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Accelerating Finite State Machine-Based Testing
using Reinforcement Learning

Uraz Cengiz Türker, Member, IEEE, Robert M. Hierons, Khaled El-Fakih, Mohammad Reza Mousavi,

and Ivan Y. Tyukin

Abstract—Testing is a crucial phase in the development of complex systems, and this has led to interest in automated test generation

techniques based on state-based models. Many approaches use models that are types of finite state machine (FSM). Corresponding

test generation algorithms typically require that certain test components, such as reset sequences (RSs) and preset distinguishing

sequences (PDSs), have been produced for the FSM specification. Unfortunately, the generation of RSs and PDSs is computationally

expensive, and this affects the scalability of such FSM-based test generation algorithms. This paper addresses this scalability problem

by introducing a reinforcement learning framework: the Q-Graph framework for MBT. We show how this framework can be used in the

generation of RSs and PDSs and consider both (potentially partial) timed and untimed models. The proposed approach was evaluated

using three types of FSMs: randomly generated FSMs, FSMs from a benchmark, and an FSM of an Engine Status Manager for a

printer. In experiments, the proposed approach was much faster and used much less memory than the state-of-the-art methods in

computing PDSs and RSs.

Index Terms—Finite state machines, reset sequences, state identification sequences, reinforcement learning, Q-value function,

software engineering/ software/program verification, software engineering/test design, software engineering/testing and debugging.

✦

1 INTRODUCTION

AUTOMATED testing is an essential component for qual-
ity assurance and establishing trust in complex sys-

tems. Model-based testing (MBT) has been studied and
used extensively as it enables automated test derivation. In
MBT, the underlying system is usually modelled by state-
based models. State-based models represent the input/out-
put behaviour of the system and the change of internal
state as a result of such behaviour. Finite state machines
(FSMs), timed-finite state machines (tFSMs), extended finite
state machines (EFSMs), and communicating extended finite
state machines (C-EFSMs) are some of the most popular
representation approaches deployed in MBT.

A model-based test generation technique derives tests
from a state-based model, with the tests being applied to
the system under test (SUT). Typically, tFSMs, EFSMs, and
C-EFSMs are converted into equivalent FSM counterparts
for test generation and numerous techniques have been
proposed for deriving structured test cases from FSM mod-
els. In an FSM, an input x in a state s leads to an output
y and next state s′, with this defining a transition. FSM
based techniques are appealing both because they can be
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automated and because, under certain assumptions, many
of the techniques produce test cases with guaranteed fault
detection ability [1], [2], [3], [4], [5].

Many model-based test generation techniques have been
adopted in the industrial context [6]. A problem hampering
the widespread use of such techniques is their efficiency for
large-scale models. This challenge has become more promi-
nent with the introduction of automata learning tools that
can automatically derive state-based models from complex
systems [7], [8], [9], [10]. In this paper, as part of the evalu-
ation, we use such a model: the Engine Status Manager is an
embedded program that manages the status of the engine in
Océ printers and copiers (a subsidiary of Canon) [11]. This
model has thousands of states, and systematically deriving
tests with guaranteed fault detection capability from such
large complex systems, is a challenge [12], [13], [14]. We ad-
dress this scalability problem using reinforcement learning.

1.1 Problem definition and research questions

In FSM-based testing, the tester will typically bring the
SUT to a specific initial state by executing a reliable reset
function or applying a resetting sequence (RS) before the
test [7], [8], [9], [10], [15]. In the absence of an RS, resetting
the SUT may require manual configuration of the SUT or
restarting the SUT and, therefore, is considered to be one of
the most expensive steps in FSM-based testing [16]. This has
led to research regarding algorithms that generate RSs from
FSMs [12], [17], [18].

After the resetting phase, the tester uses a sequence of
inputs and expected outputs to achieve a test purpose [15].
One crucial test purpose is to identify the existence of a
one-to-one mapping between the states of the SUT and the
specification FSM and to verify the correct implementation
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of the transitions in the SUT [15]. Checking a transition
requires further testing to verify that the state of the SUT
reached by the transition matches the one in the specifica-
tion FSM. State identification and transition verification use
state identification sequences such as a Preset or Adaptive
Distinguishing sequence (PDS, ADS), a Characterising Set
[1], or a Unique Input Output sequence (UIO) [15], [19]. One
advantage of using ADSs is that there is a polynomial time
algorithm for finding an ADS, where it exists. However, the
test environment may not allow adaptive testing: the tester
cannot respond in real-time to outputs. In such scenarios,
instead of an ADS, we may use PDSs. Therefore, many test
generation algorithms require an RS and a PDS to construct
a test [1], [16], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29]. However, the state-of-the-art approaches in deriving
these sequences cannot process large FSMs. For example, the
existing algorithm for deriving PDSs applies a brute-force
search [30]. The state-of-the-art RS generation algorithms re-
quire general-purpose graphics processing units and cannot
process FSMs having large input domains [12], [17], [18].
Therefore, to enable test case generation from large FSMs,
we need scalable methods for deriving RSs and PDSs.

On the other hand, there are many classes of FSMs, rep-
resenting different types of software systems. For example,
if all states of a software system share a common input
domain, then this system can be represented by a complete
FSM; otherwise, the FSM is partial. In some software systems
(partial or complete), state change occurs due to a timeout.
Real-time software systems are examples where the state
transition may happen due to a timeout. Such systems can
be represented by a tFSMs [31], [32], [33] with a single clock.
tFSMs have been used as models in many fields, such as
in real-time scheduling and optimisation as well as model-
checking, and there are tools for test-case generation from
timed FSMs. An expressive version of them is supported
by the Uppaal toolset [34]. Approaches for test derivation
from tFSMs are investigated in many papers [31], [35],
[36], [37]. A tFSM can be complete or partial and flattened
into an FSM [33]. Thus, test derivation from a given tFSM,
and the generation of related RSs and DSs, can be carried
out using traditional FSM-based methods from the flattened
FSM [36], [37]. However, flattening an FSM increases the
state space size, leading to additional scalability issues, and
to our knowledge, there are no RS and PDS generation
methods for tFSMs.

Reinforcement Learning (RL) approaches are becoming
a major tool in computational intelligence due to their ex-
ceptional problem-solving capabilities [38], [39]. In contrast
to approaches that estimate the expected cumulative reward
of being in a particular state, in Q-learning, we estimate the
expected cumulative reward of taking a particular action
in a particular state. Because of this nature, Q-learning is
an appealing framework for test generation as it provides
pairing between inputs and states. Based on this analogy, re-
cently, we introduced a novel Q-learning algorithm [40] that
has been shown to be effective in deriving synchronising
sequences (SS) from complete (or partial) finite automata.

The work presented in this paper is motivated by the
desire to create a Q-learning framework in which different
types of test inputs can be derived from various types of
FSMs. This makes it possible to represent reset sequence

Seq. Type FSM type Approach in [40] Proposed approach

RS
Complete FSMs ✔ ✔

Partial FSMs ✔ ✔

Timed FSMs ✗ ✔

PDS
Complete FSMs ✗ ✔

Partial FSMs ✗ ✔

Timed FSMs ✗ ✔

TABLE 1
Capability comparison for the proposed framework

(RS) and state identification sequence (PDS) generation
problems as objective functions that can be solved by the
framework for complete (partial) timed (untimed) FSMs. We
consider the following research questions:
RQ-1 : Is it possible to define a general Q-learning framework
that can compute resetting and state-verification sequences for
different kinds of FSMs?

(a) What sort of reward functions can be used to derive reset-
ting and state-verification sequences from different types of
FSMs?

(b) The framework will be based on the Q-graph approach, and
the Q-Graph approach is stochastic, so will the proposed
framework behave differently in different runs when it is
exposed to the same inputs? That is, is the new approach
functionally stable?

RQ 2: Is the new framework more efficient and effective than
the state-of-the-art algorithms for generating resetting and state
verification sequences?

(a) How efficient is the proposed approach, regarding memory
and time requirement, when compared to the state-of-the-art
algorithms?

(b) How effective is the proposed approach in terms of the sizes
of the resetting and state-verification sequences compared to
the sequences generated by other existing algorithms?

To assess the proposed framework and study the ques-
tions, we performed experimental evaluations on complete,
partial, and timed systems. We used a number of synthetic
models as well as benchmark models obtained from [41].
We also use an Engine Status Manager (ESM) model learnt
from a printer controller: a partial model that has 77 inputs
and 3410 states.

1.2 Contributions

We summarise the list of contributions as follows.

1) We improved and re-structured our Q-Graph learning
algorithm to derive RSs and PDSs from complete and
partial FSMs and tFSMs. Improvements (with respect to
the earlier conference publication [40]) are summarised
in Table 1;

2) In the previous work, we proposed a stand-alone ap-
plication with no stability analysis. In this work, we
introduce a general RL framework for MBT and analyse
its stability;

3) In contrast to our previous work, we allow models to
have outputs as well as inputs;

4) We design and conduct experiments to empirically
evaluate our algorithms and answer our research ques-
tions.

Note that in our previous work, we investigated the
problem of devising SSs from a finite automaton that es-
sentially is an FSM that does not include outputs. SSs
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are similar to RSs: both take a system to a given state
irrespective of the state in which it is applied. There are
two important differences between the work regarding SSs
previously reported and the work regarding RSs described
in this paper. First, in this paper we devise a framework
that can process both timed and untimed models; previously
only untimed models were used. Second, we used a wider
range of subjects in the experimental evaluation.

1.3 Organisation of the Paper

The paper is structured as follows. First, we describe related
work in Section 2. Next, in Section 3, we provide the
notation and definitions. Following this, Section 4 intro-
duces the Q-Graph framework. We describe the experiments
and results for un-timed FSMs in Section 5. Afterwards,
we demonstrate how the Q-Graph framework can derive
sequences from timed FSMs in Section 6. Following this,
in Section 7, we discuss the Research Questions. Finally, in
Section 8, we provide future directions and conclusions.

2 RELATED WORK

Existing model-based test generation approaches are tailored
applications for a specific task and model class. For example,
an algorithm for deriving RSs from complete FSMs cannot
derive RSs from partial FSMs. An algorithm to derive RS
or PDS from partial FSMs can be used to derive RS or PDS
from complete FSMs with reduced performance: such an
algorithm executes additional checks that are unnecessary
for complete FSMs. Furthermore, an algorithm to generate
PDSs from partial FSMs cannot derive RS from complete
FSMs as they are different problems. However, we show
that the proposed framework can be used to derive RSS and
PDSs from partial and complete FSMs and tFSM. The only
change to be made to the framework is to alter the reward
function.

In this section, we first review the related work associ-
ated with RSs and PDSs. This is then followed by a review
of test generation using reinforcement learning.

2.1 Resetting sequences

There is a rich body of literature relating to the computa-
tional complexity of algorithms for RSs. To begin with, gen-
erating or checking the existence of an RS from a complete
FSM is polynomial time solvable [42]. However, checking
the existence of an RS of length k from such machines is
NP-Hard [42]. Furthermore, checking the existence of an RS
is PSPACE-Complete if the FSM is partial [43].

Much of the work regarding RSs aims to devise algo-
rithms that can produce shorter RSs faster. Depending on
the type of the underlying FSM, different approaches have
been produced, and we separate these algorithms based on
the underlying FSM, complete and partial and FSMs having
timeouts.

Regarding complete FSMs, one of the fastest methods is
the Greedy Method, which has anO(n3+in2) time complexity,
where n denotes the number of states and i denotes the
number of inputs of the FSM. The initial step of the Greedy
Method is the construction of a product-automaton, a data
structure that requires O(n2) space. Following this method,

different approaches/heuristics to derive short RSs have
been proposed [44], [45], [46], [47], [48], [49], [50], [51]. How-
ever, the tight bound O(n3) prevents all the variations of
this method from processing large models. In contrast, our
approach does not require the construction of the product
automaton.

Another algorithm for calculating RSs has been pre-
sented by Güniçen et al. [52]. This algorithm uses Answer
Set Programming to generate RSs from complete FSMs. How-
ever, encoding the system and the RS generation problem
into a Conjunctive Normal Form formulation is not scaling to
large systems with many states [52].

In order to scale, researchers developed algorithms
that run on general-purpose graphics processing units
(GPUs) [17], [18]. Even though this is an active research
direction and the results are encouraging, these methods
cannot handle partial systems and are difficult to program.
Their performance solely relies on the underlying GPU
hardware.

For partial FSMs, the standard algorithm uses brute force
search [30], [53]. The only scalable improvement [12] checks
all input sequences that are not longer than some upper
bound. Experimental results show that the algorithm can
process FSMs with 16, 000, 000 states and 10 inputs using
a relatively powerful GPU card and CPU. However, the
algorithm’s performance drastically drops as the number
of inputs increases. Moreover, as this algorithm runs on a
GPU, it suffers from the abovementioned issues (equipment
and expertise requirements).

For tFSMs, scalability is adversely affected by the fact
that the process of deriving RSs from complete (or partial)
tFSMs involves a step that creates a complete (or partial)
FSM with many more states than the corresponding tFSM.
Our approach can derive RSs directly from the tFSM models
without creating partial (or complete) FSMs [33].

2.2 Preset Distinguishing Sequences

The problem of checking the existence of a PDS is PSPACE-
complete even for complete FSMs [15]1, and to our knowl-
edge, the existing methods to derive PDSs involve a brute-
force approach [30]. A GPU-based brute-force PDS genera-
tion algorithm has been proposed for FSMs, and it is worth
noting that this algorithm also works for non-deterministic
FSMs [55]. Moreover, an SAT-based PDS generation algo-
rithm for complete FSMs has been given [56]. However, the
time required to translate the system and the PDS genera-
tion problem into a Conjunctive Normal Form is high, and
the method cannot process large FSMs.

Similar to RSs, it is important to note that no published
method is processing tFSMs to generate PDSs. However,
again it is possible to pre-process the tFSM and map a tFSM
to an FSM and then use standard algorithms. Due to the cost
of the pre-processing step, this method suffers from poor
efficiency.

2.3 Test generation using Reinforcement Learning

Motivated by recent breakthroughs in Reinforcement Learn-
ing (RL), the work presented in this paper aims to use RL as

1. Except for one class of FSMs [54].
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Symbols Definitions

Ŝ,s0 Set of sets of states, the initial state
S′,S Set of states, set of states
X ,Y ,x,y,x̄,ȳ Set of inputs, set of outputs, input, output, input

sequence, output sequence.
ϵ, ε Empty input (or output) (sequence), undefined

input (or output) (sequence).

δ̂, δ, λ Transition function for a set of sets of states,
transition function, output function.

pow(.) Power set of (.).
TABLE 2

List of symbols regarding FSMs

the basis for novel algorithms that efficiently find short RSs
and PDSs. RL is a family of machine learning algorithms
and is becoming an essential tool in computational intelli-
gence [57]. In RL, computers (agents) make their own choices
(take actions) in a given environment without having prior
information or labelled data [58].

Recently, the use of RL has received attention in several
areas of testing, including Android testing [59], mutation
testing [60], online testing [61], and security testing [62], [63],
[64]. Except for our past work [40] no approach has been
proposed for FSM-based testing. We now briefly describe a
few of these lines of work.

In Android testing, the focus has been on automatically
generating test cases to improve code coverage [59], while
the mutation testing work has used RL to predict whether
a given test suite kills a mutant without incurring the cost
of executing the mutant [60]. In online testing, test inputs
are chosen during test execution, and RL has been used
to address the problem of optimising the choices made to
reduce test costs [61]. RL has been used to learn a behaviour
model of the system under test to aid risk-based testing [65].

Three RL algorithms have been proposed and embedded
in EvoSuiteFIT [66] to support hyperheuristic search-based
test generation algorithms [67]. Within security testing, re-
searchers have developed an RL-based testing algorithm
that trains dishonest agents to reveal dangerous behaviours
of autonomous cyber-physical systems [64]. In addition, an
RL-based test generation technique has been devised to
increase hardware Trojan detection accuracy [62], [63].

3 PRELIMINARIES

3.1 Finite State Machines

A Finite State Machine (FSM) is an abstract machine that has
a finite set of states (S), one of which is designated as the
initial state (s0 ∈ S), finite set of inputs (X) and a finite set
of outputs (Y ). When an input x ∈ X is applied, when the
FSM is in state s, the FSM produces an output y ∈ Y and
changes its current state to some s′ ∈ S. We summarised the
terminology we used for FSMs in Table 2.

In Figure 1, we give a complete FSM M1 that models
a ShiftRegister circuit [41]. With respect to FSM M1, if
a tester applies input x1 when the FSM is in state s0, then
the FSM will produce output y0 and change its state to s1.
Given set A, we use A∗ to denote the set of sequences of
zero or more elements from A, and ϵ is used to denote an
empty sequence.

In this paper, we consider deterministic FSMs and sim-
ply call these FSM. An FSM’s behaviour is represented by
next state δ and output λ functions which define transitions.

A transition τ has a starting state start(τ) ∈ S, an input
symbol in(τ) ∈ X , an ending state end(τ) = δ(s, x), and
an output symbol out(τ) = λ(s, x). Thus, we can represent
an FSM using the tuple M = (S,X, Y, δ, λ, s0). If δ and λ
are defined on all pairs in S ×X then M is a complete FSM;
otherwise M is a partial FSM. If M is complete then δ has
type S × X → S and λ has type S × X → Y . That is, δ
is a function that maps (state × input) pairs to states, and
λ is a function that maps (state × input) pairs to output
symbols. Note we used ϵ as an input to indicate the cases in
which FSM does not receive input. If M is partial, we use ε
as the output of δ and λ whenever they are applied to a pair
from S ×X on which they are not defined. Thus, for partial
FSMs we have functions types δ : S × X → S ∪ {ε} and
λ : S ×X → Y ∪ {ε}; if x is an undefined input for s then
we have δ(s, x) = ε and λ(s, x) = ε. Similarly, if x = ϵ, then
we have δ(s, ϵ) = s and λ(s, ϵ) = ϵ.

An input sequence x̄ ∈ X∗ is a sequence of inputs,
i.e., x̄ = x1x2 . . . xk. If input sequence x̄ is applied to a
complete FSM in state s, the FSM performs a walk defined by
a sequence of transitions τ0τ1τ2 . . . τk. These are consecutive
transitions: for all 1 ≤ i < k, we have that end(τi) =
start(τi+1). If one concatenates the input symbols of these
transitions, then one obtains the trace x1x2 . . . xk.

Suppose that x̄ is a finite input sequence from X⋆; if
the FSM M is complete, then for every state s of M , there
is a walk starting from s that has trace x̄. However, if M
is partial, then such a walk might not exist starting from
s due to the missing transitions. For partial FSMs, the FSM
performs a walk if x̄ is a defined input sequence for s. An input
sequence x̄ is defined in state s, if for all non-empty prefixes
x̄′x of x̄, x is defined in the state reached from s with x̄′.

We extend δ and λ to input sequences in the follow-
ing way: let x̄ = xx̄′ be an input sequence and s ∈ S
be a state of FSM M , then δ(s, xx̄′) = δ(δ(s, x), x̄′) and
λ(s, x̄′) = λ(s, x).λ(δ(s, x), x̄′). Note that for a state s and
input sequence x̄, the functions returns symbol ε if x̄ is
not defined for s, and returns s if x̄ = ϵ. Furthermore,
we extend δ to a set of states S′ ⊆ S as follows: given
an input x, output y and state set S′ ⊆ S then δy(S

′, x)
denotes the set of states one can reach from a state in S′

with a transition with input x and output y. We therefore
define δy(S

′, x) to be ε if there is some state s ∈ S′ such
that x is undefined in s and otherwise2 δy(S

′, x) = {s′|∃s ∈
S′.δ(s, x) = s′ ∧ λ(s, x) = y}.

Let Ŝ = {S′, S′′, . . .} denote a set of sets of states, i.e.,

for all S′ in Ŝ we have that S′ ⊆ S. We use δ̂(Ŝ, x) to denote
the outcome of applying an input to a set of sets of states as
defined below:

δ̂(Ŝ, x) =























ε, if ∃S′ ∈ Ŝ s.t. x is undefined for S′ ,

∅, if ∃S′ ∈ Ŝ s.t. x is merging for S′ ,

{δy(S
′, x)|∃s ∈ S′.y = λ(s, x), S′ ∈ Ŝ},

otherwise.

Where x is merging for set S′ of states, if x is defined for
S′ and there exist distinct s and s′ in S′ such that δ(s, x) =

2. It is usual to extend δ and λ to a set of sets of states and also to
input sequences because it helps simplify other definitions.
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s0 s1 s2 s3
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x0/y0
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0
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0
/
y 1

x 1
/y

0

Fig. 1. Example FSM M1 ShiftRegister from [41].

δ(s′x) and λ(s, x) = λ(s′x). If x is merging for S′ then the
states in S′ cannot be separated/distinguished by any input
sequence that starts with x. The third case defines a set of
sets of reached states according to the outputs that the FSM
produces: for each possible output y, the set contains the set
of states that can be reached from S′ through input x and
output y.

3.2 Resetting sequences

A resetting sequence (RS) of an FSM M is an input sequence
x̄ that takes M to a specific state regardless of the state
where M was before the application of x̄. For example,
consider the FSM M1. If a tester applies input sequence
x̄ = x1x1x1x1, FSM M1 will reach state s7 regardless of
the initial state.

Definition 3.1. An input sequence x̄ is a resetting sequence
for FSM M = (S,X, Y, δ, λ, s0) if and only if x̄ is a
defined input sequence for S and |δ(S, x̄)| = 1.

3.3 Preset Distinguishing Sequences

A preset distinguishing sequence for an FSM M is an input
sequence that leads to different output sequences when
applied in the different states of M ; formally.

Definition 3.2. An input sequence x̄ is a PDS for FSM M =
(S,X, Y, δ, λ, s0) iff x̄ is a defined input sequence for S
and there do not exist any s, s′ ∈ S such that s ̸= s′ and
λ(s, x̄) = λ(s′, x̄).

Observe that input sequence x̄ = x0x1x1x1 is a PDS for
M1. For example, if a tester applies x̄ when the FSM is in s0,
the FSM will produce y0y0y0y0, but it will produce y1y0y0y0
ifM1 was in state s4. No pair of states will produce the same
output sequence, and we can distinguish the states by using
x̄.

3.4 Q-Learning environment

Q-learning algorithms operate on a Markov Decision Pro-
cess (MDP) [39]. An MDP is defined as a tuple P =
(Z,A,P,R), where Z is a set of states, A is a set of actions,
P is the probability function in the form of P(K′|K, a), that
is for each action a ∈ A and state K ∈ Z , it defines the
probability of moving to state K′ ∈ Z if action a occurs in
state K’. R is the immediate reward function in the form of
R : Z×A×Z → R, i.e., it returns the reward received after

S 0

S 3

S 2
S 1

S 4

a1

a2
a2

a3

Q-Table

Q-Node

Q-Graph
nS3

Q-values for state S3

M
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v
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n
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es
s

Sn

S3S2S1S0

a0a1a2

ak

Q(S3, a0) = ∅
Q(S3, a1) = ∅
Q(S3, a2) = 0.282
Q(S3, a3) = ∅

. . .

Q(S3, ak) = ∅

Fig. 2. From Q-tables to Q-Graphs.

transitioning from one state to another state with action a
where R is the set of real numbers.

Q-learning is a value-based reinforcement learning
method which is used to find the optimal policy when state
transition probabilities P are unknown for a given MDP
P = (Z,A,P,R). Instead of estimating these unknown
probabilities, the method uses a value function Q(K, a) [68].
Let K′ be a state reached from K using action a. The value
function Q(K, a) is recursively defined as:

Q(K, a) =























Q(K, a) + α{R(K, a) + γ ∗ argmax
a′

Q(K′, a′)

−Q(K, a)}, if K = current state, and
an action a is executed

no change, otherwise,
(1)

where K ∈ Z , a ∈ A, and Q(K, a) is the value of ap-
plying action a at state K, a′ and K′ are the next action and
next states, respectively, R(K, a) is the immediate reward
received after applying action a at state K, α is the learning
rate, and γ is the future reward discount factor. α, and γ are
values within the range [0, 1].

The Q-learning algorithm asymptotically reconstructs
the true expected discounted reward [68] and, as a result,
works towards recovering the optimal policy. In this respect,
policy selection based on Q-learning can be viewed as an
off-policy temporal difference control algorithm which asymp-
totically approximates the optimal policy [39].

4 Q-GRAPHS

A Q-learning algorithm requires a function that calculates
the quality of a state–action combination. The naive imple-
mentation of the Q-learning algorithm relies on a Q-table,
which holds the Q-values for each of the states of the un-
derlying environment, i.e., MDP P [39]. Even though the use
of a table guarantees that the learning will converge to an
optimum policy, the size of the table usually becomes a bot-
tleneck for systems employing large state-action spaces, and
there are a number of methods to avoid this bottleneck [69],
[70]. For example, consider an environment characterised by
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64 binary-valued parameters and 4 actions. To represent this
environment in a tabular environment, one needs to build
a 232 by 4 table leading to 68.7GB RAM3. One promising
solution is to use deep neural networks (DNNs) as function
approximators for the optimum policy. Deep Q-Learning
algorithms generally yield good results [38]. However, using
DNNs requires a solid understanding of the DNNs, and
they make the overall system opaque, i.e., hard to trace
errors and reveal reasoning followed by the agent [71]. We
show that the Q-Graph framework can reduce the memory
requirement by more than 99.99% and can find optimum
results.

4.1 The generic Q-Graph algorithm

In practice, in tabular Q-learning, the agent usually only
needs to visit some of the state-action pairs to compute
an optimum policy; therefore, using a table will lead to a
waste of memory. Moreover, we also note that the rules
regulating the underlying environment dictate state changes
as the agent applies actions. That is, an agent will move to
another state K′ after applying action a from state K and
this state transition information, which we call the learning
flow, is not kept in the tabular setting. A learning flow is the
agent’s node visit pattern within the Q-Graph while learn-
ing. The learning flow is essential to investigate the agent’s
behaviour during learning. We also observed that this state-
action-state transition, a.k.a. learning flow, can naturally be
encapsulated as a graph. Based on these observations, we
consider state information of the environment K as a graph
node that will keep the quality values of the actions for
that state. The edges preserve the learning flow, which is
impossible in tabular Q learning. We illustrate this new
framework in Figure 2 and formally define Q-Graphs as
follows.

Definition 4.1. A Q-graph Q = (N,E) has a finite set of
nodes (Q-nodes) N and edges E. Each node n ∈ N is
associated with a state of the environment K denoted as
nK and a Q-value (Q(K, a)) for each action a of P .

Intuitively, in the set of admissible edges in a Q-graph
there exists an edge labelled with action a from Q-node
n to Q-node n′ if and only if one can reach nK′ from nK

using an action a. We summarised the new terminology we
introduced for Q-learning in Table 3.

A generic algorithm for the Q-Graph framework is given
in Algorithm 1. Note that the algorithm is similar to the
generic tabular Q-learning algorithm [39]. The first step of
this algorithm is to select random Q values for each action
of the initial node and create the initial node (Lines 1-4 of
Algorithm 1). After initialising the Q-Graph, the algorithm
enters a loop that repeats as long as there is an episode:
a limit set by a programmer/domain expert. During each
episode, the agent starts interacting with the environment
from an initial dedicated node (Line 6 of Algorithm 1)
and keeps interacting with the environment as long as the
agent does not reach a terminal state (n′′) for that episode
(the While loop between Lines 7-18 of Algorithm 1). The
properties characterise a terminal state depending on the

3. This table would have 17, 179, 869, 184 cells each having four 4-
byte word (for holding the quality values).

Symbols Definitions
Z , A, K Set of MDP states, Set of actions, MDP state.
P , R Transition probability function, Immediate Re-

ward Function.
Q(K, a) The quality value of taking action a at MDP state

K.
Q, N , E, n, nK Q graph, set of Q nodes, set of edges, a Q node,

MDP state associated to Q node.
st(.), i(.) (MDP state-set of FSM states) conversion func-

tion, (MDP action-FSM input) conversion func-
tion.

TABLE 3
List of symbols regarding Q-learning.

context, i.e. a robot may reach a trap, a drone may reach a
closed environment, etc. At each episode, the agent has to
introduce missing adjacent nodes for the current node (nK)
it reaches (Lines 8-11 of Algorithm 1). This is then followed
by selecting the action to be applied by using a strategy
such as ϵ-greedy4, collecting the immediate reward from
the environment, and updating the Q values (Lines 12-14
of Algorithm 1). Afterwards, depending on the reward and
the next state, the algorithm either moves to the node that
abstracts the new state or terminates the episode (Lines 15-
18 of Algorithm 1).

A key observation here is that in the worst case, a Q-
graph will keep information for all state-action pairs and it
is guaranteed that the Q-Graph converges to an optimum
policy if sufficiently many nodes are explored. In the ex-
periments, we will show that the Q-Graph can reduce the
space requirements by more than 99.9% and computes an
optimum policy.

Algorithm 1: A generic Q-Graph algorithm.

1 Initialise aQ−node n0 with the initial state K0.
2 foreach a ∈ A do
3 Assign a random value toQ(K0, a) of n0.

4 N ← N ∪ {n0}.
5 while There is an episode do
6 n′ ← n0.
7 while Current episode do
8 foreach a ∈ A do
9 if Node n′′ with n′′

K′′ does not exist in N then

10 Introduce n′′ to N having randomQ-values.
11 Introduce an edge from n′ to n′′ labelled

with a and P(n′′

K′′ |n
′

K
, a).

12 Take an action a ∈ A using policy derived fromQ
(e.g. ϵ-greedy).

13 Record reward and next state K′′.
14 Update n′, andQ-values according toQ function.
15 if n′′ is not terminal then
16 n′ ← n′′ where n′′ is associated with K′′.

17 else
18 Kill current episode.

4.2 Constructing resetting sequences using Q-Graphs

We represent the RS construction problem as an MDP P . An
element S′ of the power set of S (S′ ∈ pow(S)) corresponds

4. In ϵ-greedy, the agent guesses a value between 1 and 0, and if
the value is less than some threshold, it picks an action randomly;
otherwise, it picks the action suggested by the Q function.
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st(K0) = {s0, s1, s2}

st(K1) = {s0, s2}st(K2) = {s1, s2, s0}

R = 33.3R = −1

Fig. 3. Reward function for RS.
The action leads to merging
states, causing a positive re-
ward.

st(K0) = {{s0, s1, s2}}

st(K1) = {{s0, s2}{s1}}st(K2) = {{s1, s2, s0}}

R = 3R = −1

Fig. 4. Reward function for
PDS. The action promotes dis-
tinguishing states, causing a
positive reward.

to a state (K′ ∈ Z) of the MDP P and each input x ∈ X of
FSM M is an action a ∈ A of P .

We use one-to-one and onto functions to denote corre-
sponding inputs and set of states: (i) i() maps an input
x ∈ Σ of the FSM M to the corresponding action a ∈ A
of the MDP P and vice versa, and (ii) st() maps a set of
states S′ ∈ pow(S) of the FSM M to the corresponding
state K′ ∈ Z of the MDP P and vice versa. In this setting,
the Q-learning agent’s task is to reach a state K such that
|st(K)| = 1. In other words, the agent will learn a sequence
of inputs in the form of actions that resets M . For example,
in Figure 3, we observe that rewards are generated from
an MDP state K due to two actions. One of them does
not reduce the number of states K2, so the reward is −1.
Another action, however, merges a state and causes the
heuristic function to take place (which returns a reward
value of 33.3).

For each K and a, we let

PRS(K
′|K, a) =

{

1, iff δ(st(K), i(a)) = st(K′),
0, otherwise.

That is, in P there exists a transition from a given state
K to another state K′ labelled with action a if and only if
δ(st(K), i(a)) = st(K′).

The immediate rewards (RRS(K, a)) are computed as
follows in which K′ is the next MDP state such that
δ(st(K), i(a)) = st(K′).

RRS(K, a) =















−1, if |st(K)| = |st(K′)|,

NAN, if i(a) is undefined for st(K)

100 ∗ ϕ

|st(K)|
, else (ϕ = |st(K)| − |st(K′)|).

The above formulation introduces a heuristic that helps to
break ties when we have a set of resetting inputs. The heuris-
tic step considers the number of reset states and promotes
the input, causing more states to merge. Note that when |S′|
equals |S|, the reward is −1; this is a step to prevent the
agent from introducing redundant inputs to RS. Moreover,
with an immediate reward ofNAN , the proposed algorithm
can derive RSs from partial systems without worrying about
constructing RSs with undefined inputs. However, the algo-
rithm may generate longer RSs when the underlying system
is partial. This is because the length of the shortest RS for a
complete system is bounded by O(n2) [42], and for a partial
system, the bound is O(n2 ∗ 4n/3) [72].

4.3 Constructing preset distinguishing sequences us-

ing Q-Graphs

For a given FSM M , searching a PDS often starts from

a set (Ŝ) that contains the set of states of the underlying

FSM M , i.e. Ŝ = {S} and ends in a set Ŝ′ such that
Ŝ′ = {{s0}, {s1}, . . . {sn−1}}, where n is the number of
elements of S. The search uses inputs X of the underlying

FSM M and the δ̂ function to explore sets of sets of states.
For example, assume X = {x, x′}. The search will evaluate

the reached sets δ̂(Ŝ, x) and δ̂(Ŝ, x′) from Ŝ and selects
one input (say x′). After this, it appends x′ to the PDS

under construction (x̄) and forms a set Ŝ′′ = δ̂(Ŝ, x′) and
repeats the steps given above, this time using Ŝ′′. If neither
of the inputs leads to a solution, then the search often
backtracks. This process continues when the search finds

a set Ŝ′. Therefore if a PDS x̄ = x, x′, x′′ . . . is found, then
δ̂(δ̂(Ŝ, x), x′x′′ . . .) = Ŝ′.

To simulate this search, as in the case of the RS for-
mulation, in the PDS formulation, we consider each input
x ∈ X as an action a ∈ A of P . However, a state K ∈ Z
of the MDP P is associated with a set of sets of states (Ŝ)
that is a subset of power(S). Since FSM M has n states,
the number of elements of an Ŝ associated with a K ∈ Z
of the MDP P varies from 1 where Ŝ = {S} to n where
Ŝ′ = {{s0}, {s1}, . . . {sn}}. So while generating a PDS, a Q-
learning agent’s task is to find a sequence of actions (inputs)
that reaches an MDP state K′ such that |ŝt(K′)| = n from an
MDP state K such that |ŝt(K)| = 1 by using the δ function
of the underlying FSM. Here, ŝt() is a one-to-one and onto
function, which receives an MDP state K and returns a set
of sets of states Ŝ and vice versa. According to this, using
i() and ŝt() we define P of P as follows; for each K and a,
we let

PPDS(K
′|K, a) =

{

1, iff δ̂(ŝt(K), i(a)) = ŝt(K′),
0, otherwise.

That is, in P , there exists a transition from a given state
K to another state K′ labelled with action a if and only if

corresponding input x is defined for the states in Ŝ and

δ̂(Ŝ, x) = Ŝ′.
The immediate reward function (RPDS(K, a)) penalises

undefined and merging inputs and inputs that do not in-
crease the number of sets in ŝt(K). However, it rewards
inputs that increase the number of sets in ŝt(K) evenly.
To achieve this, we consider the weight of input x ∈ X
(κ(x)) by using the following function. Let Ŝ′ be a set of
sets of states having more than one element due to the
application of input x, then κ(x) =

∑

S′,S′′∈Ŝ′ ||S′| − |S′′||.
This heuristic is effective in producing short sequences [73].
The intuition behind the heuristic is that large differences in
the number of elements indicate that some sets are smaller
than others. However, the number of inputs required to
distinguish states within a set S′ is bounded by

(n
η

)

where

η = |S′| and n = |S|. So the immediate reward for the
PDS problem is computed as follows in which K′ is the next
MDP state such that δ(ŝt(K), i(a)) = ŝt(K′).

RPDS(K, a) =















−1, if |ŝt(K)| = |ŝt(K′)|,

NAN, if i(a) is undefined or
merging for ŝt(K)

|S| − κ(i(a)), else.

In Figure 4, we illustrate the reward function in action. We
see that the action that partitions the set of states in MDP
state K gets reward value 3, while the other action gets −1.
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4.4 Accuracy and space requirement for Q-Graph

In the worst case, the agent will visit all the state-action
pairs. Therefore, the number of nodes is bounded by the set
pow(S), where S is the set of states of the underlying FSM.

Corollary 1. Let M be an FSM having n states. Then to
construct an RS (or a PDS), the space complexity of the
Q-Graph framework is bounded above by O(2n).

Finally, note that the set pow(S) defines a limit for the MDP
P ; hence P is finite.

Corollary 2. Let M be an FSM; the MDP P constructed from
M for constructing an RS is a finite MDP.

Corollary 3. Let M be an FSM; the MDP P constructed from
M for constructing a PDS is a finite MDP.

This implies that Q-Graph can find optimum policies for RS
and PDS problems.

Corollary 4. Let M be an FSM having n states. Then the
Q-Graph framework is guaranteed to construct an RS iff
M has one.

Corollary 5. Let M be an FSM having n states. Then the
Q-Graph framework is guaranteed to construct a PDS iff
M has one.

Algorithm 5: An FSM generator algorithm.

input : The number of FSMs, states, and input/output alphabets
are positive integers and are noted as l,n, i, and j,
respectively. The connectedness property is noted as
c ∈ {0, 1} where 0 for connected, 1 for initially connected
FSMs. Rate of partial transitions of FSMs is given in the
range 0 ≤ p < 100.

output: l number of FSMs having properties dictated by inputs.

1 Create S,X, Y sets having n, i and j items
2 while l FSMs are not created do
3 foreach s ∈ S and x ∈ X do
4 Introduce a transition from s to a randomly chosen

state s′ with randomly chosen output symbol
y ∈ Y and set δ(s, x) = s′ and λ(s, x) = y.

5 if p > 0 then
6 Randomly select (n ∗ x)/100 transitions and remove

them.

7 if c=0 and FSM is not connected then
8 Goto Line 2

9 if c=1 and FSM is not initially connected then
10 Goto Line 2

11 if FSM has no PDS and/or RS then
12 Goto Line 2

13 Record FSM.

5 EXPERIMENTS

This section reports experimental findings with our test
subjects and benchmark algorithms. The experiment sub-
jects in this section are untimed. Experiments regarding
timed FSMs are given in Section 6. We provide the source
code and the synthetic machines in the following repository
https://zenodo.org/record/8043032.

5.1 Experiment setting

5.1.1 Test subjects and the software and the hardware

In the experiments, we used two classes of FSMs: synthetic
FSMs and real FSMs. Real FSMs were retrieved from the
embedded systems industry, modelling real circuit systems.
The synthetic FSMs were constructed using a tool (FSM
Generator) used in similar studies in the literature [12], [54],
[56], [74], [75]. We provide the steps taken by FSM Generator
in Algorithm 5.

For this work, we created two types of synthetic FSMs;
complete FSMs and partial FSMs. So as to provide as many
variations of FSM models as possible while creating them,
we fed Algorithm 5 with parameters n, i, j, p, and l using
the following values. The n, i values are set from sets
{32, 64, 128, . . . , 16384} and {2, 3, 4, 5}, respectively and
also we set i = j. In order to reduce the time required by
tests, we take p = 10 as a rate for missing transitions while
creating partial FSMs. We also set the number of FSMs (l)
as 100. For partial and complete FSMs and each different
(i, j) pair, we created 100 FSMs, and in total, we used 8, 000
FSMs.

Names States inputs
bbara 7 6
bbtas 6 4
beecount with loops 7 5
beecount with sink 8 5
cse with hidden states with sink 34 19
cse with loops 16 19
cse with loops with hidden states 41 19
cse with sink 17 19
dk14 7 8
dk15 4 8
dk16 27 4
dk17 8 4
dk27 7 2
dk512 14 2
ex2 with hidden states with sink 16 4
ex2 with loops 10 4
ex2 with sink 10 4
ex3 with hidden states with sink 25 4
ex3 with loops 10 4
ex3 with sink 10 4
ex4 14 24
ex5 with hidden states with sink 17 4
ex5 with loops 9 4
ex5 with sink 9 4
ex6 with loops 8 20
ex6 with sink 9 20
ex7 with hidden states with sink 8 4
ex7 with loops 6 4
ex7 with sink 6 4
keyb 19 24
keyb with hidden states with sink 41 24
keyb with loops with hidden states 41 24
lion9 with loops 9 4
lion9 with sink 10 4
lion with hidden states with sink 5 4
lion with loops 4 4
lion with loops with hidden states 4 4
lion with sink 5 4
mark1 with loops 13 15
mark1 with sink 13 14
mc 4 8
opus with loops 9 11
opus with sink 10 11
pma with loops 24 14
pma with sink 25 14
s27 with loops 5 12
s27 with sink 6 12
s298 135 8
shiftreg 8 2
tma with loops 20 6
tma with sink 21 6
train11 with hidden states with sink 11 4
train11 with loops 9 4
train11 with loops with hidden states 9 4
train11 with sink 10 4
train4 with hidden states with sink 6 4
train4 with loops 4 4
train4 with loops with hidden states 5 4
train4 with sink 5 4

TABLE 4
The names, number of states and

inputs of benchmark FSMs used in the
experiments.

The second class
of FSMs consists of
59 specifications of
circuit behaviour [41].
The circuit benchmarks
have been used recently
for testing [75]. The
models were originally
KISS2 files having
various properties. We
used the processed
versions, which are
given as DOT files, and
all are deterministic
and complete [41]. All
the FSMs are complete,
and we summarised
the FSMs in Table 4.
Moreover, we also
added an FSM to the
second class, which
is the Engine Status
Manager (ESM), that
manages the status
of the engine in Océ
printers and copiers (a
subsidiary of Canon).
This example is chosen
because its structure
and behaviour are
representative of
embedded control
software [11]. The ESM
model was learned by
interacting with the
actual system using

another piece of software, LearnLib [76] and rigorous
verification has confirmed that the behavioural model is
indicative of the actual system. The ESM model is partial
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Algorithm 2: The Greedy

method.

1 Construct a Pair automaton A for
M = (S,X, Y, δ, λ, s0) and let
SA ← S, and RS ← ϵ.

2 Construct a Breadth-First-Search
tree T from A and Construct a
look-up table T using δ and T .

3 while |SA| > 1 do
4 Select two states s, s′ ∈ SA.
5 Find a sequence x̄ on T such

that δ(s, x̄) = δ(s′, x̄).
6 RS ← RS.x̄.
7 By using T compute

SA = δ(SA, x̄).

8 return RS.

Algorithm 3: The PBF algorithm.

1 Let S̄ contains N copies of set S, and RS ← ϵ, RS ← ϵ,
ℓ← 0.

2 while ℓ is less than a threshold do
3 ℓ← ℓ+ 1
4 while not all input sequences of length ℓ are visited do
5 Let X̄ contains N defined input sequences of

length ℓ also let S̄i and X̄i denotes the ith set
and ith sequences from S̄ and X̄ , respectively.

6 Compute in parallel δi(S̄i, X̄i).
7 if Exists δi(S̄i, X̄i) such that |δi(S̄i, X̄i)| == 1

then
8 RS ← RS.X̄i and return RS.

9 Select j such that δj(S̄j , X̄j) has minimum size.
10 Let S̄ contains N copies of δj(S̄j , X̄j) and also

let RS ← X̄j

Algorithm 4: The ST algorithm.

1 Let Ŝ = {{S}} for
M = (S,X, Y, δ, λ, s0)
PDS ← ϵ, and Push (Ŝ, ϵ) to
queue q.

2 while PDS == ϵ do

3 (Ŝ′, x̄)← pop(q)
4 foreach x ∈ X do

5 Ŝ′′ ← δ̂(Ŝ′, x).

6 if |Ŝ′′| = n then
7 PDS ← x̄.x.

8 else

9 Push (Ŝ′′, x̄.x) to q.

10 return PDS.

and has 77 inputs and 3410 states.
For experiments, we created two versions for the ESM

specification: v1 and v2. v1 was created by completing the
missing transitions to obtain a completely specified model,
using a widely applied method [2], [75]. To complete the
missing transitions in the ESM model, an error-state was
introduced, where for each state s and each missing transi-
tion labelled by input x, a transition was introduced from
s to the error-state with input x and output ϵ. The second
version of ESM was the original partial version. According
to [40], the ESM model does not have an RS because all the
transitions leaving specific state pairs also end in those pairs,
namely (s524, s721), (s70, s71), (s304, s3088), (s344, s2933),
and (s1080, s3258). To use the FSM in the experiments,
transitions labelled with a common input symbol I21.1 for
each of these 10 states were modified to merge at state
s524. We applied Wilcoxon non-parametric paired tests,
and Cohen’s d tests on the experiment result [77], [78], we
provided details of these tests in Section 5.1.4.

We used a Microsoft Windows 11 operated computer
having 32GB RAM with 11th Gen Intel(R) Core(TM) i7 −
11800H running at 2.30GHz. We implemented all the al-
gorithms in C++ under Microsoft Visual Studio 19. We
implemented the algorithm in [12] under CUDA 12 run-
time environment and used NVIDIA T1200 Laptop GPU
with 4GB RAM with 1024 CUDA cores. We use the R
tool to generate plots and conduct analysis [79]. We pro-
vided the R tool scripts for producing the illustrations in
https://github.com/urazc/Q Graph.

5.1.2 Benchmark algorithms

We use the notation Q(β) to refer to our approach, where
variable β denotes the corresponding reward function, i.e.,
Q(RS) denotes the reward function for reset sequence gen-
eration. We used three different algorithms to assess the
effectiveness of our method. Firstly, we used the Greedy
method (GREEDY) to build an RS from a complete ma-
chine, which is widely recognised and the fastest sequential
algorithm,requiring O(n3 + in2) computation steps [42].
We provided this algorithm in Algorithm 2. The Greedy
algorithm constructs a product automaton, which merges
each pair of states and takes quadratic space and time in
proportion to the number of states of the FSM. Secondly,
we utilised the Parallel Brute-Force (PBF) RS generation
algorithm to generate RS from partial FSMs, which is cur-

rently the fastest known algorithm for this purpose [12],
[18]. We provided the steps of this algorithm in Algorithm 3.
Thirdly, we implemented the Successor-Tree (ST) algorithm
given in [30] to create PDSs from FSMs, which is a classic
algorithm described in detail in Algorithm 4. During exper-
iments we could not use the tabular Q-learning algorithm
due to space limitations. For example for the smallest FSM
subject, which has 32 states and two inputs, the tabular Q-
learning framework would require a 232 by 2 table leading
to 8, 589, 934, 592 entries each holding two (for holding Q
values) 4 byte words summing up a 34GB memory space
which we did not have during the experiments. We provide
more details in Section 7.

5.1.3 Collected data

While algorithms were processing the underlying FSMs, we
collected computation-related data. First, to answer RQ-1
and assess the accuracy and the stability of the Q-Graph
algorithm, we noted the collected rewards and the Q-nodes
and edges information of the Q-Graph. Second, to answer
RQ-2, we collected the used resources, such as the execution
time (in milliseconds) and used memory (in MBs). While
measuring the time used by the Q-learning algorithm, we
collected the sum of the training time and inference time
and provided results based on this sum. Finally, to compare
the lengths of sequences and to conduct a validity analysis,
we kept the constructed sequences and the lengths of these
sequences. We provide answers to RQs and discuss their
implications in Section 7, after presenting the results of
experiments.

5.1.4 Statistical analysis

In order to investigate our results, we used the paired
Wilcoxon statistical analysis test using a .05 significance
level to check whether there was a statistically significant
difference between the results [77]. The null hypothesis
examines whether the distributions are identical. The null
hypothesis is accepted if the p-value exceeds 0.05. This
test relies on three assumptions regarding the populations
being compared: (i) the samples are independent, (ii) the
populations have equal variance or spread, and (iii) the
populations do not follow a known distribution, making
it a non-parametric test. The Wilcoxon test identifies the
existence of a statistical difference. However, it does not say
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how strong the difference is. We applied Cohen’s d statistical
test [78] to realise this. Cohen’s d test measures the level of
strength of the difference between two results. The result of
Cohen’s d test is classified as strong difference if the value is
larger than 0.5, medium difference if the result is between 0.2
and 0.5 and if it is less than 0.2, the difference is considered
as weak.

5.2 Results on PDSs derived from complete FSMs

5.2.1 Time & memory

Figure 5 summarises the time requirements of the algo-
rithms. The results reveal that the proposed algorithm
(Q(PDS)) significantly reduces the time required to compute
PDSs, with a 100-fold average improvement. It is worth
noting that the speed gain is approximately 4-fold on av-
erage when the number of states is fewer than 1024, and
there are two inputs, while in other settings, the average
speed increase is 250-fold. The results of statistical analysis,
regarding time, are given in Tables 5 and Table 6. We can
see a solid difference in Wilcoxon test results when n > 100.
Cohen’s d test also indicates a strong difference in the time
requirements of the algorithms.

The memory requirement comparison (Figure 6) demon-
strate that Q(PDS) reduces the memory usage required to
generate PDSs from complete FSMs by roughly 66 times
on average and is 100 times in maximum (Figure 6). With
respect to memory usage, we see that the Wilcoxon sig-
nificance test declares a difference between the results on
memory requirements of Q(PDS) and ST (Table 5), results
are also supported with Cohen’s d test given in Table 6.

5.2.2 Length of sequences

Regarding the lengths of PDSs (Figure 7), it is observed
that the ST algorithm produces shorter PDSs than the
Q(PDS) method (with an average reduction of 12%). This
is expected as the ST algorithm is a brute-force algorithm,
which computes one of the shortest PDSs for the underlying
FSM (Figure 7). The paired Wilcoxon hypothesis test results
are given in Table 5. Results suggest that the experiment’s
findings are statistically different. However, the test accepts
the null hypothesis when n = 64 and i = 2 or 3 (result
supported by Cohen’s test given in Table 6). Combining this
result with Figure 5 we conclude that, in general, Q(PDS)
generates longer sequences, but the lengths of PDSs for this
subset of FSMs were similar.

Summary

The proposed framework is 100 times faster, re-
quiring 66 times less memory, but generated PDSs
are 12% longer than those of the benchmark (ST)
algorithm.

5.3 Results on PDSs derived from partial FSMs

5.3.1 Time & memory

Experiment results with respect to time and memory col-
lected during computing the partial FSMs are given in
Figures 8 and 9, respectively.

The results are promising. During experiments, we ob-
served that the ST algorithm could only process 20% of
the FSMs with less than four inputs and a maximum of
2048 states. The ST could not process other FSMs. On the
other hand, the Q(PDS) algorithm could process all the
FSMs and compute the PDSs when n < 16843. This implies
that roughly the ST algorithm could process 240 FSMs out
of 4000 (6% of the FSMs) and Q(PDS) could process 3600
(90% of the FSMs). So the Q-Graph framework increased
the scalability by 1400% 5. Statistical analysis supports these
findings: generally, the Wilcoxon hypothesis test rejects the
null hypothesis, and Cohen’s d metric suggests a strong
difference.

We compared the ST and the Q(PDS) algorithms with
respect to test subjects that the ST could process. Consid-
ering the statistical analyses and Figure 8, we conclude
that the Q(PDS) algorithm is slightly faster than the ST
algorithm (26% on average), which is different from the
results observed in complete FSMs.

With respect to memory requirements (see Figures 6
and 9), we observe that comparing the results obtained from
complete FSMs, the memory requirements of the algorithms
increased. This is because finding a PDS from partial ma-
chines requires more processing. As we will see, the lengths
of the PDSs derived from partial FSMs are much longer. This
is expected as there are fewer inputs to construct a PDS.
This consequently increased the memory requirements of
the algorithms. Therefore, the Q(PDS) algorithm generated
relatively large Q-Graphs. However, as can be seen from
the figures and statistical studies, the proposed algorithm
requires less memory space than the ST algorithm (40% on
average).

5.3.2 Length of sequences

When analysing the lengths of the PDSs (Figure 10), we
observe that the ST and the Q(PDS) algorithms computed
PDSs with similar lengths. However, the Wilcoxon hypoth-
esis test rejects the null hypothesis and Cohen’s d metric
shows strong difference. So we conclude that Q(PDS) gen-
erates longer PDSs from partial FSMs (maximum was 24%
longer and 4%− 8% longer on average). This is a promising
result, and further investigation revealed that this was again
due to the lack of defined inputs. The lack of useful inputs
resulted in fewer options for algorithms, and both ended up
computing similar PDSs.

Summary

The state-of-the-art approach (ST algorithm) failed to
process most test subjects. The Q-Graph framework
increases the scalability by 1400%. The ST and the
Q-Graph approach requires 40% less memory, and
the Q-Graph is 26% faster.

5.4 Results on RSs derived from complete FSMs

5.4.1 Time & memory

The charts in Figures 11, 12, summarise the time and mem-
ory requirements of algorithms used to create RSs from

5. ((3600− 240)/240) ∗ 100 = (3360/240) ∗ 100 = 1400%



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

4 5

2 3

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

−2

0

2

4

−2

0

2

4

States

lo
g

1
0
(T

im
e

.m
s
e
c
s
)

ST Q(PDS)

Fig. 5. The average time required to con-
struct PDSs from complete randomly gen-
erated FSMs.
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Fig. 6. The average memory required to
construct PDSs from complete randomly
generated FSMs.

4 5

2 3

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

0.50

0.75

1.00

1.25

1.50

0.50

0.75

1.00

1.25

1.50

States

lo
g

1
0
(L

e
n

g
th

)

ST Q(PDS)

Fig. 7. The average lengths of PDSs derived
from complete randomly generated FSMs.
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Fig. 8. The average time required to con-
struct PDSs from partial randomly gener-
ated FSMs.
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Fig. 9. The average memory required to
construct PDSs from partial randomly gen-
erated FSMs.
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Fig. 10. The average lengths of PDSs
derived from partial randomly generated
FSMs.

complete FSMs. The GREEDY algorithm could not handle
FSMs with more than 512 states because it runs in cubic time
(the timeout for these experiments was 103 milliseconds).
However, the proposed algorithm (Q(RS)) successfully gen-
erated RSs from FSMs with 16384 states and increased the
scalability by 100%.

Specifically, considering the Figure 11, for FSMs with
less than or equal to 512 states, the Q(RS) algorithm was,
on average, 375 times faster than the GREEDY algorithm
(with an average maximum of 400 fold and an average
minimum of 350 fold). Additionally, the results show that
as the number of inputs increases, both algorithms become
slower, with the GREEDY algorithm slowing down faster.
However, the Wilcoxon paired statistical analysis accepts
the null hypothesis when n = 32. Considering Figure 11,
we can deduce that the GREEDY and Q(RS) algorithms can
generate RSs from small FSMs using a similar amount of
time.

The results of the memory comparison (as shown in
Figure 12) suggest that the Q(RS) algorithm can generate
RSs while using significantly less memory than the GREEDY
method (the Wilcoxon and Cohen’s d tests support this
claim). Specifically, the proposed algorithm used 166 times

less memory than the GREEDY method. While this outcome
is promising, it was also expected because the GREEDY
algorithm necessitates a product automaton to process an
FSM, which requires quadratic space.

5.4.2 Length of sequences

The results given in Figure 12 show that, on average, the
Q(RS) algorithm generates RSs that are 3.75 times longer
than those produced by the GREEDY method. We observed
that with an increase in the number of inputs from two
to four, the difference between the average lengths of RSs
decreases from 5 fold to 2.5 fold. This decrease in the
difference is due to the Q(RS) algorithm’s ability to explore
more alternatives when searching for an RS, as there are
more inputs. The Wilcoxon analyses (Table 5) and Cohen’s d
test (Table 6) conducted on the lengths of sequences support
the above findings by rejecting the null hypothesis.
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Summary

The state-of-the-art approach (GREEDY) failed to
process some test subjects. The Q-Graph frame-
work increases the scalability by 100%. The pro-
posed framework is 375 times faster, requiring 166
times less memory, but the generated RSs are 3.75
times longer on average than those produced by the
GREEDY algorithm.

5.5 Results on RSs derived from partial FSMs

5.5.1 Time & memory

For partial FSMs, we used the PBF as the benchmark algo-
rithm. The time comparison of these algorithms is given in
Figure 14. The results suggest that regardless of the number
of inputs, the two algorithms require a similar amount of
time when the number of states is less than 256. This claim
is also supported by the Wilcoxon test as shown in Table 5.
Moreover, when the number of inputs is larger than two,
and the number of states exceeds 4096, both algorithms fail
to return RSs due to the memory limit (one GB). However,
in other settings, the PBF algorithm computes RSs more
quickly (12 times on average). Comparing the results given
in [40], we can support this result due to two key points;
first, as noted in [12], the PBF algorithm is designed for
FSMs having a small number of inputs (less than 10) and its
performance increases as the number of inputs decreases (in
Section 5.6, we will show this phenomenon with an exam-
ple.). In contrast, because having more inputs increases the
number of RSs of a given system, the Q(RS) algorithm can
generate larger Q-graphs and increases its time requirement.
The second reason is the differences in GPU technology
in these experiments. The GPU used in experiments given
in [40] has 48 CUDA cores, whereas, in this paper, we used
a newer GPU having 1024 CUDA cores. The newer model
features around 27% higher core clock speed, around 58%
higher boost clock speed, and 21.3 times more pipelines, and
the newer model has 4 times memory capacity. For detailed
analysis, we refer the reader to NVIDIA’s specifications [80].

Figure 15 provides the memory usage trend for the
algorithms. In the chart, we observe that the memory re-
quirements of both algorithms increase with a similar trend.
Because the y axis of the chart is given in the log10 scale, both
algorithms’ memory requirements are increasing exponen-
tially with the number of states, where the Q(RS) memory
requirement increases slightly faster. This is also confirmed
by the Wilcoxon test, where the results are less than 0.05,
suggesting a difference. Cohen’s d test also suggests a strong
difference.

5.5.2 Length of sequences

Finally, the length of the constructed RSs is given in Fig-
ure 16. Results suggest that despite the Q(RS) algorithm
exploiting a heuristic and PBF algorithm being a brute-force
algorithm, both algorithms generate RSs with comparable
lengths. We noted that 26% of the time, the Q(RS) algorithm
generates longer RSs (33% longer on average). Finally, these
findings are supported by the Wilcoxon hypothesis test and
Cohen’s d test in Table 5, and Table 6, respectively.

Complete -PDS Partial - PDS Complete - RS Partial - RS
Spec(n,i) Wilcoxon(Q(PDS),ST) Wilcoxon(Q(PDS),ST) Wilcoxon(Q(RS),GREEDY) Wilcoxon(Q(RS),PBF)

Length Time Memory Length Time Memory Length Time Memory Length Time Memory
(32, 2) 5−35 1−21 1−34 2−42 1−38 1−35 1−34 1−1 1−34 8−36 1−1 7−36

(32, 3) 3−36 1−22 6−35 3−36 1 3−35 1−34 1 4−35 1−35 1 4−36

(32, 4) 1−36 4−3 1−35 NaN NaN NaN 1−34 3−1 2−36 1−35 7−2 2−36

(32, 5) 9−36 6−3 1−35 NaN NaN NaN 1−34 1 3−35 1−35 9−2 2−36

(64, 2) 1 3−35 4−35 3−41 3−2 1−34 1−34 3−24 2−35 5−36 3−2 1−35

(64, 3) 1−1 7−36 1−34 4−36 1−1 3−35 1−34 1−23 4−35 8−36 2−2 7−36

(64, 4) 6−37 1−18 1−35 NaN NaN NaN 1−34 4−23 2−36 9−36 1−3 9−36

(64, 5) 4−36 2−19 1−35 NaN NaN NaN 1−34 3−21 2−35 1−35 1−2 9−36

(128, 2) 4−35 5−10 8−35 4−40 5−5 9−35 1−34 2−23 6−35 4−36 8−20 1−35

(128, 3) 2−35 5−7 7−35 8−36 5−10 1−35 1−34 1−21 1−34 9−36 5−19 5−36

(128, 4) 3−36 2−18 9−35 NaN NaN NaN 1−34 5−20 1−34 8−36 8−19 9−36

(128, 5) 3−36 2−18 4−35 NaN NaN NaN 1−34 3−20 1−34 1−35 2−19 3−36

(256, 2) 4−35 9−12 1−34 6−40 1−36 7−35 1−34 2−34 1−34 2−36 8−28 9−36

(256, 3) 3−35 9−16 1−34 5−36 2−36 4−35 1−34 1−27 1−34 1−35 2−24 1−36

(256, 4) 5−36 3−18 1−34 NaN NaN NaN 1−34 5−25 5−35 9−36 1−35 1−36

(256, 5) 1−36 3−18 9−35 NaN NaN NaN 1−34 2−25 9−35 5−36 3−34 2−36

(512, 2) 3−35 2−16 1−34 1−40 9−35 1−34 1−34 1−34 1−34 3−36 2−35 1−35

(512, 3) 5−36 6−18 1−34 4−36 9−35 7−35 1−34 1−34 7−35 5−36 3−35 5−36

(512, 4) 2−35 3−18 1−34 NaN NaN NaN 1−34 1−34 9−35 5−36 7−35 2−36

(512, 5) 2−36 3−18 1−34 NaN NaN NaN 1−34 9−35 7−35 4−36 3−35 6−36

(1024, 2) 1−35 8−36 1−35 1−41 1−34 1−34 NaN NaN NaN 2−36 7−35 8−36

(1024, 3) 6−36 2−22 4−35 9−36 1−34 1−34 NaN NaN NaN 3−36 7−35 5−36

(1024, 4) 2−35 2−20 1−34 NaN NaN NaN NaN NaN NaN 3−36 3−35 2−36

(1024, 5) 1−35 8−21 3−35 NaN NaN NaN NaN NaN NaN 3−36 7−35 9−37

(2048, 2) 7−36 3−35 1−35 8−42 1−34 1−34 NaN NaN NaN 2−36 1−34 1−35

(2048, 3) 7−36 4−35 3−35 9−36 1−34 1−34 NaN NaN NaN 4−36 1−34 1−35

(2048, 4) 8−36 3−35 8−35 NaN NaN NaN NaN NaN NaN 2−36 8−35 1−35

(2048, 5) 7−36 4−35 8−35 NaN NaN NaN NaN NaN NaN 3−36 4−35 1−35

(4096, 2) 6−36 1−34 7−36 NaN NaN NaN NaN NaN NaN 1−36 1−34 1−35

(4096, 3) 1−35 5−35 8−36 NaN NaN NaN NaN NaN NaN 3−36 1−34 1−35

(4096, 4) 3−36 6−35 1−35 NaN NaN NaN NaN NaN NaN 2−36 1−34 1−35

(4096, 5) 6−36 1−34 1−35 NaN NaN NaN NaN NaN NaN 2−36 1−34 1−35

(8192, 2) 1−35 1−34 6−35 NaN NaN NaN NaN NaN NaN 9−29 1−26 1−28

(8192, 3) 4−35 1−34 1−35 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(8192, 4) 6−38 1−34 1−35 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(8192, 5) 4−36 1−34 1−35 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 2) 1−35 1−34 1−34 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 3) 1−35 1−34 8−35 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 4) 4−19 1−34 1−34 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 5) 5−19 1−34 1−34 NaN NaN NaN NaN NaN NaN NaN NaN NaN

TABLE 5
Wilcoxon hypothesis test where the null hypothesis is two populations
are same and is accepted if p > 0.05. The red coloured text indicates
where the hypothesis is accepted. The black-coloured text indicates

cases for which the Wilcoxon test rejects the null hypothesis, and NaN
indicates the cases for which the state-of-the-art algorithms fail to

produce results.

Complete -PDS Partial - PDS Complete - RS Partial - RS
Spec(n,i) Cohen’s D(Q(PDS),ST) Cohen’s D(Q(PDS),ST) Cohen’s D(Q(RS),GREEDY) Cohen’s D(Q(RS),PBF)

Length Time Memory Length Time Memory Length Time Memory Length Time Memory
(32, 2) 0.369 0.522 0.270 0.844 0.331 0.661 0.898 0.069 0.468 0.343 0.059 0.261
(32, 3) 0.542 0.512 0.768 0.134 0.04 0.643 0.646 0.103 0.290 0.382 0.022 0.836
(32, 4) 0.499 0.722 0.247 NaN NaN NaN 0.311 0.013 0.778 0.758 0.105 0.551
(32, 5) 0.099 0.253 0.105 NaN NaN NaN 0.099 0.1373 0.634 0.844 0.136 0.817
(64, 2) 0.103 0.345 0.760 0.877 0.220 0.615 0.235 0.343 0.337 0.252 0.221 0.779
(64, 3) 0.133 0.325 0.847 0.561 0.015 0.585 0.261 0.724 0.292 0.581 0.417 0.607
(64, 4) 0.667 0.536 0.858 NaN NaN NaN 0.265 0.888 0.849 0.220 0.653 0.859
(64, 5) 0.811 0.400 0.385 NaN NaN NaN 0.776 0.532 0.497 0.791 0.615 0.279
(128, 2) 0.226 0.661 0.346 0.491 0.333 0.560 0.433 0.769 0.534 0.502 0.282 0.645
(128, 3) 0.323 0.751 0.386 0.388 0.751 0.819 0.399 0.891 0.372 0.713 0.236 0.631
(128, 4) 0.827 0.890 0.577 NaN NaN NaN 0.724 0.638 0.810 0.569 0.422 0.867
(128, 5) 0.362 0.455 0.625 NaN NaN NaN 0.707 0.392 0.321 0.509 0.285 0.577
(256, 2) 0.834 0.647 0.848 0.515 0.381 0.488 0.780 0.768 0.713 0.769 0.876 0.609
(256, 3) 0.633 0.377 0.846 0.522 0.597 0.370 0.390 0.492 0.506 0.388 0.828 0.852
(256, 4) 0.421 0.553 0.515 NaN NaN NaN 0.497 0.823 0.716 0.386 0.595 0.388
(256, 5) 0.520 0.784 0.572 NaN NaN NaN 0.518 0.345 0.505 0.656 0.704 0.333
(512, 2) 0.407 0.818 0.402 0.575 0.642 0.638 0.710 0.624 0.782 0.520 0.443 0.850
(512, 3) 0.453 0.713 0.795 0.716 0.640 0.705 0.852 0.587 0.778 0.581 0.865 0.616
(512, 4) 0.631 0.732 0.551 NaN NaN NaN 0.810 0.500 0.754 0.718 0.677 0.400
(512, 5) 0.670 0.583 0.477 NaN NaN NaN 0.512 0.484 0.494 0.866 0.600 0.611
(1024, 2) 0.622 0.456 0.729 0.590 0.839 0.768 NaN NaN NaN 0.437 0.787 0.639
(1024, 3) 0.614 0.648 0.566 0.852 0.756 0.799 NaN NaN NaN 0.899 0.503 0.647
(1024, 4) 0.749 0.685 0.745 NaN NaN NaN NaN NaN NaN 0.501 0.813 0.723
(1024, 5) 0.783 0.899 0.819 NaN NaN NaN NaN NaN NaN 0.792 0.565 0.669
(2048, 2) 0.681 0.724 0.699 0.791 0.891 0.706 NaN NaN NaN 0.808 0.557 0.688
(2048, 3) 0.614 0.804 0.659 0.736 0.708 0.690 NaN NaN NaN 0.538 0.549 0.828
(2048, 4) 0.610 0.620 0.672 NaN NaN NaN NaN NaN NaN 0.872 0.886 0.891
(2048, 5) 0.729 0.742 0.878 NaN NaN NaN NaN NaN NaN 0.844 0.580 0.823
(4096, 2) 0.884 0.867 0.749 NaN NaN NaN NaN NaN NaN 0.796 0.800 0.719
(4096, 3) 0.736 0.829 0.858 NaN NaN NaN NaN NaN NaN 0.656 0.623 0.852
(4096, 4) 0.748 0.801 0.670 NaN NaN NaN NaN NaN NaN 0.761 0.717 0.741
(4096, 5) 0.697 0.848 0.861 NaN NaN NaN NaN NaN NaN 0.657 0.853 0.661
(8192, 2) 0.724 0.745 0.816 NaN NaN NaN NaN NaN NaN 0.846 0.852 0.760
(8192, 3) 0.826 0.738 0.832 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(8192, 4) 0.869 0.753 0.828 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(8192, 5) 0.780 0.865 0.773 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 2) 0.784 0.807 0.847 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 3) 0.891 0.813 0.826 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 4) 0.873 0.887 0.897 NaN NaN NaN NaN NaN NaN NaN NaN NaN

(16384, 5) 0.865 0.856 0.837 NaN NaN NaN NaN NaN NaN NaN NaN NaN

TABLE 6
Cohen’s D strength test. A value less than 0.2 indicates weak strength,
and a value larger than 0.5 indicates strong strength. The red-coloured

text indicates where we observe weak strength.

Summary

The state-of-the-art approach (PBF algorithm) and
the Q-Graph framework require similar memory
space while computing RSs. The Q-Graph frame-
work is 12 times faster, but, on average, the lengths
of the RSs are 33% longer than the RSs produced by
the PBF algorithm.
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Fig. 11. The average time required to con-
struct RSs from complete randomly gener-
ated FSMs.
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Fig. 12. The average memory required to
construct RSs from complete randomly gen-
erated FSMs.
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Fig. 13. The average lengths of RSs derived
from complete randomly generated FSMs.
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Fig. 14. The average time required to con-
struct RSs from partial randomly generated
FSMs.
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Fig. 15. The average memory required to
construct RSs from partial randomly gener-
ated FSMs.
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Fig. 16. The average lengths of RSs derived
from partial randomly generated FSMs.

5.6 Results for benchmark FSMs

5.6.1 Results on the Engine Status Manager

We provided v1 of ESM to the ST, Q(PDS), GREEDY and
the Q(RS) algorithms and v2 of ESM to the PBF and Q(RS)
algorithms. However, ST could not process the model and
failed to return a PDS. Q(PDS) algorithm returned an empty
PDS sequence declaring that the FSM does not possess a
PDS; during this experiment, the Q(PDS) algorithm used
405 megabytes of RAM with 667 milliseconds. Similarly,
the GREEDY and PBF algorithms could not generate RSs
due to memory and time constraints. The Q(RS) algorithm
generated RSs for both v1 and v2, with lengths of 352
and 375, respectively, resetting the system to state s524.
For v1, the Q(RS) algorithm generated the sequence in 175
milliseconds using 367 MBs of RAM, and for v2, the Q(RS)
algorithm generated the sequence in 189 milliseconds using
395 MBs of RAM.

5.6.2 Results on FSMs modelling circuits

We summarised the experiment results on the remaining
benchmark FSMs in Tables 7 and 8. We noted that in all
experiments, the time required to process FSMs are similar;
therefore, we did not provide a time dimension. Results

regarding PDS are given in Table 7. The y axis of the table
gives the ratio of memory (and length) values obtained from
Q(PDS) and ST. Value 1 in the chart means no difference. A
value less than one indicates that the memory (or length)
value is higher when ST is used, and a value larger than one
indicates that the memory (or length) value is higher when
Q(PDS) is used.

The chart reveals that 16 out of 59 FSMs possess PDS,
and the ST algorithm failed to produce PDSs for five FSMs
(33%) for which the PDS sequences exist (please see the
FSMs where the length comparison is empty). Moreover,
with respect to PDS generation, except for three FSMs, we
observe that the Q(PDS) algorithm required a relatively
higher memory than ST. Moreover, in 35% of the cases, the
Q(PDS) algorithm generated longer PDSs.

The results related to RS can be found in Table 8, where
the ratio of memory (and length) values obtained from the
Q(RS) and the GREEDY algorithms are presented on the
y axis of the table. A value of 1 in the chart indicates no
difference, a value less than one suggests that the memory
(or length) value is higher when GREEDY is used, and a
value greater than one suggests that the memory (or length)
value is higher when Q(RS) is used. The chart confirms



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

FSM Name Memory Length

bbtas

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 1.5 2 2.5 3

ex4
ex6 with loops
ex6 with sink
keyb
lion with loops
mark1 with loops
mark1 with sink
mc
opus with loops
opus with sink
pma with loops
pma with sink
shiftreg
tav
tma with loops

TABLE 7
PDS results of benchmark experiments.

the results gathered from randomly generated FSMs. The
Q(RS) algorithm, except for one FSM, required less memory
space than the GREEDY algorithm. This is important as
requiring less memory space makes the Q(RS) algorithm a
better option for retrieving RSs from large FSM models that
the GREEDY algorithm cannot process. However, the length
of the RSs introduces a trade-off as the Q(RS) algorithm
produces relatively longer RSs.

FSM Name Memory Length

bbara

0 0.5 1 1.5 2 0 5 10 15 20 25

bbtas
beecount with loops
beecount with sink
cse with hidden states with sink
cse with loops
cse with loops with hidden states
cse with sink
dk14
dk15
dk16
dk17
dk27
dk512
ex2 with hidden states with sink
ex2 with loops
ex2 with sink
ex3 with hidden states with sink
ex3 with loops
ex3 with sink
ex4
ex5 with hidden states with sink
ex5 with loops
ex5 with sink
ex6 with loops
ex6 with sink
ex7 with hidden states with sink
ex7 with loops
ex7 with sink
keyb
keyb with hidden states with sink
keyb with loops with hidden states
lion9 with loops
lion9 with sink
lion with hidden states with sink
lion with loops
lion with loops with hidden states
lion with sink
mark1 with loops
mark1 with sink
mc
opus with loops
opus with sink
pma with loops
pma with sink
s27 with loops
s27 with sink
s298
shiftreg
tma with loops
tma with sink
train11 with hidden states with sink
train11 with loops
train11 with loops with hidden states
train11 with sink
train4 with hidden states with sink
train4 with loops
train4 with loops with hidden states
train4 with sink

TABLE 8
RS results of benchmark experiments.

6 EXTENSION TO TIMED FSMS

Timed FSMs (tFSMs) extend the FSM formalism with a
single clock, which measures how long the tFSM has been in

its current state. Such FSMs serve as the underlying model
of many real application examples such as the TFTP [81],
TCP [82], INRES [83], SCP [84], and they have recently been
used to model the behaviour of common IoT edge devices
[85]. At any point in the execution of a tFSM, the tFSM is in
a state s and has a value t for the clock. We combine these
pieces of information to define the notion of a location ℓ(s, t).
We use the term location, as opposed to state, so that we can
be clear whether we are referring to an FSM state (without
a clock value) or a pair containing an FSM state and a clock
value.

A state s of a tFSM has a local time limit Ts; if the
tFSM is in state s and the clock value reaches Ts, then a
transition occurs, moving the tFSM to a different state s′.
There are, therefore, three types of transitions: Transitions
that correspond to those found in FSMs, which are triggered
by inputs; Transitions that involve the increase in the value
of the clock by one unit of time and (timeout) transitions
caused by the clock reaching the local time limit Ts of the
current state s. The clock is reset to zero whenever the tFSM
takes a transition that is triggered by either an input or the
local time limit being reached.

The behaviour of a tFSM will be defined in terms of
transitions between locations. However, we will formalise
tFSMs by essentially defining an FSM as before and adding
the required additional information. There are several rea-
sons for taking this approach, instead of directly defining
transitions between locations. First, this is consistent with
the work we build upon and also will allow us to reuse def-
initions and notation introduced earlier for FSMs. Second, if
a developer is already familiar with FSMs, then, in order to
use this formalisation, they simply need to add timeouts to
states.

In the following, we first describe the tFSM model and
formalise the behaviours of tFSMs. We then show that
the Q-Graph framework can derive RSs and PDSs from
tFSMs. Later in this section, we will provide the results of
related experiments, providing empirical evidence that the
proposed approach remains applicable in the timed settings.

6.1 The timed FSM model

A timed FSMs (tFSM) tM = (S,X, Y, δ, λ, s0,∆) is an FSM
with a single clock. It has a finite set of states (S), inputs (X)
and outputs (Y ). The δ and λ functions are identical to those
defined for ordinary FSMs. Hence, the definitions given in
Section 3 apply (e.g., defined input sequence, undefined
input sequence, an extension of functions to a set of states,
and sets of a set of states etc.). Whenever tM reaches a state
s ∈ S, the clock starts to measure the time spent at s. This
introduces the term location (ℓ). A location ℓ(s, ts) is a pair of
state s and local time ts, where ts ∈ N and N is the set of non-
negative integers. When the tFSM reaches state s, the local
time is set to 0; hence, the location is ℓ(s, 0). We summarised
the terminology we introduced in this section in Table 9.

As long as tM stays in s, tM increments ts in
system-specific time intervals, i.e., ℓ(s, 0), ℓ(s, 1), ℓ(s, 2), . . .
ℓ(s, (Ts − 1)). Here Ts is the local-time limit where Ts ∈
(N ∪ {∞}). The difference between the local-time limit and
the local time is the remaining time rs, i.e. rs = Ts − ts. The
timed transition function ∆ : S → S × (N ∪ {∞}) maps a
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Fig. 17. A timed FSM models the behaviour of passive infrared motion
sensor(PIR).

state s to the pair (s′, Ts) in which Ts is the local time limit
of s and tM moves to state s′ if the clock value reaches Ts
when tM is in state s.

Figure 17 depicts a tFSM, taken from [85], modelling
the behaviour of the passive infrared motion sensor (PIR),
which measures the infrared light radiating from objects
or human bodies nearby to detect whether the user is
approaching or not [86]. The sensor is connected to a mi-
crocontroller (MC) that, in turn, uses Wi-Fi to connect to
a home router which is connected to the Internet. Upon
detecting motion, the MC uses the MQTT protocol to send
a message to the application server and potentially to the
apps running on a consumer’s laptop or a mobile phone.
The MC first must connect to the WiFi network and then
connect to an MQTT Broker using TCP. Once connected to
WiFi and the MQTT broker, the MC continuously checks for
a movement signal from the PIR motion detector. Once a
signal is detected, debouncing is done by sleeping for a few
milliseconds. For each movement event, an MQTT message
is then published. Detailed input and output descriptions
are given in [85]. The PIR tFSM is partial, and we completed
it by introducing self-loop transitions having output N .
For this example, the transition from s0 leads to state s1
with a local time limit 2, enabling the sequence that starts
at location ℓ(s1, 0), moves on (due to a timer step) from
ℓ(s0, 1), and after waiting one unit of time by changing the
state from s0 to state s1. If Ts = ∞, then s = s′, meaning
that tM can stay in s infinity long waiting for input.

Let tM be at location ℓ(s, ts), and x be a defined input
at s where δ(s, x) = s′, λ(s, x) = y, and ∆(s) = (s′′, Ts).
Then if the input x is applied when ts < Ts, then the tM
changes its state to s′ producing the output y, and updates
the location to ℓ(s′, 0). However, if the local time ts becomes
equal to Ts before the input is applied, the machine moves
to state s′′, and the location is set to ℓ(s′′, 0).

For example, assume the tFSM tM given in Figure 17 is
at state s5, and the location is ℓ(s5, 1). If input x9 is applied
before tM moves to ℓ(s5, 2) then tM updates its state and
location to s4 and ℓ(s4, 0) producing output y12. However,
if no input is applied, the state and location will be updated
to s4 and ℓ(s4, 0) without producing any output.

6.2 Behaviour of timed FSMs

We can define the behaviour of a tFSM with respect to time
by a next location function χ : S × N × N → S × N. Given

Symbols Definitions
tM , ∆ A timed FSM, Timed transition function.

ℓ, L, L̂, L0 A location, a set of locations, a set of sets
of locations, the set of all locations.

ts, Ts, rs Local time, local-time limit, remaining
time.

χ, χ̂ The timed next location function of a loca-
tion (or a set of locations), the next set of
sets of locations function.

U, Û The next location function of a location (or
a set of locations), next location function
for a set of sets of locations.

L, L̂ Output function of location (or a set of
locations), output function of a set of sets
of locations.

TABLE 9
List of symbols regarding timed FSMs.

a location ℓ(s, ts), the function χ specifies the next location
that the tFSM will reach after waiting some time t′ (time
input) from a location. In the following let ∆(s) = (s′, Ts).

χ(ℓ(s, ts), t
′) =

{

ℓ(s′, 0), iff ts + t′ = Ts,
ℓ(s, ts + t′), iff Ts =∞∨ t′ + ts < Ts,
ε, iff ts + t′ > Ts.

The last rule states that χ is defined when t′ is less than
or equal to rs, i.e., t′ ≤ rs. If t′ is larger than rs then t′ is an
undefined input and χ returns ε.

We can extend χ to a set of locations as follows. If L =
{ℓ(s, ts), ℓ(s

′, ts′), . . .} is a set of locations then χ(L, t) =
{χ(ℓ(s, ts), t)|ℓ(s, ts) ∈ L}. One important constraint on t is
that t must be less than or equal to the minimum remaining
time value tmin(L) where tmin(L) = Minℓ(s,t)∈Lrs. If t
exceeds tmin(L) then χ will return ε. Furthermore, we can
extend χ to a set of sets of locations. If L̂ = {L,L′, . . .} is a
set of sets of locations then χ̂(L̂, t) = ∪

L∈L̂
{χ(L, t)}. Again,

t must be less than or equal to the minimum remaining time

value in L̂; otherwise, the function will return ε.
As with an FSM, the labels of a sequence of consecutive

transitions (timed or untimed) defines a trace, and the input
labels of the trace define a timed-input sequence: a sequence
of inputs and time values, i.e. x̄t ∈ (X ∪ N)∗. For example,
consider tFSM tM in Figure 17. Assume we want to reach
location ℓ(s6, 0) from ℓ(s5, 1). This can be done by waiting 1
unit of time, switching to state s4, and then applying input
x6. This defines timed input sequence x̄t = 1x6. When ex-
ecuting these transitions, tM follows ℓ(s5, 1)ℓ(s4, 0)ℓ(s6, 0)
(please note Ts5 = 2 and ∆(s5) = (s4, 2)). However, if the
input sequence is x̄t = x8x6, then tM reaches ℓ(s6, 0) from
ℓ(s5, 0) and produce the output y11y6. One key observation
is that executing a timed transition does not cause a tFSM to
produce an output.

If a timed input sequence contains undefined timed
input or undefined input, then the timed input sequence
is said to be an undefined timed input sequence. Otherwise, it
is a defined timed input sequence. If a timed input sequence is
undefined, then δ, λ, and χ return ε.

To simulate the behaviour of a tFSM under timed input
sequences, we use functions U and L. U : S × N× (N ∪X ∪
{ϵ}) → S × N ∪ {ε} combines the next state (δ) and timed
next state (χ) functions and is defined by:

U(ℓ(s, ts), k) =

{

ℓ(δ(s, k), 0), iff k ∈ X,
χ(ℓ(s, ts), k), iff k ∈ N
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We can extend U to timed input sequences as follows. Let
kk′ . . . be a timed input sequence, then U(ℓ(s, ts), kk

′ . . .) =
U(U(ℓ(s, ts), k), k

′ . . .). Moreover, U can be extended to a
set of locations (U) and a set of sets of locations (Û) using
extended variations of δ and χ. In the above example, if we
let x̄ = x12 then we have U(ℓ(s1, 0), x12) = ℓ(s3, 0) because
U(ℓ(s1, 0), x12) = χ(δ(s1, x1), 2) = χ(ℓ(s2, 0), 2) = ℓ(s3, 0).

We will use L to represent the output function for timed
input. L is in the given form: L : S × N × (N ∪X ∪ {ϵ}) →
Y ∪ {ε, ϵ}. The following defines function L.

L(ℓ(s, ts), k) =

{

λ(s, k), iff k ∈ X ∪ {ϵ},
ϵ, iff k ∈ N.

Extending L to timed input sequences
is straightforward, i.e., L(ℓ(s, ts), kk

′ . . .) =
L(ℓ(s, ts), k).L(U(ℓ(s, ts), k), k

′ . . .). Following the same
example, if x̄t = 2x1 and tM is at ℓ(s0, 0), then it returns
L(ℓ(s0, 0), 2x1) = L(ℓ(s0, 0), 2).L(χ(ℓ(s0, 0), 2), x1) =
ϵ.L(ℓ(s1, 0), x1) = λ(s1, x1) = y1. Note that we can extend
L to a set of locations by using λ and χ.

In the following section, we define RS and PDS for tFSMs
and show how the proposed algorithm can derive RSs and
PDSs from tFSMs.

6.3 Constructing reset sequences from tFSMs.

We first define reset sequences for tFSMs. First, we let set L0

be the set of all possible locations that can occur in tM .

Definition 6.1. Let tM = (S,X, Y, λ, δ, s0,∆) be an tFSM. A
timed input sequence x̄t is a timed reset sequence (tRS)
for tM iff |U(L0, x̄)| = 1.

We are to construct a timed input sequence that brings the
underlying tFSM to a common location, regardless of the
initial location.

For example, the timed input sequence x̄t = x12
x2x12x3x102 2 is a tRS for the tFSM given in Figure 17,
U(ℓ(s0, 0), x12x2x12x3x102 2) = ℓ(s4, 0),U(ℓ(s1, 0), x12x2
x12x43x102 2) = ℓ(s4, 0), and U(ℓ(s2, 0), x12x3x12x3
x102 2) = ℓ(s4, 0).

We represent the tRS construction problem as an MDP
P = (Z,A,Pt, RtRS) in the following way. Let tM be a
tFSM, and we consider a set of locations L as a state K ∈ Z
of the MDP P, and therefore the set of possible states of the
MDP P is the set pow(S) × rS , where rS is the minimum
remaining time observed in set S. The set of actions of P is
defined using the set of inputs and non-negative numbers
not exceeding rS , i.e., X ∪ {1, 2, . . . , rS}. For example, we
introduced action ax1

to A for x1 ∈ X and a2 to A for
2 ≤ rS .

By abusing the notations (i(), st()) introduced in Sec-
tion 4.2, we use one-to-one and onto functions to denote
corresponding inputs and set of states: i() maps an input
from set X ∪ {1, 2, . . . , rS} of the tFSM tM to the corre-
sponding action a ∈ A of the MDP P and vice versa, and
we let st() map a set of locations L′ ∈ pow(S) × rS of the
tFSM tM to the corresponding state K′ ∈ Z of the MDP P
and vice versa. A state change from K to K′ is triggered by
an application of an action a ∈ A. We define the probability
function Pt(K

′|K, a) as follows, let U(st(K), i(a)) = st(K′).

st(K0) = {{s6, 0}, {s7, 0}, {s8, 0}}, rS = 2

st(K1) = {{s4, 0}, {s8, 0}}, rS′ = 2st(K2) = {{s6, 1}, {s7, 1}, {s8, 1}}, rS′′ = 1

i(a) = 2, R = 33.3i(a) = x2, R = −1

Fig. 18. The execution of the reward function for locations
{s6, 0}, {s7, 0}, {s8, 0} of tFSM given in Figure 17. Note applying mini-
mum remaining time causes locations {s6, 0}, {s7, 0} to merge at loca-
tion {s4, 0}.

st(K0) = {{s6, 1}, {s7, 1}, {s8, 0}}, rS = 1

st(K1) = {{s4, 0}, {s8, 1}}, rS′ = 1st(K2) = {{s6, 1}, {s4, 0}, {s8, 1}}, rS′′ = 1

i(a) = 1, R = 33.3i(a) = x2, R = −1

Fig. 19. The execution of the reward function for locations
{s6, 1}, {s7, 1}, {s8, 0} of tFSM given in Figure 17. Note applying mini-
mum remaining time causes locations {s6, 1}, {s7, 1} reaching location
{s4, 0}.

Pt(K
′|K, a) =

{

1, iff U(st(K), i(a)) = st(K′),
0, otherwise.

In this setting, the agent’s aim is to find a sequence of
actions (consisting of inputs and timed inputs) that takes
the agent from an MDP state K associated with L0 to
another MDP state that is associated with L such that
|L| = 1. If input given by i(a) is not defined for the
set of locations given by st(K), then the reward function
returns NAN . For the defined actions, the reward func-
tion to compute a tRS is similar to that of RS given in
Section 4.2 and uses ϕ. In Figure 18, we demonstrate this
process for tFSM given in Figure 17. However, we also
consider the local time differences between the locations.
Let ψ(L) = Σℓ(s,ts),ℓ(s′,ts′ )∈L′abs((ts)− (ts′)) be the sum of
the differences of local times of the locations in set L. The
intuition behind ψ is to evaluate the impact of actions with
respect to time. As the timed reset sequence resets a set of
locations, an action that leads to divergence in local times
must be penalised but awarded if it leads to convergence.
In Figure 19, we demonstrate this process for tFSM given in
Figure 17.

RtRS(K, a) =































−1, if |st(K)| = |st(K′)|,

NAN, if i(a) is undefined for st(K),

100 ∗ ϕ

|st(K)|
, if ψ(st(K′)) = 0,

100ϕ

|st(K)| ∗ ψ(st(K′))
otherwise.

In implementing the tRS problem using Q-Graph, the
initial node of the Q-Graph has st(L0) as its MDP state.

6.4 Constructing preset distinguishing sequences

from tFSMs.

Definition 6.2. Let tM = (S,X, Y, λ, δ, s0,∆) be a tFSM. A
timed input sequence x̄t is a timed preset distinguishing
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st(K0) = {{{s6, 1}, {s7, 1}, {s8, 0}}}, rS = 1

st(K1) = {{{s4, 0}, {s8, 1}}}, rS′ = 1st(K2) = {{{s6, 1}, {s4, 0}, {s8, 1}}}, rS′′ = 1

i(a) = 1, R = NaNi(a) = x2, R = −1

Fig. 20. The execution of the reward function for locations
{s6, 1}, {s7, 1}, {s8, 0} of tFSM given in Figure 17. Note applying mini-
mum remaining time causes locations {s6, 1}, {s7, 1} reaching location
{s4, 0}.

sequence (tPDS) for tM if for every pair of s and s′ of
distinct states of tM and every pair of locations (ℓ, ℓ′)
where ℓ ∈ Ls and ℓ′ ∈ Ls′ , we have, L(ℓ, x̄t) ̸= L(ℓ′, x̄t).

For example, the timed input sequence x̄t = x0x2
x3x8x102x0x3x10 is a tPDS for the tFSM given in Figure 17.
Let ls0 , ls1 , and ls2 be local times for states s0, s1, and s2,
then L(ℓ(s0, ls0), x̄t) = NNNNNy1NN , L(ℓ(s1, ls1), x̄) =
y1NNNNy1NN , and for example L(ℓ(s2, ls2), x̄) = NNN
NNNy3N .

We represent the tPDS construction problem as an MDP
P = (Z,A,Pt, RtPDS) as follows. We represent a set of sets

of locations L̂ of the tFSM as a state K ∈ Z of P . Next, for
each input x of tFSM and each unique value in 1, 2, . . . , rŜ ,
we introduced an action and form set A.

Again by abusing notations introduced in Sections 4.2,
and 6.3, we use i(.) to convert input from set X ∪
{1, 2, . . . , rŜ} to an action a ∈ A and vice versa in the usual
way. Moreover, let st(.) be one-to-one and onto function that

converts a set of sets of locations L̂ of tFSM to a state K of
P , and vice-versa.

The state transitions of P are given as follows.

Pt(K
′|K, a) =

{

1, iff Û(ŝt(K), i(a)) = st(K′),
0, otherwise.

The reward function for finding tPDSs is the same as
the function introduced for PDSs in Section 4.3. The only
difference is that if the time input given by action a is
not defined for the underlying set of locations, it returns
NAN . Otherwise, it returns −1 because the underlying
tFSM would not produce an output if a timed input is ap-
plied and, by doing so, cannot contribute to distinguishing
states. We illustrate this in Figure 20 for the tFSM given in
Figure 17. Note that the action corresponding to timed input
1 causes locations to merge at {s4, 0}, so the reward isNaN .
An input that does not cause states to distinguish (input x2)
receives −1. For consistency, we will use RtPDS to refer to
the reward function when we use it for tFSMs. As in the
case of the tRS problem, in implementing the tPDS problem
using Q-Graph, the initial node has st(L0).

6.5 Experimental settings for tFSMs

We conducted experiments on randomly generated partial
tFSMs to analyse algorithm performance for tPDS and tRS
generation. As in the case of FSMs, the evaluations were
focused on examining the execution time, memory require-
ments, and sequence length.

The tFSMs were created using Algorithm 5 with the
following steps: given values of n, i + 1, and p = 10, a

partial FSM was generated with n states, i+ 1 inputs and i
outputs. After this step finished, we defined the transitions
in the following way. We selected the i + 1th input as the
timed input. Then, for every state, we selected the transition
with the input label i + 1. If this transition ended in the
same state, we set the label to ∞. However, if it ended in
a different state, the label was set to a randomly generated
value between 1 and 100. That is, the local-time limit values
of the states were between 1 and 100.

The Q(PDS) and Q(RS) algorithms were then applied
to these tFSMs, and the tFSMs were retained if they pos-
sessed a tRS and/or a tPDS. For studying tPDSs, for each
n, i values from {32, 64, 128, 256} and {3, 4, 5} we created
one hundred FSMs. To study tRSs, we could only create
one hundred tFSMs for each n, i value from {32, 64} and
{3, 4, 5}6. Therefore, during the experiments, we used 1800
tFSMs in total.

To run the tFSMs on the benchmark algorithms, we
unfolded them to abstract their time behaviour, as described
in [36], before testing. This process of unfolding the tFSMs
is time-consuming, and the resulting unfolded FSMs (u-
tFSMs) have an increased number of states proportional
to the maximum timeout value present in the underlying
tFSMs. We modified the GREEDY and ST algorithms so
that they can receive a time value as input and generate
sequences for a specific subset of the states of the u-tFSMs.

Note that the step in which we unfold the tFSMs is only
required for the benchmark algorithms, as the Q-Graph al-
gorithm processes tFSMs. However, during the experiments,
we excluded the time required to unfold FSMs as we only
wanted to compare the time needed to derive PDSs and RSs.
Size comparisons of the u-tFSMs obtained from tFSMs with
varying numbers of states, denoted as n, are presented in
Figures 21 and 22. The average number of states of the u-
tFSMs is shown on the y-axis, with n indicated on the x-axis.
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of unfolded FSMs vs states
sizes of folded tFSMs used in
tRS generation.

During the experiments, we fed the algorithms with the
tFSMs and noted the time, the memory required to construct
sequences, and the length of the sequences.

6. As the number of states increases, finding a tFSM having a tRS
becomes a hard task by using the random FSM generator.
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6.6 Results on tPDSs derived from partial tPDSs

The findings related to tPDSs are presented in Figures 23
(time comparison), 24 (memory comparison), and 25 (length
comparison). Our method stands out due to its unique capa-
bility of computing a tPDS or tRS from tFSMs. Our analysis
revealed that the ST algorithm generated tPDSs from u-
tFSMs when the state count was 32, and the input count
was four or five. In other words, the Q(tPDS) increased
the scalability by 4 times. However, the ST algorithm faced
memory limitations (1GB) and failed to produce results for
other cases. Conversely, the Q(tPDS) algorithm could handle
tFSMs from all test subjects.

Regarding performance, Q(tPDS) exhibited an average
speed improvement of 925 fold and a memory reduction
of 100 fold compared to the ST algorithm (the time spent
on unfolding is excluded). However, the tPDSs generated
by the ST algorithm (excluding sequences of length zero)
were approximately 2.5 times shorter than those produced
by Q(tPDS).

6.7 Results on tRSs derived from partial tPDSs

The findings related to tRSs are presented and summarised
in Figures 26 (time comparison), 27 (memory comparison),
and 28 (length comparison). The results are promising. The
PBF algorithm could generate RSs from u-tFSMs when the
number of states was 32, and the number of inputs was
three. The Q(tRS), on the other hand, could generate tRSs
from all test subjects, improving the scalability by 6 times.
For the test subjects having 32 states and three inputs,
the Q(tRS) algorithm was 700 times faster than the PBF
algorithm and used 3 times less memory (the time spent
on unfolding is excluded). As the PBF algorithm deploys
a brute-force search, the PBF algorithm generated shorter
(20% on average) tRS.

7 DISCUSSION

7.1 Answers to research questions

7.1.1 Answer for RQ-1.a: What sort of reward functions can

be used to derive resetting and state-verification sequences

from different types of FSMs?

We introduced a Q learning algorithm for MBT, which
is modular and searches for test sequences based on the
reward function. For deriving RSs and PDSs from different
kinds of models, we introduced four reward functions, each
focusing on different kinds of properties. We provided these
functions in Sections 4.3, 4.2, 6.3, and 6.4.

7.1.2 Answer for RQ-1.b: The framework will be based on

Q-graph approach, and the Q-Graph approach is stochastic,

so will the proposed framework behave differently in different

runs when it is exposed to the same inputs? That is, is the

new approach functionally stable?

We followed the standard procedure [39]: we randomly
picked an FSM having 8192 states and five inputs and out-
puts and repeated the PDS and RS generation tasks at most
100 times where each could take at most 100 episodes where
an episode ends either when the target sequence is found, or
the agent picked an action that corresponds to an undefined

input symbol. For each, we measured the Cumulative Re-
wards produced by the underlying reward function. Results
are given in Figure 29 where the y axis gives the normalised
cumulative reward. We observe that, generally, the Q-Graph
algorithm can quickly gather positive rewards after a couple
of episodes with increasing consistency. Moreover, when
the framework computes RSs, the rewards converge to one
quicker than when the Q-learner computes PDSs. However,
in both studies, we observe that the algorithm converges to
the optimum reward as the number of episodes increases.
These observations are confirmed by the confidence interval
(bold line in Figure 29) with a confidence interval of 0.95.
Another important observation is that the proposed Q-
Graph framework avoids constructing the Q-table, which
is the fundamental data structure of tabular Q-learning
framework. In comparison, the Q-table framework would
need 2n × i number of cells to derive test sequences from
FSMs with n states and i inputs. Instead, when n = 16384
and i = 5, the framework only requires 100 MBs of RAM,
a significant reduction (more than 99.99%) in memory re-
quirement compared to storing a table having 216384∗5 cells.

7.1.3 Answer for RQ-2.a: How efficient is the proposed

approach regarding memory and time requirement when

compared to the state-of-the-art algorithms?

Experiments conducted on our FSM subjects are conclusive
and indicate that our proposed method is superior to the
existing approaches in many ways. First, we have shown
that the proposed algorithm can generate RSs or PDSs from
various kinds of FSMs that no other method could process.
Second, the proposed method can generate PDSs using less
memory faster. Regarding RSs, we observe that the PBF
algorithm is generally faster with better memory utilisation
than our approach. However, the PBF algorithm could not
process a real FSM model where the proposed method could
generate an RS. 7

7.1.4 Answer for RQ-2.b: How effective is the proposed

approach, in terms of the sizes of the resetting and state-

verification sequences, compared to the sequences gener-

ated by other existing algorithms?

Experiment results are very promising. The proposed al-
gorithm generates PDSs and RSs from partial FSMs with
similar lengths. This is surprising because all the existing
algorithms are brute-force, and they compute the shortest
possible sequences. Moreover, the proposed algorithm can
also produce PDSs from complete FSMs with similar lengths
compared to the existing brute-force method. We provided
the results of these experiments in Sections 5 and 6.

7.2 Threats to validity

We identified a number of threats to the validity of our
results. The first potential threat is selection bias, which
refers to how well the test subjects represent the over-
all population. We utilised computer-generated FSMs and
FSMs obtained from industrial case studies to mitigate

7. Considering the results given in [40], this is thanks to the GPU
technology used in this work.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

3 4 5

3
2

6
4

1
2
8

2
5
6

3
2

6
4

1
2
8

2
5
6

3
2

6
4

1
2
8

2
5
6

0

2

4

States

lo
g

1
0
(T

im
e

.m
s
e
c
s
.)

ST Q(tPDS)
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struct tPDSs from partial randomly gener-
ated tFSMs.
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Fig. 24. The average memory required to
construct tPDSs from partial randomly gen-
erated tFSMs.
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Fig. 25. The average lengths of tPDSs con-
structed from partial randomly generated tF-
SMs.
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Fig. 26. The average time required to con-
struct tRSs from partial randomly generated
tFSMs.
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Fig. 27. The average memory required to
construct tRSs from partial randomly gener-
ated tFSMs.
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work while constructing RSs and PDSs from a given FSM.

this risk. We also took into account the possibility of bias
introduced during the generation of syntactic FSMs, which
could pose a potential threat. To mitigate this, we employed
a widely-used tool that has been extensively utilised in
similar research endeavours. Additionally, we acknowledge
the potential for implementation errors in our approach. To
address this concern, for each FSM M (or tFSM tM ), we
applied the generated RS (or PDS) sequence to M (or tM )
to check if the sequence was really an RS (or PDS) for M (or
tM ).

8 CONCLUSION

The ever-increasing complexity and diversity of software
systems pose formidable challenges in testing. The intri-
cacies involved in computing reset and state identification
sequences create significant hurdles. However, recent ad-
vancements in artificial intelligence (AI) technology have
provided a myriad of domain-agnostic solutions. This study
presents an AI framework, termed the Q-Graph framework,
designed explicitly for Model-Based Testing (MBT). Our
framework demonstrates modularity, enabling the construc-
tion of reset and state identification sequences from various
finite state machines (FSMs) by leveraging distinct reward
functions. Through comprehensive experiments conducted
on randomly generated and real-life FSMs and rigorous
comparative analysis, we establish the unparalleled efficacy
of our proposed framework.

Nonetheless, numerous avenues for future research
remain unexplored. Firstly, addressing the computational
overhead associated with deriving such sequences from
non-deterministic systems is imperative, warranting an
extension of our proposed framework to encompass
systems featuring non-deterministic components. Secondly,
as explained in Section 1, diverse test sequence types call for
expanding our methodology to incorporate such sequences,
representing a promising avenue for further investigation.
Finally, it is noteworthy to highlight the significant value
we have observed in accelerating the current approach
by leveraging general-purpose graphics processing units
(GPUs).
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