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ABSTRACT
In density-functional theory, the exchange–correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC
hole n̄xc(r, r′), representing the probability depletion of finding an electron at r′ due to an electron at r. Accurate knowledge of n̄xc(r, r′) has
been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials.
However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle
reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1)
density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete
basis set limit, it cannot capture the electron–electron cusp using finite basis sets. Focusing on Hooke’s atom as a two-electron model system
for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb
functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke’s atoms,
the error introduced by the description of the electron–electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the
basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark
against which the Perdew–Burke–Ernzerhof and local density approximation XC hole models are assessed.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0173370

I. INTRODUCTION

Due to its relatively low computational scaling combined with
high accuracy in the study of the electronic structure of many-
body systems, density-functional theory (DFT) has become the most
widely used electronic structure method with an increasing range of
applications in condensed-matter physics, quantum chemistry, and

materials science. In principle, DFT is an exact method with which
the ground-state energy and electron density can be computed, from
which many important physical and chemical properties can be
extracted.1 In practice, approximations must be introduced to DFT
to make it computationally useful; in the Kohn–Sham formulation of
DFT (KS-DFT),2 the exchange–correlation (XC) component of the
energy that carries the many-electron effects must be approximated.
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Therefore, it is the quality of the XC approximation that determines
the quality of a DFT calculation in predicting the total energy and
other ground-state properties of interest.

An exact expression for the XC energy can be obtained in terms
of the electron density n(r) and the coupling-constant (λ) averaged
XC hole density n̄xc(r, r′) via their Coulomb interaction3 as

Exc[n] =
1
2∬

dr dr′
n(r)n̄xc(r, r′)
∣r − r′∣

, (1)

where n̄xc(r, r′) is the probability depletion of finding an electron at
r′, given an electron located at r. n̄xc(r, r′) is entirely attributed to
quantum effects, which include the self-interaction correction, the
Pauli exclusion principle (arising from the exchange symmetry of
indistinguishable electrons), and the electron–electron correlation
resulting from the Coulombic repulsion.4 The first two effects give
rise to the exchange hole density nx(r, r′), which is completely
negative and independent of the coupling constant. The remaining
quantum effects produce the correlation hole, which is defined by
subtracting the exchange hole density from n̄xc(r, r′) as n̄c(r, r′)
= n̄xc(r, r′) − nx(r, r′), yielding the λ-averaged correlation
hole.

Equation (1) guarantees an accurate evaluation of the XC
energy if an accurate XC hole model is provided. Therefore, the qual-
ity of XC hole models underpins the XC energy approximation and
plays a fundamental role in understanding the quality and assessing
the performance of a diverse range of density-functional approxi-
mations (DFAs) when applied to different systems and properties.
However, practical DFT calculations only require approximations of
the XC energy, leading to a tendency to neglect the importance of XC
holes in favor of directly modeling the XC energy. This trend has led
to relatively few XC-hole studies appearing in the literature. Notably,
early successful DFAs such as the PW91 approximation of Perdew
and Wang5 were based on modeling the XC hole, and the construc-
tion of the strongly constrained and appropriately normed (SCAN)
density functional was also grounded in the understanding of XC
holes.6 Recently, there have been new DFA developments based on
XC holes.7

Although formally defined in Eq. (1), XC holes are challeng-
ing to evaluate accurately, contributing to the scarcity of XC hole
studies. There are two significant challenges associated with this:
(i) the XC hole has to be calculated for each coupling constant
λ to evaluate the coupling-constant integrated XC hole; (ii) high-
level electronic structure methods are required to obtain accurate
ground-state wave functions for each λ. These methods typically
have high-rank polynomial scaling with system size and become
computationally intractable for large systems. The Lieb optimization
approach8 can address challenge (i) by transforming the problem
of finding the ground-state electron density of a λ-interacting sys-
tem into maximizing the Lieb functional of the λ-dependent external
potential9 while keeping the electron density fixed. In combination
with the coupled-cluster singles and doubles method (CCSD), the
Lieb optimization method has been applied to two-electron sys-
tems, such as the helium isoelectronic series, with a focus on the
XC energy.10,11 The CCSD method is exact in the complete basis set
limit, equivalent to the full configuration interaction (FCI) approach
for two-electron systems.

However, the λ-averaged XC hole has not been studied using
the Lieb optimization with a CCSD reference wave function, even
for simple two-electron systems. Therefore, it is currently not known
how the basis set influences the quality of the calculated XC hole
and the associated electron–electron cusp condition12,13 of the cor-
relation hole14 when the coupling-constant averaged quantities are
considered. The electron–electron cusp condition describes the
behavior of a many-electron wave function when two spin anti-
parallel electrons come infinitesimally close to each other, arising
due to the singularity of the Coulomb repulsion at the coalescence
point. This dynamical correlation effect at zero separation intro-
duces non-smoothness into the many-body wave function, which
cannot be effectively represented by orbital product expansion wave
functions.15 Increasing the basis set size can help reduce the cusp
error, but this approach is limited by the unfavorable computational
scaling of high-level electronic structure methods.

In this study, we examine the electron–electron cusp condi-
tion and basis set effects on the XC hole through the calculation of
the Lieb functional at the CCSD level for a simple model system,
namely Hooke’s atom (Hookium). By introducing the harmonic-
oscillator potential as the external potential in the Hamiltonian of
a two-electron system, given in atomic units as

Ĥ = −
1
2
∇

2
1 +

1
2

kr2
1 −

1
2
∇

2
2 +

1
2

kr2
2 +

1
∣r1 − r2∣

, (2)

the resulting problem is one of the few examples of a two-electron
system for which a series of exact solutions exist—in this case, an
infinite set of solutions corresponding to different harmonic con-
finement constants, k.16,17 The Hookium atom is, therefore, a useful
reference for evaluating XC hole models since the exact XC holes can
be computed.

We commence in Sec. II by providing an overview of the the-
oretical framework for computing the λ-dependent XC hole, the
Lieb optimization method, the electron–electron cusp condition in
Coulombic systems, and the solvable Hookium model. Computa-
tional details are then discussed in Sec. III. In Sec. IV, we examine
the basis set effects and cusp condition effects on the XC hole
calculated at the CCSD level at λ = 1 (the physical system), for
which the exact wave function solution is known. We then com-
pare and benchmark the local density approximation (LDA) and
Perdew–Burke–Ernzerhof (PBE) XC hole models with the coupling-
constant averaged XC hole from Lieb optimizations at the CCSD
level. System- and angle-averaged XC holes are calculated to enable
direct comparison between the benchmark data and these simple
density-functional models. Finally, we conclude our work with a
brief summary in Sec. V.

II. THEORY AND METHODOLOGY
A. The exchange–correlation hole
and the coupling constant

In KS-DFT, the ground-state energy of a many-electron system
in an external potential vext(r) is obtained by mapping the inter-
acting system of electrons to an auxiliary non-interacting system of
electrons with the same electron density. The Schrödinger equation
for this auxiliary system can then be solved in a basis of one-electron
orbitals.2 The ground-state electronic energy is thus expressed as a
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functional of the electron density n(r), which can be resolved into
the sum of several contributions as

E[n] = Ts[n] + EH[n] + Exc[n] + ∫ dr vext(r)n(r), (3)

where Ts is the non-interacting kinetic energy, which is evaluated
exactly using the KS orbitals, and EH is the classical electrostatic
Hartree energy, which is evaluated exactly in terms of n(r). The
only term in Eq. (3) that must be approximated is the XC energy
Exc[n], which describes all of the many electron effects in the
system.

The KS non-interacting system may be linked to the phys-
ically interacting system by continuously varying the strength of
the electron–electron interaction between the non-interacting and
physically interacting limits by scaling the two-electron operator
V̂ee by a coupling constant λ between zero and one. The elec-
tronic state evolves through a family of solutions to the λ-interacting
Hamiltonian,

Ĥλ = T̂ + λV̂ee +∑
i

vλ(ri), (4)

where T̂ is the kinetic energy operator and vλ is a modified exter-
nal potential, thus establishing an adiabatic connection between the
non-interacting and physically interacting systems.18 The modified
external potential vλ is determined for each interaction strength such
that the density remains constant at the physical (λ = 1) density for
all λ. Clearly, vλ reduces to the local KS potential vs when λ = 0 and
is equal to the physical external potential vext when λ = 1.

Supposing Ψλ is the non-degenerate normalized ground-state
many-electron wave function of the λ-interacting system with
N electrons, the diagonal part of the second-order reduced density
matrix is expressed as13,19

nλ2(r, r′) ≡ N(N − 1) ∑
σ1 ,...,σN

∫ dr3 ⋅ ⋅ ⋅∫ drN

× ∣Ψλ(rσ1, r′σ2, r3σ3, . . . , rNσN)∣
2. (5)

This two-particle density may be used to evaluate the expectation
value of two-body operators,4 but it cannot be diagonalized by a uni-
tary transformation of one-electron basis functions.13 The XC hole
density at each coupling strength λ is defined as

nλxc(r, r′) =
nλ2(r, r′)

n(r)
− n(r′), (6)

where the second term removes the classical Hartree contribution
to the two-particle density n(r)n(r′), with the remaining nλxc(r, r′)
accounting for only the XC effects. The λ-averaged XC hole density
is given by coupling constant integration over this quantity,

n̄xc(r, r′) = ∫
1

0
dλ nλxc(r, r′), (7)

from which an exact expression for Exc can be obtained, shown in
Eq. (1).

At λ = 0, the XC hole is reduced to the exchange hole,

nx(r, r′) = nλ=0
xc (r, r′)

= −
∑σ∑

occ
i, j ψ

∗
iσ(r)ψjσ(r)ψ∗jσ(r′)ψiσ(r′)

n(r)
, (8)

where ψiσ(r) are the KS spin-orbitals. Therefore, the λ-averaged
correlation hole can be defined by

n̄xc(r, r′) = nx(r, r′) + n̄c(r, r′). (9)

Furthermore, since the Coulomb operator has spherical sym-
metry, the XC energy may be computed exactly from the spherically
averaged XC hole. As a result, the system- and spherically averaged
XC hole density ⟨n̄xc⟩(u) is a useful quantity that can be modeled
in order to construct XC energy functionals. This may be written in
terms of the distance vector u = r′ − r as

⟨n̄xc⟩(u) =
1
N ∫

dr n(r)∫
dΩu

4π
n̄xc(r, r + u), (10)

where Ωu is the solid angle around direction u, and integration is
carried out to average over this angle and the spatial coordinates
of the entire system. It is a remarkable result that the XC energy
may then be expressed precisely as a one-dimensional integral over
u = ∣r′ − r∣ for any system,

Exc[n] =
N
2 ∫

∞

0
du 4πu2 ⟨n̄xc⟩(u)

u
, (11)

=
N
2 ∫

∞

0
du εxc(u), (12)

where we identify εxc(u) = 4πu⟨n̄xc⟩(u). The exact system- and
spherically averaged exchange and correlation holes satisfy the
following sum rules, respectively,

∫

∞

0
du 4πu2

⟨nx⟩(u) = −1, (13)

∫

∞

0
du 4πu2

⟨n̄c⟩(u) = 0. (14)

B. The Lieb optimization
Given a Hamiltonian Ĥλ[vλ], the ground-state energy Eλ[vλ]

for an N-electron system is given by the Rayleigh–Ritz variation
principle as

Eλ[vλ] = inf
Ψλ∈W N

⟨Ψλ∣Ĥλ[vλ]∣Ψλ⟩, (15)

where WN is the set of all L2-normalized, antisymmetric N-electron
wave functions with a finite kinetic energy. The ground-state
energy in Eq. (15) is well-defined for all potentials vλ ∈ χ∗ with
χ∗ = L

3
2 + L∞, a vector space containing all Coulomb potentials. For

a variationally determined solution to Eq. (15), Eλ[vλ] is concave and
continuous in vλ.

Following the convex-conjugate formulation of DFT by Lieb,9
the universal density functional Fλ[n] may be defined as the
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Legendre–Fenchel transform of the ground-state energy of Eq. (15)
as

Fλ[n] = sup
vλ∈χ∗
[Eλ[vλ] − ∫ dr n(r)vλ(r)], (16)

which is convex in n by construction and thus may be defined
not only for the exact Eλ[vλ] but also used for any approximate
(even non-concave) model Eλ[vλ] (see Ref. 11 for further discus-
sion). The Legendre–Fenchel transformation of Fλ[n] as defined in
Eq. (16) yields an expression for the Hohenberg–Kohn variation
principle

E∗λ [vλ] = inf
n∈χ[Fλ[n] + ∫ dr n(r)vλ(r)], (17)

in which the biconjugate functional E∗λ [vλ] is the concave enve-
lope to Eλ[vλ] such that E∗λ [vλ] ≥ Eλ[vλ] and χ = L3

∩ L1 is the space
encompassing all N-representable densities and to which χ∗ is the
dual vector space. The conjugate functionals Eq. (16) and Eq. (17)
are related by Fenchel’s inequality as

Fλ[n] ≥ E∗λ [vλ] − ∫ dr n(r)vλ(r) ∀n ∈ χ, vλ ∈ χ
∗, (18)

which becomes an equality by maximization of the right-hand side
with respect to vλ which, for non-degenerate solutions, is the same
as satisfying the stationary condition

δE∗λ [vλ]
δvλ(r)

= n(r). (19)

By definition, E∗λ [vλ] is concave in vλ and hence has no more than
one stationary point; if a solution to Eq. (19) exists, it is, there-
fore, unique. This can also be expressed by rearranging Eq. (18) to
the form E∗λ [vλ] ≤ Fλ[n] + ∫dr n(r)vλ(r), which becomes an equal-
ity by minimization of the right-hand side with respect to n(r), thus
satisfying the stationary condition

δFλ[n]
δn(r)

= −vλ(r), (20)

where vλ is the optimizing potential. In the Lieb optimization
method, the universal density functional Fλ is maximized with
respect to the potential vλ(r) for a given electronic structure method
with energy functional Eλ and yielding density n(r). To construct
the density-fixed adiabatic connection, the optimizing potential
vλ(r) is that for which Eλ yields the physically interacting λ = 1 den-
sity for all values of λ ∈ [0, 1].10,11 In fact, the relation in Eq. (20)
is problematic since the exact functional has been shown to be
discontinuous and not differentiable.20 However, differentiability
can be restored by regularization of Fλ, which can be achieved
via Moreau–Yosida regularization21 or in practical calculations by
the closely related smoothing-norm procedure of Heaton-Burgess
et al.,22 the latter being employed in the present work.

The universal density functional Fλ may be written as a sum of
terms according to the Kohn–Sham decomposition as2

Fλ[n] = Ts[n] + λEH[n] + λEx[n] + Ec,λ[n], (21)

in which Ts is the non-interacting kinetic energy, EH is the clas-
sical Coulomb energy, Ex is the exchange energy, and Ec,λ is the

λ-interacting correlation energy. Substituting Eq. (21) into Eq. (20)
yields an expression for the optimizing potential in terms of its
individual contributions,

δFλ[n]
δn(r)

=
δTs[n]
δn(r)

+ λ
δEH[n]
δn(r)

+ λ
δEx[n]
δn(r)

+
δEc,λ[n]
δn(r)

,

−vλ(r) = −vs(r) + λvH(r) + λvx(r) + vc,λ(r).
(22)

Identifying that vλ=1 = vext, the external potential due to the electro-
static potential of the nuclei, and vλ=0 = vs, the Kohn–Sham potential
may be eliminated from Eq. (22) to yield the expression for the
optimizing potential at interaction strength λ as

vλ(r) = vext(r) + (1 − λ)vH(r) + (1 − λ)vx(r) + [vc,1(r) − vc,λ(r)].

(23)

In order to optimize Fλ with respect to the potential, it is
expanded in a Gaussian basis, as proposed by Wu and Yang,8,23

vλ,b(r) = vext(r) + (1 − λ)vH(r) + (1 − λ)vref(r) +∑
t

btgt(r),

(24)

in which vH is the Coulomb potential evaluated with an input λ = 1
density nin, vref is a reference exchange potential also evaluated on
this density to ensure that vλ has the correct asymptotic behavior,
and gt is a set of Gaussian functions with expansion coefficients bt .
The form of the reference potential employed in this work is that of
a localized Hartree–Fock potential,24 corrected at long-range by an
approximate Fukui potential.25 The details of the construction of the
reference potential are given in the Appendix.

With the parameterization of the potential in Eq. (24), the
Lieb functional can be defined as an optimization of the objective
function,

Gλ,n[b] = Eλ[vλ,b] − ∫ dr n(r)vλ,b(r), (25)

with respect to variations in the potential basis coefficients b; the
gradient of Eq. (25) with respect to the potential basis coefficients is
given by

∂Gλ,n[b]
∂bt

= ∫ dr [nλ,b(r) − nin(r)]gt(r), (26)

while the second derivative of the objective function with respect to
the potential basis coefficients is given by

∂2Gλ,n[b]
∂bt∂bu

=∬ dr dr′ gt(r)gu(r′)
δnλ,b(r)
δvλ,b(r′)

. (27)

It can be seen from Eq. (26) that the stationary condition of Eq. (19)
will be satisfied when the iterating density nλ,b becomes equal to the
input density nin. In this work, the objective function is optimized
by an approximate Newton approach implemented in the QUEST
program;26 this is a second-order optimization algorithm in which
the Hessian is approximated by the non-interacting Hessian, given
by Eq. (27) at λ = 0.27 In this process, the potential basis coefficients
are updated at each iteration using a backtracking line-search, and
the wave function is evaluated with the corresponding potential vλ,b,
yielding the energy Eλ and iterating density nλ,b from which the
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objective function Eq. (25), gradient Eq. (26), and approximate Hes-
sian are constructed. At the point of convergence, for which Eq. (26)
becomes zero, the optimizing potential may be used to obtain the
λ-interacting one- and two-particle reduced density matrices
required for the construction of the λ-interacting XC hole as
described in Sec. II A. With the above calculations completed for
each λ, a series of λ-dependent and then λ-averaged quantities such
as the XC holes and XC energies given in Eqs. (5)−(11) can be readily
obtained.

C. The electron–electron cusp condition
For a Coulombic system, the electron–electron cusp condition

describes the behavior of the electrons in exact eigenfunctions of
the Schrödinger equation, which exhibit a cusp at the points of
electron coalescence due to singularities in the Coulomb poten-
tial at such points.28 The exact electron–electron cusp condition
may be expressed using the spherically averaged XC hole, nλxc(r, u)
= ∫

dΩu
4π nλxc(r, r + u), as29

nλ′xc(r, 0) =
∂nλxc(r, u)

∂u
∣

u→0+
= λ[nλxc(r, 0) + n(r)]. (28)

The electron cusp condition may be written in terms of the system
and spherically averaged XC hole defined in Sec. II A as

⟨nλ′xc⟩(0) =
1
N ∫

drn(r)
∂nλxc(r, u)

∂u
∣

u→0+
, (29)

the substitution of Eq. (28) into which yields

⟨nλ′xc⟩(0) = λ[
1
N ∫

drn(r)nλxc(r, 0) +
1
N ∫

drn2
(r)]

= λ[⟨nλxc⟩(0) +
1
N ∫

drn2
(r)]. (30)

The electronic cusp condition may be written in terms of the system
and spherically averaged correlation hole by resolving the on-top XC
hole into exchange and correlation components, then inserting the
identity for the on-top exchange hole for a spin-unpolarized system,
nx(r, 0) = −n(r)/2, yielding

⟨nλ′xc⟩(0) = λ[
1
N ∫

drn(r)nλc(r, 0) +
1

2N ∫
drn2
(r)]

= λ[⟨nλc⟩(0) +
1

2N ∫
drn2
(r)] = ⟨nλ′c ⟩(0). (31)

The final identity in Eq. (31) follows from the Pauli principle, a
corollary of which is that the cusp condition only arises between
electrons with anti-parallel spin and is thus exclusively a correlation
effect.

D. Hookium atoms
A Hookium atom is a model system comprising two electrons

confined by a harmonic potential rather than a Coulomb potential,16

with the electronic Hamiltonian given in Eq. (2). Introducing the
center of mass coordinate R = (r1 + r2)/2 and the relative separation

vector u = r1 − r2, the Hookium atom Hamiltonian may be resolved
into a center of mass and relative separation term as

Ĥ = (−
1
4
∇

2
R + kR2

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥ(R)

+ (−∇
2
u +

1
4

ku2
+

1
u
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥ(u)

. (32)

The second term Ĥ(u) is of particular interest as it describes the
relative motion between the two interacting electrons bound by
the harmonic potential and is effectively a one-body problem with
Schrödinger equation Ĥ(u)φ(u) = εφ(u). Using a separation of
variables to write φ(u) in terms of the product of radial and angular
components

φ(u) =
g(u)

u
Ylm, g(u) = exp (−

√
ku2
/4)T(u), (33)

where Y lm is the spherical harmonic function describing the angular
wave function, a second-order differential equation for T(u) can be
obtained. By inserting the regular solution

T(u) = u
∞
∑
i=0

aiui, (34)

into the differential equation, a recurrence relation16 can be found
for the coefficients {ai, i ≥ 2},

ai+1 =
ai + [(i + 1/2)

√
k − ε]ai−1

(i + 1)(i + 2)
, (35)

where we only consider the ground state with the angular momen-
tum l = 0. A series of exact solutions can be determined by imposing
the condition aM = aM+1 = 0, leading to ai = 0 for all i ≥M. Conse-
quently, M represents the polynomial order of T(u) in the radial
wave function φ(u). For further details of the exact solutions and
derived quantities used as a benchmark in this work, the reader is
referred to Ref. 16.

For the ground state with l = 0, M is roughly proportional to
k−7.9, as observed by fitting the values of M against k.16 Since k is
the harmonic constant that determines the strength with which elec-
trons are confined, an increase in M implies less confinement and a
more radially diffuse electron density.

However, it is obvious that there does not exist an ana-
lytical wave function solution for the Hookium atom with the
electron–electron interaction scaled by an arbitrary λ ≠ 1. Therefore,
the coupling-constant-averaged correlation hole for the Hookium
atom has seldom been studied, and only the correlation hole at
λ = 1 has been comprehensively studied30 and used to benchmark
correlation hole models.31–33

For example, the exchange hole and the correlation hole of the
Hookium atom with k = 1/4 (corresponding to M = 2) for the λ = 1
case have been carefully studied in Ref. 30, which is also used to
benchmark the system- and angle-averaged XC hole models of dif-
ferent meta-GGAs.31 Using only the λ = 1 results, the validity of the
electronic cusp condition in the ground state of the Hookium atom
for arbitrary harmonic confinement k has been demonstrated,32 and
it has been demonstrated that the LDA hole model can precisely
capture the cusp condition of the Hookium atom.33
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In this work, we employ the exact solutions of the Hookium
atom at λ = 1 to benchmark those calculated from the CCSD wave
function. We then use the Lieb optimization with a CCSD wave
function to calculate λ-averaged XC holes for the Hookium atom,
which can serve as a benchmark for XC hole models.

III. COMPUTATIONAL DETAILS
In this work, all calculations are carried out using the QUEST

program26 with the spin-restricted CCSD wave function as the ref-
erence method. The convergence of self-consistent field calculations
was accelerated using the C1-DIIS method, with a convergence
threshold of 10−12 a.u. on the norm of the DIIS error vector.
For the CCSD calculations, the convergence threshold for both
the excitation amplitudes and de-excitation amplitudes required
for evaluation of the CCSD one- and two-particle densities was
10−10 a.u. for the norm of the difference of the amplitudes between
iterations.

Lieb optimizations were carried out at the CCSD level for a
range of interaction strengths λ ∈ [0, 1] using the approximate Net-
won method described in Sec. II B. In each case, the CCSD λ = 1
density was used as input to the Lieb functional in order to fix the
density along the adiabatic connection at its physical value. The
potential was regularized using the smoothing norm method22 with
a regularization parameter of 10−5 a.u. The convergence of the Lieb
optimization was based on the norm of the gradient with respect
to potential expansion coefficients, with a convergence threshold
of 10−8 a.u. used throughout. To improve convergence, a slightly
smaller basis set was used for the potential expansion than was used
for the orbital expansion. In this work, a series of Dunning basis sets
were employed, with the orbital basis sets Y-aug-cc-pVXZ (Y = d, t,
q, p, s; X = D, T, Q, 5, 6) and the corresponding potential basis sets
of (Y − 1)-aug-cc-pVXZ (Y − 1 = d, t, q, p; X =D, T, Q, 5, 6).34–36 In
each case, the basis sets were uncontracted spherical Gaussians with
exponents for the helium atom used throughout.

To evaluate the system- and spherically averaged XC holes, a
nested numerical quadrature was employed. The spherically aver-
aged XC hole nλxc was constructed by angular integration using
an order-41 Lebedev quadrature grid at each reference point,37,38

leading to

nλxc(r, u) =
1

4π ∫
dΩunλxc(r, r + u)

≈

NΩ

∑
i

wΩ
i nλxc(r, rΩi ), (36)

with quadrature weights wΩ
i and nodes rΩi associated with the

angular quadrature nodes (φi, θi) by

xΩi = u cosφi sin θi + x,

yΩi = u sinφi sin θi + y,

zΩi = u cos θi + z,

with r = (x, y, z) and rΩi = (xΩi , yΩi , zΩi ). The Lebedev integration
order was selected to recover the sum rules of Eqs. (13) and (14)
to better than 10−5.

The system-averaging was then carried-out by numerical inte-
gration of the reference point using a full quadrature grid, with the
angular component again given by the order-41 Lebedev quadra-
ture and radial component constructed using the scheme of Lindh,
Malmqvist, and Gagliardi39 with a relative error threshold of 10−10

a.u.,

⟨nλxc⟩(u) =
1
N ∫

dr n(r)nλxc(r, u)

≈

Nr

∑
i

NΩ

∑
j

wr
i wΩ

j n(rij)nλxc(rij , u), (37)

where wr
i is the weight of the radial quadrature and rij is the product

of radial quadrature nodes rr
i and angular quadrature nodes rΩj .

Exact analytical results for the Hookium atom at λ = 1, as
described in Sec. II D, were also calculated with Mathematica,40

allowing us to carefully assess the accuracy of the finite basis CCSD
calculations.

IV. RESULTS AND DISCUSSION
A. Accuracy of finite-basis CCSD Hookium solutions

As described in Sec. II B, n(r) given by CCSD is used as the
reference electron density of the physical interacting system for the
Lieb optimization in Eq. (25). Therefore, we first assess the qual-
ity of CCSD calculated total energies and densities with a range of
orbital basis set sizes for Hookium by comparing them with the exact
analytical results.

1. Total energies
Table I lists the percentage errors (PEs) for the finite-basis

CCSD total energies with respect to the exact results for differ-
ent solutions to the Hookium atom labeled by M, as described in
Sec. II D, computed with different basis sets. All PEs are positive,
as expected since CCSD is equivalent to FCI for these two-electron
systems, and so the energy approaches the complete basis set FCI
energy from above. In general, the accuracy of the energies can be
improved systematically by using basis sets with a higher cardinal
number X or a higher augmentation with diffuse functions Y . This
leads to a reduction in the PEs to be in the range of 0.2%–2.5%.
It is clear that, for the solutions with M < 5, PEs below 1% can be
achieved with triply augmented basis sets with cardinal numbers of
4 or above. Indeed, adding extra diffuse functions does not further
improve the accuracy of the results for these solutions. However,
for larger values of M, it is essential to include many more diffuse
functions to obtain reasonable accuracy. For 5 ≤M ≤ 8, pentuple
augmentation is required to achieve PEs below 2%, and for M > 8,
hextuple augmentation is required. The dependence on the cardi-
nal number X is less significant; once sufficient diffuse functions are
included for a given value of M, there appears to be little benefit in
using basis sets with X > 4.

2. Electron densities
In Fig. 1, we plot the CCSD electron densities of Hookium atom

solutions with 2 ≤M ≤ 5 radially from the atomic nucleus. For com-
parison, the densities of the corresponding exact solutions are also
shown. The convergence of CCSD electron densities at each Hook-
ium solution M is examined by gradually increasing the size of the
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TABLE I. Percentage errors of the CCSD total energy ECCSD
tot relative to the exact results for the Hookium atom solutions with M = 2–11. Orbital basis sets of Y -aug-cc-pVXZ

(X = D, T, Q, 5, 6; Y = d, t, q, p, s) are employed.

t-aug-cc-pVXZ basis set by changing the cardinal number X from
2 to 6.

Figure 1 shows that, as the order of the Hookium solution
M increases from 2 to 5, the corresponding electron density becomes
increasingly spatially diffuse. Interestingly, the convergence behav-
ior of the density with respect to the basis set appears to be depen-
dent on whether the value of M is even or odd. Specifically, for
the M = 2 and M = 4 solutions, the CCSD densities converge to the

corresponding exact densities relatively quickly with increasing basis
set size, and there is no discernible difference in the results obtained
with basis sets with X ≥ 3. However, convergence of the density with
respect to the basis set is considerably slower for the M = 3 and
M = 5 solutions. It should be noted that, for M = 5, the CCSD ener-
gies and densities in the largest basis set t-aug-cc-pV6Z both have a
greater error than those from the smallest basis set t-aug-cc-pVDZ
considered here, as can be seen in Table I. This indicates that for
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FIG. 1. Radial electron densities calculated from CCSD for Hookium solutions with M = 2, 3, 4, 5, where orbital basis sets with t-aug-cc-pVXZ (X = D, T, Q, 5, 6) are employed.

M = 5, the triply augmented basis sets are not adequately diffuse,
and errors could be reduced by further augmentation of the basis
set. Indeed, from the analysis of the electron density, it is clear that a
sufficiently diffuse basis set would be required to represent the elec-
tron density accurately as M increases, consistent with the analysis
of the CCSD total energies in Sec. IV A 1.

To quantify the deviations of the CCSD electron densities from
those of the exact solutions in Fig. 1, the absolute percentage error
(∣PE∣) is defined as

∣PE∣ =
1
2 ∫

dr∣nCCSD
(r) − nExact

(r)∣ × 100%, (38)

where a factor of 1/2 is included to give the absolute percentage
error per electron. The results are presented in Table II, showing

TABLE II. Absolute percentage errors of CCSD electron densities estimated by
Eq. (38) for the Hookium solutions with M = 2–5 in the t-aug-cc-pVXZ (X = D, T,
Q, 5, 6) basis sets.

Orbital basis
M = 2

(%)
M = 3

(%)
M = 4

(%)
M = 5

(%)

t-aug-cc-pVDZ 13.10 17.71 21.28 14.63
t-aug-cc-pVTZ 1.59 12.57 3.51 34.73
t-aug-cc-pVQZ 3.79 8.56 3.31 31.55
t-aug-cc-pV5Z 4.27 5.99 3.97 25.76
t-aug-cc-pV6Z 3.10 2.76 3.74 20.67

that for basis sets with X > 2, the PEs for M = 2 and M = 4 are con-
sistently lower than 4%. With the t-aug-cc-pV6Z basis set, CCSD
calculations yield less than 4% PEs for M = 3. However, for M = 5,
the PEs are greater than 20% for all t-aug-cc-pVXZ basis sets,
with the exception of the t-aug-cc-pVDZ basis set. Therefore, we
only consider Hookium solutions with M = 2, 3, 4 in the subsequent
XC hole calculations using CCSD+Lieb.

B. Accuracy of finite-basis CCSD XC holes at λ = 1
We now employ the Lieb optimization at the CCSD level to

compute the exchange holes at λ = 0 along with correlation holes
and XC holes at λ = 1, for Hookium solutions with M = 2, 3, 4.
The main focus of this analysis is to determine the effect of the
electron–electron cusp and the limitations of finite Gaussian basis
sets in its representation on the correlation hole. Moreover, we also
consider the effect of the basis set size on the exchange energy
Ex and correlation energy Eλ=1

c for the Hookium atom solutions with
2 ≤M ≤ 11.

When comparing the CCSD λ = 1 XC holes with those of the
exact solutions, the errors are dominated by the incompleteness of
the finite basis set in which the orbitals are expanded. However,
when comparing the CCSD λ = 0 exchange and λ = 1 correlation
holes with those of the exact solutions, an additional source of
error is introduced; the incompleteness of the basis set in which
the potential is expanded, shown in Eq. (24), and the associated
numerical errors in the convergence of the Lieb optimization
at λ = 0.
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FIG. 2. System- and spherically averaged exchange holes ⟨nx⟩(u) calculated with the Lieb functional at the CCSD level for the Hookium solutions with M = 2, 3, 4 (upper
panels) and the corresponding deviations with respect to exact results (lower panels). The orbital basis sets t-aug-cc-pVXZ with X = D, T, Q, 5, 6 are employed for each M,
with corresponding potential basis sets as described in Sec. III.

1. The exchange hole
For closed-shell two-electron systems, the exchange energy is

related to the Hartree energy as Ex[n] = − 1
2 EH[n], and this dom-

inates the XC energy. In addition, the exchange hole is related
to the electron density for the closed-shell two-electron system as
nx(r, r′) = −n(r′). As a result, the convergence of the exchange hole
with respect to the basis set size is the same as that observed for
the electron density. This can be seen in the upper panels of Fig. 2,
Fig. 1, and Table II. Furthermore, different convergence patterns are
observed in Fig. 2 for solutions of even and odd values of M. Plots of
the deviation of the finite-basis exchange holes from the exact solu-
tions in Fig. 2 indicate that basis-set convergence is generally reached
with the t-aug-cc-pV6Z basis set for solutions of M = 2, 3, 4.

Table III presents the PEs of exchange energy Ex obtained using
Lieb optimization at the CCSD level for solutions to the Hook-
ium atom of different order M with increasing basis set size. An
initial observation that can be made is that different error charac-
teristics are again exhibited for solutions with odd and even values
of M, respectively. Specifically, for M = 2, 4, the error is relatively
small for all basis-sets with X > 2, while for solutions with M = 3
and M = 5, the PEs are generally larger in magnitude by compar-
ison. Secondly, for a solution with any given M, once the number
of diffuse basis functions is sufficient, increasing the cardinal num-
ber of the basis set will not increase the accuracy of the energy.
For solutions with M = 2, 3, 4, and 5, the accuracy does not signifi-
cantly improve beyond Y = d, t, q, and p, respectively. For M ≥ 6, the
improvements in accuracy with increasing cardinal numbers cease at
Y = p.

2. The correlation hole and the description
of the cusp

We now consider the system- and spherically averaged correla-
tion holes for Hookium atoms with M = 2, 3, 4 in Fig. 3 and compare

them with those of the corresponding exact solutions. Figure 3 illus-
trates that, as the order of the Hookium solution M increases from
2 to 4, the exact correlation holes become increasingly shallow. This
trend is consistent with the behavior observed in the electron densi-
ties plotted in Fig. 1 and the exchange holes in Fig. 2. In addition,
the cusp at u = 0 becomes shallower as the order of the solution
M increases, indicating that the cusp effect is less significant for more
diffuse electron densities.

Figure 3 displays the effect of basis set size on the corre-
lation holes obtained via Lieb optimization at the CCSD level.
With the exception of the t-aug-cc-pV6Z basis set for the most
diffuse solution with M = 4, enlarging the basis set results in
an overall improved representation of the correlation holes with
respect to those of the analytical solutions. In the lower panels
of Fig. 3, the errors in the system- and spherically averaged cor-
relation holes are plotted radially from the atomic nuclei. Com-
pared with higher-order solutions of larger M, the maximum error
for M = 2 arises at u = 0, indicating that the cusp condition is
more significant the more localized the electrons are, consistent
with Eq. (31). For the Hookium solution with M = 4, the error is
more uniformly distributed radially than for solutions with M = 2
and M = 3.

To quantitatively estimate the effect of the electron–electron
cusp, we define a cusp-effect driven error δEPE

c in the correlation
energy as

δEPE
c =

∫
uc

0 du 4πu[⟨nCCSD
c ⟩(u) − ⟨nExact

c ⟩(u)]
∣∫
∞

0 du 4πu⟨nExact
c ⟩(u)∣

× 100%, (39)

where a characteristic distance uc defining the electron–electron
cusp region is determined by the solution to
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TABLE III. Percentage errors of the exchange energy Ex calculated by Lieb optimization at the CCSD level for the Hookium solutions with M = 2–11. Orbital basis sets of
Y -aug-cc-pVXZ (X = D, T, Q, 5, 6; Y = d, t, q, p, s) and potential basis sets of (Y − 1)-aug-cc-pVXZ (X = D, T, Q, 5, 6) are employed, respectively.

d
du
[⟨nCCSD

c ⟩(u) − ⟨nExact
c ⟩(u)]∣

uc

= 0. (40)

Table IV presents the characteristic distance uc and cusp-effect
driven errors δEPE

c computed for Hookium solutions of M = 2, 3, 4
with increasing basis set sizes. The trends of characteristic distances

and PEs with respect to M are in agreement with the observations in
Fig. 3; solutions with higher M values exhibit smaller errors resulting
from the cusp effect. This is also consistent with the cusp condi-
tion for the correlation hole expressed in Eq. (31). Since solutions
of increasing M have an increasingly diffuse electron density, as
shown in Fig. 1, the integral ∫ drn2

(r)/(2N) decreases, and ⟨nc⟩(0)
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FIG. 3. System- and spherically averaged correlation hole densities ⟨nλ=1
c ⟩(u) calculated by Lieb optimization at the CCSD level (upper panels) for Hookium solutions with

M = 2, 3, 4 and corresponding errors with respect to exact results (lower panels). The colored ● indicate the characteristic distance uc, defined in Eq. (40), associated with
each basis set.

becomes smaller.41 This, in turn, leads to a reduction in ⟨n′c⟩(0),
resulting in a flatter ⟨nc⟩(u) approaching u = 0 for solutions of larger
M, as demonstrated in Fig. 3. It follows, therefore, that the cusp-
driven error becomes much less significant when M is large or the
electron density is diffuse.

Table IV also shows that, as the cardinal number X of the basis
set is increased from 3 to 6, the trends in uc and δEPE

c differ for each
solution M. In the case of the M = 2 solution, it can be seen in Fig. 3
that the decrease in δEPE

c with increasing X follows directly from the
accompanying decrease in uc. In contrast, for the M = 3 solution,
the magnitude of δEPE

c decreases monotonically with increasing X;
however, there is no similar trend in the value of uc, which remains
constant for 3 ≤ X ≤ 5 and increases for X = 6; instead, it can be seen

from Fig. 3 that the decrease in the magnitude of δEPE
c is due to the

value of 4πuc[⟨nCCSD
c ⟩(uc) − ⟨nExact

c ⟩(uc)] decreasing as X increases,
thus reducing the absolute value of the integral. For the solution with
M = 4, the value of uc decreases monotonically with increasing X,
while the magnitude of δEPE

c decreases for 3 ≤ X ≤ 5 before exhibit-
ing a small increase for X = 6. Fig. 3 shows that the error in the
correlation hole for this solution is much less localized around u = 0
than for those with M = 2 and 3; thus, the integral from u = 0→ uc
represents a smaller area of the total integral, indicating that the
cusp-driven errors δEPE

c are less significant due to the diffuse elec-
tron density. The largest basis set considered in this comparison,
t-aug-cc-pV6Z, yields uc values of 0.65, 1.20, and 1.30 with corre-
sponding cusp-driven errors δEPE

c of −0.07%, −0.24%, and −0.14%

TABLE IV. The trends of the characteristic distance uc in a.u. and cusp-effect driven errors δEPE
c defined by Eqs. (40) and

(39), respectively, in CCSD calculations for Hookium solutions with M = 2, 3, 4, with increasing basis set size.

uc δEPE
c

M 2 3 4 2 (%) 3 (%) 4 (%)

t-aug-cc-pVDZ 2.60 1.58 0.50 12.49 0.47 −0.13
t-aug-cc-pVTZ 3.25 0.98 2.50 9.39 −1.05 0.58
t-aug-cc-pVQZ 1.15 0.98 2.00 3.67 −0.73 0.16
t-aug-cc-pV5Z 0.85 0.98 1.40 0.87 −0.48 −0.09
t-aug-cc-pV6Z 0.65 1.20 1.30 −0.07 −0.24 −0.14
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FIG. 4. CCSD evaulated ελ=1
c (u) = 4πu⟨nλ=1

c ⟩(u) (upper panels) and their differences with respect to exact results for Hookium solutions of M = 2, 3, 4 (lower panels).
Orbital basis sets of t-aug-cc-pVXZ (X = D, T, Q, 5, 6) are employed. The colored ● indicate the characteristic distance uc, defined in Eq. (40), associated with each basis
set.

for the M = 2, 3, and 4 solutions, respectively. The remarkably small
values of δEPE

c exhibited by the t-aug-cc-pV6Z basis set make it an
ideal reference for future investigations.

Figure 4 plots the spherically averaged correlation energy den-
sity with ελ=1

c (u) = 4πu⟨nλ=1
c ⟩(u). It shows that while the cusp-effect

driven error that arises at low u is significantly attenuated at larger
values of u in ⟨nc⟩(u), the error in ελ=1

c (u) remains significant at
larger values of u. Overall, calculations with the basis set with X = 6
yield a markedly improved description of ελ=1

c (u) compared to the
results obtained with smaller basis sizes for the less diffuse M = 2, 3
Hookium solutions. These observations validate the application of
Lieb optimization at the CCSD level with the appropriate Gaussian
basis sets to calculate XC holes accurately.

Table V collects the PEs of the correlation energy Eλ=1
c calcu-

lated via Lieb optimization at the CCSD level by subtracting the Lieb
λ = 0 energy from the CCSD energy. Similar trends are observed
for the correlation energy with respect to Hookium atom solution
M and basis set size, compared with Ex shown in Table III. While
the greatest accuracy is obtained for Hookium atom solutions with
M ≤ 4, the PEs for the correlation energy are usually 3–7 times
larger than those for Ex in the same calculation. For M = 2, 3, 4, the
Y-aug-cc-pV6Z basis sets (Y = t, q, p, s) consistently yield
accurate correlation energies with PEs of 1%–2%. However, as
M increases beyond 4, the improvement in accuracy achieved by
increasing the basis set size (either via larger cardinal numbers
X or increased augmentation Y) is not as significant as was observed
for Ex.

3. The exchange and correlation hole

Figure 5 shows the XC holes nλ=1
xc (u) for Hookium atom solu-

tions with M = 2, 3, 4. The convergence of the XC holes with
respect to the basis set is smoothly achieved in all three cases.
In the case of M = 2, 3, the correlation components of the XC
holes have significant errors due to the electron–electron cusp, and
increasing the cardinal number of the basis set leads to improved
accuracy. It is worth noting that for the M = 2 solution, the cor-
relation hole around u = 0 from Lieb optimization at the CCSD
level is too shallow, which is compensated by the X hole being
too deep, with the resulting error cancellation yielding better accu-
racy for the XC hole than for either component individually.
Overall, Lieb optimization at the CCSD level in the largest basis
set, t-aug-cc-pV6Z, provides a satisfactory description of the XC
hole for both the M = 2 and M = 3 Hookium atom solutions, for
which the electron densities are relatively localized and not too
diffuse.

C. Coupling-constant averaged XC holes
and hole models

To assess the quality of the λ-averaged DFT XC holes,
we first analyze how closely they align with the Lieb optimiza-
tion results at the CCSD level calculated in the same basis set.
This is important because CCSD-based Lieb optimizations have a
much higher computational cost than DFT calculations and hence
have a much greater limitation in terms of system and basis set
size.
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TABLE V. Absolute percentage errors of the correlation energy Eλ=1
c using Lieb optimization at the CCSD level for Hookium solutions with M = 2–11. Orbital basis sets of

Y -aug-cc-pVXZ (X = D, T, Q, 5, 6; Y = d, t, q, p, s) and potential basis sets of (Y − 1)-aug-cc-pVXZ (X = D, T, Q, 5, 6) are employed.

In Fig. 6, we have plotted the accuracy of LDA hole densities
evaluated by ⟨nLDA

x ⟩(u) − ⟨nCCSD
x ⟩(u), ⟨n̄LDA

c ⟩(u) − ⟨n̄CCSD
c ⟩(u), and

⟨n̄LDA
xc ⟩(u) − ⟨n̄CCSD

xc ⟩(u). The cardinal number X of the basis set was
increased continuously from 2 to 6 to examine the convergence of
this error with respect to the basis set size. It is important to note

that the errors corresponding to the X = 2 basis set show a different
behavior from those of the larger basis sets, indicating that this small
basis is typically insufficient to accurately evaluate the λ-averaged
XC holes. This is consistent with the previous discussion concerning
the λ = 1 case.
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FIG. 5. The system- and spherically averaged XC hole density ⟨nλ=1
xc ⟩(u) calculated at the CCSD level (upper panels) for Hookium solutions with M = 2, 3, 4 in the

t-aug-cc-pVXZ (X = D, T, Q, 5, 6) orbital basis sets, and the deviations with respect to those of the analytical solutions (lower panels).

Figure 6 shows that the largest change in ⟨nLDA
x ⟩(u)

− ⟨nCCSD
x ⟩(u)with respect to the basis set size occurs at the value of u

with the largest error, particularly in the case of the M = 3 Hookium
atom solution. Nevertheless, overall, the LDA hole model calcula-
tions of the exchange holes exhibit rapid convergence in their errors
with respect to basis set size, suggesting that the accuracy of the DFT
exchange holes is relatively insensitive to basis set size.

However, for the λ-averaged correlation holes, the situation is
somewhat different. Changes in the error of the LDA correlation
holes with respect to increasing basis set size are most visible around
the first peak in the radial plots of the correlation holes, extending
to subsequent peaks further from the nucleus for the M = 3, 4 Hook-
ium atom solutions. As the basis set grows, the position of the first
peak tends to shift toward u = 0. This could be attributed to the fact
that the cusp-driven deviations become less significant with larger
basis sets with CCSD-based calculations, whereas LDA satisfies the
cusp condition and converges much more rapidly with basis set size.

Although the exchange hole is the dominant component of
the XC hole, the errors of the LDA exchange holes and correla-
tion holes are comparable in size. In Fig. 6, the errors at short-range
for the LDA XC holes are dominated by the correlation hole con-
tribution, while errors at mid-range mainly arise from the LDA
exchange hole or both. Overall, accurate λ-averaged XC hole (or cor-
relation hole) calculations require the use of basis-sets with X ≥ 4. It
is worth mentioning that similar trends are observed for the PBE
hole model, the results of which are presented in the supplementary
material.

The XC holes obtained with different basis sets are used to cal-
culate the corresponding LDA XC energies, and Table VI presents

the PEs of the LDA XC energies relative to Lieb optimization values
at the CCSD level for basis sets of increasing size. Table VI shows
that the PE variations of the LDA exchange energy are relatively
small, within 0.2%, while the convergence behavior of correlation
energy for the Hookium solutions with M = 3, 4 exhibits no clear
trend. However, for the M = 2 solution, in which the cusp-effect
driven error is the most significant in the CCSD calculations, the
PE changes of the LDA correlation energy with increasing basis set
size are slightly larger. The changes in the PE of Exc with increas-
ing basis-set size are similar to that of the exchange energy, with
only a change of 0.3% for the M = 2 solution from the smallest to
the largest basis set; this is because Ex represents the vast majority
of Exc.

In Fig. 7, the exchange holes, λ-averaged correlation holes,
and XC holes from the LDA hole model, PBE hole model, and
Lieb optimizations at the CCSD level are presented with the
t-aug-cc-pV6Z basis set. Figure 7 shows that both the LDA and
PBE hole models, in particular the LDA one, tend to localize the
exchange hole, regardless of the order of the solution M. For the
correlation holes, although both LDA and PBE hole models cap-
ture the cusp condition, they exhibit almost linear behavior before
reaching their maximum value, resulting in an overly shallow cor-
relation hole density in the small u region but an overly deep
correlation hole at the intermediate u region. Figure 7 also shows
that, for both the exchange and correlation holes, the PBE hole
model is superior to the corresponding LDA hole model. How-
ever, the LDA and PBE model XC holes appear much more sim-
ilar due to error cancellation between their respective X and C
holes.
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FIG. 6. Deviations of LDA hole densities ⟨nLDA
x ⟩(u), ⟨n̄

LDA
c ⟩(u) and ⟨n̄LDA

xc ⟩(u) from the corresponding Lieb optimization results at the CCSD level employing the same basis
set for Hookium solutions with M = 2, 3, 4.

TABLE VI. Percentage errors of energy components ELDA
x , ELDA

c , and ELDA
xc calculated from the LDA hole model relative to

the CCSD+Lieb results under the same orbital basis set for Hookium solutions of M = 2, 3, 4.

ELDA
x ELDA

c ELDA
xc

M 2 (%) 3 (%) 4 (%) 2 (%) 3 (%) 4 (%) 2 (%) 3 (%) 4 (%)

t-aug-cc-pVDZ 14.4 14.6 14.9 −155.4 −63.1 −107.9 4.2 3.9 −1.8
t-aug-cc-pVTZ 14.5 14.2 14.9 −146.0 −83.8 −79.2 4.3 2.2 −0.1
t-aug-cc-pVQZ 14.6 14.3 14.9 −138.7 −88.6 −78.6 4.5 1.8 −0.1
t-aug-cc-pV5Z 14.6 14.3 14.8 −132.1 −92.2 −79.9 4.7 1.6 −0.2
t-aug-cc-pV6Z 14.5 14.4 14.7 −126.5 −92.3 −76.8 4.8 1.5 0.0
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FIG. 7. System- and spherical-averaged ⟨nx⟩(u), and λ-averaged ⟨n̄c⟩(u), ⟨n̄xc⟩(u) calculated by LDA and PBE hole models as compared with the Lieb optimization results
at the CCSD level for Hookium solutions with M = 2, 3, 4 in the t-aug-cc-pV6Z orbital basis set and d-aug-cc-pV6Z potential basis set.

V. CONCLUSION
In this study, we have employed the Lieb optimization

approach with CCSD used as the reference wave function method
to obtain accurate representations of the XC hole of the Hookium
atom—a model system for which exact solutions can be obtained.
Our investigation focuses on the difficulty in representing the
electron–electron cusp condition within a finite Gaussian basis set,
the manifestation of this in the correlation hole, and the effect on
the cusp-related error of increasing the basis set size. We have found
that the error resulting from the cusp effect can be effectively and
sufficiently reduced by using a larger basis set and that the cusp
condition in the correlation hole becomes less significant for larger
M Hookium atom solutions with diffuse electron densities. For
smaller M Hookium solutions with electron densities that are more
localized, the coupling-constant-averaged XC holes were calculated
using the Lieb optimization with a CCSD reference wave function
and used as a reference to benchmark DFT XC hole models. We
confirmed the presence of significant error cancellation between the
exchange hole and correlation hole for both PBE and LDA hole

models, and this results in their XC holes having greater accuracy
than either the exchange or correlation holes alone.

In this work, we focused on a limited number of cases for which
exact solutions are available as a benchmark. These solutions cor-
respond to relatively low confinement as M increases. However,
solutions can be obtained using numerical grid based procedures
for general confinements with very high accuracy (see, for exam-
ple, Refs. 42 and 43). In the future, benchmarks could be generated
using a numerical approach for stronger confinement, allowing a
study of the cusp-driven errors in more compact densities closer to
those in real atoms and molecules. Standard Gaussian basis sets were
employed throughout this study, leading to some limitations in the
accuracy to which benchmark quantities could be reproduced. In the
future, basis-set optimization could be carried out to further refine
the agreement with the benchmark solutions.

A significant advantage of the present implementation is its
flexibility, which opens up several possibilities for further work.
The approach presented can be readily applied to cases with N > 2,
for which benchmark data are available.44 The range of interaction
strengths, λ, to be considered could also be extended and compared
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with the strong interaction limit. With very minor modifications,
interactions other than the Coulomb potential could be considered
(see, for example, recent work on erfonium).45

In general, the apparatus presented in this work allows for
the Lieb functional, adiabatic connection, and exchange–correlation
holes to be studied for model systems where (near) exact solu-
tions can be readily obtained for the physical system (λ = 1).
Furthermore, these solutions can be smoothly connected to the
corresponding Kohn–Sham auxiliary system (λ = 0). Given that
these benchmark model systems play a central role in the devel-
opment and testing of new density functional approximations, we
expect that the tools presented in this work will be useful in this
context.

SUPPLEMENTARY MATERIAL

Comparisons between the PBE XC hole model and the
CCSD coupling-constant averaged XC holes are presented in the
supplementary material. See Sec. IV C for discussion of these
quantities.
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APPENDIX: REFERENCE POTENTIAL USED
IN THE LIEB OPTIMIZATION

In this work, the reference potential employed in the Lieb opti-
mization is a modified form of the localized Hartree–Fock poten-
tial,24 in which the Slater non-local exchange potential is corrected at
long-range by an approximate Fukui potential25 to avoid the numer-
ical instabilities associated with calculating the Slater potential at
low densities. In terms of spin-σ Kohn–Sham orbitals ψiσ , the Slater
exchange potential vσSx and approximate Fukui potential vσf are given,
respectively, by

vσSx(r) = −
1

nσ(r)

occ

∑
ij
ψ∗iσ(r)ψjσ(r)∫ dr′

ψ∗iσ(r′)ψjσ(r′)
∣r − r′∣

, (A1)

vσf (r) = −∫ dr′
∣ψHOMOσ(r′)∣2

∣r − r′∣
. (A2)

Due to the division by density in Eq. (A1), the Slater potential
becomes numerically unstable to calculate in asymptotic regions
where the density is very small; however, the Fukui potential can
be evaluated in these regions without numerical instability. In
this work, the reference exchange potential is constructed from a
density-dependent admixture of Slater and Fukui potentials as

vσref,x(r) = κσ(r)v
σ
Sx(r) + (1 − κσ(r))v

σ
f (r),

κσ(r) =
nσ(r)

η + nσ(r)
,

(A3)

where the parameter η is selected to determine the density at which
the reference potential is an equal mixture of Slater and Fukui
potentials—here, a value of η = 2 × 10−6 a.u. is used. The potential
in Eq. (A3) is used in place of the Slater potential in the calcula-
tion of the localized Hartree–Fock potential, which applies a further
correction to better reproduce the exact exchange potential. The
resulting potential is then used as the reference potential in the Lieb
optimization.
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