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Abstract 

Control input variance is one of the important criteria in machining because it affects the surface roughness, machining precisions and 
consumed energy. This paper presents a nonlinear controller design for biaxial feed drive systems for reducing the control input variance while 
maintaining the motion accuracy. The contour error, which is defined as the error component orthogonal to the desired contour curve, is 
considered to design the controller because it directly affects the precision of machined work-piece profile. The proposed nonlinear controller 
allows to adjust a controller gain from its low value to high value as the contour error changes from low value to high value and vice versa, and 
hence a closed-loop system simultaneously achieves low overshoot and settling time, resulting in a smaller error. In order to design the variable 
controller gain, a sliding mode control based on a nonlinear sliding surface is employed. Experimental results demonstrate a significant 
performance improvement in terms of control input variance while maintaining the motion accuracy 
. 
© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of the 6th CIRP International Conference on High 
Performance Cutting. 
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1. Introduction 

High-precision machining requires multi-axis feed drive 
systems to accurately follow specified contours. Due to 
disturbances such as friction, cutting force and modeling error, 
tracking errors usually appear in industrial applications such 
as X-Y tables, computer numerical control (CNC) machines 
and industrial manipulators. For machining, error components 
orthogonal to the desired contour curve, called contour errors, 
represent good indicators of the machining precision [1]. 
Koren used the tracking error in each drive axis to estimate the 
contour error in biaxial contour-following tasks and proposed 
the cross-coupled controller (CCC) [2]. However, a 
disadvantage of the CCC is that both tracking and contour 
errors are used to calculate control inputs, and a degradation in 
the contour tracking performance occurs. To address this 
problem, Lo and Chung proposed a contouring control method 
for biaxial feed drive systems based on a coordinate 

transformation [3], in which tracking errors are transformed 
into errors with components that are orthogonal and tangential 
to the desired contour curves. By decomposing the contour 
error into normal tracking error and advancing tangential error, 
Ho et al. applied a dynamic decoupling procedure to the 
system dynamics [4]. Chiu and Tomizuka proposed a task 
coordinate frame approach for contouring control of feed drive 
systems [5]. Cheng and Lee proposed a real-time contour error 
estimation algorithm and employed an integrated motion 
control scheme to improve the machining accuracy for a 
contour following task [6]. 

Not only motion precision but also control input variance is 
an important criterion in machining because it directly affects 
the surface roughness and consumed energy. This study 
presents a controller design for reducing the control input 
variance while maintaining the contouring performance. 
Sliding mode control (SMC) is a viable and effective method 
with a strong robustness property and fast error convergence 
characteristics for nonlinear systems subjected to external 
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disturbances and parameter variations by emulating a 
prescribed reduced-order system [7][8]. The conventional 
sliding mode controllers utilize a linear sliding surface 
resulting in a constant damping ratio by which quick response 
produces high overshoot increasing the tracking errors and 
consumed energy, otherwise, the low overshoot results in a 
slow response leading to tracking errors. To address this 
particular problem, a nonlinear sliding surface is introduced to 
achieve a variable gain for improving the response of the 
closed loop system as the tracking error increases [9]. 

This study applies the sliding mode control to a contouring 
control problem of biaxial feed drive systems based on a 
coordinate transformation approach. The main advantage of 
the proposed approach is that it achieves a quick response and 
a small overshoot, and thereby providing smaller control input 
variance while maintaining the contouring performance. 
Experiments were conducted to demonstrate the effectiveness 
of the proposed design. 

2. Feed drive dynamics 

2.1. Definition of contour error 

Contour error is defined as the shortest distance between an  
actual position of a feed drive system and a desired contour. 
The relationships between the contour and tracking errors in 
each feed drive axis are shown in Fig. 1. The coordinate frame 

 is a fixed frame and its axes  and y correspond to feed 
drive axes. The desired position of the point of the machined 
part at time tr, defined in , is . The actual 
position of the feed drive system is represented by 

, which is also defined in the fixed frame. The 
tracking error in each feed drive axis is defined as 
 

                          (1) 
 
Because calculating the actual contour error  in Fig. 1 in 
real time for complex contour is an intensive computational 
task, we define several local coordinate frames as shown in 
Fig.1 and transform the error  into these frames. The 
coordinate frame  is attached at  and its axes are t and n. 
The axis t is in the tangential directional vector of the desired 
trajectory at r, and the directional vector n is perpendicular to 
t. The tracking error vector can be expressed with respect to 

 as 
 

                 (2) 
 

We assume that the distance between the desired position r 
and the point s on the desired trajectory is approximately 
equal to the tangential error . In addition, the desired 
velocity along this segment is nearly constant and equal to the 
desired velocity at r. The required time to traverse this 
segment td is estimated as follows: 
 

 

 
A new coordinate frame  corresponding to the 

 
Fig. 1 Contour error definition and its estimate 

 
instantaneous time  is defined by two unit vectors 
as follows: 
 

                            (4) 
 

The corresponding error vector in Fig. 1 is represented as 
follows: 
 

                  (5) 
 
The normal component is adjusted according to a new 
coordinate frame  shown in Fig. 1. The adjusted error can 
be expressed as follows: 
 

                                 (6) 
 

 
We regard the error component  as an estimate of the 
contouring error . This approach provides a good 
approximation of  while maintaining the tangential error 
(i.e., ) even when the error  is significant as shown 
in Fig. 1. 

2.2. Feed drive dynamics 

This study considers a typical biaxial feed drive system 
represented by the following decoupled second order system: 
 

                                           (7) 
=diag diag  

                                
 
where  are the mass coefficient, 
viscous friction coefficient, external disturbance and control 
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input voltage for the drive axis i, respectively. All terms in Eq. 
(7) has a dimension of voltage. The notation diag  denotes 
a diagonal matrix with the element  at the i th diagonal 
position. 

3. Sliding Mode Contouring Control 

3.1. Controller Design 

In this section, the design of the contouring controller with a 
nonlinear sliding surface for biaxial feed drive systems will be 
considered. The proposed controller achieves a quick 
response and a small overshoot, thereby providing smaller 
control input variance while maintaining the contouring 
performance based on sliding model control using a nonlinear 
sliding surface. We consider the following nonlinear sliding 
surface [10][11]: 
 

S=                (8) 
 

where  is the linear gain matrix of the sliding surface, 
which is chosen such that the dominant poles have small 
damping ratios to achieve a fast response.  is a 
positive definite matrix to adjust the final gain.  is the 
identity matrix.  is a  diagonal matrix with non-
positive nonlinear entries depending on the transformed errors 
and is used to change the gain of the system. The choice of  
is not unique, and we employ the following nonlinear function 
[12]: 
 

 

 

 
where ,  and  are positive tunning parameters used 
to adjust the maximum bound, minimum bound and variation 
rate of the nonlinear function magnitude , respectively. 

 represents the sign function of the error signal . 
From Eqs. (1) and (7), the tracking error dynamics of the feed 
drive system in the fixed coordinate frame   is expressed 
as: 
 

                   (10) 
 
The transformed error dynamics can be estimated by 
differentiating Eq. (6) twice with respect to time as follows: 
 

              (11) 
 
Based on the proposed nonlinear sliding surface (Eq. (8)), 
assuming that the reference velocity and acceleration are 
given, substituting Eq. (10) into (11), and considering the feed 
drive dynamics, we design the following controller: 
 

                       (12) 
 
 

 
 

Fig. 2 Experimental system 
 
where  is a diagonal gain matrix, sgn(S) consists of 
the signs of the sliding surface vector S and Q=diag{ } is a 
diagonal matrix with diagonal elements chosen from the 
maximum bound of the uncertainty as follows: 

 
                           (13) 

 
where  is an element of . 

3.2. Stability Analysis 

In order to insure that the controller forces the transformed 
errors onto the desired nonlinear sliding surface as the time 
goes infinity, we consider the following Lyapunov function 
candidate: 

 
 
The time derivative of the Lyapunov function is 
 

               (15) 
 

Substituting Eqs. (10) - (12) into (15) leads to  
 

             (16) 
 
Thus, with Eq. (13), we have 
 

                                 (17)] 
 

4. Experiment 

To verify the effectiveness of the proposed controller, the 
control law in Eq. (12) was implemented with C++ language 
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Fig. 3 Experimental results: (a) Linear sliding surface  

, (b) Linear sliding surface  
 (proposed), (c) Linear sliding surface  
  

 
on a personal computer with a sampling time of 5 ms. The 
control input signal has been applied to a biaxial feed drive 
system that is driven by two DC servo motors via a DA board 
as shown in Fig. 2. The motors are coupled to, and drive, two 
ball screws through high-reduction gears to provide required 
torque. In addition, a rotary encoder with 0.314 rad 
resolution (corresponding to 0.025 in the drive axis) is 
attached to each feed drive axis to measure the position of the 
biaxial feed drive system. A pulse counter board is used to 
count the encoder pulses. The nominal parameter values of 
the biaxial feed drive system in Eq. (7) are 

, ,  
and . A circular reference trajectory (radius 
5mm, frequency 0.1 Hz) is used in the experiment. 

First, we compared the performance of the proposed 
controller with a nonlinear sliding surface in Eq. (8) and the 
conventional sliding mode controller with a linear sliding 
surface (  in Eq. (8)). In this comparison, the controller 
gain  , the positive definite matrix  and the linear term of 

the sliding surface  are set to the same values in both 
controllers for fare comparison. We set the controller gain , 
positive definite matrix  and the linear term of the sliding 
surface  to diag{20, 50} , diag{1.5, 1.7}  and diag{30, 
50} , respectively, while the nonlinear tunning parameters 

 in Eq. (9) are set to 10 , 10 , 5  
and 3000 , respectively (some explanations will be 
given later on the selection of these parameters). 

Figure 3(a) shows the experimental results for a controller 
with a linear sliding surface where the control input of the 
feed drive axis, transformed error components and actual 
contour error are plotted. The same quantities for the 
proposed nonlinear sliding surface are shown in Fig. 3(b). It 
can be confirmed that the proposed sliding surface achieves 
better performance in terms of the contour error. A similar 
contour error profile to that shown in Fig. 3(b) can be 
obtained by increasing the elements of linear gain  in the 
controller with a linear sliding surface (i.e., the controller used 
in experiment shown in Fig. 3(a)). The results of this case are 
shown in Fig. 3(c) where  is adjusted to be diag{30, 
210}  (from the view point of machining, the normal error 
components is more important than the tangential one and this 
motivated us to increase only the normal component of F). 
Achieving a similar contouring performance with the linear 
sliding surface increased the control input variance as shown  
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Fig. 4 Control input variance of linear and nonlinear sliding 
surfaces 
 

 
Fig. 5 Diagonal elements of the matrix  
 
in Fig. 3(c). 

The control input variance for the controller used in Figs. 
3(b) and (c) is calculated as follows: 
 

 
 
where  denotes the control input value at the i th sampling 
instant of the j th axis, I is the total number of sampling 
instants (i=1,...,I), and  is the mean of all of the control 
input values of the j th axis. As shown in Fig. 4, the proposed 
approach provided the smaller control input variance by about 
32.8 % and 21.8 % for x and y-axis, respectively. 

Another advantage of the proposed approach is that it is 
easy to tune the nonlinear term because only the function  
needs to be tuned. The choice of tuning parameters  and 

 to be small (both are set to 10 ) is to ensure small 

initial magnitude of the function  and to prevent the 
overshoot. Because allowable normal error magnitude is very 
small compared to the tangential one, the tuning parameters  

 and  are selected to be 5  and 3000 , 
respectively. The above two points allow the nonlinear 
function to have a small initial magnitude and to decrease 
when the error values increase so that the total gain of the 
sliding surface is increased as shown in Fig. 5. 

5. Conclusions 

This paper presents a sliding mode contouring controller 
with a nonlinear sliding surface for biaxial feed drive systems 
based on a coordinate transformation. The advantage of the 
proposed approach is that the sliding surface gain varies 
according to the contour error so that the system 
simultaneously achieves low overshoot and a small settling 
time, resulting in a smaller error. To verify the effectiveness 
of the proposed control approach, we conducted experiment 
with circular reference trajectories. The results indicated that 
the proposed controller can significantly reduce the control 
input variance while maintaining the contouring performance 
by adjusting tuning parameters of the nonlinear function. 
Verification of consumed energy reduction and application to 
three and five-axis machines are left for future work. 
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