
Published in Transactions on Machine Learning Research (01/2024)

Unleashing the Potential of Acquisition Functions in High-
Dimensional Bayesian Optimization
An empirical study to understand the role of acquisition function maximizer initializa-
tion

Jiayu Zhao scjzh@leeds.ac.uk
School of Computing
University of Leeds

Renyu Yang r.yang1@leeds.ac.uk
School of Computing
University of Leeds

Shenghao Qiu sc19sq@leeds.ac.uk
School of Computing
University of Leeds

Zheng Wang z.wang5@leeds.ac.uk
School of Computing
University of Leeds

Reviewed on OpenReview: https: // openreview. net/ forum? id= 0CM7Hfsy61

Abstract

Bayesian optimization (BO) is widely used to optimize expensive-to-evaluate black-box func-
tions. BO first builds a surrogate model to represent the objective function and assesses its
uncertainty. It then decides where to sample by maximizing an acquisition function (AF)
based on the surrogate model. However, when dealing with high-dimensional problems,
finding the global maximum of the AF becomes increasingly challenging. In such cases, the
initialization of the AF maximizer plays a pivotal role, as an inadequate setup can severely
hinder the effectiveness of the AF.
This paper investigates a largely understudied problem concerning the impact of AF maxi-
mizer initialization on exploiting AFs’ capability. Our large-scale empirical study shows that
the widely used random initialization strategy often fails to harness the potential of an AF.
In light of this, we propose a better initialization approach by employing multiple heuristic
optimizers to leverage the historical data of black-box optimization to generate initial points
for the AF maximizer. We evaluate our approach with a range of heavily studied synthetic
functions and real-world applications. Experimental results show that our techniques, while
simple, can significantly enhance the standard BO and outperform state-of-the-art methods
by a large margin in most test cases.

1 Introduction

Bayesian optimization (BO) is a well-established technique for expensive black-box function optimization.
It has been used in a wide range of tasks - from hyper-parameter tuning (Bergstra et al., 2011), onto
chemical material discovery (Hernández-Lobato et al., 2017) and robot control and planning (Lizotte et al.,
2007; Martinez-Cantin et al., 2009). BO tries to improve sampling efficiency by fitting a probabilistic
surrogate model (usually a Gaussian process (Seeger, 2004)) to guide its search. This model is used to
define an acquisition function (AF) that trades off exploitation (model prediction) and exploration (model
uncertainty). Maximizing the AF will get the next sequential query point that BO thinks is promising.

1

https://openreview.net/forum?id=0CM7Hfsy61

Published in Transactions on Machine Learning Research (01/2024)

While BO shows good performance for low-dimensional problems, its application to high-dimensional prob-
lems is often not competitive with other techniques (Eriksson et al., 2019). Given that BO’s performance
depends on both the model-based AF itself and the process of maximizing the AF, either of them can be a
bottleneck for high-dimensional BO (HDBO). The vast majority of the prior work in BO has focused on the
former, i.e., designing the surrogate model and AF (Snoek et al., 2012; Srinivas et al., 2009; Wu & Frazier,
2016; Wang & Jegelka, 2017; Oh et al., 2018; Moss et al., 2021; Snoek et al., 2014). Little work is specialized
for improving the latter. A recent development in maximizing AF implements a multi-start gradient-based
AF maximizer in batch BO scenarios, achieving better AF maximization results than random sampling and
evolutionary algorithms (Wilson et al., 2018). However, as the dimensionality increases, even the multi-start
gradient-based AF maximizer struggles to globally optimize the AF. In such cases, the initialization of the
AF maximizer greatly influences the quality of AF optimization. Yet, it remains unclear how AF maximizer
initialization may impact the utilization of AF’s potential and the end-to-end BO performance. Upon exam-
ining the implementations of the state-of-the-art BO packages, we found that random initialization (selecting
initial points from a set of random points) or a variant is a typical default strategy for initializing the AF
maximizer. This is the case for widely-used BO packages like BoTorch (Balandat et al., 2020), Skopt (Head
et al., 2021), Trieste (Picheny et al., 2023), Dragonfly (Kandasamy et al., 2020) and GPflowOpt (Knudde
et al., 2017a). Specifically, GPflowOpt, Trieste and Dragonfly select the top n points with the highest AF
values from a set of random points to serve as the initial points. BoTorch uses a similar but more exploratory
strategy by performing Boltzmann sampling rather than top-n selection on random points. Likewise, Skopt
directly selects initial points by uniformly sampling from the global search domain. Furthermore, various
HDBO implementations adopt random initialization as their default strategy (Oh et al., 2018; Letham et al.,
2020; Wang et al., 2018; Kandasamy et al., 2015; Wu & Frazier, 2016; Wang et al., 2017). GPyOpt (The
GPyOpt authors, 2016) and Spearmint (Snoek et al., 2012) are two of the few works that provide different
initialization strategies from random initialization. GPyOpt combines random points with the best-observed
points to serve as the initial points. Spearmint uses a Gaussian spray around the incumbent best to generate
initial points. However, no empirical study shows that these initialization strategies are better than random
initialization. As such, random initialization remains the most popular strategy for HDBO AF maximization.
There is a need to understand the role of the initialization phase in the AF maximization process.

The paper systematically studies the impact of AF maximizer initialization in HDBO. This is motivated by
an observation that the pool of available candidates generated during AF maximization often limits the AF’s
power when employing the widely used random initialization for the AF maximizer. This limitation asks for
a better strategy for AF maximizer initialization. To this end, our work provides a simple yet effective AF
maximizer initialization method to unleash the potential of an AF. Our goal is not to optimize an arbitrary
AF but to find ways to maximize the potential of reasonable AF settings. Our key insight is that when the
AF is effective, the historical data of black-box optimization could help identify areas that exhibit better
black-box function values and higher AF values than those obtained through random searches of AF.

We develop AIBO1, a Python framework to employ multiple heuristic optimizers, like the covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen et al., 2003) and genetic algorithms (GA) (Alam et al.,
2020), to utilize the historical data of black-box optimization to generate initial points for a further AF
maximizer. We stress that the heuristics employed by AIBO are not used to optimize the AF. Instead, they
capitalize on the knowledge acquired from the already evaluated samples to provide initial points to help
an AF maximizer find candidate points with higher AF values. For instance, CMA-ES generates candidates
from a multivariate normal distribution determined by the historical data of black-box optimization. To
investigate whether performance gains come from better AF maximization, AIBO also incorporates random
initialization for comparison. Each BO iteration runs multiple AF initialization strategies, including random
initialization on the AF maximizer, to generate multiple candidate samples. It then selects the sample with
the maximal AF value for black-box evaluation. Thus, heuristic initialization strategies work only when they
identify higher AF values than random initialization.

To demonstrate the benefit of AIBO in black-box function optimizations, we integrate it with the multi-start
gradient-based AF maximizer and apply the integrated system to synthetic test functions and real-world
applications with a search dimensionality ranging between 14 and 300. Experimental results show that

1AIBO =Acquisition function maximizer Initialization for Bayesian Optimization.

2

Published in Transactions on Machine Learning Research (01/2024)

AIBO significantly improves the standard BO under various AF settings. Our analysis suggests that the
performance improvement comes from better AF maximization, highlighting the importance of AF maximizer
initialization in unlocking the potential of AF for HDBO.

The contribution of this paper is two-fold. Firstly, it investigates a largely ignored yet significant problem
in HDBO concerning the impact of the initialization of the AF maximizer on the realisation of the AF
capability. It empirically shows the commonly used random initialization strategy limits AFs’ power, leading
to over-exploration and poor HDBO performance. Secondly, it proposes a simple yet effective initialization
method for maximizing the AF, significantly improving the performance of HDBO. We hope our findings
can encourage more research efforts in optimizing the initialization of AF maximizers of HDBO.

Data availability The data and code associated with this paper are openly available at https://github.
com/gloaming2dawn/AIBO.

2 Related Work

2.1 High-dimensional Bayesian Optimization

Prior works in HDBO have primarily focused on dimensionality reduction or pinpointing the performance
bottleneck. There are two common approaches for dimensionality reduction. The first assumes the black-box
function has redundant dimensions. By mapping the high-dimensional space to a low-dimensional subspace,
standard BO can be done in this low-dimensional space and then projected up to the original space for
function evaluations (Wang et al., 2013; Letham et al., 2020; Binois et al., 2020; Qian et al., 2016). A
second approach targets functions with additive structures, i.e., cases where variables in the design space
are separable (Kandasamy et al., 2015; Wang et al., 2017; Gardner et al., 2017; Rolland et al., 2018; Li
et al., 2018). Especially, LineBO (Kirschner et al., 2019) restricts the optimization problem to a sequence of
iteratively chosen one-dimensional sub-problems. Both strategies are inadequate for many real-life scenarios
where the black-box function does not exhibit additive structures or lacks redundancy in dimensions. Besides
these dimensionality reduction techniques, efforts have been made to improve high-dimensional BO directly
(Wang et al., 2018; Rana et al., 2017; Oh et al., 2018; Eriksson et al., 2019), with TuRBO (Eriksson et al.,
2019) as the state-of-the-art method.

2.2 Acquisition Function Maximization

Given the posterior belief, BO uses an AF to select new queries. Random sampling, evolutionary algorithms
and gradient-based optimization are three mainstreamed AF maximization techniques. Random sampling
is efficient in low-dimensional problems (Bartz-Beielstein et al., 2005; Hutter et al., 2009; 2010) but can
be inadequate for high-dimensional problems (Hutter et al., 2011). Evolutionary algorithms are often used
where gradient information is unavailable (Kandasamy et al., 2020; Cowen-Rivers et al., 2020). For AFs
that support gradient information, a multi-start gradient-based optimization method is a good choice for
AF optimization (Wilson et al., 2018). Our end-to-end BO framework thus builds upon this technique.

Despite the importance of AF maximization, little attention has been paid to optimizing the initialization
phase for AF maximizers. Most prior work (Snoek et al., 2012; Knudde et al., 2017b; Klein et al., 2017; Wu &
Frazier, 2016; Kandasamy et al., 2020; Balandat et al., 2020; Oh et al., 2018; Kandasamy et al., 2015; Wang
et al., 2018; Cowen-Rivers et al., 2020; Letham et al., 2020; Nayebi et al., 2019) uses random initialization.
This simple strategy can be effective in low dimensions, but as we will show in the paper, it is ill-suited for
high-dimensional problems. SMAC (Hutter et al., 2011) and Spearmint (Snoek et al., 2012) are a few BO
techniques that do not use random initialization. Instead, they use a Gaussian spray around the incumbent
best to generate initial points to initialize its local maximizer. Our work provides a systematic study to
empirically demonstrate the importance of initialization for AF maximization. It proposes an initialization
optimization to improve prior work by leveraging multiple heuristic algorithms to more effectively utilize the
evaluated samples, significantly improving the performance of a given AF.

3

https://github.com/gloaming2dawn/AIBO
https://github.com/gloaming2dawn/AIBO

Published in Transactions on Machine Learning Research (01/2024)

AF-based selection (BO-grad)
Random selection

Optimal selection
global optimum

0 400 800 1200 1600 2000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

(a) 10 AF maximizer restarts

0 400 800 1200 1600 2000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

(b) 1000 AF maximizer restarts

Figure 1: Evaluating the sample chosen by AF-based selection against random and optimal selection among
all intermediate candidate points generated during the AF maximization process when applying BO-grad to
100D Ackley functions. We use two random initialization settings for AF maximization: (a) 10 restarts and
(b) 1000 restarts. In both settings, the performance of the native BO-grad (AF-based selection) is close to
optimal selection and better than random selection, suggesting that the AF is effective at selecting a good
sample from all candidates but is restricted by the pool of available candidates. Increasing the number of
restarts from 10 to 1000 does not enhance the quality of intermediate candidates, indicating that a more
effective initialization scheme, as opposed to random initialization, is necessary.

3 Motivation

As a motivation example, consider applying BO to optimize a 100-dimensional black-box Ackley function
that is extensively used for testing optimization algorithms. The goal is to find a set of input variables
(x) to minimize the output, f(x1, . . . , x100). The search domain is −5 ≤ xi ≤ 10, i = 1, 2, . . . , 100, with a
global minimum of 0. For this example, we use a standard BO implementation with a prevalent AF2, Upper
Confidence Bound (UCB) (Srinivas et al., 2009), denoted as:

α(x) = −µ(x) +
√

βt · σ(x) (1)

where µ(x) and σ(x) are the posterior mean (prediction) and posterior standard deviation (uncertainty) at
point x predicted by the surrogate model, and βt is a hyperparameter that trades off between exploration
and exploitation. we set βt = 1.96 in this example.

Here, we use random search to create the initial starting points for a multi-start gradient-based AF maximizer
to iteratively generate multiple candidates, from which the AF chooses a sample for evaluation. In each BO
iteration, we first evaluate the AF on 100000 random points and then select the top n points as the initial
points for the further gradient-based AF maximizer. We denote this implementation as BO-grad. In this
example, we use two settings n = 10 and n = 1000.

As shown in Fig. 1(a), the function output given by BO-grad with 10 AF maximizer restarts is far from the
global minimum of 0. We hypothesize that while the AF is effective, the low quality of candidate samples
generated in AF maximization limits the power of the AF. To verify our hypothesis, we further consider two
strategies: (1) either randomly select the next query point from all the candidate points generated during
AF maximization or (2) exhaustively evaluate them at each BO iteration. The former and latter strategies
correspond to “random selection” and “optimal selection” schemes, respectively. Despite the ideal but
costly “optimal selection” search scenario, BO does not converge well, indicating intrinsic deficiencies in the
AF maximization process. Meanwhile, the AF itself can choose a good candidate sample point to evaluate,

2Other acquisition functions include the probability of improvement (PI) and expected improvement (EI).

4

Published in Transactions on Machine Learning Research (01/2024)

as the performance of the native AF-based BO-grad is close to that of “optimal selection" and better than
that of “random selection". This observation suggests that the AF is effective at selecting a good sample in
this case but its power is severely limited by the candidate samples generated during the AF maximization
process. We also observe similar results manifest when using other representative maximizers like random
sampling and evolutionary algorithms.

We then test what happens when we increase the number of AF maximization restarts of BO-grad to generate
more candidates for AF to select at each iteration. However, in Fig. 1(b), it is evident that even with an
increase in random restarts to 1000, the quality of intermediate candidate points generated during the AF
maximization process remains similar to that with 10 restarts. Furthermore, in the case of 1,000 restarts, the
performance of BO-grad is still close to that of “optimal selection", reinforcing our observation that the pool
of candidates restricts AF’s power. This observation suggests that we need a better initialization scheme
rather than simply increasing the number of restarts of random initialization.

This example motivates us to explore the possibility of improving the BO performance by providing the
AF with better candidate samples through enhanced AF maximizer initialization. Our intuition is that the
potential of AF is often not fully explored in HDBO. Moreover, the commonly used random initialization of
the AF maximization process is often responsible for inferior candidates. We aim to improve the quality of
the suggested samples through an enhanced mechanism for AF maximizer initialization. As we will show in
Section 6, our strategy significantly improves BO on the 100D Ackley function, finding an output minimum
of less than 0.5, compared to 6 given by BO-grad after evaluating 5,000 samples.

4 Methodology

Our study focuses on evaluating the initialization phase of AF maximization. To this end, we developed
AIBO, an open-source framework to facilitate an exhaustive and reproducible assessment of AF maximizer
initialization methods.

4.1 Heuristic Acquisition Function Maximizer Initialization

AIBO leverages multiple heuristic optimizers’ candidate generation mechanisms to generate high-quality
initial points from the already evaluated samples. Given the proven effectiveness of heuristic algorithms in
various black-box optimization scenarios, they are more likely to create initial candidates near promising
regions. As an empirical study, we aim to explore whether this initialization makes the AF optimizer yield
points with higher AF values and superior black-box function values compared to random initialization.

As described in Algorithm 1, AIBO maintains multiple black-box heuristic optimizers o0, o2, ...ol−1. At each
BO iteration, each heuristic optimizer oi is asked to generate k raw points Xi based on its candidate genera-
tion mechanisms (e.g., CMA-ES generates candidates from a multivariate normal distribution). AIBO then
selects the best n points X̃i from Xi for each optimizer oi, respectively. After using these points to initial-
ize and run an AF maximizer for each initialization strategy, we obtain multiple candidates x0

t , x1
t , ..., xl−1

t .
Finally, the candidate with the highest AF value is chosen as the sample to be evaluated by querying the
black-box function. Crucially, the evaluated sample is used as feedback to update each optimizer oi - for
example, updating CMA-ES’s normal distribution. This process repeats at each subsequent BO iteration.

Our current default implementation employs CMA-ES, GA and random search as heuristics for initialization.
We use the “combine-then-select” approach because it allows us to examine if GA/CMA-ES initialization
could find better AF values than random initialization. Our scheme only chooses GA/CMA-ES initialization
if it yields larger AF values than random initialization. Besides, while heuristics like GA already provide ex-
ploratory mechanisms and altering its hyperparameters can achieve different trade-offs, the usage of random
initialization here could also mitigate the case of over-exploitation.

CMA-ES CMA-ES uses a multivariate normal distribution N (m, C) to generate initial candidates in each
BO iteration. Here, the mean vector m determines the center of the sampling region, and the covariance
matrix C determines the shape of the region. The covariance matrix m is initialized at the beginning of the
BO search, and each direction (dimension) will be assigned an initial covariance, ensuring exploration across

5

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1 Acquisition function maximizer initialization for high-dimensional Bayesian optimization
(AIBO)

Input: The number of search iterations T
Output: The best-performing query point x∗

1: Draw N samples uniformly to obtain an initial dataset D0
2: Specify a set of heuristic optimizers O, where the size is l
3: Use D0 to initialize a set of heuristic optimizers O
4: for t = 0 : T − 1 do
5: Fit a Gaussian process G to the current dataset Dt

6: Construct an acquisition function α(x) based on G
7: for i = 0 : l − 1 do
8: Xi ← oi.ask(num = k) ▷ Ask the heuristic to generate k candidates
9: X̃i ← top(α(Xi), n) ▷ Select top-n (n < k) candidates from Xi according to α(x)

10: Use X̃i to initialize an acquisition function maximizer M
11: xi

t ← arg max
x∈X

α(x)|M ▷ Use M to maximize α(x)

12: end for
13: xt ← arg max α(x) x ∈ {x0

t , x1
t , ..., xl−1

t } ▷ Select the point with the highest AF value
14: yt ← f(xt) ▷ Evaluate the selected sample
15: for each oi ∈ O do
16: oi.tell(xt, yt) ▷ Update heuristic optimizer oi with (xt, yt)
17: end for
18: Update dataset Dt+1 = Dt ∪ {(xt, yt)}
19: end for

all directions. By updating m and C using new samples after each BO iteration, CMA-ES can gradually
focus on promising regions.

GA GA keeps a population of samples to determine its search region. It uses biologically inspired operators
like mutation and crossover to generate new candidates based on the current population. Its population is
updated by newly evaluated samples after each BO iteration.

Random Most BO algorithms or library implementations use random search for initializing the AF max-
imizer. We use it here to eliminate the possibility of AIBO’s performance improvement stemming from
GA/CMA-ES initialization, yielding points with better black-box function values but smaller AF values.

Our heuristic initialization process is AF-related, as the heuristic optimizers are updated by AF-chosen
samples. Usually, a more explorative AF will make the heuristic initialization also more explorative. For
instance, in GA, if the AF formula leans towards exploration, the GA population composed of samples chosen
by this AF will have greater diversity, leading to generating more diverse raw candidates. The details of how
GA and CMA-ES generate candidates and update themselves are provided in Appendix A.2.

4.2 Implementation Details

Since this study focuses on the AF maximization process, we utilize other BO settings that have demonstrated
good performance in prior work. We describe the implementation details as follows.

Gaussian process regression To support scalable GP regression, we implement the GP model based on
an optimized GP library GPyTorch (Gardner et al., 2018). GPyTorch implements the GP inference via a
modified batched version of the conjugate gradients algorithm, reducing the asymptotic complexity of exact
GP inference from O(n3) to O(n2). The overhead of running BO with a GP model for a few thousand
evaluations should be acceptable for many scenarios that require hundreds of thousands or more evaluation
iterations.

We select the Matérn-5/2 kernel with ARD (each input dimension has a separate length scale) and a constant
mean function to parameterize our GP model. The model parameters are fitted by optimizing the log-
marginal likelihood before proposing a new batch of samples for evaluation. Following the usual GP fitting
procedure, we re-scale the input domain to [0, 1]d. We also use power transforms to the function values to

6

Published in Transactions on Machine Learning Research (01/2024)

Table 1: Benchmarks used in evaluation.

Function/Task #Dimensions Search Range

Ackley 20, 100, 300 [-5, 10]
Rosenbrock 20, 100, 300 [-5, 10]
Rastrigin 20, 100, 300 [-5.12, 5.12]
Griewank 20, 100, 300 [-10, 10]

Synthetic

Levy 20, 100, 300 [-600, 600]
Robot pushing 14 /
Rover trajectory planning 60 [0, 1]Robotics
Half-Cheetah locomotion 102 [-1, 1]

make data more Gaussian-like. This transformation is useful for highly skewed functions like Rosenbrock
and has been proven effective in real-world applications (Cowen-Rivers et al., 2020). We use the following
bounds for the model parameters: length-scale λi ∈ [0.005, 20.0], noise variance σ2 ∈ [1e−6, 0.01].

Batch Bayesian optimization To support batch evaluation for high-dimensional problems, we employ
the UCB and EI AFs estimated via Monte Carlo (MC) integration. Wilson et al. (2018) have shown that MC
AFs naturally support queries in parallel and can be maximized via a greedy sequential method. Algorithm 1
shows the case where the batch size is one. Assuming the batch size is q, the process of greedy sequential
acquisition function maximization can be expressed as follows:

1. Maximize the initial MC acquisition function α0(x) to obtain the first query point x0.
2. Use the first query sample (x0, α0(x0)) to update α0(x) to α1(x) and maximize α1(x) to obtain the second

query point x1.
3. Similarly, successively update and maximize α2(x), α3(x), ..., αq−1(x) and obtain query points

x2, x3, ...xq−1.

We implemented it based on BoTorch (Balandat et al., 2020), which provided the MC-estimated acquisition
functions and the interface for function updating via query samples. Details of the calculation of MC-
estimated AFs are provided in Appendix A.5.

Hyper-parameter settings We use N = 50 samples to obtain all benchmarks’ initial dataset D0. We
set k = 500 and n = 1 for each AF maximizer initialisation strategy. We use the implementations in
pycma (Hansen et al., 2022) and pymoo (Blank & Deb, 2020) for the CMA-ES and the GA initialization
strategies, respectively. For CMA-ES, we set the initial standard deviation to 0.2. For GA initialization,
we set the population size to 50. The default AF maximizer in AIBO is the gradient-based optimization
implemented in BoTorch. The default AF is UCB with βt = 1.96 (default setting in the skopt library (Head
et al., 2021)), and the default batch size is set to 10. In Section 6.6, we will also show the impact of changing
these hyper-parameters in our experiments.

5 Experimental Setup

5.1 Benchmarks

Table 1 lists the benchmarks and the problem dimensions used in the experiments. These include synthetic
functions and three tasks from the robot planning and control domains.

Synthetic functions We first apply AIBO and the baselines to four common synthetic functions: Ack-
ley, Rosenbrock, Rastrigin and Griewank. All these functions allow flexible dimensions and have a global
minimum of 0. We select 20, 100 and 300 dimensions in our study to show how higher dimensions of the
same problem influence the BO performance.

Robot pushing The task is used in TurBO Eriksson et al. (2019) and Wang et al. (2018) to validate
high-dimensional BOs. The goal is to tune a controller for two robot hands to push two objects to given

7

Published in Transactions on Machine Learning Research (01/2024)

target locations. Despite having only 14 dimensions, this task is particularly challenging as the reward is
sparse in its search space.

Rover trajectory planning The task, also considered in Eriksson et al. (2019); Wang et al. (2018), is to
maximize the trajectory of a rover over rough terrain. The trajectory is determined by fitting a B-spline to
30 points in a 2D plane (thus, the state vector consists of 60 variables). This task’s best reward is 5.

Half-cheetah robot locomotion We consider the 102D half-cheetah robot locomotion task simulated
in MuJoCo (Todorov et al., 2012) and use the linear policy a = Ws introduced in (Mania et al., 2018) to
control the robot walking. Herein, s is the state vector, a is the action vector, and W is the linear policy to
be searched for to maximize the reward. Each component of W is continuous and within [-1,1].

5.2 Evaluation Methodology

We design various experiments to validate the significance of the initialization of the AF maximization
process. All experiments are run 50 times for evaluation. In Section 6.1, we evaluate AIBO’s end-to-end BO
performance by comparing it to various baselines including standard BO implementations with AF maximizer
random initialization, heuristic algorithms and representative HDBO methods. In Section 6.2, we evaluate
the robustness of AIBO under different AFs. In Section 6.3, we evaluate AIBO’s three initialization strategies
in terms of AF values, GP posterior mean, and GP posterior variance under different AF settings. This will
show whether AIBO’s heuristic initialization strategies lead to better AF maximization. In Section 6.4 , we
use ablation experiments to examine the impact of the three individual initialization strategies in AIBO.
In Section 6.5, we compare AIBO to BO implementations with alternative AF maximizer initialization
strategies rather than selecting initial points with the highest AF values from a set of random points. In
Section 6.6, we show the impact of hyper-parameters on the performance of AIBO. In Section 6.7, we provide
the algorithmic runtime of our method.

6 Experimental Results

Highlights of our evaluation results are:

• AIBO significantly improves standard BO and outperforms heuristic algorithms and representative HDBO
methods in most test cases (Sec. 6.1 and Sec. 6.2);

• By investigating AIBO’s three initialization strategies in terms of AF maximization, we show that random
initialization limits AFs’ power by yielding lower AF values and larger posterior variances, leading to over-
exploration, empirically confirming our hypothesis (Sec. 6.3);

• We provide a detailed ablation study and hyper-parameters analysis to understand the working mecha-
nisms of AIBO (Sec. 6.4 and Sec. 6.6).

6.1 Comparison with Baselines

6.1.1 Setup

We first compare AIBO to eight baselines: BO-grad, BO-es, BO-random, TuRBO, HeSBO, CMA-ES, GA
and AIBO-none. We describe the baselines as follows.

BO-grad, BO-es and BO-random respectively refer to the standard BO implementations using three AF
maximizers: multi-start gradient-based, CMA-ES and random sampling. These standard BO implementa-
tions use the same base settings as AIBO but with a random initialization scheme for AF maximization.
To show the effectiveness of AIBO, BO-grad is allowed to perform more costly AF maximization; we set
k = 2000 and n = 10.

TuRBO (Eriksson et al., 2019), HeSBO (Nayebi et al., 2019) and Elastic BO (Rana et al., 2017) are rep-
resentive HDBO methods. We use N = 50 samples to obtain the initial dataset D0 for all three HDBO

8

Published in Transactions on Machine Learning Research (01/2024)

AIBO (ours)
AIBO-none (ours)

BO-grad
BO-es

BO-random
TuRBO

HeSBO
Elastic BO

CMA-ES
GA

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400
450

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000
2000
3000
4000
5000
6000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
1000
2000
3000
4000
5000
6000
7000
8000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Re
wa

rd

RobotPush14 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Re
wa

rd

Rover60 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Re
wa

rd

HalfCheetah102 (higher is better)

Figure 2: Results on both synthetic functions (lower is better) and real-world problems (higher is better).
AIBO consistently improves BO-grad on all test cases and outperforms other competing baselines in most
cases.

methods. For HeSBO, we use a target dimension of 8 for the 14D robot pushing task, 20 for the 102D robot
locomotion task and 100D or 300D synthetic functions, and 10 for other tasks. Other settings are default in
the reference implementations.

CMA-ES and GA are used to demonstrate the effectiveness of AF itself. Given that AIBO employs AF
to further search the query point from the initial candidates generated by CMA-ES and GA black-box
optimizers, if the AF is not sufficiently robust, the performance of AIBO might be inferior to CMA-ES/GA.
For CMA-ES, the initial standard deviation is set to 0.2, and the rest of the parameters are defaulted in

9

Published in Transactions on Machine Learning Research (01/2024)

pycma (Hansen et al., 2022). For GA, the population size is set to 50, and the rest of the parameters are
defaulted in pymoo (Blank & Deb, 2020).

AIBO-none is a variant of AIBO. In each BO iteration, following the initialization of the AF maximization
process, AIBO-none directly selects the point with the highest AF value while AIBO uses a gradient-based
AF maximizer to further search points with higher AF values. This comparison aims to assess whether
better AF maximization can improve performance.

6.1.2 Results

Fig.2 reports the full comparison results about the black-box function performance of our method AIBO
with various baselines on all the benchmarks. We use UCB1.96 (UCB with βt = 1.96) as the default AF.

AIBO versus BO-grad While the performance varies across target functions, AIBO consistently im-
proves BO-grad on all test cases. Especially for synthetic functions which allow flexible dimensions, AIBO
shows clear advantages in higher dimensions (100D and 300D). We also observe that BO-grad exhibits a
similar convergence rate to AIBO at the early search stage. This is because AF maximization is relatively
easy to fulfil when the number of samples is small. However, as the search progresses, more samples can
bring more local optimums to the AF, making the AF maximization process increasingly harder.

AIBO versus CMA-ES/GA As AIBO introduces CMA-ES and GA black-box optimizers to provide
initial points for AF maximization, comparing AIBO with CMA-ES and GA will show whether the AF
is good enough to make the AF maximization process find better points than the initial points provided
by CMA-ES/GA initialization. Results show AIBO outperforms CMA-ES and GA in most cases except
for the 20D Rastrigin function, where GA shows superior performance. However, in the next section, we
will demonstrate that adjusting UCB’s beta from 1.96 to 1 will enable AIBO to maintain its performance
advantage over GA. This suggests that with the appropriate choice of the AF, BO’s model-based AF can
offer a better mechanism for trading off exploration and exploitation compared to heuristic GA/CMA-ES
algorithms.

AIBO versus other HDBO methods When compared to representative HDBO methods, including
TuRBO, Elastic BO and HeSBO, AIBO performs the best in most cases except for the 20D Rastrigin
function, for which TuRBO shows the fastest convergence. However, for higher dimensions (100D and
300D), AIBO performs better than TuRBO on this function.

AIBO versus AIBO-none Without the gradient-based AF optimizer, AIBO-none still shows worse
performance than AIBO. This indicates that better AF maximization can improve the BO performance.
This trend can also be observed in the results of standard BO with different AF maximizers, where BO-grad
and BO-es outperform BO-random.

Overall, these experimental results highlight the importance of the AF maximization process for HDBO, as
simply changing the initialization of the AF maximization process brings significant improvement.

6.2 Evaluation under Different AFs

We also evaluate the performance of AIBO and BO-grad under different AFs. Besides the default AF setting
UCB1.96 (UCB with βt = 1.96), we also select UCB1 (βt = 1), UCB4 (βt = 4) and EI as the AF, respectively.
This aims to provide insights into how well AIBO enhances BO-grad across different AF settings, shedding
light on its robustness and effectiveness across diverse contexts.

Fig. 3 shows a comprehensive evaluation of the effectiveness of our AIBO method across various AFs.
Changing the AF has a noticeable impact on performance, highlighting the importance of AF selection. If
an inappropriate AF is used, such as using UCB4 in Rastrigin20, the performance improvements achieved
through the use of AIBO remain highly limited. Despite that, the results we obtained are highly encouraging.
While different AFs exhibit varying convergence rates, we consistently observe a noteworthy enhancement
in the performance of our method when compared to the standard BO-grad approach. The advantage is

10

Published in Transactions on Machine Learning Research (01/2024)

AIBO-UCB1.96
AIBO-UCB1

AIBO-UCB4
AIBO-EI

BO-grad-UCB1.96
BO-grad-UCB1

BO-grad-UCB4
BO-grad-EI

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2.5
5.0
7.5

10.0
12.5
15.0
17.5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

108

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

6000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0

200

400

600

800

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
200
400
600
800

1000
1200
1400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

1000

2000

3000

4000

5000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

1

2

3

4

5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

Figure 3: Evaluating the performance of AIBO and BO-grad under different AFs on both synthetic functions
(lower is better) and real-world problems (higher is better).

clearer in higher dimensions (100D and 300D) than in lower dimensions (20D). These findings highlight the
robustness and effectiveness of our initialization method across different AFs.

6.3 Over-exploration of Random Initialization

The aforementioned experimental results have demonstrated that heuristic AF maximizer initialization in
AIBO leads to significant end-to-end BO performance improvements compared to random initialization. In
this subsection, we evaluate AIBO’s three initialization strategies in terms of AF values, GP posterior mean,
and GP posterior variance under different AF settings.

11

Published in Transactions on Machine Learning Research (01/2024)

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 4: Evaluating AIBO’s three initialization strategies in terms of AF values, GP posterior mean, and
GP posterior variance when using UCB1.96 as the AF. The left column shows the number of times each
initialization achieves the highest AF value among all the three strategies throughout the search process.
Similarly, the middle column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

12

Published in Transactions on Machine Learning Research (01/2024)

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 5: Evaluating AIBO’s three initialization strategies in terms of AF values, GP posterior mean, and
GP posterior variance when using UCB1 as the AF. The left column shows the number of times each
initialization achieves the highest AF value among all the three strategies throughout the search process.
Similarly, the middle column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

13

Published in Transactions on Machine Learning Research (01/2024)

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 6: Evaluating AIBO’s three initialization strategies in terms of AF values, GP posterior mean,
and GP posterior variance when using EI as the AF. The left column shows the number of times each
initialization achieves the highest AF value among all the three strategies throughout the search process.
Similarly, the middle column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

14

Published in Transactions on Machine Learning Research (01/2024)

In each iteration of AIBO, each initialization oi yields a candidate xi
t after AF maximization (Line 11 in

Algorithm 1). For each initialization, we count the number of times xi
t achieves the highest AF value among

{x0
t , x1

t , x2
t} until the current iteration. This number will show what initialization dominates the search

process by yielding the highest AF value. Similarly, we also count the number of times xi
t achieves the lowest

GP posterior mean (exploitation) and highest GP posterior variance (exploration), respectively. This will
examine how different initialization schemes trade-off between exploration and exploitation.

The left column in Fig. 4 shows the number of times each initialization achieves the highest AF value among
all the three strategies throughout the search process when using UCB1.96 (βt = 1.96) as the AF. The
middle and right columns indicate the number of times each initialization achieves the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively. Compared to CMA-ES/GA
initialization, random initialization always yields lower AF values and higher posterior variance, leading to
over-exploration.

This over-exploration caused by random initialization is not exclusive to the UCB1.96 AF. As shown in Figs. 5
and 6, when decreasing βt from 1.96 to 1, or using EI as the AF, random initialization still yields lower AF
values and higher posterior variance. This is due to the curse of the dimensionality. Since the search space
size grows much faster than sampling budgets as the dimensionality increases, most regions are likely to have
a high posterior variance. Given that more samples can bring more local optimums to AFs as the search
progresses, random initialization tends to guide the AF maximizer to find local optimums in regions of high
posterior variance. Even if the AF is designed to prioritize regions with lower GP posterior mean values for
exploitation (e.g. UCB with a lower βt), these regions are sparse and may be inaccessible through random
initialization. AIBO is designed to mitigate the drawback of random initialization, and the results presented
here validate AIBO indeed achieves better AF maximization by optimizing the initialization phase.

6.4 Ablation Study

To better understand the role played by each initialization strategy in AIBO, we evaluate the three in-
dividual initialization strategies in AIBO, leading to three variants of AIBO: AIBO_ga, AIBO_cmaes
and AIBO_random. We note that AIBO_random is equivalent to BO-grad discussed earlier. Our fourth
variant, AIBO_gacma, removes the random initialization strategy in AIBO.

As shown in Fig. 7, advanced heuristic initialization strategies like GA and CMA-ES show better perfor-
mance than random initialization in most cases, showing the advantage of a heuristic algorithm over random
initialization. Using a single advanced heuristic initialization, AIBO_ga and AIBO_cmaes achieve similar
performance to AIBO in most cases. This suggests that CMA-ES and GA can be the main source of per-
formance improvement for AIBO. AIBO_gacma shows a similar performance to AIBO in all cases. This
is because GA/CMA-ES initialization dominates AIBO’s search process.

Besides, although AIBO_cmaes is competitive in most problems, it is ineffective for the 14D robot pushing
problem, suggesting there is no “one-fits-for-all" heuristic across tasks. By incorporating multiple heuristics,
the ensemble strategy used by AIBO gives a more robust performance than the individual components.

6.5 Comparison with Other Initialization Strategies

In previous experiments, we implemented random initialization by selecting the top-n points with the highest
AF values as the initial points from a large set of random points. Some existing BO implementations have
employed alternative initialization strategies. The impact of these methods has not been systematically
evaluated. We conduct a comparison of the following methods alongside AIBO: BO-cmaes_grad, BO-
boltzmann_grad and BO-Gaussian_grad.

6.5.1 Setup

BO-cmaes_grad uses CMA-ES to optimize the AF to provide better initial points for further gradient-based
AF maximization. We note that in this case, CMA-ES is used directly for AF optimization. In contrast, the
"CMA-ES" in AIBO is used to provide initial points by leveraging the history of black-box optimization.

15

Published in Transactions on Machine Learning Research (01/2024)

AIBO AIBO_random (BO-grad) AIBO_ga AIBO_cmaes AIBO_gacma

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

6000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600
700
800

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
200
400
600
800

1000
1200
1400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
500

1000
1500
2000
2500
3000
3500
4000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

1

2

3

4

5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

Figure 7: Comparing AIBO to its variants AIBO_gacma, AIBO_ga, AIBO_cmaes and AIBO_random
(BO-grad) . While a single advanced heuristic heuristic strategy CMA-ES/GA already performs well in most
cases, using the ensemble strategy improves the robustness.

Comparing these two methods will reveal the importance of the black-box optimization history in the AF
maximization process.

BO-boltzmann_grad refers to the default implementation in BoTorch, which uses Boltzmann sampling to
generate initial points for the gradient-based AF maximization. In each BO iteration, it evaluates the AF
on a large set of points and then uses an annealing heuristic (rather than top-n) to select the restart points.

BO-Gaussian_grad uses a Gaussian spray around the incumbent best to generate initial points for the
gradient-based AF maximizer. This initialization strategy has been used in Spearmint (Snoek et al., 2012),
and we replace the AF maximizer with the advanced gradient-based method for a fair comparison.

16

Published in Transactions on Machine Learning Research (01/2024)

AIBO BO-cmaes_grad BO-boltzmann_grad BO-Gaussian_grad

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
1000
2000
3000
4000
5000
6000
7000
8000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Re
wa

rd

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Re
wa

rd

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Re
wa

rd

HalfCheetah102

Figure 8: Comparing AIBO to standard BO with other AF initialization methods that do not use random
search on both synthetic functions (lower is better) and real-world problems (higher is better).

6.5.2 Results
Fig. 8 presents the comparison result between AIBO and other initialization strategies. BO-cmaes_grad
and BO-boltzmann_grad exhibit significantly inferior performance compared to AIBO. Both approaches do
not leverage prior black-box optimization history and instead attempt to optimize the AF in the global space
directly to provide initial points for further gradient-based AF optimization. This underscores the challenges
of AF optimization in high-dimensional problems and the importance of utilizing the black-box optimization
history. BO-Gaussian_grad takes into account the best points from the past black-box optimization history
as a basis for maximizing the AF. This approach performs well in some cases (e.g., Rastrigin100) but may lead
to a significant performance drop in other situations (e.g., Robotpush14) due to over-exploitation. Overall,
AIBO exhibits significantly better performance compared to these non-random initialization strategies.

17

Published in Transactions on Machine Learning Research (01/2024)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

3000
2000
1000

0
1000
2000
3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

3000
2000
1000

0
1000
2000
3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

3000
2000
1000

0
1000
2000
3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

batch size=5
batch size=10
batch size=50

Figure 9: The impact of hyper-parameters on AIBO. The left column shows the impact of GA population
size and CMA-ES initial standard deviation σ. The middle column reports the impact of the number of
raw candidates generated from heuristics k and the number of selected initial points n. The right column
shows the impact of the batch size.

18

Published in Transactions on Machine Learning Research (01/2024)

Table 2: Algorithmic runtime

Synthetic RobotPush Rover HalfCheetah
Dimensions 20 100 300 14 60 102
#Samples 1000 5000 5000 5000 5000 5000
AIBO 8 min 2.5 h 3.6 h 1.8 h 2 h 2.5 h
BO-grad 12 min 3.3 h 5 h 2.5 h 3 h 4 h

6.6 Evaluation under Different Hyper-Parameters

Multiple hyper-parameters in AIBO, including GA population size, CMA-ES initial standard deviation σ,
the number of raw candidates generated from heuristics k, the number of selected initial points n, and the
batch size could impact its performance.

GA pop size and CMA-ES σ As AIBO employ heuristics to initialize the AF maximization process,
these heuristics’ hyper-parameters control the quality of initial points of the AF maximization process and
affect the trade-off between exploration and exploitation. A larger GA population size and a larger CMA-ES
initial standard deviation will encourage more exploration. As shown in the left column of Fig. 9, different
tasks favour different trade-offs. A more exploratory setting (popsize=100 and σ = 0.5) works well for the
HalfCheetah102 task but reduces the performance on Ackley100. Our experiments suggest opting for a GA
population size between 20 and 100 and selecting the CMA-ES initial σ value within the range of 0.2 to 0.5.

k and n Based on Algorithm 1, increasing the number of raw candidates generated from heuristics k
and the number of selected initial points n might help AF maximization but requires more calculation.
However, as shown in the middle column of Fig. 9, increasing k and n does not yield significant performance
improvement in most cases except for the Rover60 task. We recommend setting k to 100 ∼ 1000 and setting
n to 1 ∼ 10.

Batch size As shown in the right column of Fig. 9, AIBO performs well across different batch sizes, and
reducing the batch size can slightly enhance convergence speed in all cases.

6.7 Algorithmic Runtime

In Table 2, we provide the algorithmic running time (excluding the time spent evaluating the objective
function) for our method with a batch size of 10. For comparison, we also show the algorithmic runtime of
BO-grad. The experiments are run on an NVIDIA RTX 3090 GPU equipped with a 20-core Intel Xeon Gold
5218R CPU Processor. As described in Sec 6.1.1, to show the effectiveness of AIBO, BO-grad is allowed
to perform more costly AF maximization. AIBO uses less algorithmic runtime because it costs less AF
maximization time than the standard BO-grad method. AIBO’s algorithmic runtime is also acceptable for
actual expensive black-box optimization tasks (only several hours for a few thousand evaluations).

7 Conclusion and Future Work

We have presented a large-scale empirical study to understand the impact of the acquisition function (AF)
maximizer initialization process when applying Bayesian optimization (BO) for high-dimensional problems.
Our extensive experiments show that the AF maximizer initialization can greatly impact the realization of
the AF, and the widely random initialization strategy may fail to unlock the potential of an AF.

We then propose AIBO, a framework to optimize the initialization phase of AF maximization BO. AIBO is
designed to overcome the limitation of the random initialization technique for high-dimensional BO. AIBO
employs a simple yet effective optimization strategy. It employs multiple heuristic optimizers to generate
the raw samples for the acquisition function maximizer to better trade-off exploration and exploitation.

19

Published in Transactions on Machine Learning Research (01/2024)

We evaluate AIBO by applying it to synthetic test functions, robot control, and planning tasks. Experimental
results show that AIBO can significantly boost the standard BO’s performance in high-dimensional problems
and outperform prior high-dimensional BO techniques.

Previous theoretical studies on the convergence of BO methods have largely relied on a fundamental as-
sumption that the AF could be globally optimized. While this assumption may hold in low-dimensional
tasks, our large-scale empirical study suggests that this assumption could be violated in high-dimensional
problems. We show that how the AF is optimized plays a crucial role in determining the overall efficacy
of the BO method. Our future work will examine the theoretical underpinnings governing BO convergence
when AF maximization is suboptimal. We hope this study, with extensive empirical evidence, can promote
more research in high-dimensional BO by jointly optimizing the AF and the process of maximizing the AF.

Acknowledgments

This work was supported in part by the UK Engineering and Physical Sciences Research Council (EP-
SRC) under grant agreement EP/X018202/1. For any correspondence, please contact Zheng Wang (Email:
z.wang5@leeds.ac.uk).

References
Tanweer Alam, Shamimul Qamar, Amit Dixit, and Mohamed Benaida. Genetic algorithm: Reviews, imple-

mentations, and applications. International Journal of Engineering Pedagogy, 2020.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson, and
Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization. Advances in neural
information processing systems, 33:21524–21538, 2020.

Thomas Bartz-Beielstein, Christian WG Lasarczyk, and Mike Preuß. Sequential parameter optimization. In
2005 IEEE congress on evolutionary computation, volume 1, pp. 773–780. IEEE, 2005.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter opti-
mization. Advances in neural information processing systems, 24, 2011.

Mickaël Binois, David Ginsbourger, and Olivier Roustant. On the choice of the low-dimensional domain for
global optimization via random embeddings. Journal of global optimization, 76(1):69–90, 2020.

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–89509, 2020.

Alexander I Cowen-Rivers, Wenlong Lyu, Zhi Wang, Rasul Tutunov, Hao Jianye, Jun Wang, and
Haitham Bou Ammar. Hebo: Heteroscedastic evolutionary bayesian optimisation. arXiv e-prints, pp.
arXiv–2012, 2020.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global
optimization via local bayesian optimization. Advances in Neural Information Processing Systems, 32,
2019.

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and exploit-
ing additive structure for bayesian optimization. In Artificial Intelligence and Statistics, pp. 1311–1319.
PMLR, 2017.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. Advances in neural information processing
systems, 31, 2018.

Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary computation, 11(1):
1–18, 2003.

20

Published in Transactions on Machine Learning Research (01/2024)

Nikolaus Hansen, yoshihikoueno, ARF1, Kento Nozawa, Luca Rolshoven, Matthew Chan, Youhei Akimoto,
brieglhostis, and Dimo Brockhoff. pycma: r3.2.2, March 2022. URL https://doi.org/10.5281/zenodo.
6370326. https://doi.org/10.5281/zenodo.6370326.

Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi. scikit-
optimize/scikit-optimize, October 2021. https://doi.org/10.5281/zenodo.5565057.

José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-Guzik. Par-
allel and distributed thompson sampling for large-scale accelerated exploration of chemical space. In
International conference on machine learning, pp. 1470–1479. PMLR, 2017.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin P Murphy. An experimental investigation
of model-based parameter optimisation: Spo and beyond. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pp. 271–278, 2009.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin Murphy. Time-bounded sequential parameter
optimization. In International Conference on Learning and Intelligent Optimization, pp. 281–298. Springer,
2010.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International conference on learning and intelligent optimization, pp. 507–523.
Springer, 2011.

Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without the lipschitz
constant. Journal of optimization Theory and Applications, 79:157–181, 1993.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional bayesian optimisation and
bandits via additive models. In International conference on machine learning, pp. 295–304. PMLR, 2015.

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R Collins,
Jeff Schneider, Barnabas Poczos, and Eric P Xing. Tuning hyperparameters without grad students:
Scalable and robust bayesian optimisation with dragonfly. J. Mach. Learn. Res., 21(81):1–27, 2020.

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adaptive and
safe bayesian optimization in high dimensions via one-dimensional subspaces. In International Conference
on Machine Learning, pp. 3429–3438. PMLR, 2019.

Aaron Klein, Stefan Falkner, Numair Mansur, and Frank Hutter. Robo: A flexible and robust bayesian
optimization framework in python. In NIPS 2017 Bayesian optimization workshop, pp. 70, 2017.

Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt. Gpflowopt: A bayesian opti-
mization library using tensorflow. arXiv preprint arXiv:1711.03845, 2017a.

Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt. Gpflowopt: A bayesian opti-
mization library using tensorflow. arXiv preprint arXiv:1711.03845, 2017b.

Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embeddings for high-
dimensional bayesian optimization. Advances in neural information processing systems, 33:1546–1558,
2020.

Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, and Alistair Shilton. High dimensional
bayesian optimization using dropout. arXiv preprint arXiv:1802.05400, 2018.

Daniel J Lizotte, Tao Wang, Michael H Bowling, Dale Schuurmans, et al. Automatic gait optimization with
gaussian process regression. In IJCAI, volume 7, pp. 944–949, 2007.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to
reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

21

https://doi.org/10.5281/zenodo.6370326
https://doi.org/10.5281/zenodo.6370326
https://doi.org/10.5281/zenodo.6370326
https://doi.org/10.5281/zenodo.5565057

Published in Transactions on Machine Learning Research (01/2024)

Ruben Martinez-Cantin, Nando De Freitas, Eric Brochu, José Castellanos, and Arnaud Doucet. A bayesian
exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile
robot. Autonomous Robots, 27(2):93–103, 2009.

Henry B Moss, David S Leslie, Javier Gonzalez, and Paul Rayson. Gibbon: General-purpose information-
based bayesian optimisation. Journal of Machine Learning Research, 22(235):1–49, 2021.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for bayesian optimization in
embedded subspaces. In International Conference on Machine Learning, pp. 4752–4761. PMLR, 2019.

ChangYong Oh, Efstratios Gavves, and Max Welling. Bock: Bayesian optimization with cylindrical kernels.
In International Conference on Machine Learning, pp. 3868–3877. PMLR, 2018.

Victor Picheny, Joel Berkeley, Henry B Moss, Hrvoje Stojic, Uri Granta, Sebastian W Ober, Artem Artemev,
Khurram Ghani, Alexander Goodall, Andrei Paleyes, et al. Trieste: Efficiently exploring the depths of
black-box functions with tensorflow. arXiv preprint arXiv:2302.08436, 2023.

Hong Qian, Yi-Qi Hu, and Yang Yu. Derivative-free optimization of high-dimensional non-convex functions
by sequential random embeddings. In IJCAI, pp. 1946–1952, 2016.

Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional bayesian opti-
mization with elastic gaussian process. In International conference on machine learning, pp. 2883–2891.
PMLR, 2017.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian optimiza-
tion via additive models with overlapping groups. In International conference on artificial intelligence and
statistics, pp. 298–307. PMLR, 2018.

Matthias Seeger. Gaussian processes for machine learning. International journal of neural systems, 14(02):
69–106, 2004.

Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional
hyperparameter optimization benchmark suite for lasso. arXiv preprint arXiv:2111.02790, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian optimization of
non-stationary functions. In International Conference on Machine Learning, pp. 1674–1682. PMLR, 2014.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

The GPyOpt authors. GPyOpt: A bayesian optimization framework in python. http://github.com/
SheffieldML/GPyOpt, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. In International
Conference on Machine Learning, pp. 3627–3635. PMLR, 2017.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional bayesian opti-
mization via structural kernel learning. In International Conference on Machine Learning, pp. 3656–3664.
PMLR, 2017.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian optimization
in high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics, pp. 745–
754. PMLR, 2018.

22

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

Published in Transactions on Machine Learning Research (01/2024)

Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas, et al. Bayesian optimization
in high dimensions via random embeddings. In IJCAI, pp. 1778–1784. Citeseer, 2013.

James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for bayesian optimiza-
tion. Advances in neural information processing systems, 31, 2018.

Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch bayesian optimization. Ad-
vances in neural information processing systems, 29, 2016.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-bench-
101: Towards reproducible neural architecture search. In International conference on machine learning,
pp. 7105–7114. PMLR, 2019.

23

Published in Transactions on Machine Learning Research (01/2024)

A Appendix

A.1 The case of over-exploitation

To show AIBO’s random initialization can help alleviate the over-exploitation issue, we create a variant of our
technique, AIBO_gacma, by removing random initialization. Using default hyperparameters, AIBO_gacma
performs well in the RobotPush14 optimization task. However, after adjusting the hyperparameters to
an over-exploitation case by setting GA population size to 3 and CMA-ES initial standard deviation to
0.01, we observe that AIBO_gacma performs less effectively. Upon reintroducing random initialization,
we observed significant performance improvement, suggesting that random initialization could help mitigate
over-exploitation.

AIBO_gacma (popsize=3, CMA-ES = 0.01)
AIBO_gacma (popsize=50, CMA-ES = 0.2)

AIBO (popsize=3, CMA-ES = 0.01)
AIBO (popsize=50, CMA-ES = 0.2)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

Figure 10: Comparision of AIBO and AIBO_gacma under a standard hyperparameter setting and a over-
exploitative setting. Results show that random initialization could help mitigate over-exploitation.

A.2 Details of GA and CMA-ES in AIBO

In this section, we explain how GA and CMA-ES optimizers in AIBO are initialized (Line 3 in Algorithm
1), updated (Line 16 in Algorithm 1) and asked to generate raw candidates (Line 8 in Algorithm 1). We use
the implementations in pycma and pymoo for the CMA-ES and the GA strategies, respectively.

Initialization of GA At the beginning of the search process in AIBO, we will draw N samples uniformly
and evaluate them to produce GA’s initial population.

Candidate generation of GA To generate new candidates, GA will sequentially perform selection,
crossover and mutation operations. The selection operation aims to select individuals from the current
population of GA to participate in mating (crossover and mutation). The crossover operation combines
parents into one or several offspring. Finally, the mutation operation generates the final candidates based on
the offspring created through the crossover. It helps increase the diversity in the population. The selection,
crossover and mutation operations used in AIBO are shown as follows.

• Tournament Selection: It involves randomly picking T individuals from the population, comparing
their fitness, and selecting the individual with the highest fitness. This process is repeated to fill the
new generation. We use the default setting of pymoo, i.e., T = 2.

• Simulated Binary Crossover (SBX): This is a widely used crossover technique. A binary notation
can represent real values, and then point crossovers can be performed. SBX simulated this operation
by using an exponential probability distribution simulating the binary crossover. For this operation,
we also use the default SBX implementation of pymoo, where the crossover probability is set to 0.5.

24

https://github.com/CMA-ES/pycma
https://github.com/anyoptimization/pymoo
https://github.com/anyoptimization/pymoo/blob/82a5189704436b1d1296e3615075bf6115f5dabf/pymoo/operators/selection/tournament.py#L9
https://github.com/anyoptimization/pymoo/blob/82a5189704436b1d1296e3615075bf6115f5dabf/pymoo/operators/crossover/sbx.py#L87

Published in Transactions on Machine Learning Research (01/2024)

• Polynomial Mutation: This mutation follows the same probability distribution as the simulated
binary crossover to introduce small, random changes to individuals in the population to maintain
genetic diversity. We use the default polynomial mutation implementation of pymoo, where the
mutation probability is set to 0.9.

Update of GA We update the population of GA using the most recently evaluated samples in AIBO.
Here, we sort the samples based on their fitness (black-box function value), ultimately retaining those with
superior fitness.

Initialization of CMA-ES The key of CMA-ES is a multivariate normal distribution N (mk, σ2
kCk),

which is initialized at the beginning of the search process in AIBO. In particular, we will draw N samples
uniformly and evaluate them. The coordinates of the sample with the best black-box function value will
used as the initial mean vector m0. The step size σk is initialized to a constant σ0 = 0.2, and the covariance
matrix Ck is initialized as an identity matrix C0 = I.

Candidate generation of CMA-ES At each iteration k, CMA-ES generates candidates by sampling
from its current multivariate normal distribution, i.e.,

xi ∼ N (mk, σ2
kCk)

∼ mk + σk ×N (0, Ck)
(2)

Update of CMA-ES The update of CMA-ES involves updating the multivariate normal distribution
N (mk, σ2

kCk). Assuming the batch size of AIBO is λ, the samples xi are evaluated on the objective function
f to be minimized. The only feedback from the objective function here is ordering the sampled candidate
solutions due to the indices i : λ. Denoting the f -sorted candidate solutions as

{xi:λ | i = 1 . . . λ} = {xi | i = 1 . . . λ} and f(x1:λ) ≤ · · · ≤ f(xµ:λ) ≤ f(xµ+1:λ) ≤ · · · ,

the new mean value is computed as

mk+1 =
µ∑

i=1
wi xi:λ

= mk +
µ∑

i=1
wi (xi:λ −mk)

where the positive (recombination) weights w1 ≥ w2 ≥ · · · ≥ wµ > 0 sum to one. Typically, µ ≤ λ/2 and
the weights are chosen such that µw := 1/

∑µ
i=1 w2

i ≈ λ/4.

The step-size σk is updated using “cumulative step-size adaptation” (CSA), sometimes also denoted as ”path
length control”. The evolution path (or search path) pσ is updated first.

pσ ← (1− cσ)︸ ︷︷ ︸
discount factor

pσ +

complements for discounted variance︷ ︸︸ ︷√
1− (1− cσ)2 √

µw C
−1/2

k

displacement of m︷ ︸︸ ︷
mk+1 −mk

σk︸ ︷︷ ︸
distributed as N (0,I) under neutral selection

σk+1 = σk × exp

 cσ

dσ

(
∥pσ∥

E ∥N (0, I)∥ − 1
)

︸ ︷︷ ︸
unbiased about 0 under neutral selection

where

25

https://github.com/anyoptimization/pymoo/blob/82a5189704436b1d1296e3615075bf6115f5dabf/pymoo/operators/mutation/pm.py#L74

Published in Transactions on Machine Learning Research (01/2024)

• c−1
σ ≈ n/3 is the backward time horizon for the evolution path pσ and larger than one (cσ ≪ 1 is

reminiscent of an exponential decay constant as (1− cσ)k ≈ exp(−cσk) where c−1
σ is the associated

lifetime and c−1
σ ln(2) ≈ 0.7c−1

σ the half-life),

• µw =
(∑µ

i=1 w2
i

)−1 is the variance effective selection mass and 1 ≤ µw ≤ µ by definition of wi,

• C
−1/2

k =
√

Ck
−1 =

√
C −1

k is the unique symmetric square root of the inverse of Ck, and

• dσ is the damping parameter usually close to one. For dσ = ∞ or cσ = 0, the step size remains
unchanged.

The step size σk is increased if and only if ∥pσ∥ is larger than the expected value

E ∥N (0, I)∥ =
√

2 Γ
(

n + 1
2

)
/Γ

(n

2

)
≈
√

n

(
1− 1

4n
+ 1

21n2

)
and decreased if it is smaller. For this reason, the step-size update tends to make consecutive steps C−1

k -

conjugate, in that after the adaptation has been successful
(

mk+2−mk+1
σk+1

)T

C−1
k

mk+1−mk

σk
≈ 0.

Finally, the covariance matrix is updated, where again, the respective evolution path is updated first.

pc ← (1− cc)pc + 1[0,α
√

n](∥pσ∥)
√

1− (1− cc)2√µw
mk+1 −mk

σk

Ck+1 = (1− c1 − cµ + cs)Ck + c1pcpT
c + cµ

µ∑
i=1

wi
xi:λ −mk

σk

(
xi:λ −mk

σk

)T

where T denotes the transpose and

• c−1
c ≈ n/4 is the backward time horizon for the evolution path pc and larger than one,

• α ≈ 1.5 and the indicator function 1[0,α
√

n](∥pσ∥) evaluates to one iff ∥pσ∥ ∈ [0, α
√

n] or, in other
words, ∥pσ∥ ≤ α

√
n, which is usually the case,

• cs = (1−1[0,α
√

n](∥pσ∥)2)c1cc(2−cc) makes partly up for the small variance loss in case the indicator
is zero,

• c1 ≈ 2/n2 is the learning rate for the rank-one update of the covariance matrix and

• cµ ≈ µw/n2 is the learning rate for the rank-µ update of the covariance matrix and must not exceed
1− c1.

A.3 Additional real-world benchmarks

Here we provide two additional real-world benchmarks Lasso-DNA (Šehić et al., 2021) and Nasbench (Ying
et al., 2019), to improve the claim for the real-world performance of our method. The Lasso-DNA task
minimizes the mean squared error (MSE) of weighted Lasso sparse regression for real-world DNA datasets
by tuning 180 parameters. The Nasbench task is to design a neural architecture cell topology defined by a
DAG with 7 nodes and up to 9 edges to maximize the CIFAR-10 test-set accuracy, subject to a constraint
where the training time was less than 30 minutes. We follow the parameterization approach used by Letham
et al. (2020) to make the Nasbench task become a 36-dimensional black-box function.

For Lasso-DNA, AIBO still significantly outperforms BO-grad. For Nasbench-101, AIBO only shows a
modestly improved performance compared to BO-grad. This is because the search space size of Nasbench-
101 is small (only 423,624 samples). For such a small search space size, AF maximization is no longer a
challenge.

26

Published in Transactions on Machine Learning Research (01/2024)

AIBO (ours)
AIBO-none (ours)

BO-grad
BO-es

BO-random
TuRBO

HeSBO
Elastic BO

CMA-ES
GA

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

lasso-DNA (lower is better)

0 25 50 75 100 125 150 175 200
Number of black-box function evaluations

0.926
0.928
0.930
0.932
0.934
0.936
0.938
0.940

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Nasbench (higher is better)

Figure 11: Results on two additional real-world problems Lasso-DNA and NasBench.

A.4 Comparision with DIRECT initialization

As the DIRECT (Jones et al., 1993) algorithm is widely used for the acquisition function optimization,
we also use it to optimize the AF for generating initial points for further gradient-based optimizers. The
corresponding BO method is denoted as BO-DIRECT_grad. We compare BO-DIRECT_grad with AIBO
in all the benchmarks. As shown in Fig. 12, AIBO outperforms BO-DIRECT_grad in all cases, and the
performance gap is notable in most cases.

A.5 Monte Carlo acquisition function

Here, we provide details about how Monte Carlo acquisition functions are calculated. Many common acqui-
sition functions can be expressed as the expectation of some real-valued function of the model output(s) at
the design point(s):

α(X) = E
[
a(ξ) | ξ ∼ P(f(X) | D)

]
where X = (x1, . . . , xq), and P(f(X) | D) is the posterior distribution of the function f at X given the data
D observed so far.

Evaluating the acquisition function thus requires evaluating an integral over the posterior distribution. In
most cases, this is analytically intractable. In particular, analytic expressions generally do not exist for batch
acquisition functions that consider multiple design points jointly (i.e. q > 1).

An alternative is to use (quasi-) Monte-Carlo sampling to approximate the integrals. An Monte-Carlo (MC)
approximation of α at X using N MC samples is

α(X) ≈ 1
N

N∑
i=1

a(ξi)

where ξi ∼ P(f(X) | D).

For instance, for MC-estimated Expected Improvement, we have:

qEI(X) ≈ 1
N

N∑
i=1

max
j=1,...,q

{
max(ξij − f∗, 0)

}
, ξi ∼ P(f(X) | D)

where f∗ is the best function value observed so far (assuming noiseless observations).

27

Published in Transactions on Machine Learning Research (01/2024)

AIBO BO-DIRECT_grad

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
1000
2000
3000
4000
5000
6000
7000
8000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Re
wa

rd

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Re
wa

rd

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Re
wa

rd

HalfCheetah102

Figure 12: Comparing AIBO to BO-DIRECT_grad. AIBO outperforms BO-DIRECT_grad in all cases.

Using the reparameterization trick (Wilson et al., 2018),

qEI(X) ≈ 1
N

N∑
i=1

max
j=1,...,q

{
max

(
µ(X)_j + (L(X)ϵi)_j − f∗, 0

)}
, ϵi ∼ N (0, I)

where µ(X) is the posterior mean of f at X, and L(X)L(X)T = Σ(X) is a root decomposition of the
posterior covariance matrix.

28

Published in Transactions on Machine Learning Research (01/2024)

AIBO (batch_size=1) BO-grad (batch_size=1)

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

6000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
1000
2000
3000
4000
5000
6000
7000
8000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Re
wa

rd

RobotPush14 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1
0
1
2
3
4
5

Re
wa

rd

Rover60 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Re
wa

rd

HalfCheetah102 (higher is better)

Figure 13: Evaluating AIBO and BO-grad on analytical UCB AF with βt = 1.96. We set the batch size to
1 to support the analytical AF. AIBO still outperforms BO-grad in all cases.

A.6 Evaluations on analytical acquisition functions

To evaluate our method on analytical AFs (unsuitable for batch BO), we set the batch size to 1. As shown
in Fig. 13 Using analytical UCB AF βt = 1.96, AIBO still outperforms BO-grad in all cases.

A.7 The impact of Acquisition Function on the diversity of GA population

Our heuristic initialization process is AF-related, as it depends on past samples selected by the given AF.
Usually, a more explorative AF setting will make the heuristic initialization in AIBO also more explorative.

29

Published in Transactions on Machine Learning Research (01/2024)

For instance, if the AF formula leans towards exploration in GA, the GA population composed of samples
chosen by this AF will have greater diversity, generating more diverse raw candidates.

To illustrate this point. We select two different AF settings: UCB1.96 (βt = 1.96), and UCB9 (βt = 9, more
exploratory). When applying AIBO to Ackley100, we calculate the average distance between individuals in
the GA population at each BO iteration, which is a good measure of the population diversity. We repeated
this experiment 50 times. As shown in Fig. 14, AIBO with UCB9 achieves more diverse GA populations
than AIBO with UCB 1.96, suggesting that a more explorative AF setting will make GA initialization more
explorative.

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

10 1

100

Av
er

ag
e

di
st

an
ce

 o
f G

A
po

p

Ackley100
(higher means more diverse GA population)

AIBO-UCB1.96
AIBO-UCB9

Figure 14: Evaluating the average distance between individuals in the GA population when applying AIBO-
UCB1.96 and AIBO-UCB9 (more exploratory) to the Ackley100 function. With the same number of BO
iterations, AIBO-UCB9 always owns a more diverse GA population than AIBO-UCB1.96, suggesting that a
more exploratory AF setting will make the GA initialization in AIBO also more exploratory.

30

	Introduction
	Related Work
	High-dimensional Bayesian Optimization
	Acquisition Function Maximization

	Motivation
	Methodology
	Heuristic Acquisition Function Maximizer Initialization
	Implementation Details

	Experimental Setup
	Benchmarks
	Evaluation Methodology

	Experimental Results
	Comparison with Baselines
	Setup
	Results

	Evaluation under Different AFs
	Over-exploration of Random Initialization
	Ablation Study
	Comparison with Other Initialization Strategies
	Setup
	Results

	Evaluation under Different Hyper-Parameters
	Algorithmic Runtime

	Conclusion and Future Work
	Appendix
	The case of over-exploitation
	Details of GA and CMA-ES in AIBO
	Additional real-world benchmarks
	Comparision with DIRECT initialization
	Monte Carlo acquisition function
	Evaluations on analytical acquisition functions
	The impact of Acquisition Function on the diversity of GA population

