. 8) resemble more closely those of the patients for

mild (Fig. 9b) and moderate (Fig. 9c) dysarthria severity levels6

Fig. 7. Simulation results for activation duration manipulation. Longer activation intervals lead to larger displacements, longer durations, and lower ratios of peak velocity to

displacement. The “gesture” panel gives the actual position of the gesture for the parameter range in the simulation. The “activation” panel shows the activation interval of the gesture

over time.

6 Note that these are just examples, for a more elaborate analysis see Mücke et al.

(2018). The examples are taken from articulographic data, recorded at 1250 Hz, down

sampled to 250 Hz, and smoothed with a 3-point moving average. Velocity is calculated

after the smoothing process of the positional curves as first derivative of the respective x or

y position of the smoothed contours.
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than the contours of the model without noise. For example, the

scenario with high noise on all parameters depicts a pattern that

is visible in Fig. 9c. Even the contours of the neurotypical control

speakers show some irregularities (Fig. 9a). This is to be

expected considering that noise is also present in neurotypical

speakers. Smaller amounts of noise in general, or the applica-

tion of noise only at the level of the parameters target, stiffness,

and activation strength may be suited to model the production of

these speakers. The simulations in Fig. 8 serve as a proof of

concept. It shows that stochastic noise should be included in

an extended version of the gestural model, which offers oppor-

tunities to simulate articulatory behavior more accurately and

across a wide range including articulatory behaviors of speakers

with speech impairment. While our focus is very often on the

mean value, the variance of the distributions we find may give

us an important characterization of the patterns we find. Adding

Gaussian noise adds the amount of variance as a second

parameter of interest alongside the mean.

3.1.2. Linking model output and empirical data

One key difference between the previously modeled articu-

latory behavior based on AP/TD and our proposed model out-

put with noise is that the added noise can mimic well-known

gesture-to-gesture variability in articulatory behavior. Thus, to

determine the extent to which our proposed model with noise

resembles articulatory movements produced by real speakers,

we quantified and compared the cycle-to-cycle variability of the

DDK movements. We predict that we will find a higher degree

of variability in impaired speech compared to the speech of the

control speakers. Likewise, we expect that the same is true for

simulations with a high degree of noise vs a lower degree of

noise.

Specifically, we selected ten DDK movement cycles of the

lower lip (/papapa. . ../) produced by three essential tremor

speakers with activated deep brain stimulation (mean age =

50 years, SD = 21), and three age-matched control speakers

(mean age = 47 years, SD = 19), (cf. section 3.1.1). Every

DDK cycle contained ten repetitions of the syllable /pa/.

We ran the simulations (as shown in Fig. 8) with fifteen itera-

tions of six opening and closing gestures. For simulated data,

wecalculated cycle-to-cycle variability for twonoise levels (med-

ium, high) and six different noise conditions (see Figs. 5–8). As a

first analysis step to compare simulated with empirical data, we

focused exclusively on the closing movements of the vertical

lower lip patterns.

For data extraction, we partially replicated a regular data

processing pipeline as used in articulation research. That is,

we automatically detected onsets and maximum targets of

the closure gesture by using the zero crossings of the

smoothed peak velocity trajectory (rolling mean). The conso-

nantal closure duration for /p/ is the time from the onset of

the closure gesture to the target of the gesture, and the conso-

nantal closure displacement for /p/ is the difference between

the position at the target and the position at the onset (cf.

Fig. 4).

In a next step, we calculated the coefficient of variation (in

percent) for the duration and the displacement for each simu-

lation run, and averaged the coefficients for each condition.

The coefficient of variation was calculated by dividing the stan-

dard deviation by the mean; this ratio was then multiplied by

100 to express it in percent: SD / Mean x 100. The results

are presented in Table 2 for the empirical data, and in Table 3

for the simulated data. Note that we excluded the “no noise”

scenario in Table 3 because it always yields a coefficient of

0%, i.e., all gestures are identical.

Based on visual inspection of our simulated and empirical

data shown in section 3.1.1, we expected greater cycle-to-

cycle variability for closing duration and closing displacement

in our speakers with essential tremor than our control speakers

(cf. Fig. 9). This observation is confirmed by the coefficient of

variation in Table 2: While the control group shows an average

coefficient of variation of 7.59% in duration and 15.73% in dis-

placements for the closing movement, the essential tremor

speakers produced 14.12% variability for duration and

23.43% for displacements. In addition, as expected, increasing

the noise level from medium to high in the simulated data (cf.

Table 3) led to greater variability in our simulated closure pat-

terns for both, duration and displacement of the closing ges-

ture. This is similar to the increased variability in speakers

with speech impairments compared to the control speakers.

Examining the presence of noise across various parame-

ters enables us to enhance our ability to predict the character-

istics of control deficits associated with a particular speech

motor disorder. Further, the modification of parameters regulat-

Table 1

Summary of simulation results for parameter manipulations.

Measurement Parameter

Stiffness Target Activation duration

Peak velocity U

less stiff �! lower peak velocity

stiffer �! higher peak velocity

U

lower target �! lower peak velocity

higher target �! higher peak velocity

—

Displacement — U

lower target �! smaller displacement

higher target �! higher displacement

U

shorter activation �! smaller displacement

longer activation �! higher displacement

Time-to-peak velocity U

less stiff �! longer time-to-peak vel.

stiffer �! shorter time-to-peak vel.

— —

Duration U

less stiff �! longer duration

stiffer �! shorter duration

— U

shorter activation �! shorter duration

longer activation �! longer duration

Ratio peak velocity/displacement U

less stiff �! larger ratio

stiffer �! smaller ratio

— U

shorter activation �! larger ratio

longer activation �! smaller ratio
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ing speech motor control by introducing stochastic noise to the

system can help us to get deeper insights into the nature of

impaired speech patterns. In the example of Parrell et al.

(2023), motor noise was added to the mobility-space acceler-

ation of the TD simulations to model deviant speech patterns

resembling changes in motor noise in speakers with amy-

otrophic lateral sclerosis (ALS). In our example of speakers

with essential tremor with activated deep brain stimulation,

we can think of durational and spatial variability resembled

by, e.g., changes of activation duration and activation strength

of the closing gesture as plausible parameters. However, more

research on large-scale datasets is warranted to better under-

stand the origin of the noise and, hence, the patho-

mechanisms of impaired articulatory behaviors.

3.2. Challenges with the kinematic analysis: Models and measures

3.2.1. Positional plateaus

In our simulation results (see Fig. 8 in section 3.1), posi-

tional plateaus occur when introducing noise on activation

strength and noise over time in the “high noise scenario”. Such

positional plateaus can be challenging for kinematic analyses.

A movement plateau occurs due to minimal movement of the

articulator (e.g., the speaker is holding the articulator steady

for a certain period of time). Such an articulatory behavior is

frequently observable when neurotypical speakers slow down

their articulatory rate or speak as clearly as possible (Adams

et al., 1993). It can also occur during prosodic modulations,

such as prominence marking, to highlight an important word

in an utterance or at prosodic edges, e.g., lengthening a final

word (Beckman et al., 1992; Cho, 2006). Positional plateaus

are also common in speakers with motor speech impairments,

particularly those who exaggerate their movements or speak

with an abnormally slow articulatory rate. When the analysis

requires a clear velocity zero-crossing to index the time point

of the articulatory target (e.g., when the articulator reaches

its highest point) positional plateaus can be challenging.

Although the target can be determined in the spatial domain,

it is rather difficult to determine it in the temporal domain.

The transition period (i.e., the time from movement onset to tar-

get) may be easily discernable, but the resulting segment dura-

tion does not consider the static portion of the articulatory

gesture. Fig. 10 shows the irregular lower lip movements with

the corresponding velocity signal during a fast syllable repeti-

Fig. 8. Noise parameters on the AP/TD model. Left-most column: moderate amount of noise, right-most column: high amount of noise. Mid-columns: Gaussian distributions

corresponding to the parameters in the simulations left and right.
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tion DDK task of /papapa/ related to impaired speech. The grey

area displays an example of a positional plateau.

One solution is to use a threshold of local velocities to deter-

mine turning points of the movement. In many studies, the

threshold is set to 20% of the peak velocity (Kroos et al.,

1997; Tiede, 2005; Shaw & Chen, 2019), but different choices

e.g., higher or lower thresholds are also possible. By using

thresholds of velocity peaks, the positional plateau can be fur-

ther divided into target achievement, maximum target (often

midpoint of the plateau), and target release. Indeed, the

threshold method improves robustness in the face of noise if

the position maxima and minima are not well defined. There

are two options to resolve this issue: Either the midpoint

between the target achievement and release can operationally

be defined as the time of target achievement to function as a

reference point for the maximum target. Or the time from target

achievement to target release should be investigated as an

additional potentially interesting characterization of the move-

ment. Indeed, some researchers use the term “formation dura-

tion” or similar expressions to encompass both the movement

duration and the hold (plateau) duration when referring to this

latter case (e.g., Katsika, 2016; Katsika & Tsai, 2021; Kim

et al., in press). However, it might also be the case that thresh-

olds are too unstable in highly irregular contours exhibiting

Fig. 9. Vertical lower lip movements elicited during the DDK task of /papapa. . ./, produced by a healthy speaker (a) and a speaker with essential tremor (ET) with deactivated (b) and

activated (c) thalamic deep brain stimulation (DBS). Values on the y-axis are biteplane rotated data.

Table 2

Coefficient of variation of closure duration and displacement for empirical data: 3 healthy controls and 3 essential tremor speakers with activated deep brain stimulation.

Speaker group Average coefficient of variation of closure duration (%) Average coefficient of variation of closure displacement (%)

Control 7.59 15.73

Essential tremor 14.12 23.43

Table 3

Coefficient of variation of closure duration and displacement for simulated data by adding noise of different strength to the single parameters (target, stiffness, activation duration, activation

strength, noise over time), and noise on everything.

Average coefficient of variation of closure duration (%)

Noise strength Noise on target Noise on stiffness Noise on activation duration Noise on activation strength Noise over time Noise on everything

medium 0.41 4.14 19.54 1.03 84.83 86.55

high 16.75 9.37 38.69 4.79 90.69 103.34

Average coefficient of variation of closure displacement (%)

Noise strength Noise on target Noise on stiffness Noise on activation duration Noise on activation strength Noise over time Noise on everything

medium 13.53 2.50 19.41 7.11 106.61 110.77

high 46.83 10.38 20.17 22.66 122.67 161.38
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multiple peaks in the velocity contour; in these cases, defining

local minima and maxima to identify onsets and targets of a

movement can be the preferable option.

3.2.2. Multiple velocity peaks

Although the velocity signal of an articulatory gesture is typ-

ically characterized by a bell-shaped with a single peak (see

Fig. 3 and Fig. 4 in section 2.2), multiple velocity peaks can

occur, which also pose a challenge for the kinematic analysis.

In the simulation results (section 3.1, Fig. 8), the multiple peak

problem occurs when introducing noise to a combination of

parameters, but not on a single noise parameter. Velocity-

based landmarks are frequently used to identify positional tar-

gets. That is, local positional minima and maxima can be iden-

tified by zero-crossings in the velocity trace or by using

thresholds of velocity peaks. However, irregularities in the

velocity contours are quite frequent in impaired speech. A

common scenario of multiple peaks in the velocity signals is

shown in Fig. 11 during a DDK task of /papapa/ produced by

a speaker with speech motor impairment. The grey areas dis-

play some examples of multiple velocity peaks in syllable

cycles that can be identified in a single DDK task. The raising

of the lower lip during one syllable cycle goes along with sev-

eral velocity peaks. Thus, one has to decide which peak to

select for the analysis, which subsequently impacts the dura-

tions of the acceleration and deceleration phases. If the first

peak was taken as the relevant landmark, the time-to-peak

velocity (acceleration phase) would be much shorter than if

the second peak was taken. The deceleration phase would

be either longer or shorter depending on which peak velocity

was selected.

It has been reported in the literature for movements of the

tongue, jaw and lips that the number of velocity peaks

increases with a decrease in speaking rate resulting in more

asymmetrical velocity profiles (Adams et al., 1993; Wieneke

et al., 1987) 1993). These results are interpreted by Adams

et al. (1993) as a change in motor control strategies due to

speaking rate. While fast speaking rates seem to trigger pre-

programmed unitary movements, slow speech might consist

of multiple submovements that are shaped by several feed-

back mechanisms (Adams et al., 1993). They conclude that

the occurrence of multiple velocity peaks in slow speech can

be interpreted as a universal mechanism of rate control that

can also be found in gross motor control.

The number of velocity peaks is an important aspect of artic-

ulatory behavior. Particularly the occurrence of multiple velocity

peaks can be indicative of an impaired motor speech system.

For example, differences in the smoothness of articulatory

movements, also known as jerk, which is ultimately driven by

multiple velocity peaks, can distinguish neurotypical speakers

and speakers with progressive neurological conditions such as

ALS (Bandini et al., 2018). Furthermore, a greater number of

velocity peaks has been found in the articulatory movements

of speakers who stutter when compared to those of speakers

who do not stutter (Zmarich & Caldognetto, 1997).

Alternatively, occurrences of multiple velocity peaks may

also be handled by hand-selecting only the highest of all veloc-

ity peaks within the gesture and ignoring all others, as sug-

gested by a reviewer. Last but not least, one could determine

a velocity threshold based on the observed maximum velocity

and determine the time from exceeding 80% of peak velocity to

time of falling below 80%. The resulting interval duration (or its

Fig. 10. Irregular lower lip movements (upper panel: vertical position; lower panel: respective velocity) during a fast syllable repetition task of /papapa. . ./, produced by a speaker with

Essential Tremor with activated thalamic deep brain stimulation (DBS). The grey area indicates a positional plateau during a syllable cycle.

Fig. 11. Lower lip movements (upper panel: vertical position; lower panel: respective velocity) during a fast syllable repetition DDK task of /papapa. . ./, produced by a speaker with

essential tremor with activated thalamic deep brain stimulation (DBS). The grey areas highlight some intervals of multiple velocity peaks during a syllable cycle.
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variability) may be useful to characterize the transition period

from acceleration to deceleration.

4. Discussion and conclusion

In this paper, we argued that the AP/TD approach presents

promising opportunities to model and understand articulatory

behavior in speakers with motor speech disorders as well as

articulatory behavior of neurotypical speakers under various

speech conditions. In AP/TD, speech can be decomposed into

articulatory gestures that fulfil linguistic tasks. The speech ges-

tures are governed by point-attractor dynamics allowing the

description of the continuity and discreteness of speech in a

single model. Especially for impaired speech, modulations of

stiffness, target, and activation are important to model all

degrees of temporal and spatial modulations. However, when

analyzing kinematics in speakers with speech motor impair-

ment, contours are often highly irregular. This poses chal-

lenges during the analysis, even in the steps of landmark

annotations related to measures such as onset, peak velocity,

and target of a movement. Given a phonological representa-

tion, it is currently not possible to derive a surface representa-

tion of disordered speech with available models. Thus,

extensions of the model may be needed to better accommo-

date more deviant articulatory behaviors.

Introducing stochastic noise to various levels of simulations

such as the level of parametrization (target, stiffness, activation

duration, and activation strength) and over time to the gestural

equation may be a meaningful extension to the AP/TD model.

The use of noise as outlined in this paper presents a first proof

of concept. Adding Gaussian noise essentially simulates the

fact that we always deal with distributions of values in speech.

In such a simulation, the variance of the Gaussian parameter

distribution becomes a crucial parameter and it may give us

an important characterization of the patterns we find, as these

simulations show.

However, many questions arise from this extension to the

gestural model. Our proposed approach does not address

the origin of the noise. For example, we have only shown that

the noisy modeled contours resemble those of speakers with

speech motor impairment. Future studies are warranted to

determine which levels of noise (parameters, over time to the

differential equation, etc.) are most plausible and whether dif-

ferent types of impairments may be characterized by different

degrees of noise on different levels (or even parameters) of

the model. That is, which (neural) subsystems contribute which

kind of noise? Furthermore, it remains unclear whether differ-

ent types of pathological patterns are characterized by noise

on different levels or parameters.

A thorough quantitative analysis of the kinematic data of

speakers with speech impairment plus model simulations are

needed to shed light on these questions. It should also be

mentioned here that the AP/TD model is (explicitly) not a (de-

tailed) biomechanical model. Therefore, it may not be possible

to model all perturbations using noisy components. It may also

be interesting to think about pathological patterns arising from

noise during gestural selection (Tilsen, 2018). The selection

process adds yet another potential level. Nevertheless, we

think that the proposed extension of the gestural model is a

starting point; therefore, its potential should be further evalu-

ated. An important step in this direction is the recent work of

Parrell et al. (2023). In a proof of concept, they used stochastic

noise to model speech patterns in the AP/TD application

resembling changes in motor noise in speakers with ALS.

More specifically, they added noise to the mobility-space

acceleration of the TD simulations. This is a level for the output

of the control algorithm that is the final motor command to the

plant and can be associated with motor noise in ALS speakers.

Indeed, the simulated speech patterns may account for altered

patterns of spatial variability in this population. This is an

important step towards future directions for opening the AP/

TD approach to give new insight into the analysis of impaired

speech. Future work will consider all possible levels of the

AP/TD framework on which stochasticity may play a role and

evaluate their relative importance as well as their interaction

with one another.

We would like to mention here that the provided discussion

of the quantitative evaluation of kinematic analysis procedures

in section 3.2 is limited to the acquisition of point parameteriza-

tions such as in electromagnetic articulography. There are

other statistical approaches available such as functional data

analysis and generalized additive models that can capture

the contour more holistically without the pre-segmentation of

the relevant movement unit. And, last but not least, other

recording opportunities such as ultrasound are also available

to analyze a wide range of speech kinematics, but they involve

other challenges not discussed here.

We conclude that integrating the field of motor speech dis-

orders and dynamical systems has the potential not only to

improve our understanding of these disorders but also our

understanding of speech production more broadly. It can help

to start making connections between more abstract models

and the neural basis of speech production. Such cross-talk

between disciplines will be instrumental to refining and broad-

ening current theories of speech motor control to account for a

wide range of articulatory behavior – bridging clinical and lin-

guistic approaches to speech.
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Appendix 1. Simulation of gestural noise

Lip aperture trajectories for a [papapapa. . .] sequence were

simulated using the Euler-Maruyama method. The gestural

target was alternating between a high (mean +0.5) and

a low target (mean �0.5), simulating closing and opening

gestures.

The parameters (target, stiffness, activation duration, acti-

vation strength) were drawn from the Gaussian distributions

for each pair of opening-closing gestures. Table A.1 gives a list

of their means and standard deviations.

In an additional simulation, noise was added to the differen-

tial equation describing the acceleration of the gesture over

time:

€x ¼ �BðtÞ _x � K tð Þ x � T tð Þð Þ þ qnðtÞ

KðtÞ and T tð Þ are the stiffness and the target of the gesture.

They are functions of time t, since they depend on the activa-

tion A tð Þ of the gesture that changes over time:

K tð Þ ¼ K � A tð Þ;T tð Þ ¼ T � AðtÞ, where K and T are the values

drawn from the Gaussian distributions described above.

Where B(t) is the damping of the gesture, defined as

BðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffi

KðtÞ
p

. The mass of the gesture is fixed at 1. The

noise is introduced by adding qnðtÞ, where nðtÞ is a Wiener pro-

cess and q is the noise strength (Schöner & Spencer, 2015).

The noise strength parameter corresponds to the breadth of

the Gaussian noise distribution. In the “moderate noise” sce-

nario, this parameter was set to 7, while it was set to 12 in

the “high noise” scenario. Note that in the simulation where

noise was on the parameters only, this parameter was set to

zero.
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