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Weak Sequential Completeness of Uniform Algebras

J. F. FEINSTEIN AND ALEXANDER J. IZZO

Abstract. We give a simple, elementary proof that a uniform algebra is weakly
sequentially complete if and only if it is finite-dimensional.

1. The Result

For X a compact Hausdorff space, we denote by C(X) the algebra of all continuous
complex-valued functions on X with the supremum norm ‖f‖X = sup{|f(x)| : x ∈ X}.
A uniform algebra on X is a closed subalgebra of C(X) that contains the constant
functions and separates the points of X. On every compact Hausdorff space X there is
the trivial example of a uniform algebra, namely C(X) itself. By the Stone-Weierstrass
theorem, C(X) is the only self-adjoint uniform algebra on the space X. However,
there are many other (nonself-adjoint) uniform algebras. A typical example is the
disc algebra which consists of the continuous complex-valued functions on the closed
unit disc that are holomorphic on the open unit disc. The uniform algebras form a
class of Banach algebras that is important both in the field of Banach algebras and in
complex analysis, and uniform algebras also have applications to operator theory. In this
paper we consider certain Banach space properties of uniform algebras, primarily weak
sequential completeness and reflexivity. (These terms are defined in the next section.)

Every weakly sequentially complete uniform algebra is finite-dimensional. Although
this fact is known to a few experts, the result is certainly not well known and seems not
to be explicitly stated in the literature. In this paper we present a simple, elementary
proof of the result. A different proof, using Arens regularity and bounded approximate
identities, is given in the forthcoming book of Garth Dales and Ali Ülger [4, Section 3.6].
An anonymous referee has pointed out that using results in the literature a stronger
statement can be obtained: every infinite-dimensional uniform algebra contains an iso-
metric copy of the Banach space c of all convergent sequences of complex numbers. We
give the referee’s argument near the end of the paper.

Theorem 1.1. Every weakly sequentially complete uniform algebra is finite-dimensional.

Since every reflexive Banach space is weakly sequentially complete, we have the
following as an immediate consequence.

Corollary 1.2. For a uniform algebra A, the following are equivalent.

(a) A is weakly sequentially complete.

(b) A is reflexive.

(c) A is finite-dimensional.
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The fact that every reflexive uniform algebra is finite-dimensional does appear in the
literature. However, the only explicit mention of this fact that we have found in the
literature is at the very end of the paper [6] where the result is obtained as a consequence
of the general theory developed in that paper concerning a representation due to Asimow
[1] of a uniform algebra as a space of affine functions. A closely related result, which we
will discuss at the end of our paper, appears in the paper [2] of Paul Beneker and Jan
Wiegerinck: no separable infinite-dimensional uniform algebra is a dual space. The fact
that every reflexive uniform algebra is finite-dimensional follows immediately since every
infinite-dimensional uniform algebra contains a separable infinite-dimensional uniform
algebra.

One can also consider what are sometimes called nonunital uniform algebras. These
algebras are roughly the analogues on noncompact locally compact Hausdorff spaces
of the uniform algebras on compact Hausdorff spaces. (The precise definition is given
in the next section.) Every nonunital uniform algebra is, in fact, a maximal ideal in
a uniform algebra, and hence is, in particular, a codimension 1 subspace of a uniform
algebra. Since it is easily proven that the failure of weak sequential completeness is
inherited by finite codimensional subspaces, it follows at once that the above results
hold also for nonunital uniform algebras.

It should be noted that the above results do not extend to general semisimple com-
mutative Banach algebras. For instance, for 1 ≤ p ≤ ∞, the Banach space ℓp of
pth-power summable sequences of complex numbers is a Banach algebra under coordi-
natewise multiplication and is of course well known to be reflexive for 1 < p < ∞; for
p = 1 the space is nonreflexive but is weakly sequentially complete [11, p. 140]. Also
for G an infinite locally compact abelian group, the Banach space L1(G) is a Banach
algebra with convolution as multiplication and is nonreflexive but is weakly sequentially
complete [11, p. 140]. All of these Banach algebras are nonunital, with the exception
of the algebras L1(G) for G a discrete group. However, adjoining an identity in the
usual way where necessary, one obtains from them unital Banach algebras with the
same properties with regard to reflexivity and weak sequential completeness.

In the next section, which can be skipped by those well versed in basic uniform algebra
and Banach space concepts, we recall some definitions. The proof of Theorem 1.1 is then
presented in Section 3. A proof of the stronger statement that every infinite-dimensional
uniform algebra contains an isometric copy of the Banach space c is given in Section 4.
In the concluding Section 5 we discuss the theorem of Beneker and Wiegerinck that no
separable infinite-dimensional uniform algebra is a dual space.

2. Definitions

Recall from the introduction that a uniform algebra on a compact Hausdorff space X

is an algebra of continuous complex-valued functions on X that contains the constant
functions, separates the points of X, and is (uniformly) closed in the algebra C(X) of
all continuous complex-valued functions on X. For Y a noncompact, locally compact
Hausdorff space, we denote by C0(Y ) the algebra of continuous complex-valued func-
tions on Y that vanish at infinity, equipped with the supremum norm. By a nonunital

uniform algebra B on Y we mean a closed subalgebra of C0(Y ) that strongly separates
points in the sense that for every pair of distinct points x and y in Y there is a function
f in B such that f(x) 6= f(y) and f(x) 6= 0. If B is a nonunital uniform algebra on Y ,
then the linear span of B and the constant functions on Y forms a unital Banach algebra
that can be identified with a uniform algebra A on the one-point compactification of
Y , and under this identification B is the maximal ideal of A consisting of the functions
in A that vanish at infinity.
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Let A be a uniform algebra on a compact Hausdorff space X. A closed subset E of
X is a peak set for A if there is a function f ∈ A such that f(x) = 1 for all x ∈ E and
|f(y)| < 1 for all y ∈ X \E. Such a function f is said to peak on E. A generalized peak

set is an intersection of peak sets. A point p in X is a peak point if the singleton set
{p} is a peak set, and p is a generalized peak point if {p} is a generalized peak set. A
closed subset E of X is an interpolation set for A if A|E = C(E), where A|E denotes
the algebra of restrictions of functions in A to E. The set E is a peak interpolation set

for A if E is both a peak set and an interpolation set for A. For Λ a bounded linear
functional on A, we say that a complex regular Borel measure µ on X represents Λ if
Λ(f) =

∫

f dµ for every f ∈ A.
A Banach space A is reflexive if the canonical embedding of A into its double dual

A∗∗ is a bijection. The Banach space A is weakly sequentially complete if every weakly
Cauchy sequence in A is weakly convergent in A. More explicitly the condition is this:
for each sequence (xn) in A such that (Λxn) converges for every Λ in the dual space
A∗, there exists an element x in A such that Λxn → Λx for every Λ in A∗.

3. The Proof

Our proof of Theorem 1.1 hinges on the following lemma.

Lemma 3.1. Every infinite-dimensional uniform algebra has a peak set that is not

open.

The proof of the above lemma uses two preliminary lemmas.

Lemma 3.2. Let A be a uniform algebra on a compact Hausdorff space X, and let P

be an open peak set for A. Then the characteristic function of P lies in A.

Proof. Choose a function f that peaks on P . Then the sequence (fn) of powers of f
converges uniformly to the characteristic function χP of P , and hence χP lies in A. �

Lemma 3.3. Every infinite compact Hausdorff space X contains a closed Gδ-set that

is not open.

Proof. Let (xn)n = 1∞ be an infinite sequence of distinct points of X. For each n =
1, 2, 3, . . . choose by Urysohn’s lemma a continuous function fn : X → [0, 1] such that
fn(xk) = 0 for k < n and fn(xn) = 1. Let F : X → [0, 1]ω be given by F (x) =
(

fn(x)
)

∞

n=1
. Then F (xm) 6= F (xn) for all m 6= n. Thus the collection {F−1(t) : t ∈

[0, 1]ω} is infinite. Each of the sets F−1(t) is a closed Gδ-set because F is continuous
and [0, 1]ω is metrizable. Since these sets form an infinite collection of disjoint sets that
cover X, they cannot all be open, by the compactness of X. �

Proof of Lemma 3.1. Let A be an infinite-dimensional uniform algebra on a compact
Hausdorff space X.

In case A = C(X), the result follows immediately from Lemma 3.3, since in that case
it follows from Urysohn’s lemma that the peak sets of A are exactly the closed Gδ-sets
in X (see for instance [7, Section 33, exercise 4]).

Now consider the case when A is a proper subalgebra of C(X). In that case, by
the Bishop antisymmetric decomposition [3, Theorem 2.7.5] there is a maximal set
of antisymmetry E for A that has more than one point. Since every maximal set
of antisymmetry is a generalized peak set, and every generalized peak set contains a
generalized peak point (see the proof of [3, Corollary 2.4.6]), E contains a generalized
peak point p. Choose a peak set P for A such that p ∈ P but P + E. The set P is
not open in X, for if it were then the characteristic function of P would be in A by
Lemma 3.2, which would contradict that E is a set of antisymmetry for A. �
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Proof of Theorem 1.1. Let A be an infinite-dimensional uniform algebra on a compact
Hausdorff space X. By Lemma 3.1, there exists a peak set P for A that is not open.
Choose a function f ∈ A that peaks on P .

For a bounded linear functional Λ on A, and a complex regular Borel measure µ on
X that represents Λ, we have by the Lebesgue dominated convergence theorem that

Λ(fn) =

∫

fn dµ → µ(P ) as n → ∞. (1)

Thus the sequence (fn)∞n=1 in A is weakly Cauchy. Furthermore (1) shows that, regarded
as a sequence in the double dual A∗∗, the sequence (fn)∞n=1 is weak*-convergent to a
functional Φ ∈ A∗∗ that satisfies the equation Φ(Λ) = µ(P ) for every functional Λ ∈ A∗

and every regular Borel measure µ that represents Λ.
For x ∈ X, denote the point mass at x by δx. Denote the characteristic function of

the set P by χP . Then

Φ(δx) = χP (x) (2)

while for any function h ∈ A we have
∫

h dδx = h(x). (3)

Since P is not open in X, the characteristic function χP is not continuous and hence is
not in A. Consequently, equations (2) and (3) show that the functional Φ ∈ A∗∗ is not
induced by an element of A. We conclude that the weakly Cauchy sequence (fn)∞n=1 is
not weakly-convergent in A. �

4. Every infinite-dimensional uniform algebra contains c

In this section we give a proof of the following theorem along the lines suggested by
a referee.

Theorem 4.1. Every infinite-dimensional uniform algebra contains an isometric copy

of the Banach space c.

As mentioned in the introduction, this theorem strengthens Theorem 1.1. To see
this, first note that the Banach space c0 of sequences of complex numbers converging
to zero is not weakly sequentially complete because in c0 the sequence (1, 0, 0, 0, . . .),
(1, 1, 0, 0, . . .), (1, 1, 1, 0, . . .) is weakly Cauchy but not weakly convergent. Since every
norm-closed subspace of a weakly sequentially complete Banach space is itself weakly se-
quentially complete, it follows immediately that a weakly sequentially complete Banach
space can not contain a copy of c0, and hence can not contain a copy of c.

The proof of Theorem 4.1 uses the following two results. The first of these is due to
Alain Bernard while the second is due to Aleksander Pe lczyński. Proofs of these results
can be found in [10, pp. 217–219, 241–242].

Theorem 4.2. If A is a uniform algebra on an infinite, compact metrizable space, then

there exists an infinite peak interpolation set for A.

Theorem 4.3. Let A be a uniform algebra on a compact Hausdorff space X, and let

K be a peak interpolation set for A. Then there exists a linear isometry L : C(K) → A

such that (Lf)|K = f for all f ∈ C(K).

We also use the following result which is surely known but whose proof we include
for the reader’s convenience.

Lemma 4.4. Let S be an infinite, compact metrizable space. Then C(S) contains an

isometric copy of the Banach space c.
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Proof. Choose a sequence of distinct points sn in S converging to a point s ∈ S. Set
E = {sn : n = 1, 2, . . .} ∪ {s}. Clearly C(E) is isometric to c, and by Theorem 4.3, for
example, there is an isometric copy of C(E) in C(S). �

Proof of Theorem 4.1. Let A be an infinite-dimensional uniform algebra on a compact
Hausdorff space X. By replacing A by a suitable closed subalgebra, we may assume that
A is separable and hence that X is metrizable. Then by theorem 4.2, there exists an
infinite subset K of X such that K is a peak interpolation set for A. By Theorem 4.3,
there is an isometric copy of C(K) in A, and hence by Lemma 4.4, A contains an
isometric copy of c. �

5. No separable infinite-dimensional uniform algebra is a dual space

By a theorem of Bessaga and Pe lczyński [5, Theorem 10, p. 48], if the dual space of
a Banach space contains an isomorphic copy of the Banach space c0, then it contains an
isomorphic copy of ℓ∞. (Two Banach spaces are isomorphic if there is a linear homeo-
morphism between them. Isomorphic Banach spaces need not be isometric.) Thus the
following result of Beneker and Wiegerinck [2] follows immediately from Theorem 4.1.

Theorem 5.1. No separable infinite-dimensional uniform algebra is a dual space.

Note, however, that there are nonseparable uniform algebras that are dual spaces.
For instance, the uniform algebra C(βN) of all continuous complex-valued functions on
the Stone-Čech compactification of the positive integers N can be identified with ℓ∞

and thus is isometrically isomorphic to the dual of ℓ1.
Beneker and Wiegerinck obtained Theorem 5.1 as a corollary of the main theorem

of their paper [2] which concerns strongly exposed points. A point f in the closed
unit ball B of a Banach space A is said to be strongly exposed if there exists Λ ∈ A∗

with the properties Λ(f) = ‖Λ‖ = 1 and for every sequence (gn)∞n=1 in A such that
limn→∞ Λ(gn) = limn→∞ ‖gn‖ = 1, we have limn→∞ gn = f in A. Beneker and
Wiegerinck’s main result [2] states that the unit ball of an infinite-dimensional uni-
form algebra has no strongly exposed points. As noted by Beneker and Wiegerinck,
Theorem 5.1 follows immediately since the the unit ball of a separable dual space is the
closed convex hull of its strongly exposed points [9]. A completely elementary proof of
a result stronger than the main theorem of [2] was later proven by Olav Nygaard and
Dirk Werner. Denoting the real part of a complex number z by Re z, a slice of B is a
set of the form

S(Λ, ε) = {g ∈ B : Re Λ(g) ≥ sup Re Λ(B) − ε},

for Λ ∈ A∗ and ε > 0. Nygaard and Werner [8] showed that every slice of the closed unit
ball of an infinte-dimensional uniform algebra has diameter 2. There are thus several
routes to proving Theorem 5.1.
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