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ABSTRACT: Symmetry provides a powerful machinery to
classify, interpret, and understand quantum-mechanical theories
and results. However, most contemporary quantum chemistry
packages lack the ability to handle degeneracy and symmetry
breaking effects, especially in non-Abelian groups, and they are not
able to characterize symmetry in the presence of external magnetic
or electric fields. In this article, a program written in Rust entitled
QSYM2 that makes use of group and representation theories to
provide symmetry analysis for a wide range of quantum-chemical
calculations is introduced. With its ability to generate character
tables symbolically on-the-fly and by making use of a generic
symmetry-orbit-based representation analysis method formulated
in this work, QSYM2 is able to address all of these shortcomings. To
illustrate these capabilities of QSYM2, four sets of case studies are examined in detail in this article: (i) high-symmetry C84H64, C60,
and B9

− to demonstrate the analysis of degenerate molecular orbitals (MOs); (ii) octahedral Fe(CN)63− to demonstrate the analysis
of symmetry-broken determinants and MOs; (iii) linear hydrogen fluoride in a magnetic field to demonstrate the analysis of
magnetic symmetry; and (iv) equilateral H3

+ to demonstrate the analysis of density symmetries.

1. INTRODUCTION
Symmetry provides a systematic framework to categorize and
classify various mathematical quantities that are of interest to
quantum chemists, such as electronic wave functions and
densities, via the lenses of group and representation theories.
The ability to examine these quantities based on their symmetry
enhances one’s arsenal of analysis tools that facilitate the
assignment of such quantities calculated from approximate
numerical methods to true eigenfunctions of the electronic
Hamiltonian of the system. In such studies, having a robust
method to unambiguously identify and label the symmetries of
the quantities being investigated ensures that their properties
can be correctly tracked and assigned to known or expected
ground and excited electronic states of the system. This is
especially true when the underlying equations that govern such
quantities yield multiple solutions with differing degrees of
physical relevance, thus making the task of understanding them
much more challenging. The simplest and most familiar
examples of such equations are the nonlinear self-consistent-
field (SCF) Hartree−Fock (HF) and Kohn−Sham (KS)
density-functional theory (DFT) equations.1−6

In both SCF HF and KS theories, spin−orbitals are one-
electron wave functions that form the cornerstones upon which
relevant quantities of interest, e.g., single-determinantal wave
functions in HF7 and electron densities in KS,8 are constructed.
The spin−orbitals themselves have long been deemed to be of
great importance, for they provide chemists with a useful means

to interpret the underlying multielectron quantities which are
often too complicated to examine directly. In fact, in HF theory,
the spin−orbitals that result from the variational optimization of
a single-determinantal ansatz form the starting point for many
families of post-HF correlated methods such as configuration
interaction (CI),9 coupled cluster (CC),10 and complete active
space (CAS).11,12 On the other hand, in KS theory, there have
long been discussions that the KS spin−orbitals are just as useful
as their HF counterparts in chemical theories based on
molecular-orbital (MO) models [see refs 13 and 14 and also
contributions (2.2.4)−(2.2.7) in ref 15]. In either case, it is
imperative that the shape and symmetry properties of spin−
orbitals be identified so that they can be used effectively in the
qualitative investigations of chemical phenomena14 and the
quantitative calculations of physical properties such as
correlation energies (via post-HF correlated treatments),
ionization potentials,16 and vertical excitation energies.17

However, it is not only the symmetry of spin−orbitals that is
important, since spin−orbitals are only one-electron functions
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and hence do not fully represent electronic states in any
multielectron system. In fact, in wave function theories, one
often needs to obtain a good understanding of symmetry
properties of multielectron wave functions before one can
confidently attribute them to actual electronic states of the
system, especially when one is interested in more than just the
ground state, such as in the computation of electronic
spectra.18,19 A few studies in which symmetry is used to assist
the interpretation of ground- and excited-state correlated wave
functions can be found in refs 20−22. In addition, the multiple,
generally nonorthogonal, SCF solutions that arise from the HF
equations may interact with each other in a CI expansion, if their
symmetries are compatible, to give improved multideterminan-
tal wave functions describing certain electronic states with
definitive symmetries. Some examples of this include the
examinations of low-lying HF solutions in the NO2 radical,23

in various classes of hydrocarbons,24 in octahedral transition-
metal complexes,25 and in avoided crossings in LiF.26

Furthermore, a thorough insight into the symmetry properties
of wave functions and densities proves necessary to ensure
formal correctness in the fundamental development of DFT and
the interpretation of DFT calculation results. This is particularly
important in degenerate systems where care must be taken to
handle any symmetry breaking in the densities correctly to avoid
the well-known symmetry dilemma that often arises in the KS
formalism where the KS effective potential has a different
symmetry from that of the physical external potential, as
discussed in great detail by many authors including Görling,27,28

Savin,29 and Chowdhury and Perdew.30

In addition, since chemistry is hardly ever static, it is often of
great interest to follow electronic states as the symmetry of the
system is varied. Such a variation can be brought about by
various factors such as distortions under vibronic coupling (i.e.,
Jahn−Teller distortions and related phenomena31), mere
applications of external magnetic or electric fields,32−34 and
structural distortions induced by external fields.35−37 As the
symmetry of the system changes, degeneracies might be lifted
and broken symmetry (i.e., when a function and its symmetry
partners span multiple irreducible representations of the full
symmetry group of the system) might be restored.25 A
knowledge of wave function and density symmetry allows one
to correlate electronic states from low-symmetry configurations
to high-symmetry configurations, thus gaining additional insight
into their behaviors and properties.

Unfortunately, to the best of our knowledge, despite the
importance of symmetry in quantum-chemical theory and
computation, there does not yet exist any implementation for a
general analysis of symmetry properties of electronic wave
functions, densities, and potentials. In fact, many existing
general-purpose quantum chemistry packages such as Q-
CHEM,38 ORCA,39 PYSCF,40 DALTON,41 [OPEN]MOLCAS,42

PSI4,43 CFOUR,44 and TURBOMOLE45 come with features
to carry out symmetry analysis to some extent, but most (with
Q-CHEM and TURBOMOLE being exceptions) opt to work in

h2 or one of its subgroups, all of which are Abelian groups
whose irreducible representations are real and one-dimensional,
and hence are unable to take into account any spatial degeneracy
in wave functions properly. Moreover, none of these packages is
able to cope with symmetry breaking, nor are they programmed
to examine symmetry properties of quantities other than wave
functions, and as far as we are aware, no existing software
provides options to analyze symmetry in the presence of external
fields.

In this article, a framework for a general symmetry analysis is
introduced. This framework is implemented in a Rust46,47

program named QSYM2, which stands for Quantum Symbolic
Symmetry, and which seeks to address some of the needs for
symmetry in electronic-structure theory and computation that
are currently not fulfilled by existing quantum chemistry
packages. In particular, QSYM2 is designed to work with all
possible finite point groups, Abelian or not, for which necessary
character tables are automatically and symbolically generated
on-the-fly so that degeneracies and symmetry breaking can be
represented correctly. In addition, this framework is sufficiently
general to be applicable to any linear-space quantities and not
just wave functions or densities. Furthermore, QSYM2 is capable
of performing symmetry analysis in the presence of external
fields, particularly ensuring that complex irreducible representa-
tions, which occur frequently when a magnetic field is present,
are handled explicitly. In addition, QSYM2 is able to provide
transformationmatrices that enable the generation of symmetry-
equivalent partners of any linear-space quantities, as long as they
can be expanded in terms of atomic-orbital (AO) basis functions
or products thereof. All of this is possible thanks to one
governing design principle that QSYM2 undertakes, which insists
that all of its computational elements (e.g., symmetry operations
and irreducible representation characters) are treated symboli-
cally as much as possible, so that defining properties of groups
such as closure and the existence of inverses are respected and
utilized to guarantee accuracy and efficiency.

The article is organized as follows. In Section 2, the theoretical
foundation for the symmetry analysis framework implemented
in QSYM2 is laid out. In particular, the various aspects of group
and representation theories involved in the determination of
molecular symmetry groups, the management of symmetry
operations, and the in situ generation of character tables are
explained. This is followed by the formulation of a general
method for representation symmetry analysis applicable to any
linear space. Then, Section 3 presents several case studies to
illustrate the usefulness of symmetry analysis via QSYM2 in
interpreting and understanding electronic-structure calcula-
tions. Finally, Section 4 concludes the article with a few remarks
on the capabilities and limitations of the symmetry analysis
framework implemented in QSYM2, and also charts possible
directions for QSYM2 to be extended in the future.

2. THEORY
2.1. Symmetry Group Determination. 2.1.1. Unitary

Symmetry of the Electronic Hamiltonian. For a molecular
system with Ne electrons and Nn nuclei in a uniform external
electric field and magnetic field B = ∇ × A(r), where A(r)
denotes the magnetic vector potential, the electronic Hamil-
tonian is given by

0 elec mag= + + (1)

In atomic units, the first contribution has the form

v
r r

1
2

1
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ext

e e e

= +
| |

+
> (2)

and is the zero-field Hamiltonian which has an explicit
dependence on the multiplicative external potential vext whose
form is governed by the geometric arrangement of the nuclei,
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In Equation 3, ri denotes the position vector of the ith electron
and RA that of the Ath nucleus. The second contribution,
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describes the interaction between the electrons and the external
electric field,48 and the third contribution,
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where p̂i is the linear momentum operator for the ith electron, sî
the spin angular momentum operator for the ith electron, and gs
the electron spin g-factor, gives the interaction of the electrons
with the external magnetic field.49,50 The unitary symmetry group

of the system consists of all unitary transformations û that
leave invariant:

u u 1 = (6)

Clearly, is the intersection of the unitary symmetry groups of

0, elec, and mag , which we shall denote 0, elec, and mag ,
respectively. We further restrict the elements in these groups to
be point transformations acting on the conf iguration space where
physical systems such as atoms, molecules, and fields are
described.51 Then, 0 is also commonly known as the point
group of the molecular system.

A robust algorithm to determine the name and elements of 0
for any molecular system has already been described by Beruski
and Vidal.52 As shown formally in Appendix A of ref 34, the
group mag consists of orthogonal transformations in three
dimensions [i.e., elements of the group O(3)] that would map
the uniformmagnetic field B onto itself and is commonly known
as h,

32,53 which is an infinite Abelian group with principal axis
parallel to B. A similar approach can be used to show formally
that elec consists of three-dimensional orthogonal trans-
formations that would leave the uniform electric field
unchanged and is commonly recognized as v,

32 which is an
infinite, but not Abelian, group with principal axis parallel to .
Hence, a naıv̈e procedure to locate all elements of is to first
identify all elements of 0, and then to filter out only those
elements that would leave and/or B invariant. However, this
procedure is unnecessarily wasteful as it requires additional
efforts to be spent on finding a large number of elements of 0
that would eventually be discarded, since the presence of
external fields almost always leads to a reduction of unitary

symmetry. In fact, for highly symmetric molecular systems
where 0 is large, these additional efforts can be nontrivial.

2.1.2. Including External Fields: Method of Fictitious
Special Atoms. It is desirable to make use of the algorithm by
Beruski and Vidal52 as much as possible to locate all elements of

directly without having to go through the intermediary of 0
in the presence of external fields. To this end, we propose that
fictitious special atoms be introduced to represent the external
fields such that the combination of the molecule and fictitious
atoms has the same unitary symmetry group as the
combination of the molecule and the external fields. Each
fictitious special atom is characterized by a pair of parameters (t,
Rt), where t encodes its type and Rt denotes its position.

A uniform electric field is represented by one fictitious atom
of type t = e placed at kR Re com= + , where Rcom is the
position vector of the center of mass of the molecule and k a
scalar factor chosen to ensure that this fictitious atom does not
coincide with any actual atom in the molecule, and that the
subsequent unitary symmetry group determination is numeri-
cally stable. The vector Re − Rcom is therefore parallel to , and
as is a polar vector,54 it is imposed that fictitious atoms of type
e transform under all operations in the group O(3) just as any
ordinary atom does. It is easily seen that the combination of the
molecule and the fictitious atom has the same unitary symmetry
group as the molecule in the external field (Figure 1a).

On the other hand, a uniform magnetic field B is represented
by two fictitious atoms, one of type b+ and the other of type b−,
placed at Rb± = Rcom ± kB, where the ± signs in the type names
signify the polarities of the fictitious atoms. The vector Rb+ −
Rb− is parallel to B, and these two fictitious atoms transform
under all operations in the group O(3) almost like any ordinary
atom, but since B is an axial vector,54 it is additionally required
that the polarities of the fictitious atoms be reversed under
improper transformations. This ensures that the combination of
the molecule and the fictitious atoms has the same unitary
symmetry group as the molecule in the external B field (Figure
1b).

With the introduction of fictitious special atoms, external
fields are no longer required to be treated separately in unitary
symmetry group determination. In fact, fictitious atoms can be
incorporated directly into the Beruski−Vidal algorithm,52

provided that the following modifications are taken into
account:

(i) Fictitious atoms must be included in the calculation of the
principal moments of inertia of the system and the
subsequent classification into four main rotational
symmetry types: spherical top, symmetric top, asym-
metric top, and linear. For this purpose, a mass of 100.0u
is chosen for the fictitious atoms: there is no physical

Figure 1. Equivalence between systems in external fields and systems with fictitious special atoms. (a) A single fictitious special atom of type e is placed
at kRcom + to represent a uniform electric field. (b) Two fictitious special atoms, one of type b+ and the other of type b−, are placed atRcom ± kB to
represent a uniform magnetic field.
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significance to this value; it simply has been found to
ensure numerical stability in all test cases.

(ii) Fictitious atoms must be included in the determination of
distance-based symmetrically-equivalent-atom (SEA)
groups. This means that b+ and b− can be in the same
SEA group if they both have the same distance signature
to all other atoms in the molecule, despite their different
polarities.

(iii) The possibility that polyhedral SEAs be arranged in a
spherical top must also be taken into account. This
additional possibility was not originally considered in ref
52 as it can only arise when a spherical top molecule is
placed in an external magnetic field. Figure 2a shows an

example where a magnetic field is applied along one of the
C3 axes of tetrahedral adamantane: this molecule-field
combined system is now a symmetric top with the unique
axis along the field direction, but the six carbon atoms
highlighted in orange constitute a group of SEAs that are
arranged in a regular octahedron.

(iv) The symmetric top rotational symmetry may also result in
the s group. This additional possibility was not
considered in ref 52 either as it can only occur when an
external field is applied to a spherical top in a manner that
eliminates all symmetry elements of the system apart from
a single mirror plane. Figure 2b illustrates an example of
this when either a magnetic or an electric field is applied to
tetrahedral CH4 such that it is simultaneously parallel to
one of the molecular mirror planes and perpendicular to
another.

2.1.3. Magnetic Symmetry of the Electronic Hamiltonian.
When antiunitary operations are taken into account, the unitary
symmetry group might no longer be the largest symmetry
group of the electronic Hamiltonian . In fact, in many studies
involving magnetic phenomena and magnetic materials,55−59 it
is necessary to consider a supergroup of that also contains
antiunitary symmetry operations that leave invariant. Such a
group is called the magnetic symmetry group of the system,

and it can easily be seen56 that must admit as a normal
subgroup of index 2, so that we can write

a0= + (7)

where a0̂ can be any of the antiunitary elements in but must
be fixed once chosen. The left coset a0 with respect to
contains all antiunitary elements of .

Let us now consider the time-reversal operation θ̂, which is an
archetype of antiunitary operations (see Chapter 26 of ref 60 for
an in-depth discussion of the time-reversal operation in
quantum mechanics). It turns out that, with respect to θ̂,
magnetic symmetry groups can be classified into just two
kinds.56,61,62 The first kind are those that contain θ̂, in which case
one can choose a0̂ = θ̂ so that

= + (8)

These are calledmagnetic gray groups. The second kind are those
that do not contain θ̂; however, one can always find a unitary
operation û0 not in the group such that the product θ̂û0 is an
antiunitary operation that occurs in the group. This then enables
one to write

u0= + (9)

where a0̂ has been chosen to be θ̂û0. Such groups are called
magnetic black-and-white groups. It is then clear that, in the
absence of an external magnetic field, θ̂ is a symmetry operation
of the system. However, this ceases to be the case when an
external magnetic field is applied: the magnetic field vector B is
time-odd54,56 and thus gives rise to terms in the electronic
Hamiltonian (Equation 5) that do not commute with θ̂ (see
Appendix A of ref 34 for a detailed explanation). Therefore, the
following general rules can be deduced:

(i) in the absence of an external magnetic field, the system
always has a magnetic symmetry group whichmust be one
of the magnetic gray groups;

(ii) in the presence of an external magnetic field, if the system
exhibits any antiunitary symmetry, then it has a magnetic
symmetry group that must be one of the magnetic black-
and-white groups, but if the system exhibits no antiunitary
symmetry, then it only has a unitary symmetry group.

For both kinds of magnetic groups, it is often useful to
consider a unitary group that is isomorphic to . In cases
where is identifiable with a subgroup of the full rotation-
inversion group in three dimensions O(3) and can thus be given
a Schönflies symbol, the magnetic group can be written as

( ).59,62 When this is not possible, however, the antiunitary
coset form with respect to the unitary symmetry group and a
representative antiunitary operation a0̂ (Equations 7−9) can
always be employed to uniquely denote because it is always
possible to assign a Schönflies symbol to , which is guaranteed
to be a subgroup of the molecular point group 0 (cf. Section
2.1.1). Figure 1 depicts two examples of how is typically
denoted.

To determine and all of its elements given a molecular
system in a uniform external field, the Beruski−Vidal
algorithm52 can once again be exploited with an additional
modification that any unitary transformation considered in the
algorithm can also be accompanied by the antiunitary action of
time reversal. For all ordinary atoms and fictitious atoms of type
e representing an applied electric field, time reversal has no
effects. However, for fictitious atoms of types b+ and b−

Figure 2.Two special cases involving a uniform external field where the
original Beruski−Vidal algorithm52 needs to be modified. (a) A
tetrahedral adamantanemolecule placed in a uniform external magnetic
field oriented along one of itsC3 axes. This illustrates a possible scenario
in which a polyhedral SEA group (the six carbon atoms highlighted in
orange) is arranged in a spherical top fashion (a regular octahedron).
(b) A tetrahedral methane molecule placed in a uniform external
magnetic or electric field oriented simultaneously parallel to one of the
molecular mirror planes and perpendicular to another. This illustrates a
possible scenario of the s unitary group arising from the symmetric top
rotational symmetry.
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representing an applied magnetic field, their polarities must be
reversed under time reversal due to the time-odd nature of the
magnetic field vector B.54,56

2.2. Abstract Group Construction. 2.2.1. Computational
Representation of Symmetry Operations. In QSYM2, symmetry
operations located using the method described in the previous
section are stored as instances of the SymOp structure. It shall
henceforth be written “SymOp(ĝ)” to denote an instance of the
SymOp structure that represents the actual ĝ symmetry
operation computationally. In order for this representation to
be efficient and to respect discrete-group-theoretic properties,
most notably compositability and closure, of the underlying
symmetry operations, it is imposed that the SymOp structure
fulfill the following traits:

(i) equality comparisons that are equivalence relations�
reflexivity, transitivity, and symmetry must be satisfied for
the “=” relation between SymOp instances, which must
take into account the 2π-periodicity of spatial rotations;

(ii) hashability�each SymOp(ĝ) instance must be able to
produce an integer hash value hash[SymOp(ĝ)] that
allows itself to be looked up from a hash table with an
average constant time O(1), and that must be compatible
with equality comparisons: SymOp(ĝ1) = SymOp(ĝ2) ⇒
hash[SymOp(ĝ1)] = hash[SymOp(ĝ2)];

(iii) compositability�SymOp(ĝ1) * SymOp(ĝ2) = SymOp-
(ĝ1ĝ2) where “*” denotes the composition operation
between two SymOp instances.

The design of the SymOp structure in QSYM2 is detailed in
Section S1 of the Supporting Information to illustrate how the
above traits are satisfied.

2.2.2. Unitary Conjugacy Class Structure. Prior to the
generation of the character table of the symmetry group, its
conjugacy class structure must first be determined. The
conjugacy class structure of a group, in turn, depends on how
the conjugacy equivalence relation between group elements is
defined. In this article, only the familiar unitary conjugacy
equivalence relation is considered:

g g g g u g ug u, , :1 2 1 2 1 2
1= (10)

which holds when all elements in the group are represented as
mathematical unitary operators on linear spaces, even if some of
them are actually physical antiunitary operators. A different
conjugacy equivalence relation called magnetic conjugacy
equivalence relation holds if some of the elements in the group
are represented on linear spaces as mathematical antiunitary
operators,63 which leads to a different conjugacy class
structure.63,64 Although magnetic conjugacy classes have also
been implemented in QSYM2, their uses in magnetic symmetry
via corepresentation theory60 will be examined in a future study.

The classification of elements of finite molecular symmetry
groups in QSYM2 is carried out via the Cayley table C of the
group:

C k g g gwhereij i j k= = (11)

which encodes the group’s multiplicative structure in a two-
dimensional array of integers. The compositions ĝiĝj are effected
computationally through the corresponding compositions
SymOp(ĝi) * SymOp(ĝj) of the SymOp structure. Once the
Cayley table C has been computed and stored, any operations
that call for the multiplicative structure of the group, such as the
determination of the conjugacy class structure or the
construction of the group’s character table (Section S2 of the

Supporting Information), only need to make cheap queries to C
without having to repeatedly recalculate group element
compositions.

2.3. Generation of Character Tables of Irreducible
Representations. Once an abstract group structure has been
obtained for the underlying symmetry group, its character table
then must be computed to allow for subsequent symmetry
analysis. This can indeed be performed on-the-fly in QSYM2.
Algorithms for the automatic generation of symbolic character
tables65−67 are well-known and have been implemented before,
most notably in GAP.68 However, no such implementation
exists for molecular symmetry applications in quantum
chemistry. These algorithms are thus reimplemented in QSYM2

with additional functionalities to ensure that the generated
character tables respect conventions that are familiar to most
chemists, e.g., the labeling of irreducible representations using
Mulliken symbols.69 The details of these algorithms are
recapitulated in Section S2 of the Supporting Information.

The ability to generate character tables automatically and
symbolically enables QSYM2 to completely circumvent the need
for hard-coded character tables, which would limit the number
and types of groups available for symmetry analysis. In
particular, as demonstrated in Section 3.1, QSYM2 is able to
handle degeneracy in non-Abelian symmetry groups which are
encountered in highly symmetric molecular structures such as
disk-like boron clusters ( nh),

70,71 hydro-clusters of group-14
elements in quantum dots ( d),

72,73 and buckminsterfullerenes
( h). QSYM2 is also capable of tackling complex-valued
representations that frequently arise in the presence of an
external magnetic field, e.g., eight out of the 12 one-dimensional
irreducible representations in h6 , which is the unitary symmetry
group of benzene in the presence of a uniform perpendicular
magnetic field, are complex.

In all cases, there is no requirement for the molecule and/or
external fields to be in any predefined standard orientation for
the character-table generation algorithm to work. In fact, as long
as the symmetry operations of the system can be computation-
ally represented and composited as described in Section 2.2.1
and Section S1 of the Supporting Information, the group
structure can be abstracted away from these concrete
representations of symmetry operations to allow for the
character table to be computed entirely algebraically without
recourse to any other knowledge exterior to the group structure.
Only when labels of computed irreducible representations are to
be deduced is information about molecular structures and
symmetry operation orientations required in order to satisfy
Mulliken’s conventions. This ensures that molecules and
external fields can be placed in whatever orientation is most
sensible or convenient for chemical computation, while still
being able to benefit from the symmetry analysis offered by
QSYM2.

2.4. Representation Analysis. An initial formulation of the
method for representation analysis has been discussed by one of
the authors in a previous article (Appendices B and C of ref 25).
However, this formulation only focuses on wave functions in
Hilbert spaces and therefore leaves out other quantum-chemical
quantities that are not wave functions but that still have
symmetry properties. Examples of such quantities include
electron densities, vibrational coordinates, and magnetically
induced ring currents. In this section, a more general
formulation of this method will be presented in which all
linear-space quantities are covered. It will also be pointed out
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how the computational availability of group multiplicative
structures via Cayley tables leads to a reduction in the
representation analysis time complexity from O( )3| | to
O( )| | by taking advantage of group closure.

2.4.1. Formulation of Linear-Space Representation Anal-
ysis. 2.4.1.1. Characters and Representation Matrices. Let V
be a linear space andw an element in Vwhose symmetry under a
prevailing group is to be computationally determined. To this
end, the linear subspace W ⊆V that is spanned by the orbit

g gw w :i i· = { } (12)

where ĝi denotes the action of gi on V is first determined. The
symmetry of w in is then given by the decomposition of W
into known irreducible representation spaces on V of the group
.
Technically, ĝi and gi are two very different quantities: the

former is an operator acting on V and thus a member of GL(V)
(i.e., the group of all general linear operators acting on V),
whereas the latter is a member of an abstract group . However,
this distinction is unnecessarily pedantic for the purpose of this
article and will therefore be ignored: we will use the hatted forms
almost exclusively, refer to them as members of the group , and
make no attempt to distinguish operators that represent actions
of the same abstract element gi but on different linear spaces.

To characterize W, we seek its character function χW whose
value for each element ĝ in the group is given by

g gD( ) tr ( )W W=

whereDW(ĝ) is the representationmatrix of ĝ in some finite basis
chosen forW. Let m We : 1 dimm= { } be such a basis.
The elements of DW(ĝ) satisfy the set of equations

g D ge e ( )m
n

W

n nm
W

1

dim

=
= (13)

one for each element em in the basis.
2.4.1.2. Representation Matrix Determination. Equation 13

now needs to be solved in a suitably chosen basis to determine
the diagonal Dnn

W(ĝ) elements so that the character value χW(ĝ)
can be computed. In principle, these equations can be viewed as
a set of simultaneous equations that can be solved algebraically
to give the required matrix elements. However, such an
approach would be tedious, and it is much more common for
equations of this type to be solved using a projection operator,
which requires the existence of an inner product.

Thus far, no reference has beenmade to any inner products on
V, because inner products are not required in the definition of
representation symmetry. In fact, symmetry is a linear-space
property rather than an inner-product-space property. This
realization has an important implication: we are at liberty to
def ine any inner product that is the most convenient to compute
for a given linear space V in order to construct a projection
operator solely for the purpose of inverting Equation 13; the
value of the character χW(ĝ) must be independent of this choice
of inner product, even if V itself does not possess an intrinsic
inner product.

Let us now endowVwith an inner product ⟨·|·⟩with which the
overlap matrix S between elements in the orbit w· is defined:

S g gw wij i j= | (14)

It would then be ideal to use the orbit w· as a basis for W
with which Equation 13 can be solved to give the character

values. However, the elements in w· are not necessarily
linearly independent, and the matrix S is thus not necessarily of
full rank. In this case, a tall rectangular matrix X can be
constructed:

X U m WS
1

, 1 rank dimim
m

im= =
(15)

where λm is a nonzero eigenvalue of S andUim the ith component
of the corresponding eigenvector. The matrix X allows a linearly
independent basis for W to be defined:

g X m Ww w S( ) : 1 rank dimm
i

i im
1

l
moo
noo

|
}ooo
~oo

= = =
=

| |

(16)

such that the overlap matrix in this basis,

SS X SX w wwhere mn m n= = |†

is of full rank and Equation 13 becomes

g D gw w ( )m
n

n n m
W

S

1

rank

=
= (17)

where primed subscripts have been used for later convenience. If
S is already of full rank, then we simply set w= · , and so S̃ =
S. In either case, the square matrix S̃ is invertible, with which a
nonorthogonal projection operator P̂m can be constructed:74

P Sw wm
n

m mn n

S

1

rank
1= | |

= (18)

where S̃mn−1 = (S̃−1)mn. This projection operator satisfies

P w wm n mn m| = | (19)

Applying P̂m to both sides of Equation 17 and making use of
Equation 19 gives

P g P D g

D g

D g

w w

w

w

( )

( )

( )

m m
n

m n n m
W

n
m mn n m

W

m mm
W

S

S

1

rank

1

rank

| = |

= |

= |

=

=

Multiplying both sides by ⟨w̃m| and using the definition of P̂m in
Equation 18 then yields

S g D gw w w w w w ( )m m
n

mn n m m m mm
W

S

1

rank
1| | = |

=

or equivalently, by canceling out the ⟨w̃m|w̃m⟩ term on both
sides,

S g D gw w ( )
n

mn n m mm
W

S

1

rank
1 | =

=

By reintroducing the original terms in the orbit w· using
Equation 16, we obtain

D g S X g g g Xw w( )mm
W

n i j
mn in i j jm

S

1

rank

, 1

1= * | |
= =

| |
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X
X

X

if is bilinear

if is sesquilinear
in

in

in

l
m
ooo
n
ooo

* =
·|·

* ·|·

The above result can be conveniently written in a matrix form:

g gD S X T X( ) ( )W 1= †

where

T g g g gw w( )ij i j= | | (21)

which gives a closed-form expression for the representation
matrix DW(ĝ) to be computed from elements in the orbit w· .

2.4.1.3. Optimization by Group Closure. It is clear from
Equation 20 that the computation speed of DW(ĝ) is limited by
the computation speed of the orbit overlap matrix S and the
matrices T(ĝ), for all g . Naiv̈ely, explicit constructions of S
based on Equation 14 and of T(ĝ) based on Equation 21 would
incur time complexities of O( )2| | and O( )3| | , respectively.
However, closure of under composition allows all matrix
elements of S and T(ĝ) to be identifiable with only | | unique
values:

S g g
g g

g g

g g g

w w
w w

w w

if is unitary

if is antiunitary

( )

ij i j

k j

k j

k j i
1

l
m
oooo
n
oooo

= | =
|

| *

= (22)

and

T g g g g
g gg

g gg

g g g g

w w
w w

w w
( )

if is unitary

if is antiunitary

( )

ij i j

l j

l j

l j i
1 1

l
m
oooo
n
oooo

= | | =
|

| *

= (23)

In both cases, as long as the overlaps between the elements in
the orbit w· and the orbit origin w have been evaluated, which
costs O( )| | time, all matrix elements of S and T(ĝ) can be
deduced without any further involvement of the expensive
overlap computation. However, this optimization is only
possible if one can make the identifications ĝk = ĝj−1ĝi (Equation
22) and ĝl = ĝj−1ĝ−1ĝi (Equation 23), which require knowledge of
the multiplicative structure of the group . The implementation
of SymOp in QSYM2 that enables the construction of the Cayley
table (Equation 11) achieves exactly this and allows QSYM2 to
perform extremely efficient representation analysis of linear-
space quantities.

2.4.2. Examples of Linear-Space Representation Analysis.
2.4.2.1. Single-Determinantal Wave Functions and Spin−
Orbitals. Let us consider an Ne-electron single-determinantal
wave function:

Nx x x( , ..., ) ( )N
i

N

i i
det

1 e
1

e

e
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
= !

= (24)

In the above expression,

N
P1

( 1)
P N

P

e Sym( )

( )

e

=
!

is the antisymmetrizer with P̂ an element of NSym( )e , the
symmetric group of degree Ne, and π(P̂) the parity of P̂. The

antisymmetrizer acts on the electronic spin-spatial coordinates xi
in terms of which the spin−orbitals χi are written. In these cases,
the linear space V (cf. Section 2.4.1.1) is chosen to be an Ne-
particle Hilbert space denoted Ne

. It should be noted that
spin−orbitals χi are special cases of Ψdet with Ne = 1. Being a
Hilbert space, Ne

comes equipped with the familiar inner
product

x x x x x x( , ..., ) ( , ..., ) d ... dw x w N x N N
det det det

1
det

1 1e e e
| = *

(25)

which can be leveraged to compute the orbit overlap matrix S
(Equation 14) for Ψdet under the action of the prevailing group
. In particular, for single determinants, the inner product in

Equation 25 has a particularly simple form:75

w x

w x w x N

w N x w N x N

det det

,1 ,1 ,1 ,

, ,1 , ,

e

e e e

| =

| |

| |

µ

µ
(26)

where χw,i denotes the ith occupied spin−orbital of the Ψw
det

determinant. Each spin−orbital can be expanded in terms of the
AO basis functions according to

Cx x( ) ( )w i i
w

, =

where φμ(x) is an AO spin-spatial basis function and μ a
composite spin-spatial index. The required spin−orbital over-
laps can then be written as

C C( )w i x j j
x

i
w

, ,| = | *

where the two-center overlap integrals

x x x( ) ( ) d| = *
(27)

can be easily obtained from many available integral packages for
Gaussian AO basis functions (e.g., LIBINT

76 and LIBCINT
77) or

London AO basis functions (e.g., QUEST,78 LONDON,79

BAGEL,80,81 and CHRONUSQ82). QSYM2 also implements its
own generic n-center overlap integral routine based on the
recursive algorithm by Honda et al.83 that is capable of handling
both Gaussian and London AO basis functions.84

The calculation of overlaps between single determinants
(Equation 26) is available in QSYM2, thus enabling the symmetry
analysis of single-determinantal wave functions and spin−
orbitals. Analogous overlap calculations for multideterminantal
wave functions are in principle possible, but currently not yet
implemented in QSYM2.

2.4.2.2. Electron Densities. Let us consider next an Ne-
electron density for an Ne-electron wave function Ψ(x1, ...,
xNde

):8,85

N s s s

r r r

r x x r x x x x

( ) ( )

( , , , ..., ) ( , , , ..., ) d d ...d

i

N

i

N N N

1

e 2 2 2

e

e e e

= | |

= *

=

where the composite spin-spatial coordinate x1 has been
relabeled and separated into a spin coordinate s and a spatial
coordinate r in the integrand. In an AO basis, ρ(r) can be
expanded as
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Pr r r( ) ( ) ( )=
(28)

where ϕγ(r) and ϕδ(r) are spatial AO basis functions, γ and δ
spatial indices, and Pδγ elements of the corresponding density
matrix P in this basis.

The containing linear space for ρ(r) is well-known to be the
Banach space L L( ) ( )3 3 1 3= .85 Being a Banach space,
does not have an intrinsic inner product, but, as explained in
Section 2.4.1, it is possible to endow with an inner product for
the purpose of representation analysis. The simplest such inner
product can be defined as follows:

It is straightforward to show that the above definition for ⟨·|·⟩
satisfies all required properties of an inner product:

• conjugate symmetry:

r r r

r r r
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• linearity in the second argument:
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• positive-definiteness:

r r r r r

r

( ) ( ) d ( ) d 0

since ( ) 0

2

2

| = * = | |

| |
where ⟨ρ|ρ⟩ = 0 if and only if ρ(r) = 0 identically;

otherwise there would exist regions in 3 where |ρ(r)|2 <
0, which is not possible.

Using the basis-expanded form of the electron density in
Equation 28 in the inner product definition in Equation 29 gives

P P( )w x
x w| = | *

where

r r r r r( ) ( ) ( ) ( ) d| = * *

are four-center overlap integrals computable using the generic n-
center overlap integral routine as described earlier.

The calculation of overlaps between electron densities
(Equation 29) is available in QSYM2, thus enabling the symmetry
analysis of electron densities obtained from a wide range of
electronic-structure methods from single- and multidetermi-
nantal wave functions to DFT.

3. RESULTS AND DISCUSSION
In this section, several case studies showcasing the capabilities
and utility of QSYM2 are presented. Each case study is based on a
distinct computational chemical problem whose results can be
better understood by a detailed analysis of symmetry provided
by QSYM2.

3.1. Degeneracy in Non-Abelian Groups. The first set of
case studies consists of three molecules of various sizes and
symmetries: a tetrahedral C84H64 quantum dot (Figure 3a), an
icosahedral C60 (Figure 3b), and an octagonal B9

− (Figure 3c).
The non-Abelian symmetry of these three molecules allows for
degeneracy to occur in the SCFMOs that arise from either a HF
or a KS-DFT description of the ground state of the system. By
examining the symmetry of such degenerate MOs in the ground
SCF solutions of these three molecules, we sought to
demonstrate the capability of QSYM2 to determine degenerate
irreducible representation labels accurately, irrespective of the
size of the molecules or the complexity of the MOs.

3.1.1. Computational Details. For each molecule, a ground-
state KS-DFT calculation using an appropriate exchange-
correlation functional and basis set was performed in Q-CHEM

6.1.0. In all calculations, suitable symmetry thresholds were
chosen to ensure that Q-CHEM produced symmetry assignments
for the computed MOs in the highest possible group. Afterward,
all geometry information, basis set information, and MO
coefficients from these calculations were passed to QSYM2

where the unitary symmetry group of the system was
deduced, following which the representations of spanned by
the MOs were identified and analyzed according to the
formulation given in Section 2.4. The MO symmetry assign-
ments from QSYM2 were then compared with those from Q-
CHEM.

Figure 3. High-symmetry molecules whose ground-state KS MOs exhibit degeneracy.
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Q-CHEM was chosen as the benchmarking program for these
case studies because of its ability to assign degenerate symmetry
labels in certain non-Abelian groups. As stated in Section 1, most
other quantum-chemistry programs are able to perform
symmetry analysis only in Abelian groups and are thus not
suitable for this purpose.

3.1.2. Degenerate Symmetry Benchmarks. We begin with
tetrahedral C84H64, which proves to be a straightforward case.
Using the geometry reported by Karttunen et al.,72 a ground-
state unrestricted CAM-B3LYP/6-31+G* calculation was
performed and a set of KS MOs were obtained. Table 1 shows
the symmetry assignments that have been produced by both Q-
CHEM and QSYM2 for the frontier MOs. These particular MOs
have been chosen because they have been identified in ref 73 to
be responsible for the most intense transition in the electronic
absorption spectrum of this molecule, and are therefore themost
interesting to examine from a symmetry perspective. For this
system,Q-CHEM is able to identify its symmetry group as d, as is
QSYM2. Both programs are also able to agree on their symmetry
assignments of the frontier MOs, degenerate or not, thus
confirming that the representation analysis formulation
implemented in QSYM2 (Section 2.4) is valid.

We consider next icosahedral C60, which has a higher
symmetry than tetrahedral C84H64, and for which an unrestricted
CAM-B3LYP/6-31+G* calculation was also carried out to yield
a set of KSMOs. It turns out that, even thoughQ-CHEM is able to
identify the symmetry group of this system as h when the
symmetry tolerance value is set at 1 × 10−4, it seeks recourse to

5 (a subgroup of h) to perform symmetry analysis, but then
fails to produce any symmetry assignments for almost all MOs
except those that are nondegenerate. Tightening the symmetry
tolerance value to 1 × 10−5 forces Q-CHEM to identify the
symmetry group as h2 instead, but this then allows for a
successful assignment of symmetry labels to MOs, albeit only
under h2 . On the other hand, QSYM2 is able to both identify the
symmetry group correctly as h and classify the symmetry of
MOs using the irreducible representations of h. Table 2 shows

these symmetry assignments for the three highest degenerate
sets of occupied MOs.

An inspection of Table 2 makes clear the necessity of correct
symmetry classifications of these MOs in the full group of the
underlying molecule. Consider for instance the transition dipole
moment integral ⟨χ176

α |μ̂|χ195
α ⟩, where μ̂ is the dipole moment

operator and χ195
α the first totally symmetric virtual α-MO in the

calculation shown in Table 2 (Figure 4). In h2 , the dipole
moment operator transforms as Au ⊕ 2Bu, and so the integrand
transforms as Au ⊗ (Au ⊕ 2Bu) ⊗Ag ⊃ Ag, indicating that the
integral ⟨χ176

α |μ̂|χ195
α ⟩ contains up to one independent non-

vanishing component. This would thus lead one to the incorrect
expectation that the transition χ195

α ← χ176
α is optically allowed.

However, in h, the dipole moment operator transforms as T1u,
and the above integral is part of a degenerate set ⟨χiα|μ̂|χ195

α ⟩, i =
176, ..., 180 whose integrands transform asHu ⊗ T1u ⊗ Agwhich
does not containAg. The transitions χ195

α ← χiα, i = 176, ..., 180 are
therefore all optically forbidden in h. This example shows that
suchMO symmetry considerations, when done accurately in the
full symmetry group of the system, can improve the efficiency of
algorithms that make use of symmetry to screen molecular
integral evaluations87−90 or sharpen the interpretation of
spectroscopic results.

Finally, we consider an octagonal boron disc, B9
−, which has

h8 symmetry and should, in principle, be simpler than the h
symmetry of C60. Unfortunately, no matter the symmetry
tolerance value, Q-CHEM is only able to determine the symmetry
group of this anion as h4 and classify the MOs calculated at the
B3LYP/def2-TZVP level of theory using the irreducible
representations of this group. QSYM2, on the other hand, is
capable of identifying the symmetry group as either h4 or h8 ,
depending on the choice of the distance threshold (Section S1.4
of the Supporting Information), and then assigning MO
symmetry labels using the irreducible representations of the
corresponding groups. These are summarized in Table 3 for the
valence canonical MOs of B9

− as reported by Đorđevic ́ et al.71 It
can be seen that, in h4 , the symmetry assignments from bothQ-

Table 1. Comparison of Symmetry Assignments of Frontier Canonical MOs in C84H64 Calculated at the CAM-B3LYP/6-31+G*
Level of Theory Using the Geometry Reported by Karttunen et al.72,a

aFor each MO χ(r), the isosurface is plotted at |χ(r)| = 0.008.
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CHEM and QSYM2 are in agreement, while those in h8
computable only byQSYM2 provide a full symmetry classification
of the MOs that is consistent with their nodal structures.

3.2. Symmetry Breaking in SCF Solutions and Orbitals.
The next case study seeks to demonstrate the ability of QSYM2 to
detect and quantify symmetry breaking in SCF solutions and
orbitals. For this purpose, the octahedral complex Fe(CN)63−

has been chosen. Having an unpaired electron due to the low-
spin d5 configuration on the Fe3+ metal center surrounded by an
octahedral ligand field, this complex is expected to give rise to
multiple low-lying SCF UHF solutions, some of which break
spatial symmetry.25

3.2.1. Computational Details. In all calculations, the
structure of Fe(CN)63− was held fixed at an h geometry with
Fe−C = 2.0256023 Å and C−N = 1.1570746 Å. Multiple SCF
solutions at the UHF/def2-TZVP level of theory were found for
this geometry in Q-CHEM 6.1.0 using metadynamics91 combined
with the Direct Inversion in the Iterative Subspace (DIIS)
algorithm.92 SCF convergence was set at a DIIS error value of 1

Table 2. Comparison of Symmetry Assignments of Frontier Occupied Canonical MOs in C60 Calculated at the CAM-B3LYP/6-
31+G* Level of Theory Using an h-Symmetrized Geometry

a

aFor each MO χ(r), the isosurface is plotted at |χ(r)| = 0.008. The four- and five-dimensional irreducible representation labels follow the
convention specified in ref 86.

Figure 4. Isosurface plot of the virtual canonical MO χ195
α at |χ195

α (r)| =
0.009 in C60 calculated at the CAM-B3LYP/6-31+G* level of theory
using an h-symmetrized geometry (see Table 2). This MO has A ( )g h

and A ( )g h2 symmetry.
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× 10−10 as implemented in Q-CHEM. For each converged
solution, its geometry information, basis set information, and
Pipek−Mezey-localized93,94 MO coefficients were read in by
QSYM2 from which symmetry assignments for the individual
MOs, as well as for the overall wave function, were determined.
Unfortunately, no benchmarking symmetry assignments were
available because no existing programs were able to handle
symmetry-broken quantities.

For each quantity that is symmetry-analyzed in QSYM2, a
threshold λSthresh must be chosen to determine which eigenvalues
of the orbit overlap matrix S (Equation 14) are nonzero so that
the transformation matrix X can be constructed (Equation 15).
Whether a particular choice of threshold is reasonable depends

on the gap between the eigenvalue of S that is immediately above
the threshold, λS>, and the eigenvalue of S that is immediately
below the threshold, λS<. In all cases for Fe(CN)63−, the threshold
was chosen such that log10 λS> − log10 λS< ≳ 4.

3.2.2. Symmetry Breaking in Fe(CN)6
3−. Table 4a presents

the energies of four lowest-lying MS = +1/2 UHF solutions of
Fe(CN)63− alongside their symmetry assignments from QSYM2

determined at the linear independence threshold λSthresh = 1 ×
10−7. All four solutions are found to be symmetry-broken (i.e.,
they each span a reducible representation space of h), and
interestingly, the lowest two solutions, A and B, do not contain
the T2g term naıv̈ely expected of the ground state for a d5
configuration in an octahedral strong-field environment,95

whereas the other two solutions, C and D, do. In addition, the
A and B solutions have different inversion symmetry (ungerade)
compared to that of the C and D solutions (gerade). This
strongly suggests that there is a qualitative difference between
these two pairs of solutions.

For illustrative purposes, we focus only on the lower-energy
solution in each of the two pairs, namely, the A and C solutions.
To acquire a crude understanding of the origin of this qualitative
difference, we turn to the Pipek−Mezey-localized MOs93,94

obtainable from the canonical MOs of these two solutions,
mainly because localized MOs have been known to provide a
useful link between detailed quantum-chemical calculations and
classical chemical concepts such as nonbonding orbitals, lone
pairs, and multiple bonds with which most chemists have gained
great familiarity and intuition.96,97 In the particular case of
Fe(CN)63−, localized orbitals help quantify the number of d-
electrons on the iron center and allow for a discussion on the
nature of the UHF solutions in terms of the metal dn-electronic-
configuration and oxidation-state descriptors that are common
in coordination chemistry.

In Table 4b and Table 4c, the Pipek−Mezey-localized d-MOs
for the A and C solutions are listed, respectively. Each of these
MOs has a d-shell Mulliken population of at least 0.980 and can
therefore be regarded as being predominantly contributed by a
d-electron on the iron center. Clearly, the iron center in solution
A admits a d6 configuration, whereas that in solution C admits a
d5 configuration. This is also confirmed by a LOBA oxidation-
state analysis formulated by Thom et al.:97 the iron center in
solution A has an oxidation state of +2, whereas that in solution
C has an oxidation state of +3. Noting that all d-orbitals on the
iron center must have gerade inversion symmetry, and also that
all p-orbitals on the iron center have been confirmed to be
paired, we conclude that the ungerade inversion symmetry in
solution Amust arise from an unmatched ungerade ligand orbital
between the two spin spaces. The seemingly innocent ungerade
inversion symmetry found in solution A turns out to be a
manifestation of a ligand-to-metal charge transfer process.

The fact that the four UHF solutions A−D are symmetry-
broken means that none of them is able to provide a physical
description of the ground state of the system.98 However, it has
been demonstrated elsewhere25 that post-HF methods such as
NOCI can yield multideterminantal wave functions that
conserve symmetry and thus provide more appropriate
approximations of the ground state. For this to be viable, either
a basis spanning a complete representation space W
(Equation 16) or a full symmetry-equivalent orbit spanning
the same space (Equation 12) must be provided as the basis for
NOCI�both of which can be generated by QSYM2.

We conclude this case study with a remark that as expected,
the symmetry breaking of the overall determinants shown in

Table 3. Comparison of Symmetry Assignments of Valence
Canonical MOs in B9− Calculated at the B3LYP/def2-TZVP
Level of Theory Using the Geometry Optimized at the Same
Level by Đorđevic ́ et al.71,a

aFor each MO χ(r), the isosurface is plotted at |χ(r)| = 0.04. In
QSYM2, the distance thresholds yielding h4 and h8 are 10−5 and
10−4, respectively (see Section S1.4 of the Supporting Information for
an explanation of this threshold).
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Table 4 can be traced back to the symmetry breaking of the
constituting orbitals. This is in fact demonstrated by the
symmetry assignments for the Pipek−Mezey-localized d-MOs
of the A and C solutions in Table 4b,c, respectively. It should be
noted, however, that symmetry breaking effects can sometimes
be subtle and difficult to discern from a mere visual inspection of
the isosurface plots. A detailed analysis based on the formulation
in Section 2.4 should therefore be preferred to obtain reliable
symmetry information. For instance, consider the MO χ34

β of
solution A whose isosurface at 0.014 is shown in Table 4b. At
first glance, this orbital appears just like a typical dyz orbital (with
some distortions due to interactions with the ligands) and
should just have T2g symmetry. However, a close inspection of
this isosurface, with the aid of the contour plot in the yz-plane
shown in Figure 5, reveals that the interactions with the ligands

on the y-axis are not equivalent to those on the z-axis, thus
causing the relation Ĉ4

xχ34
β = −χ34

β to fail to hold. In other words,
χ34

β and Ĉ4
xχ34

β are linearly independent, which gives rise to theT1g
⊕T2g symmetry breaking as observed. The large gap between
the boundary orbit overlap eigenvalues λS> and λS< (ca. 10 orders
of magnitude) indicates that this symmetry breaking is in fact
not just a numerical artifact of the analysis but rather an intrinsic
feature of this MO.

3.3. Symmetry in External Fields. Thus far, we have
demonstrated the symmetry analysis capability of QSYM2 for real
orbitals and determinants in the absence of any external fields. In
this next case study, we illustrate how QSYM2 can be used to
understand quantum-chemical behaviors when external fields
are introduced. In particular, we shall show that, for a hydrogen
fluoridemolecule in a uniformmagnetic field, a knowledge of the

Table 4. Symmetry-Broken SCF Solutions of Fe(CN)63− Calculated at the UHF/def2-TZVP Level of Theory Using an h
Geometry with Fe−C = 2.0256023 Å and C−N = 1.1570746 Åa

aEach solution hasMS = +1/2. All symmetries were determined using QSYM2 with a linear independence cut-off λSthresh = 1 × 10−7. See Section 3.2.1
in the main text for the description of λS> and λS<.
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symmetries of the complex-valued MOs helps rationalize the
reversal of the electric dipole moment along the internuclear axis
observed by Irons et al.34 at strong fields perpendicular to the
molecule but not, curiously, at parallel fields.

3.3.1. Computational Details. We followed Irons et al.34 and
performed current-DFT calculations with the cTPSS functional
in the uncontracted aug-cc-pVQZ basis set99,100 employing the
resolution-of-the-identity approximation with the AUTOAUX

auxiliary basis101 in QUEST.78 The obtained KS MOs were
then passed to QSYM2 for symmetry analysis in the appropriate
unitary symmetry group of the molecule-plus-field system (cf.
Section 2.1.3). In all cases, the gauge origin of the magnetic field
and the center of mass of the molecule were placed at the origin
of the Cartesian coordinate system so that the gauge origin
would always be left invariant by the applications of all symmetry
operations during the orbit generation (Equation 12).102 For the
parallel and perpendicular field orientations, complex MO
isosurfaces were also plotted in VMD103 using the method
described by Al-Saadon et al.104

In the cases where is an infinite group (i.e., v at zero field

or at parallel-field orientations), a finite integer order n≥ 2 is

chosen for the infinite-order rotation axis C∞ so that is
restricted to a suitable finite subgroup n (i.e., nv or n,

respectively) in which the representation analysis of Section 2.4
is carried out by QSYM2. The actual representations in can
then be deduced by the representations in n produced by

QSYM2 according to the following subduction rules:
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where Γk and Γ̅k in and n are complex-conjugate one-
dimensional irreducible representations with character func-
tions

C ik

C ik

( ) exp( )

( ) exp( )

k

k

[ ] =

[ ] =

For each choice of integer n ≥ 2, irreducible representations up
to and including E n/2 1 in v= and n/2 1 and n/2 1

in = remain irreducible in the respective subgroups
n nv= and n. These irreducible representations in can

therefore be deduced unambiguously from those in n. In the
current case study of hydrogen fluoride, it is known from basic
MO theory (Figure 6) that MOs of up to Π symmetry at zero

field are occupied in the ground state, and so we require n≥ 3 so
that nv and n have enough irreducible representations to
describe ( )v , ( )1 , and ( )1 symmetries unequivocally.
In fact, for good measure, we chose n = 8 in all infinite-group
symmetry analyses for hydrogen fluoride in QSYM2.

3.3.2. MO Description of Electric Dipole Reversal in a
Magnetic Field. Figure 7a shows the landscapes of thems = +1/2
frontier MOs in hydrogen fluoride (cf. Figure 6) at various
strengths and orientations of the external magnetic field together
with the values of the electric dipole moment component along
the internuclear axis, pz. The H−F bond length is kept fixed at its
zero-field equilibrium value, 0.92897 Å, for all field strengths and
orientations. It can be seen that, in the region where pz becomes
less negative and approaches zero (|B| ≥ 0.5 B0 ≈ 1.18 × 105 T
and ϕ ≈ 90°), the frontier MO landscapes display significant
curvature. This suggests that these MOs interact with one
another strongly in this region, and these interactions might be

Figure 5.Contours of the Pipek−Mezey-localizedMO χ34
β of solution A

in the yz-plane. The inequivalence between the interactions of the
(CN)− π orbitals in the y- and z-directions with the Fe-based dyz orbital
accounts for the T1g ⊕T2g symmetry breaking of this MO.

Figure 6. Simplistic depiction of the MOs in hydrogen fluoride at zero
field.
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responsible for the observed electric dipole reversal. However, in
parallel fields, even at very high field strengths (|B| ≥ 0.7 B0 ≈
1.65 × 105 T), pz remains at ca. −0.7 au which is approximately
the same value as that at zero field. The energy landscapes of the
frontier MOs also show very little curvature in the vicinity of ϕ =
0° or 180°, thus implying a lack of interaction between these
MOs and further strengthening the conjecture that these MOs
must interact in some way to result in a reversal of the electric
dipole moment.

In Figure 7b, cross sections through the frontier MO energy
landscapes and pz plots at ϕ = 0° and 90° are shown together
with MO symmetry assignments from QSYM2 and complex

isosurface plots as described earlier. It becomes immediately
obvious that, at ϕ = 0°, the three frontier MOs have different
symmetries at all values of |B| and are therefore unable to interact
via the KS operator. In fact, the Σ and Γ1 energy curves can cross
because of their different symmetries. Even though their
energies vary quite significantly as |B| increases, this variation
is only due to the interactions of these MOs with the applied
field. Although these interactions do lead to qualitative changes
in the shapes of the MOs, most notably the disappearance of
nodal planes in the two Π MOs at zero field that become Γ1/ Γ̅1
MOs at |B| > 0, these changes do not actually affect the
distribution of electrons along the internuclear axis in any

Figure 7. (a) Energy landscapes of the frontierms = +1/2 MOs in hydrogen fluoride at various magnetic field strengths and angles. (b) Cross sections
through these landscapes at parallel (top) and perpendicular (bottom) field orientations. Annotated on these cross sections are the MO symmetries
and isosurfaces plotted at |χ(r)| = 0.100. The color at each point r on an isosurface indicates the value of arg χ(r) at that point according to the
accompanying color wheel. The numerical value next to each isosurface gives the value of the orbital electronic dipole moment ⟨χ|μ̂z|χ⟩ for the
associated MO. In , the one-dimensional irreducible representation Γ1 has character function χΓ1[Ĉ∞(ϕ)] = exp(iϕ), and the corresponding
complex-conjugate one-dimensional irreducible representation Γ̅1 has character function χΓ̅1[Ĉ∞(ϕ)] = exp(−iϕ), where Ĉ∞(ϕ) denotes an
anticlockwise rotation through an angle ϕ as viewed down the z-axis.
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significant way. This is indeed confirmed by the near equality of
the ⟨χ|μ̂z|χ⟩ values of these MOs at |B| = 0 and 0.74 B0.
Consequently, the electric dipole moment along the inter-
nuclear axis remains almost unchanged.

The situation is markedly different at ϕ = 90°. The three
frontier MOs now have the same symmetry in s and are thus
permitted to interact via the KS operator. Indeed they do, as is
evident from the distortions in their energy curves for

BB 0.5 0| | and also in the shapes of their isosurfaces. Most
significantly, the highest occupied MO (HOMO) shows the
most drastic change from a 2p orbital localized entirely on the
fluorine atom to a laterally delocalized MO with a pronounced
lobe on the hydrogen atom. Associated with this change is the
large increase in the value of ⟨χ|μ̂z|χ⟩ for this MO from −1.680
au at zero field to −1.047 au at |B| = 0.74 B0, which more than
outweighs the decreases in the values of ⟨χ|μ̂z|χ⟩ for the other
two frontierMOs. There is thus a partial charge transfer from the
fluorine atom to the hydrogen atom in the HOMO induced by
the perpendicular magnetic field, which is responsible for the
observed dipole reversal.

3.4. Symmetry of Electron Densities. In the final set of
case studies, we demonstrate the ability of QSYM2 to perform
symmetry analysis for electron densities, as formulated in
Section 2.4.2. In particular, we show how the symmetry of the
electron density is intimately related to that of the underlying
electronic wave function, both at zero field and in the presence of
external electric and magnetic fields.

3.4.1. Computational Details. For the above purpose, we
chose the equilateral geometry of H3

+ that has been found in ref
37 to be the optimal geometry for the lowestMS = −1 electronic
state when a uniform magnetic field of strength |B| = 1.0 B0 is
applied perpendicular to the plane of the molecule. For this
geometry, the lowestMS = −1 wave functions and densities were
computed in QUEST78 at the UHF/6-311++(2+,2+)G** level

of theory in three cases: at zero field, in the presence of a
perpendicular uniform electric field with strength 0.1| | = au,
and in the presence of a perpendicular uniform magnetic field
with strength |B| = 1.0 B0. The symmetry assignments for the
resulting determinantal wave functions and the corresponding
electron densities were then determined by QSYM2. In all cases,
the H3

+ structure was placed in the yz-plane so that any external
field applied perpendicular to themolecule would be along the x-
direction.

3.4.2. Density Symmetries in H3
+. Table 5 shows the wave

function and density symmetries of the lowest MS = −1 UHF
wave function in the three cases described above. We examine
first the perpendicular magnetic field case (labeledBx in Table 5)
where the unitary symmetry group of the molecule-plus-field
system is h3 . The lowest MS = −1 UHF wave function has
already been reported in ref 37 to have ( )h3 symmetry, which
is a one-dimensional irreducible representation in h3 whose
character function satisfies χΓ′(Ĉ3) = exp(2iπ/3) and χΓ′(σ̂h) =
1. As this is a nondegenerate wave function, the corresponding
density must be totally symmetric in h3 , which is indeed the
case as verified by the density symmetry assignment and also by
the density isosurface and contours in the yz-plane. Here, the
electron cloud can be seen to be equidistributed over the three
symmetry-equivalent hydrogen nuclei.

The situation is rather different in the other two cases. In the
absence of any external fields (labeled 0 in Table 5), for which
the unitary symmetry group is h3 , the lowest MS = −1 UHF
wave function at the same geometry turns out to exhibit
symmetry breaking due to its A E ( )h1 3 symmetry. The
symmetry analysis of the corresponding total density shows that
the density also exhibits an A E ( )h1 3 broken symmetry.
Similarly, in the presence of a perpendicular electric field
(labeled x in Table 5), for which the unitary symmetry group is

Table 5. Electronic Wave Function and Total Density Symmetry of the LowestMS = −1 state of H3
+ in the Presence of External

Electric and Magnetic Fieldsa

aCalculations were performed at the UHF/6-311++(2+,2+)G** level of theory. The magnitude of the applied electric field is 0.1 au, and that of the
applied magnetic field is 1.0 B0. Isosurfaces of total densities are plotted at |ρ(r)| = 0.050.
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reduced to v3 , the UHF wave function now has A E( )v1 3
symmetry, as does the corresponding density. The symmetry
breaking of the total density in these two cases can be visualized
most easily via the density isosurfaces and yz-contours: the
electron cloud is not equally distributed over the three
symmetry-equivalent hydrogen nuclei.

The external fields can also be applied parallel to the plane of
the molecular frame of H3

+. The wave function and density
symmetries and density isosurfaces resulting from the UHF
calculations in these field orientations are summarized in Table
S1 in the Supporting Information. In all cases, it can be observed
that whenever the wave function is nondegenerate, the density is
totally symmetric in the prevailing symmetry group, and
whenever the wave function exhibits degeneracy, be it because
of symmetry breaking or not, the corresponding density is no
longer totally symmetric.

We note that it is also possible to obtain density symmetries
without having access to any symmetries of the underlying wave
function, meaning that the same approach can be readily applied
to densities from correlated wave function methods as well as
HF or KS-DFT, with no additional implementation. In the
context of KS-DFT, this means that symmetry analysis can be
carried out directly on the density, rather than the KS orbitals
and noninteracting wave function as a proxy for the physical
wave function.

Examples of symmetry analyses for KS densities obtained with
the r2SCAN0 functional are also shown in Table S1 in the
Supporting Information for various external field orientations.
By considering the symmetries of electron densities, we have a
qualitative way to compare HF and KS-DFT calculations: if HF
and KS densities have the same symmetry, then there is a
likelihood that both calculations describe the same electronic
state of the system, but if HF and KS densities differ in their
symmetries, then it must be concluded that they are qualitatively
different, perhaps because they describe different electronic
states, which can happen especially if there are multiple SCF
solutions that occur close to one another (see refs3−5, 25, and
91 and also Section 3.2). In fact, for the cases listed in Table S1,
based on the symmetries of densities, both HF and KS-DFT
calculations in each field orientation can be said to approximate
the same electronic state.

4. CONCLUSION
A new program for quantum symbolic symmetry analysis,
QSYM2, is presented in this work. A key feature of the program is
its capability to generate character tables symbolically on-the-fly,
which endows it with the ability to perform symmetry analysis
for general groups automatically. This flexibility means that
QSYM2 can yield reliable symmetry assignments for systems
exhibiting degeneracy and symmetry breaking effects, where
standard implementations cannot be applied. In addition,
QSYM2 can handle reduced symmetries arising in electric or
magnetic fields, thus providing a valuable tool for analysis and
insight into systems under less chemically intuitive conditions.

The ability of QSYM2 to perform analysis of high-symmetry
systems was demonstrated for C84H64, C60, and B9

−, where in
each case, the full molecular symmetry group could be correctly
identified and carried through to classify the symmetry of the
resulting MOs, including their associated degeneracies. The
octahedral transition-metal complex Fe(CN)63− was then used
to demonstrate how QSYM2 is able to deduce representation
spaces spanned by symmetry-broken determinants and MOs,

giving a way to classify and understand symmetry breaking
effects. Furthermore, the capability of QSYM2 to analyze
symmetry in external magnetic fields was demonstrated for the
hydrogen fluoride molecule, where the symmetry of the MOs
under a magnetic field was shown to provide a rationalization of
the behavior of the molecular electric dipole moment as a
function of field strength and orientation.

An important benefit of the generic symmetry-orbit-based
representation analysis framework formulated in this article and
used in QSYM2 is the ability to analyze symmetry of quantities
other than wave functions and MOs that arise in quantum-
chemical calculations. As a simple example, the changes in the
electron density of the equilateral H3

+ as a function of electric
and magnetic field were analyzed, with the density symmetry
analysis revealing the symmetry breaking or conservation of the
underlying wave function. This approach can be applied on an
equal footing to densities arising from SCF calculations or more
elaborate post-HF correlated calculations without the need to
explicitly perform symmetry analysis on the correlated wave
functions.

The generality in the code design of QSYM2 opens many
avenues for future research. In particular, the applicability of the
symmetry-orbit-based representation analysis to members of
general linear spaces makes it possible to directly consider the
symmetry of many important quantities in quantum chemistry.
One group of such quantities includes normal coordinates that
describe translational, rotational, and vibrational modes of
molecules. Another interesting class of such quantities includes
functions of electron density and/or density matrix, of which the
Fukui function,105 which encapsulates chemical reactivity
information, and the magnetically induced current den-
sity,106,107 which provides an interpretation for observations in
magnetic spectroscopic methods, are prime examples. More-
over, QSYM2 can already provide a more complete analysis of
magnetic symmetry using corepresentation theory56,60,62 and is
not limited to uniform external fields�these developments will
be reported in future publications.

Finally, we emphasize that the Rust implementation of QSYM2

is also flexible, such that the program can operate either as a tool
to be applied subsequently to a quantum-chemical calculation in
a stand-alone manner (as used in this work with Q-CHEM), or as
a library readily integrated into existing programs (as used in this
and earlier37,108 work with QUEST78). Since the program is
open-source, we hope that it will become a useful tool for
application in a wide range of chemical simulations.

■ ASSOCIATED CONTENT
Data Availability Statement
Themain repository for QSYM2 can be accessed at https://gitlab.
com/bangconghuynh/qsym2 (accessed November 16, 2023).
The documentations for QSYM2 can be found at https://qsym2.
dev/ (accessed November 16, 2023). The source code for
QSYM2 v0.7.0 released at the time of publication of this article
was deposited permanently at 10.5281/zenodo.8384779
(accessed November 16, 2023).
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01118.

Computational design of the SymOp structure, including
fields in the SymOp structure, conversion between
improper-rotation conventions, equality of SymOp
instances, hashability of SymOp instances, and composit-
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