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ABSTRACT: The four-body nonadditive contribution to the energy of four
helium atoms is calculated and fitted for all geometries for which the internuclear
distances exceed a small minimum value. The interpolation uses an active
learning approach based on Gaussian processes. Asymptotic functions are used
to calculate the nonadditive energy when the four helium atoms form distinct
subclusters. The resulting four-body potential is used to compute the fourth
virial coefficient D(T) for helium, at temperatures from 10 to 2000 K, with a
path-integral approach that fully accounts for quantum effects. The results are in
reasonable agreement with the limited and scattered experimental data for D(T),
but our calculated results have much smaller uncertainties.

■ INTRODUCTION
Standards for high-accuracy temperature and pressure
metrology increasingly rely on acoustic, dielectric, or refractive
measurements of gases. In recent years, the accuracy of these
temperature and pressure determinations has been greatly
improved by the ability to compute properties of noble gases,
particularly helium, at low and moderate pressures based on ab
initio quantum calculations.1 Example applications include a
primary gas-pressure standard with relative uncertainties as
small as 5 ppm (1 ppm = 10−6) at pressures up to 7 MPa,2,3

dielectric-constant gas thermometry in relation to determi-
nation of the Boltzmann constant,4 and refractive-index gas
thermometry at temperatures below 25 K that is able to
measure the thermodynamic temperature with uncertainties on
the order of 0.1 mK.5

These first-principles methods all make use of the virial
expansion, in which gas nonideality is expressed as a power
series in the molar density ρ

p
RT

B T C T D T1 ( ) ( ) ( )2 3= + + + +···
(1)

where p is the pressure, T is the absolute temperature, and R is
the molar gas constant. The second virial coefficient B(T)
depends on the interaction between two molecules, the third
virial coefficient C(T) depends on interactions among three
molecules, the fourth virial coefficient D(T) depends on
interactions among four molecules, and so forth.

Because the helium atom has only two electrons, modern
computational chemistry techniques can compute its pair
potential with extraordinary accuracy. The latest pair potential
takes into account many small higher-order effects (relativistic
effects, correction to Born−Oppenheimer approximation, and
quantum electrodynamics) and yields interaction energies with
relative uncertainties on the order of 20 ppm, with similarly
small uncertainties for B(T).6 These uncertainties are at least 1
order of magnitude smaller than those that can be obtained
from the best experiments. Calculation of C(T) requires a
three-body potential. With six electrons on which to perform
computations, and three dimensions instead of one, the three-
body potential cannot be calculated with the same accuracy as
the pair potential, but recent work7 has produced a surface
with uncertainties on the order of 1%. The values calculated for
C(T) from this three-body potential and the state-of-the-art
two-body potential similarly have uncertainties more than an
order of magnitude smaller than those from experiment.7,8

At higher pressures, the fourth virial coefficient D(T) begins
to become significant. Garberoglio and Harvey9 calculated
D(T) based on the best pair and three-body potentials
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available at the time, but they had to assume the four-body
nonadditive contribution to be zero due to the lack of a four-
body potential. A rough estimate of the uncertainty due to
omission of the four-body potential was made by performing
some calculations with the four-body dispersion model
reported by Bade,10,11 which is correct in the limit of large
separations. Garberoglio and Harvey observed that, due to the
small magnitude of the four-body contribution, a four-body
potential of only modest uncertainty (say, 20%) would be
adequate for providing rigorous and relatively small un-
certainties for D(T).9

Computing the nonadditive potential for four helium atoms,
with eight electrons, is not too difficult. The more difficult part
is the fitting of the potential-energy surface, which has six
dimensions and must also be constrained to meet proper limits
for large separations, including cases in which two or three
atoms are near each other and one or two atoms are distant.
For these geometries with well-separated fragments, a
multipole expansion is used, where the nonadditive potential
is expanded as a series in inverse powers of the large
separations,12 using properties of the separate fragments such
as charge, dipole, quadrupole, and polarizability.

However, when the four atoms are not well separated, the
multipole expansion diverges and is no longer useful. Instead, a
representation of the nonadditive energy is obtained as a
function of the atomic positions by fitting to ab initio data. A
fitting procedure requires sufficient data combined with a
suitable parametric function of the six dimensions. In this
work, an extensive data set is calculated from first principles,
and since there are no “off-the-shelf” or intuitively reasonable
functions that cover the required six-dimensional space, a
machine learning method is used to interpolate the
calculations.

We next present the methods that are used to calculate and
fit the nonadditive potential energy of four helium atoms and
the multipole expansions that are used for well-separated
geometries. This is followed by a description of the path-
integral calculation of the fourth virial coefficient and its
uncertainty. We fit the fourth virial coefficient over a range of
temperatures and compare the results to experimental data.

■ COMPUTATIONAL METHODS
All electronic energies, multipoles, and polarizabilities are
calculated using Molpro,13,14 with selected results being
checked for consistency using version 2.1 of CFOUR15 and
a “Quantum” program written at the University of Notting-
ham. Energies are reported in hartree, Eh ≈ 4.3597 × 10−18 J,
and distances in bohr, a0 ≈ 5.29177 × 10−11 m. The four-body
nonadditive energy of four helium atoms (He4) is defined as

E E E i j k E i j

E i

(1,2,3,4) (1,2,3,4) ( , , ) ( , )

( )

i j k i j

i

(4)
4 4

4

= +
< < <

(2)

where E are electronic energies calculated using the full He4
basis set so that a counterpoise correction is applied. The
notation E(4)(1,2,3,4) is abbreviated as E(4) for convenience.

For each required position of the four atoms of He4, the
geometry is placed into a category according to the six
internuclear distances rij, and geometries in different categories
are treated differently.

If at least one rij is less than rshort = 3 a0, then E(4) is set to
zero. The Boltzmann weighting of these geometries is
sufficiently small that neglecting E(4) has no significant effect
on the thermodynamic quantities presented here.

Otherwise, the geometry is classified based on the
distribution of “close” pairs (i, j), with rij ≤ rlong. If all atoms
are mutually connected by chains of close pairs, then E(4) is
calculated by interpolation (details below). The distance rlong =
7 a0 is chosen using two criteria. First, E(4) is small (often of
order 10−10 Eh or less) when two subclusters are separated by
rlong. Second, the electron exchange part of E(4) in such
geometries is usually a small fraction of the total E(4), which
indicates that the overlap between the electrons of the
subclusters can be neglected and that an asymptotic function
is suitable for evaluating the energy (details below). This
electron exchange energy is defined as the difference between
E(4) and the Coulomb part of E(4), and the Coulomb energy is
calculated using the in-house Nottingham “Quantum” program
by treating electrons in different subclusters as distinguishable.

For “connected” He4 clusters, E(4) is precalculated at a set of
training geometries using standard quantum chemistry
methods and interpolated to the required geometry. Electron
correlation is modeled using coupled-cluster theory with single,
double, and perturbative triple excitations, CCSD(T). The
CCSDT and CCSDT(Q) methods were compared with
CCSD(T) for a few geometries, but they greatly increase the
computation time and do not change the energy significantly
compared to the uncertainties discussed later. Training
geometries are obtained using extensive “low-level” calcula-
tions with the aug-cc-pVTZ basis set, and calculations using
the aug-cc-pVQZ basis set at those geometries then yield the
final “high-level” interpolated E(4).

The magnitude of E(4) varies widely over the set of
connected clusters, with a maximum magnitude of approx-
imately 1.6 × 10−3 Eh for a regular tetrahedron with a side
length rshort. The interpolation must be suitable for compact
clusters like this and for extended clusters with pair distances
approaching rlong, where E(4) is often around 7 orders of
magnitude smaller, but the volume of physically accessible
configuration space is much larger. The extent of a cluster is
represented by a quantity P6, defined as P6 = ∏i<j(rij/rshort),
where 1 ≤ P6 < 1936.61 for connected clusters. The following
ranges of P6 are considered separately: 1 to 2 (region 1), 2 to 4
(region 2), 4 to 8 (region 3), 8 to 16 (region 4), 16 to 32
(region 5), 32 to 64 (region 6), 64 to 128 (region 7), 128 to
256 (region 8), and >256 (region 9). Regions 4 to 9 are further
divided into four subregions (A, B, C, and D), giving a total of
27 subregions (1, 2, 3, 4A, 4B, etc.), and interpolation within
each subregion is based on a separate data set. The subregions
(A, B, C, and D) are defined as follows (after numbering the
four He atoms in a permutation-invariant way, to ensure that
the final energy function respects the 24-fold permutation
symmetry). Subregion A: the three shortest pair distances are
r12 < r13 < r14. Subregion B: the three shortest pair distances are
r12 < r13 < r34 or r13 < r12 < r34. Subregion C: the three shortest
pair distances are r12, r13, and r23. Subregion D: the two
shortest pair distances are r12 < r34. This procedure for division
into subregions is chosen from several possibilities as the one
giving the best compromise between interpolation accuracy
and computer time.

The interpolation method closely follows previously
reported work16 on nonadditive interactions. A reference set
and test set, each containing 5000 data points, are chosen in
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each subregion. Active learning is used to choose a subset of
the reference set as the training set, the resulting training set is
interpolated, and the interpolating function is compared with
the test set. Interpolation is performed by Gaussian process
(GP) regression.17 The active learning process starts with a
single point (the energy of the highest magnitude) in the
training set, then selects the worst-predicted point in the
reference set and adds it to the training set at each step.

In the current work, the GP uses a zero mean function, and
the kernel is a simple (not symmetrized) product of one-
dimensional squared exponential kernels in each coordinate,
each with a different length scale. These length scales and the
noise variance constitute the hyperparameters of the GP and
are chosen by maximizing the marginal likelihood of the
model.17 The noise variance (nugget) is constrained to be no
more than 10−24 a0

2 to prevent active learning from selecting
very close data points.

Reference sets and test sets are based on randomly selected
points. To improve the fitting for geometries close to the
global minimum, a few regular tetrahedral geometries are
added to the reference set. In regions 6 to 9, it is found that
choosing reference and test points based on inverse
interatomic distances does not adequately sample phase
space, and unbiased sampling is used instead, with each
point in 12-dimensional Cartesian space being equally
probable. In each subregion, six coordinates x1 to x6 defined
as rij

−3 are used for the regression; this is found to work better
than the more conventional choice of rij

−1. A seventh
coordinate, x7 = P6

−1/2, is added. In the B subregions, an
eighth coordinate x r r r( )8 12 13 34

1= is also used to aid the
interpolation. The D subregions tend to have E(4) values larger
than the other subregions, and for larger P6 this is attributed in
part to the atoms forming two He2 moieties, which can interact
via a quadrupole−quadrupole interaction. An eighth coor-
dinate related to this interaction is used in the D subregions

x r z r z r z r z r

z z z r z r z z

105( ) ( ) 60( )( )

( ) 15( ) 15( ) 6( ) 3 /4
8 AB

5
A AB

2
B AB

2
A AB B AB

A B A AB
2

B AB
2

A B
2

= [ · · · ·
· · · + · + ]

(3)

where zA z( )B is a unit vector pointing from nucleus 1 to 2 (3
to 4), and a vector from the geometric center of 1−2 to the
geometric center of 3−4 has length rAB and direction rAB.

Details of the data sets for the subregions are given in Table
1. The active learning is terminated in each subregion once the
number of training points (shown in the table) is sufficient to
ensure that the interpolation error is not significantly greater
than the difference between the two basis sets. This is achieved
by using fewer than 10% of the reference set as training data.
The more compact subregions 1 to 3 are easier to fit to a given
percentage accuracy, whereas the more extended subregions
are more difficult and require more training points. This may
be because they cover a larger amount of configuration space,
or because E(4) fluctuates more between negative and positive
values, or because the rms values may be approaching the
numerical precision of the quantum chemical calculations.

Overall, E(4) decreases with increasing cluster extent P6, as
expected. For compact clusters, such as regular tetrahedra with
short bond lengths, the energy is positive. For more extended
geometries (including regular tetrahedra near the global He4
energy minimum), it has positive and negative values; the
positive values tend to be larger and cover more configuration
space. The most negative E(4) values are associated with planar

Y-shaped geometries. The difference between aug-cc-pVTZ
and aug-cc-pVQZ calculations increases with increasing P6,
relative to the magnitude of the energy.

The uncertainty in fitted E(4) consists of the fitting error and
the approximations inherent in the quantum chemistry
calculations. The latter cannot be calculated exactly, instead,
an uncertainty is associated with each subregion by considering
the quantities σfit and σTZ, given in Table 1, to be independent
errors. The use of σTZ as a (conservative) estimate of the
uncertainty in the calculated energy is supported by perform-
ing a few higher-level calculations at selected geometries and
by comparison with analogous calculations on He3.18 The
combined uncertainty ( )fit

2
TZ
2 1/2+ is then expressed as a

percentage of Erms
(4) , and the resulting value is used as the

percentage uncertainty in that subregion. These uncertainty
estimates are checked by comparing the final fitted energy
(which is calculated at the aug-cc-pVQZ level) with aug-cc-
pVTZ calculations over each test set. The resulting rms error is
found to be very similar to the uncertainty estimate in every
subregion, which also indicates that the transfer learning (using
aug-cc-pVTZ training points for interpolating aug-cc-pVQZ
calculations) does not introduce significant additional errors.

Since E(4) is fitted separately in each subregion, the fitted
function is not continuous across region boundaries, and the
discontinuity may be substantial since the fitting error is likely
to be largest at the boundaries. These discontinuities do not
affect the calculation of virial coefficients; therefore, no attempt
is made to remove them. However, it would not be advisable to

Table 1. Details of the Subregions Used for Interpolationa

subregion points E(4)
rms/Eh σfit/Eh σTZ/Eh

1 125 6.6[−4] 9.9[−7] 5.3[−6]
2 230 2.8[−4] 7.1[−7] 2.1[−6]
3 275 7.4[−5] 6.4[−7] 6.7[−7]
4A 205 6.9[−6] 1.1[−7] 1.1[−7]
4B 367 1.4[−5] 6.4[−8] 1.9[−7]
4C 257 6.8[−6] 7.0[−8] 1.1[−7]
4D 332 1.7[−5] 1.1[−7] 2.2[−7]
5A 281 7.3[−7] 1.3[−8] 2.0[−8]
5B 391 1.9[−6] 2.2[−8] 4.5[−8]
5C 330 7.7[−7] 1.5[−8] 2.3[−8]
5D 478 2.8[−6] 3.2[−8] 6.4[−8]
6A 392 5.7[−8] 1.0[−9] 2.6[−9]
6B 408 2.2[−7] 3.8[−9] 9.1[−9]
6C 497 6.6[−8] 1.4[−9] 3.9[−9]
6D 382 4.9[−7] 1.7[−8] 1.5[−8]
7A 373 3.4[−9] 1.3[−10] 4.0[−10]
7B 491 3.1[−8] 6.2[−10] 2.1[−9]
7C 441 4.5[−9] 2.5[−10] 7.3[−10]
7D 495 8.7[−8] 2.9[−9] 3.2[−9]
8A 304 4.7[−10] 2.6[−11] 5.0[−11]
8B 410 6.5[−10] 3.6[−11] 1.8[−10]
8C 409 7.9[−10] 3.9[−11] 1.6[−10]
8D 384 5.2[−9] 1.2[−11] 4.3[−10]
9A 97 1.8[−10] 1.3[−11] 1.8[−11]
9B 363 3.6[−10] 2.0[−11] 1.0[−10]
9C 87 4.9[−10] 1.1[−11] 5.2[−11]
9D 199 4.2[−10] 9.0[−12] 5.3[−11]

aE(4)
rms is the rms of the calculated E(4) values, σfit is the rms error

over an independent test set, and σTZ is the rms difference between
“low-level” and “high-level” energies. Square brackets denote powers
of 10; for example, 6.6[−4] means 6.6 × 10−4.
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perform calculations that relied on forces calculated from the
fitted energy. Fitting errors tend to be equally divided between
over- and underestimates of the calculated energy, which
means that substantial cancellation of the fitting errors is
expected in the calculation of the virial coefficients.

For He4 clusters that are not “connected”, asymptotic
functions are used to approximate the nonadditive energy.
Brief details are given next. Since E(4) in these regions is very
small, decreases rapidly with cluster size, and has substantial
cancellation between positive and negative regions, the
asymptotic functions do not need to be highly accurate and
they are calculated using only charges, dipoles, and dipole
excitations on each atom. The resulting uncertainty in E(4) is
estimated to be 10%, based on comparison with calculations at
selected geometries near the boundary with the “connected”
region. The main source of error arises from neglecting
quadrupoles and higher multipoles, although there are also
some approximations in the calculation of the dipole
properties. The percentage error is generally expected to
decrease with an increasing cluster size.

When all six interatomic distances are greater than rlong, eq 2
is used to define E(4). Each atom is represented using a set of
ten pseudostates:19 the ground state and nine excited states
corresponding to three excitations in each of the x, y, and z
directions. The excited states are given fixed excitation energies
of 0.818, 1.048, and 2.296 Eh, which are chosen from a fit to a
large set of cluster polarizabilities. The dipole oscillator
strengths for each pseudostate are obtained from a fit to the
imaginary-frequency-dependent dipole polarizability α(iω),
calculated using time-dependent CCSD theory with the aug-
cc-pVQZ basis set at 11 ω values. The energies in eq 2
(relative to the energy of noninteracting atoms) are then
calculated as the lowest eigenvalue of a sparse Hamiltonian
matrix p p p p H q q q q1 2 3 4 1 2 3 4| | , where p and q are pseudostates of
each atom 1 to 4, and the matrix elements include diagonal
excitation energies and off-diagonal point dipole−dipole
interactions.

When one interatomic distance (r12) is below rlong, an
asymptotic function is calculated based on the three well-
separated moieties 1−2, 3, and 4. The nonadditive energy is
written as

E E E E(12,3,4) (1,3,4) (2,3,4)(4) (3) (3) (3)= (4)

where E(3)(a, b, c) is the three-body nonadditive energy E(a, b,
c) − E(a, b) − E(a, c) − E(b, c) + E(a) + E(b) + E(c). The
nonadditive induced dipole interactions are modeled as
described above, and the polarizabilities of atoms 1 and 2
are each taken to be half of the polarizability of the 1−2
moiety, which is fitted as a function of bond length r12. The 1−
2 moiety also has a quadrupole, which is calculated by using
CCSD theory with the aug-cc-pVQZ basis set and fitted as a
function of r12. It differs by less than 0.001 e a0

2 from accurate
literature calculations for all bond lengths.20 The fitted
quadrupole θ is then represented as opposing dipoles μ = θ/
(2r12) on atoms 1 and 2. The Hamiltonian matrix includes
interactions of these permanent atomic dipoles with the
pseudostates of atoms 3 and 4. Atoms 1 and 2 are assumed not
to polarize each other (although for other atoms and molecules
where polarization is more important, it would be advisable to
include some mutual polarization in the asymptotic model).

When two interatomic distances involving the same atom
(r12 and r13) are below rlong, regardless of the distance r23, an

asymptotic function is calculated based on the two moieties 1−
2−3 and 4. The nonadditive energy is written as

E E E E E

E E E

(123,4) (12,4) (13,4) (23,4)

(1,4) (2,4) (3,4)

(4) (2) (2) (2) (2)

(2) (2) (2)

=
+ + + (5)

where E(2)(a, b) is the two-body nonadditive energy E(a, b) −
E(a) − E(b). The nonadditive induced dipole interactions are
modeled as described above, and the nonadditive contributions
to the polarizabilities of atoms 1 to 3 within the 1−2−3 moiety
are each taken to be one-third of the total nonadditive
polarizability of 1−2−3, which is fitted as a function of the
three bond lengths. The 1−2−3 moiety also has a dipole and
quadrupole, which are calculated by using CCSD theory with
the aug-cc-pVQZ basis set. The fitted dipole, which is entirely
nonadditive, is represented uniquely as a charge on each atom.
The quadrupoles of the isolated pairs 1−2, 1−3, and 2−3 are
calculated as described above, and the remaining nonadditive
quadrupole of 1−2−3 is then represented as three additional
pairs of opposing dipoles on each pair of atoms 1−2, 1−3, and
2−3; this is also a unique definition, except for geometries
when the atoms are exactly collinear, which are not used in the
data set. The resulting atomic charges and dipoles are fitted as
a function of the bond lengths. A counterpoise correction is
not used for calculating nonadditive multipoles or nonadditive
polarizabilities. The Hamiltonian matrix includes interactions
of these permanent atomic charges and dipoles with the
pseudostates of atom 4. Atoms 1, 2, and 3 are assumed not to
polarize each other. This asymptotic function involves a
dipole−induced dipole interaction energy, which is always
negative and decreases as the inverse sixth power of the
distance from 1−2−3 to 4. This could be an important long-
ranged contribution to the fourth virial coefficient since the
energy falls off relatively slowly with distance, but in practice,
the dipole of He3 is small, with a maximum of only ≈0.002 e a0
for the most compact right-angled trimers with two bond
lengths near rshort.

Finally, when two interatomic distances r12 and r34 are below
rlong, an asymptotic function is calculated based on the two
moieties 1−2 and 3−4. The nonadditive energy is written as

E E E E E

E E E E

E

(12,34) (12,3) (12,4) (1,34)

(2,34) (1,3) (1,4) (2,3)

(2,4)

(4) (2) (2) (2) (2)

(2) (2) (2) (2)

(2)

=
+ + +

+ (6)

The polarizabilities and quadrupoles of 1−2 and 3−4 are
modeled as described above. The Hamiltonian matrix includes
interactions of the permanent atomic dipoles and pseudostates
of atoms 1 and 2 with those of atoms 3 and 4. Atoms in a pair,
(1,2) and (3,4), are assumed not to polarize each other. This
asymptotic function involves a quadrupole−quadrupole
interaction energy, which decreases as the inverse fifth power
of the distance from 1−2 to 3−4. This is the largest
contribution to the energy at long range (see also the
discussion of D subregions above), but its contribution to the
fourth virial coefficient is not expected to be large because
regions of positive and negative nonadditive energy will cancel
each other.
Path-Integral Calculation of D(T). The calculation of the

fourth virial coefficient D(T) followed the procedure outlined
in refs 1 and 9 using the path-integral formulation of quantum
statistical mechanics. In this approach, each quantum particle is
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represented by a ring polymer of P monomers (beads). The
virial coefficient is written as

D T D T D T D T( ) ( ) ( ) ( )2 32 43= + + (7)

where D2(T) is the value obtained considering the pair
potential only, D32(T) is the difference between D(T)
computed with the three- and two-body potential and
D2(T); expressions for these quantities can be found in ref 9.
Analogously, D43(T) is the contribution to D(T) from the
nonadditive four-body interaction, and it is given by the
infinite volume (V) limit of

D T
N

V V Vr( )
8

exp( ) exp( ) d /
i

i43
A

4 4
(32)

1

4

=
=

(8)

where NA is the Avogadro constant,V4 is the total four-body
interaction potential, and V4

(32) is the interaction potential of
four atoms excluding the nonadditive four-body contribution.
In eq 8, the average ⟨·⟩ is performed over the configuration of
ring polymers sampled according to the path-integral
prescription, and ri is the position of the first bead of the
ring polymer associated with particle i. The overbar represents
the average interaction potential among the ring polymers, as
specified by the path-integral approach.1 We performed the
integration over the coordinates ri using the VEGAS Monte
Carlo algorithm as implemented in the Cuba library,21 using
106 evaluations. The average ⟨·⟩ over the ring polymers was
evaluated by drawing eight independent configurations at each
sampling point. We used the same value of P as in ref 9, that is,
P = nint(4 + 620/(T/1 K)0.7), where nint(x) denotes the
nearest integer to x. We checked that we obtain the same
results increasing P by 30% at 10, 120, and 1000 K. We
performed as many independent runs as needed so that the
statistical uncertainty of D43(T) and D32(T) (evaluated as the
variance of the mean) became smaller than the propagated
uncertainty coming from the four-body and three-body
potential, respectively.

The propagation of the uncertainty of the potentials to the
uncertainty in D(T) was performed using the functional-
differentiation approach.1 In particular, we have

D T N u

Vr

( ) (4e 4e 12e (e

1)) d /

V V V V

i
i

32 A 3

1

4

4 3 3 2= +

= (9)

D T N u V Vr( ) exp( ) d /
i

i43 A 4 4
1

4

=
= (10)

where δun is the estimated standard (k = 1) uncertainty of the
nonadditive n-body potential, and, as above, ⟨·⟩ indicates an
average of ring polymers. Integration of eqs 9 and 10 was
performed analogously to the integrations D43 and D32. In this
case, however, we found properly converging results using only
one run with 5 × 105 Monte Carlo evaluations.

Table 2 reports the values of the uncertainty of D(T)
propagated from the uncertainties of the potentials. With
respect to previous calculations, the use of an improved three-
body potential7 resulted in a reduction of the corresponding
propagated uncertainty by a factor of approximately 4 across
the whole temperature range investigated here. Nevertheless,
the largest contribution to the uncertainty of D(T) comes from

the propagated uncertainty from the four-body potential. In a
previous work, this unknown contribution was estimated on
the basis of a simple model for the four-body interaction.
Actual uncertainties are a bit smaller than those expected at
temperatures T ≳ 80 K but larger than the previous estimate
by up to a factor of 2 at temperatures down to T = 10 K. This
revised estimate of the uncertainty is likely to be an
overestimate because there is expected to be significant
cancellation of errors between regions where the fit is too
high and regions where it is too low. We also note that the
integral in eq 8 has positive and negative contributions that are
each about 10 times larger in magnitude than the total.

Table 3 reports our calculated values for D(T), including all
the contributions from the various nonadditive potentials (see
eq 7). The contribution D2(T), obtained considering only
pairwise additive interactions, uses the same pair potential as
ref 9 and has not been recalculated. However, we recomputed
the contribution of D32(T) due to the three-body potential. As
already noted in the case of the third virial coefficient,7 the
updated three-body potential results in a systematic negative
shift in D32(T). As expected, however, the updated three-body
contribution to D(T) is compatible with that in ref 9 within
mutual uncertainties.

The computed values of the four-body contribution to
D(T), D43(T) of eq 7, are found to be positive. They decrease
from T = 2000 K down to T = 273.16 K and increase again at
lower temperatures. We notice that the D43 values are smaller
than the propagated uncertainty from the four-body potential
except at the highest temperatures. This is due to the fact that
D43(T) is obtained by integrating a function with positive and
negative regions (see eq 8), while u(V4) is obtained by
integrating a strictly positive function, as seen in eq 10,

Table 2. Contributions to the Standard (k = 1) Uncertainty
of D(T) Propagated from the Potentialsa

temperature
(K)

u(V2)
(cm9/mol3)

u(V3)
(cm9/mol3)

u(V4)
(cm9/mol3)

upot(D)
(cm9/mol3)

10 16.90(6) 19.3(2) 91(2) 94
15 4.83(1) 7.52(6) 53.0(7) 54
20 2.088(5) 4.04(2) 35.1(5) 35
24.5561 1.232(4) 2.72(2) 29.0(4) 29
30 0.707(3) 1.93(2) 22.7(3) 23
50 0.1843(7) 0.819(5) 13.2(2) 13
80 0.0622(3) 0.444(4) 7.8(1) 8
120 0.0271(1) 0.286(2) 5.54(9) 6
173.15 0.01352(6) 0.201(1) 4.07(9) 4
200 0.01045(5) 0.179(1) 3.63(5) 4
223.15 0.00868(4) 0.165(1) 3.22(6) 3
250 0.00716(3) 0.151(1) 2.97(7) 3
273.16 0.00622(3) 0.141(1) 2.77(4) 3
300 0.00537(3) 0.134(9) 2.48(6) 2
323.15 0.00476(2) 0.126(8) 2.30(3) 2
400 0.00343(1) 0.112(1) 1.96(2) 2
500 0.002469(8) 0.0981(8) 1.61(4) 1.6
700 0.001525(5) 0.0806(7) 1.21(1) 1.2
1000 0.000942(3) 0.0675(5) 0.91(1) 0.9
1500 0.000548(2) 0.0543(5) 0.67(1) 0.7
2000 0.000375(2) 0.0425(4) 0.551(8) 0.6

au(V2): pair potential,6 u(V3): three-body potential,7 u(V4): four-
body potential of this work. The numbers in parentheses are the
standard uncertainties from the PIMC calculation. The last column
reports the total standard (k = 1) uncertainty, obtained as the sum in
quadrature of the three contributions.
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together with the fact that the uncertainty δu4 is a sizable
fraction of the absolute value of the four-body potential.

Our values of D(T) as shown in Table 3 are fully consistent
within mutual uncertainties with those given in ref 9 and have
similar uncertainties. The main advance in the present work
(in addition to the use of an improved three-body potential) is
the rigorous inclusion of the nonadditive four-body interaction
and its uncertainty, allowing us to produce values with no
contributions ignored and with a complete uncertainty budget.
Correlation for D(T). We developed a correlation for the

values of D(T) reported in Table 3 of the form

D T
a

T T
( )

( / )k

k
b

1

4

0
k

=
= (11)

using T0 = 100 K. The values of the coefficients ak and bk are
reported in Table 4. The function in eq 11 passes within the
expanded statistical uncertainties in D, Ustat(D), in the
temperature range 10−2000 K, with the exception of 15 K,
where it deviates from the calculated value of D(T) by 1.06
expanded statistical uncertainties. This function extends in a
reasonable way down to the temperature where D(T) attains

its maximum (T ∼ 5 K), but at this point, the deviation from
the simulation data reported previously9 increases to 2
expanded statistical uncertainties.
Comparison with Experimental Data. Experimental

measurement of D(T) requires high-accuracy density measure-
ments up to high pressures, and the reported experimental
values for helium have relatively high uncertainties and, in
some cases, are mutually inconsistent.

Figure 1 displays our results at temperatures of 200 K and
below. No experimental D(T) exist below 83 K, and the two

experimental sources22,23 show some scatter and an unclear
trend with temperature. Our results have much smaller
expanded uncertainties than the experiments (smaller than
the size of the symbols above 50 K). They are consistent in
magnitude with the reported experimental values but show a
clear temperature trend that could not be discerned by
inspection of the experimental points.

The experimental situation is better at higher temperatures,
due to the recent results reported by Moldover and
McLinden24 and by Gaiser and Fellmuth.25 These data,
along with those from two older studies,26,27 are plotted along
with our results in Figure 2. The point derived by Gaiser and
Fellmuth25 from dielectric-constant gas thermometry at
273.16 K has relatively large error bars but is in good
agreement with our results. The agreement with values
reported by Moldover and McLinden24 above about 275 K
is excellent, but there is a systematic offset at lower
temperatures. This offset is not large, but it is outside the
mutual expanded uncertainties. In ref 9, it was speculated that
this might be due to an unrecognized error (such as a small
error in calibration of the sinker used) in the experiments
described in ref 24. However, a recent analysis1 suggests that
the discrepancy instead arose from the use of a truncated virial
expansion to obtain the fourth virial coefficient in ref 24 when
the contribution of the fifth and sixth virial coefficients, while
small, was not entirely negligible.

■ CONCLUSIONS
We have used GPs within an active learning approach to
interpolate accurate ab initio values for the nonadditive four-

Table 3. Values of the Various Contributions to D(T) from
Equation 7a

temperature
(K)

D2(T)
(cm9/mol3)

D32(T)
(cm9/mol3)

D43(T)
(cm9/mol3)

D(T)
(cm9/mol3)

10 4515(50) −363(6) 17(3) 4169 ± 214
15 3056(20) −165(2) 11(1) 2902 ± 114
20 2854(20) −86.4(9) 8.9(8) 2777 ± 78
24.5561 2780(10) −56.4(6) 7.0(7) 2730 ± 64
30 2701(6) −36.7(4) 5.4(5) 2669 ± 47
50 2275(2) −19.3(2) 2.5(3) 2258 ± 27
80 1799.0(7) −18.6(1) 1.1(2) 1781 ± 16
120 1402.3(5) −21.53(7) 0.5(9) 1381 ± 11
173.15 1089.4(4) −23.82(5) 0.4(1) 1066 ± 8
200 979.4(3) −24.65(5) 0.2(6) 955 ± 7
223.15 901.2(3) −25.19(5) 0.2(7) 876 ± 6
250 825.2(3) −25.59(4) 0.3(5) 800 ± 6
273.16 768.9(3) −25.85(4) 0.2(5) 743 ± 6
300 712.9(3) −26.16(4) 0.4(5) 687 ± 5
323.15 671.0(2) −26.31(4) 0.4(5) 645 ± 5
400 560.2(2) −26.60(3) 0.4(4) 534 ± 4
500 460.3(2) −26.66(3) 0.6(3) 434 ± 3
700 336.9(2) −26.24(3) 0.8(2) 311 ± 2
1000 236.6(1) −25.21(2) 1.0(2) 212 ± 2
1500 153.75(9) −23.45(2) 1.2(2) 131.6 ± 1.4
2000 110.83(7) −21.95(2) 1.3(1) 90.3 ± 1.1

aNumbers in parentheses are standard (k = 1) statistical uncertainties
from the PIMC calculation. The last column reports our best values
for D(T), with expanded (k = 2) uncertainties that include the
uncertainty propagated from the potentials (see Table 2).

Table 4. Parameters for Equation 11a

k ak (cm9/mol3) bk

1 204.153 2.07032
2 −1067.96 1.55831
3 2678.59 0.857992
4 −257.562 0.296535

aThe ak have dimensions of (cm9/mol3), while bk are dimensionless.
The quantity T0 was set to 100 K.

Figure 1. Comparison of calculated D(T) for 4He at low temperatures
with experimental results.22,23 Error bars represent expanded
uncertainties with a coverage factor k = 2. Expanded uncertainties
for this work are smaller than the size of the symbols at and above 50
K.
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body potential of a set of four helium atoms. The resulting
surface is supplemented by long-range functions that exhibit
proper asymptotic behavior, including cases where two or three
molecules are clustered together with the other(s) at a large
distance. To the best of our knowledge, this is the first
complete four-body potential ever presented for helium.

The four-body surface allows us to perform the first
calculation of the fourth virial coefficient of helium with a
complete uncertainty budget, which is necessary for the use of
helium in gas metrology. This calculation also employs the
state-of-the-art two-body and three-body potentials; the use of
the latest three-body potential7 reduces the uncertainty due to
that source compared to the calculations of ref 9. The resulting
values for D(T) have significantly lower uncertainties than any
values derived from experiment.

Because of the very high accuracy of the state-of-the-art two-
and three-body potentials used, the greatest source of
uncertainty in the D(T) values presented here comes from
the four-body potential. Reduction of this contribution to the
uncertainty would require the use of larger basis sets (such as
aug-cc-pV5Z), a higher level of electron correlation (such as
CCSDT(Q)), a more accurate interpolation which would most
likely require more data points, and possibly consideration of
relativistic effects. This is beyond our current computational
capabilities.

Because the new four-body potential requires substantially
more computing time than, for example, the three-body
potential, our calculations could only be performed down to 10
K. With more computational resources, they could be extended
to lower temperatures, although below about 7 K it would also
be necessary to include exchange effects as derived in ref 9.
However, because the four-body contribution to D(T) is
relatively small (see Table 3), the results from ref 9 that
assumed D43 = 0 and performed calculations down to 2.6 K
should be a reasonable approximation for temperatures below
10 K.
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