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1 Introduction

Cosmology aims to unravel the profound mysteries surrounding dark matter, dark energy
and the early stages of cosmic evolution. Although general relativity (GR) has for over 100
years enjoyed immense empirical success [1], cosmological tensions (such as those in the H0
and S8 parameters [2]) hint towards the possible need for new physics to explain modern
cosmological data in this era of precision cosmology. The prediction of singularities is also
a troublesome consequence (and some would argue an impossibility) of GR.

A multitude of proposals have been put forth to address these unresolved issues in
cosmology [3]. One method that has garnered the attention of theorists, which will be the
subject of this paper, is modified gravity. Stress testing GR by constraining alternative gravity
theories with modern observations is an important step forward in confirming or rejecting
its validity. Modified gravity has the ability to not only affect cosmology but gravitational
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phenomena as a whole, giving it an important role in the quest for a quantum theory of
gravity. While this approach can be coupled with modifications to canonical particle theory,
in this study we assume the Standard Model (SM) of particle physics.

Extensions of general relativity or alternative theories of gravity have been around since
Einstein’s discovery in 1915. This is a vast subject, and as such the reader is referred to [4]
for a concise and thorough review. One important result for the study of gravitational
theory is Lovelock’s theorem [5, 6], which states that Einstein’s field equations are the unique
4-dimensional 2nd order equations of motion for gravity that come from an action principle
that solely relies on the metric. To deviate from general relativity one must therefore make
modifications to the Einstein-Hilbert action (1.1)

S = 1
16πG

∫ √
−gRd4x+

∫
Lm (gµν , ψ) d4x (1.1)

in a non-trivial way. A common procedure is to allow for external fields coupled to the
curvature, as well as the addition of non-linear curvature terms in (1.1). Of interest here is
the case of Gauss-Bonnet gravity, where one allows the unique set of quadratic invariants
of the Riemann tensor [5, 7]

G = R2 − 4Rµ
νR

ν
µ +Rµν

ρλR
ρλ
µν (1.2)

to be included in the action (1.1). Although the effects of Gauss-Bonnet gravity have been
extensively studied in higher dimensional space-times, this invariant in 4 dimensions is a
total derivative term, and as such does not contribute to spacetime dynamics. While it was
initially reported in [8] that a pure Einstein-Gauss-Bonnet theory of gravity in 4 dimensions
had been discovered (which we shall refer to as the Glavin-Lin (GL) formulation), it was
established that there is no such theory [9–11]; see [12] for a discussion on the formalism
and shortcomings of [8].

These developments prompted others to consider how one would go about constructing
a 4-dimensional theory of gravity that contains the Gauss-Bonnet term whilst retaining
second order equations of motion and locality, and at the same time avoiding so-called ghosts
(theoretical instabilities leading to unphysical consequences). It was shown that this was
possible by allowing the action to contain an additional scalar field, resulting in [13, 14]

S =
∫
d4x

√
−g 1

16πG

[
R− 2Λ + α

(
ϕG + 4Gαβ∂αϕ∂βϕ− 4(∂ϕ)2□ϕ+ 2

(
(∂ϕ)2

)2
)]

+ Sm

(1.3)
which we shall refer to as 4-dimensional Einstein-Gauss-Bonnet (4DEGB) gravity. This is no
longer a metric theory, but instead is within the class of modified gravity theories referred to
as scalar-tensor theories and more specifically the Horndeski class [15]. A generalization of
this theory containing additional terms dependent on ϕ can be obtained from dimensional
reduction of Gauss-Bonnet gravity [16]. While there have been some investigations in the
field of scalar-Einstein-Gauss-Bonnet gravity (sEGB) in 4 dimensions [17], this theory is
distinct from 4DEGB. The higher derivative terms in (1.3) are necessary and unique to
4DEGB and are not present in sEGB.

Here we investigate some of the implications of 4DEGB gravity for cosmological observa-
tions, contributing to the already extensive efforts [18] at constraining this theory. Specifically,
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we consider a largely untested sector of 4DEGB parameterized by C, a free parameter that
comes from solutions to the scalar field equations of motion derived from the action (1.3), in
addition to the coupling constant α. Since the GL formulation is obtained by considering the
D → 4 limit of various D-dimensional solutions, it has no counterpart for the parameter C.

Several papers [12, 19–31] have investigated the cosmological, astrophysical and solar
system implications of the GL formulation (and also, to a lesser extent, of 4DEGB theory).
Tests from the Weak-Field limit provide the tightest constraints

α < 1010 m2 =⇒ α̃ ≲ 10−43 (1.4)

from LAGEOS satellite observations [12], where we define the dimensionless parameter α̃ as
α̃ = αH2

0 . This limit on α̃ from weak field tests is 16 orders of magnitude smaller than those
from gravitational wave constraints (see for example equation (148) of [18] for GW170817
constraints). Requiring that atomic nuclei not be shielded by a horizon imposes the strongest
bound on negative α [27], yielding

−10−83 ≲ α̃ ≲ 10−43. (1.5)

The terms in the field equations coming from 4DEGB gravity will be of the same order as
those from GR for α̃ ∼ O(1) or α ∼ O(1052 m2). This means that in 4DEGB the α parameter
alone provides negligible corrections to Einstein gravity in all regimes except in the very early
universe, extremely close to a black hole [18], or inside highly compact objects [32].

The equations describing the Weak-Field limit are recovered almost exclusively by
applying the Post-Newtonian expansion, which produces equations with no counterpart for
the parameter C. Consequently, the constraints (1.4) on α from the Weak-Field limit are
valid for both the GL formulation and 4DEGB. This means that the parameter α is highly
constrained in 4DEGB [12], while few conclusive constraints on the parameter C exist (see
section 4.1 for a short overview).

The remainder of our paper is structured as follows: in section 2 we describe the theoretical
background and derive the field and perturbation equations for 4DEGB. In section 3 we
introduce the remaining effects of the parameter α, which will still impact universe dynamics
at very early times even when priors (1.5) are enforced. We show that the sound horizon in
4DEGB diverges in the limit of early time, requiring the explicit introduction of an early-time
cut-off. We also demonstrate how 4DEGB can provide an alternative to inflation in solving
the horizon problem for some values of the parameter α.

In section 4.1 we introduce a useful limit that allows us, in some regimes, to parameterize
4DEGB through a single additional degree of freedom compared to GR (the parameter
α̃C ≡ αC2

H2
0

). We show that, in the small-α limit at times substantially past nucleosynthesis,
4DEGB is described by a parameter that at the background level introduces a “dark radiation”
term and, at the level of the perturbation equations, modifies structure growth. In section 4.2
we make use of this formulation to place novel constraints on this heretofore minimally tested
sector of 4DEGB using cosmic microwave background (CMB) data, finding α̃C ≡ αC2

H2
0

=
(−9 ± 6) × 10−6. Section 4.3 provides a qualitative analysis of the perturbative behaviour
of the theory by analysing trends in the 4DEGB linear matter power spectrum, produced
by modifying a GR Boltzmann solver. We conclude in section 5.
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2 Theory & solutions

2.1 Theoretical background

The 4DEGB theory (1.3) is obtained using an approach similar to that of the D → 2 limit
of general relativity [33]. In this method [13, 14] one begins with the action

SGB
D = 1

16πGD

[∫
dDx

√
−g(R− 2Λ) + α

D − 4

(∫
dDx

√
−g̃G̃ −

∫
dDx

√
−gG

)]
+ Sm

(2.1)
with no prior assumptions about the curvature of the D-dimensional space, where g̃µν =
exp(ϕ)gµν and G̃ is the Gauss-Bonnet term (1.2) for the metric g̃µν ; Sm is the matter action.
Writing g̃µν in terms of gµν and taking the limit D → 4 yields the action (1.3).

An alternate method for the construction of a 4DEGB theory is the Kaluza-Klein like
approach [16, 34], which begins with the action

SD = 1
16πGD

[∫
dDx

√
−g(R+ αG)

]
+ Sm (2.2)

assuming a spacetime

ds2
D = ds2

4 + e2ϕdΣ2
D−4 (2.3)

where the (D − 4)-dimensional space with line element dΣ2
D−4 is maximally symmetric

and is parameterized by the curvature λ, and ϕ is a scalar field. Dimensional reduction
to D = 4 yields

S =
∫
d4x

√
−g 1

16πG

[
R− 2Λ + α

(
ϕG + 4Gαβ∂αϕ∂βϕ− 4(∂ϕ)2□ϕ+ 2

(
(∂ϕ)2

)2
)

− 2λRe−2ϕ − 12λ(∂ϕ)2e−2ϕ − 6λ2e−4ϕ
]

+ Sm

(2.4)

with manifest dependence on the curvature parameter λ.
The variation of (2.4) for spacetime dimension D with respect to the metric yields the

gravitational field equations [13, 16]

Eµν ≡ Λgµν +Gµν +α
[
ϕHµν − 2R [(∇µϕ) (∇νϕ) + ∇ν∇µϕ] + 8Rσ

(µ∇ν)∇σϕ+ 8Rσ
(µ

(
∇ν)ϕ

)
(∇σϕ)

− 2Gµν

[
(∇ϕ)2 + 2□ϕ

]
− 4 [(∇µϕ) (∇νϕ) + ∇ν∇µϕ]□ϕ−

[
gµν(∇ϕ)2 − 4 (∇µϕ) (∇νϕ)

] (
∇2
)2

+ 8
(
∇(µϕ

) (
∇ν)∇σϕ

)
∇σϕ− 4gµνR

σρ [∇σ∇ρϕ+ (∇σϕ) (∇ρϕ)] + 2gµν(□ϕ)2 − 2gµν (∇σ∇ρϕ) (∇σ∇ρϕ)

− 4gµν (∇σϕ) (∇ρϕ) (∇σ∇ρϕ) + 4 (∇σ∇νϕ) (∇σ∇µϕ) + 4Rµνσρ [(∇σϕ) (∇ρϕ) + ∇ρ∇σϕ]

+3λ2e−4ϕgµν − 2λe−2ϕ
(
Gµν + 2 (∇µϕ) (∇νϕ) + 2∇ν∇µϕ− 2gµν□ϕ+ gµν(∇ϕ)2

)]
= 8πGTµν

(2.5)
where

Hµν = 2
[
RRµν − 2RµανβR

αβ +RµαβσR
αβσ
ν − 2RµαR

α
ν − 1

4gµν

(
RαβρσR

αβρσ − 4RαβR
αβ +R2

)]
which identically vanishes inD ≤ 4. The variation of (1.3) with respect to the scalar field yields

Eϕ ≡ − G + 8Gµν∇ν∇µϕ+ 8Rµν∇µϕ∇νϕ− 8(□ϕ)2 + 8(∇ϕ)2□ϕ+ 16∇aϕ∇νϕ∇ν∇µϕ

+ 8∇ν∇µϕ∇ν∇µϕ− 24λ2e−4ϕ − 4λRe−2ϕ + 24λe−2ϕ
[
(∇ϕ)2 − □ϕ

]
= 0.

(2.6)
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We are reserving Greek indices for spacetime indices whereas Latin indices will be used for
spatial ones. If λ = 0 then these field equations reduce to those obtained from the action (1.3).
One elegant property of this theory is that the trace of (2.5) yields

T = 4Λ −R− α

2 G (2.7)

upon using (2.6), where T represents the trace of the stress energy tensor.
In this paper we shall endeavor to place cosmological constraints on solutions to ac-

tion (1.3), for which λ = 0.

2.2 FLRW solutions

In this section we will discuss the familiar FLRW metric in the context of 4DEGB gravity.
We will first discuss the background spacetime and the associated field equations with a
perfect fluid stress energy tensor. We will then move onto the perturbed spacetime, looking
at scalar perturbations only. We will treat the perturbations of the stress energy tensor to
be those of an anisotropic fluid, again with only scalar perturbations.

The cosmological background and scalar perturbation equations in 4DEGB gravity have
been previously studied [12, 25]; in this section, we re-visit their construction afresh. We
present our derivation in detail, which leads in the case of scalar perturbations to a more
complete set of equations than previously presented in the literature. Furthermore, we
expand upon the existing literature by explicitly including the possibility of a non-zero spatial
curvature in the FLRW metric, with the resulting equations presented in appendix A.

2.2.1 Background spacetime

We begin with the familiar FLRW line element in co-moving coordinates with arbitrary
spatial curvature

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2
(
dθ2 + sin(θ)2dϕ2

))
(2.8)

where we parameterize to k = +1,−1, 0 respectively corresponding to positive, negative, or
flat spatial curvature, with a(t) the scale factor. Isotropy and homogeneity assumptions
imply ϕ = ϕ̄(t) from which we obtain

(a ¨̄ϕ+ ȧ ˙̄ϕ− ä)
(
a2 ˙̄ϕ2 − 2aȧ ˙̄ϕ+ ȧ2 + k

)
= 0 (2.9)

from (2.6) using (2.8). We have suppressed the time dependence on ϕ̄(t) and a(t) and the dot
represents a derivative with respect to coordinate time t, with overbars denoting background
quantities. We will also make use of the standard Hubble parameter

H ≡ ȧ

a
.

The solutions to (2.9) are

˙̄ϕ = H ±
√

−k
a

(2.10a)

˙̄ϕ = H + A

a
(2.10b)

– 5 –
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where the former comes from the second term in (2.9); clearly k ≤ 0 for a real solution.
The latter solution (2.10b) comes from the first term in (2.9), with A an arbitrary constant.
This is the most general solution, and we will henceforth take it to be the solution for the
background scalar field.

For the field equations (2.5) we will use the perfect fluid stress energy with components

Tµ
ν = diag(−ρ̄, p̄, p̄, p̄)

where both ρ̄ and p̄ are understood to be functions of coordinate time t. Using this, the
tt component of (2.5) yields(

− ˙̄ϕ4a3 + 4 ˙̄ϕ3ȧa2 − 2 ˙̄ϕ2 (3ȧ2 + k
)
a+ 4ȧ ˙̄ϕ

(
ȧ2 + k

))
α

a3 + ȧ2 + k

a2 = 8πGρ̄
3 (2.11)

which through the use of (2.10b) and the Hubble parameter becomes

α

(
H2 − A2

a2

)(
H2 + A2 + 2k

a2

)
+H2 + k

a2 = 8πGρ̄
3 . (2.12)

Without loss of generality we can set A2 = −k + C, obtaining(
H2 + k

a2

)2
α+H2 + k

a2 = 8πGρ̄
3 + αC2

a4 (2.13)

where the arbitrary constant C now acts as a geometrical “dark radiation” parameter [12]. If
C = 0 we recover the generalization of the Friedmann equations obtained in [8].

The other generalized Friedmann equation can be obtained from any one of the diagonal
terms of (2.5), yielding(

4
(
H2a4 + ka2) Ḣ + 3H4a4 + 2kH2a2 +A2 (A2 + 2k

))
α

a2 + 3H2a2 + 2Ḣa2 + k = −8πGa2p̄

(2.14)
or, setting A2 = −k + C,(

H2a2 + k
) (

3H2a2 + 4Ḣa2 − k
)
α

a2 + 3H2a2 + 2Ḣa2 + k = −8πGa2p̄− αC2

a2 . (2.15)

The conservation of stress energy yields

∇µT
µν = 0 → ˙̄ρa+ 3ȧρ̄+ 3ȧp̄ = 0

˙̄ρ = −3(ρ̄+ p̄)ȧ
a

(2.16)

and the system (2.13), (2.15), and (2.16) comprises the background equations for 4DEGB.
Note that (2.15) is a consequence of (2.13) and (2.16), as in general relativity.

Before we consider perturbations about the background solution, it will be useful to
consider these equations in conformal time, where the line element (2.8) is now written as

ds2 = a(η)2
(

−dη2 + dr2

1 − kr2 + r2
(

dθ2 + sin(θ)2 dϕ2
))

(2.17)

– 6 –
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with
dη = dt

a(t) . (2.18)

Letting prime denote a derivative with respect to η, the Hubble parameter becomes

H(η) ≡ a′(η)
a(η) ⇒ H(η) = a(t)H(t) (2.19)

with ρ̄ and p̄ now functions of η, along with the scalar field ϕ̄, with solution

ϕ̄′ = H +A ⇒ ϕ̄ = ln(a) +Aη +B . (2.20)

In conformal time the generalized Friedmann equations are now written as(
H2 + k

)2
α

a2 + H2 + k = 8πGa2ρ̄

3 + αC2

a2(
H2 + k

) (
4H′ − H2 − k

)
α

a2 + H2 + 2H′ + k = −8πGa2p̄− αC2

a2

ρ̄′ = −3a′(p̄+ ρ̄)
a

.

(2.21)

The use of a conformal or co-moving metric is a matter of taste. We shall employ the former
(unless otherwise noted) since ϕ̄′ depends on the scale factor only when in terms of the
Hubble parameter, as we see in (2.20).

2.2.2 Perturbed spacetime

We will work in the context of the Conformal Newtonian gauge, and only consider scalar
perturbations. All leading order equations are linear order in the perturbative quantities,
which depend on all spacetime coordinates. The perturbed version of the line element (2.17) is

ds2 = a2
(

−(1 + 2Φ)dη2 + (1 − 2Ψ)
(

dr2

1 − kr2 + r2
(

dθ2 + sin(θ)2 dϕ2
)))

(2.22)

where Φ and Ψ are the metric scalar perturbations. We follow the convention of [18] in
the labelling of Φ and Ψ. Perturbations of the stress energy [12, 35] are given by δρ and
δp for the density and pressure respectively, as well as the velocity perturbation v and the
anisotropic fluid perturbation πij through the following [12, 35]

δT 0
0 = −δρ, δT 0

i = (1 + w)ρ̄∂iv, δT i
j = δi

jδp+ πi
j (2.23)

where π is defined via

πij =
(

∇i∂j − 1
3γij∇2

)
Π (2.24)

and where Π is a scalar function representing the anisotropy, ∇i represents a covariant
derivative,1 and ∇2 is the Laplacian with respect to the spatial metric γij .

1In the absence of spatial curvature one may replace ∇i with ∂i in πij , consistent with [12, 35].

– 7 –
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The relative energy density perturbation and speed of sound are respectively defined as

δ = δρ

ρ̄
c2

s = δp

δρ
(2.25)

and
ϕ → ϕ̄+ δϕ (2.26)

defines the perturbation of the scalar field.
We now consider the perturbed equations of motion, starting with the scalar field

equation (2.6). Its leading order correction is

α
(
A2 + k

) (
∇2(δϕ− Φ) + 3A(Ψ′ + Φ′) − 3(Ψ′′ + δϕ′′)

)
= 0 (2.27)

upon using (2.20) and (2.22). Note that it has no dependence on the scale factor a, which
would not be the case — as stated above — if we were working in co-moving coordinates.
Setting A2 = −k + C, this becomes

αC
(
∇2(δϕ− Φ) + 3

√
−k + C

(
Ψ′ + Φ′)− 3

(
Ψ′′ + δϕ′′)) = 0. (2.28)

Similar to the discussion above, when C = 0 the equation is trivially satisfied and no
information about the perturbation δϕ is given.

Henceforth we focus on the situation in which C ̸= 0 and k = 0 (with the k ̸= 0
case presented in appendix A). Turning now to the gravitational field equations (2.5), the
Eηη = 8πGTηη component is

2αA2
(
3ΦA2 − 6A(Ψ′ + δϕ′) − 2∇2(Ψ + δϕ)

)
+ A(2∇2Ψ − 6HΨ′) − 6αΦH4 = 8πGa2(a2δρ+ 2a2Φρ)

(2.29)
at leading order, where δTηη = a2δρ + 2a2Φρ̄ and we follow [12] in defining

A ≡ 2αH2 + a2 B ≡ 2αH2 − a2 (2.30)

for convenience. From the zeroth order equation we identify

ρ̄ = −3A4α+ 3αH4 + 3a2H2

8a4πG

and inserting this into (2.29) we find

4αA2
(
3A2Φ − 3A(Ψ′ + δϕ′) − ∇2(Ψ + δϕ)

)
+ 2A

(
∇2Ψ − 3HΨ′ − 3ΦH2

)
= 8πGa4δρ.

(2.31)
For any time-spatial component Eηi = 8πGTηi we obtain(

4αA2(A(Φ − δρ) − Ψ′ − δρ′) + 2AΨ′ + 2HAΦ
)
,i = −8πGa4(1 + w)ρ∂iv

to leading order, which readily integrates to

4αA2(A(Φ − δρ) − Ψ′ − δρ′) + 2AΨ′ + 2HAΦ = −8πGa4(1 + w)ρv. (2.32)

For the spatial-spatial components of Eij = 8πGTij where i ̸= j we have(
2α(A2(Ψ + Φ) + 2H′Ψ) − BΨ − AΦ

)
,ij = 8πGa4Π,ij
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to leading order, which again easily integrates into

2α
(
A2(Ψ + Φ) + 2H′Ψ

)
− BΨ − AΦ = 8πGa4Π (2.33)

where we have set any integration functions of η to zero. This can be done without any
loss of generality as the constraints must hold for all time; as such we can tune them to
any value we wish. We note that for time-spatial and mixed spatial components there are
no zeroth order counterparts.

Lastly we consider the diagonal components, Eii = 8πGTii. Since we lose homogeneity
and isotropy at leading order, the equations are no longer equivalent for i = x, y, z, unlike
the zeroth order case. Due to this feature we take the trace, E i

i = 8πGT i
i which to leading

order can be written as

δGxx + δGyy + δGzz = 8πG(3a2(δp− 2Ψp̄)). (2.34)

Now isolating

p̄ = −A4α+ αH4 − 4ḢH2α−H2a2 − 2Ḣa2

8a4πG
(2.35)

from any zeroth order diagonal equation and inserting into δGxx+δGyy+δGzz = 8πG(3a2(δp−
2Ψp̄)) we get the final expression

2α
(
3A2Φ − 3A(δϕ′ − Φ′) − ∇2(Φ + Ψ) − 3(δϕ′′ + Ψ′′)

)
+ A(3HΦ′ + ∇2Φ + 3Ψ′′)

+B∇2Ψ + 6H′CΦ + 6HDΨ′ − 3H2BΦ − 4H′α∇2Ψ = 12πGa4δp
(2.36)

where C = 4αH2 + a2 and D = 2H′α+ a2. We note here a subtle point regarding the sum
of the diagonal components, which yields three equations that are not identical at leading
order. However making use of (2.33) renders these equations equivalent and hence the sum
may be taken without any loss of generality. This subtle feature sometimes gets taken for
granted, even when discussing General Relativity.

At this point we have 7 unknown scalar functions — Φ,Ψ, δϕ, v, δρ, δp and Π — and
5 equations: (2.28) from the scalar field equation, and (2.31), (2.32), (2.33), and (2.36)
from the gravitational field equations (2.5). The remaining two equations come from the
conservation of stress-energy ∇µT

µν = 0. At zeroth order we retrieve only one equation,
the cosmological fluid equation

ρ̄′ = −3H(p̄+ ρ̄) (2.37)

obtained above. The first order ∇µT
µη equation is

ρ̄
[
(1 + w)∇2v − 3(Ψ′ + 2HΦ)

]
− 3Ψ′p̄+ δρ′ − 2(3Hp̄+ ρ̄′)Φ + 3H(δp+ δρ) = 0 (2.38)

and after inserting the zeroth order solution (2.37) this becomes

δρ′ = (1 + w)(3Ψ′ − ∇2v)ρ̄− 3H(δρ+ δp). (2.39)
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This can be rewritten as

δ′ = 3Hδ
(
w − cs

2
)

+ (1 + w)
(
3Ψ′ − ∇2v

)
(2.40)

using δρ̄ = δρ ⇒ δρ′ = δ′ρ̄+ δρ̄′. Lastly, any ∇µT
µi = 0 component — they are all equivalent

— in conjunction with (2.37) yields

∂i(2∇2Π + 3δp+ 3(1 + w)ρ̄[(1 − 3w)v + v′ + Φ]) = 0 (2.41)

whose divergence is

2∇4Π + 3∇2δp+ 3(1 + w)ρ̄[(1 − 3w)∇2v + ∇2v′ + ∇2Φ] = 0, (2.42)

a form that will prove useful later on.
Upon setting A2 = C, the full set of equations for k = 0 is

αC
(
∇2(δϕ− Φ) + 3

√
C
(
Ψ′ + Φ′)− 3

(
Ψ′′ + δϕ′′)) = 0

4αC
(
3CΦ − 3

√
C
(
Ψ′ + δϕ′)− ∇2(Ψ + δϕ)

)
+2A

(
∇2Ψ − 3HΨ′ − 3ΦH2

)
= 8πGa4δρ

4αC
(√

C(Φ − δρ) − Ψ′ − δρ′
)

+ 2AΨ′ + 2HAΦ = −8πGa4(1 +w)ρ̄v

2α
(
C(Ψ + Φ) + 2H′Ψ

)
− BΨ − AΦ = 8πGa4Π

2α
(
3CΦ − 3

√
C
(
δϕ′ − Φ′)− ∇2(Φ + Ψ) − 3

(
δϕ′′ + Ψ′′))

+A
(
3HΦ′ + ∇2Φ + 3Ψ′′

)
+ B∇2Ψ + 6H′CΦ

+6HDΨ′ − 3H2BΦ − 4H′α∇2Ψ = 12πGa4δp

δ′ = 3Hδ

(
w− δp

δρ

)
+ (1 +w)

(
3Ψ′ − ∇2v

)
2∇4Π + 3∇2δp+ 3(1 +w)ρ̄

[
(1 − 3w)∇2v+ ∇2v′ + ∇2Φ

]
= 0.

(2.43)
The full set of equations with k ≠ 0 are given in appendix A.

In what follows, we will consider these equations from two perspectives. First, we will
look at the full solutions at the background level outlined by equations (2.21), which describe
phenomena in the very early Universe. We shall then investigate an unexplored region of
parameter space in which α is small but C is unconstrained. Mathematically this is most
easily studied by taking α → 0 but keeping αC2 finite. This will have interesting implications
for cosmological observables at CMB redshifts and later times.

3 The very early universe

When a is small or H is large the αH4 term in (2.13) will be non-negligible (even for small
α). Therefore, in the very early universe the parameter α will have an effect on background
dynamics. We will primarily explore the effects of α on the sound and particle horizons in
the early universe and on the horizon problem.
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3.1 Diverging horizons close to the Big Bang

One striking feature of 4DEGB is its effect on the comoving sound horizon rs(z), where
a = 1

1+z . This is defined as the comoving distance a sound wave could travel from the
beginning of the universe in some time t(z). The sound horizon at recombination is a
fundamental scale shaped by early universe physics that leaves an imprint on the clustering
of matter in the universe [36]. The equation describing rs(z) is

rs(z) =
∫ ∞

z

cs(z′)
H(z′)dz′ = c

∫ a

0

1
H(a′)a′2

√
3(1 +R)

da′ (3.1)

where cs(z) = c√
3(1+R)

is the sound speed and R = 3ρb
4ρr

= 3a/4 (when assuming collison-
less cold dark matter) where ρb and ρr are the energy densities of baryons and radiation
respectively [37].

Let us see what effect α̃ has on this equation. We notice that (2.13) gives us an
expression for H:

H(a) = H0√
2α̃

√√√√√2αk
a2 − 1 +

√√√√1 + 4α̃
(

Ωm0
a3 + Ωr0

a4 + ΩΛ0 + α̃C̃2

a4

)
. (3.2)

As a first step, this then allows us to find an analytic solution to (3.1) close to the Big
Bang (in the limit a → 0). Within GR we have the standard result

H ≈ H0
√

Ωr0a
−2

R → 0

}
=⇒ rs ≈ c

H0

∫ a

0

1√
3Ωr0

da′ ≈ 1
H0

1√
3Ωr0

a → 0

whereas for a 4DEGB universe

H ≈ KH0a
−1

R → 0

}
=⇒ rs ≈ 1√

3H0K

∫ a

0

1
a′ da

′ ≈ 1√
3H0K

[ln a]a0

where K = 4
√

Ωr0+α̃C̃2

α̃ is a constant. This simplified version of equation (3.1) diverges
close to the Big Bang for a 4DEGB universe. In general, in a 4DEGB universe rs diverges
logarithmically as a → 0 for any α ̸= 0 if we use equation (3.1) to define the sound horizon.
This seems to suggest 4DEGB predicts an infinite comoving sound horizon as long as α ̸= 0.

This effect is perhaps not as severe as it may seem at first glance. First, there will in
general be a cutoff at small a at the Planck time tPlanck = 5.39 × 10−44 s, since quantum
gravitational effects will become important. More generally, recall that what is physically
relevant is an effective sound horizon, defined as the distance traveled by a sound wave that
has started propagating after the end of inflation. Waves that left their sources earlier than
the end of inflation underwent incredibly large Doppler shifts as the universe expanded, so it
is reasonable to consider them to be completely unobservable in practice. If this is the case,
the lower bound of the integral in (3.1) is some scale factor at the end of inflation rather than
at the beginning of the universe. This then gives us a new equation for our sound horizon:

rs(a) =
∫ a

amin

c

H(a′)a′2
√

3(1 +R)
da′ (3.3)
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Figure 1. The dimensionless sound horizon as a function of redshift z in GL 4DEGB compared to
ΛCDM, with its residual. We assume fiducial cosmological parameters from [38] and amin ≈ 10−28.
We have set C = 0 for convenience, but non-zero C will not affect the sound horizon significantly. We
display the sound horizon for values of α ≲ 1017 =⇒ α̃ ≲ 10−36 [18].

where amin is close to the end of inflation, amin ≈ 10−28. We now encounter no divergences
when calculating rs. In GR+ΛCDM, the contribution to the integral from early times
is negligible and the exact value of the lower bound isn’t important. In 4DEGB, the
contributions are large at early times and an exact value of this lower bound is needed
to find the sound horizon.

We can solve this apparent issue by assuming that Big Bang Nucleosynthesis (BBN) has
to occur at the same time (and be described by similar physics) in 4DEGB as in GR because of
primordial abundance constraints. This requires α ≲ 1017 =⇒ α̃ ≲ 10−36 [18]. We can then
show that for this small value of α̃, if the end of inflation occurs around a = amin ≈ 10−28, the
exact lower bound of (3.3) isn’t important. This small (but non-zero) α now causes a minimal
modification to the sound horizon, which will be virtually the same in 4DEGB and GR as
illustrated in figure 1. Because the divergence of the integral in (3.3) is logarithmic, in general
the lower cutoff does not meaningfully change the result. Even taking the cutoff amin to be
at the Planck time (before which any classical theory of gravity is believed to be invalid), the
difference between the ΛCDM and 4DEGB solutions would still be negligible for α̃ ≲ 10−36.

In spite of this argument, having to impose a cutoff scale in the equation for the sound
horizon is a theoretically unsatisfying characteristic of this theory. We have no firm knowledge
of the correct amin, and the fact that we have to pick one is a complication of the theory.

3.2 The horizon problem

Another interesting feature of 4DEGB in the early Universe is that in the limit of early
time, the first equation in (2.21) reduces to:

αH4 = Ωr0H
2
0 + αC2 (3.4)
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Figure 2. The comoving Hubble radius as a function of scale factor. Its logarithmic integral is the
comoving particle horizon η. In general H−1 = (aH)−1 ∝ an, where for inflationary models n = −1,
for radiation domination n = 1 and in 4DEGB n = 0. ae is the transition scale factor between inflation
domination and radiation domination. Here λ is an example of a primordial perturbation exiting the
horizon during inflation and re-entering during radiation domination. We can see the same effect
doesn’t occur in 4DEGB. We assume fiducial cosmological parameters from [38] with C = 0 and
with α̃ = 10−112 and α̃ = 10−44 for the blue and blue-dashed lines respectively. The cutoff for the
integration in (3.6) occurs at scale factors below the lowest limit of the x-axis for all investigated
values of α.

and thus it follows that

a(η) = amin exp

H0
4

√
Ωr0 + α̃C̃2

α̃
(η − ηmin)

 = amin exp [KH0(η − ηmin)] (3.5)

where ηmin is the conformal time at which the cutoff scale factor amin occurs. In terms of
comoving time η, (3.5) means the universe isn’t accelerating or decelerating (ä = 0), just
expanding at a constant velocity. This implies that the comoving Hubble radius (aH)−1

is a constant, as shown in figure 2.
Let us now compare the comoving Hubble radius (aH)−1 in 4DEGB to that in ΛCDM,

and see the effect this has on the horizon problem. ΛCDM without inflation predicts that
patches on the CMB are causally disconnected for θ ≳ 1°, contrary to the observed uniformity
of the CMB temperature map (which is 1 part in 105). This is called the horizon problem.
If the universe had an early epoch during which the comoving Hubble radius decreased or
stayed constant, then there would be more conformal time between the beginning of the
universe and the CMB, so the past light cones of two points on the CMB would have had
more time to be in causal contact. In the standard cosmological model, this is achieved by
introducing an inflationary era at very early times.

Alternatively, as mentioned above, 4DEGB also has this effect at early times (again, see
figure 2). As we see from equation (3.5), 4DEGB is characterized by an early epoch where the
Hubble radius (aH)−1 = ȧ−1 is a constant. We then have a transition from an α-dominated
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Figure 3. The 4DEGB solution compared to the inflationary solution to the horizon problem,
visualized by looking at distances of interest as a function of conformal time (η). The plot assumes
the exaggerated value of α̃ = 10−7 to show the qualitative behaviour of the theory (and to aid the
visual distinction between CMB and reheating space-like surfaces). We assume fiducial cosmological
parameters from [38]. The ΛCDM+GR solution is plotted so that it matches 4DEGB at late conformal
times. The reheating space-like surface is defined here as the conformal time at which the scale factor
for the ΛCDM+GR solution goes to zero.

to a radiation-dominated universe. In this scenario, points in the CMB have overlapping past
light cones and therefore originated from a causally connected region of space (see figure 3).

Another way of thinking about this is by looking at the comoving particle horizon
η(z), defined as:

η(z) =
∫ zmax

z

c

H(z′)dz′ =
∫ a

amin

c

H(a′)a′2 da′ =
∫ a

amin

c

H(a′)a′ dlna′. (3.6)

This is the logarithmic integral of the inverse Hubble radius; it diverges logarithmically
as amin → 0. A diverging comoving particle horizon (a diverging integral for (3.6)) means
any two particles will have been in causal contact in some point in the past. However, as
established above in section 3.1, amin must be finite and therefore equation (3.6) does not
diverge. As a result, 4DEGB won’t necessarily provide a solution to the horizon problem.
Whether it does depends on how large the value of α̃ is. If we enforce amin = a(tplanck),
4DEGB provides an independent solution to the horizon problem when α̃ ≳ 5 × 10−11. Thus,
while 4DEGB solves the horizon problem in principle, in practice this is a much larger α̃
than current constraints (1.5) allow.

4DEGB doesn’t provide an early period of acceleration and Ωk(z) is a constant in the
early 4DEGB universe. Therefore, while 4DEGB can in principle be sufficient to solve the
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horizon problem, it can never solve the flatness problem. 4DEGB without inflation is also not
sufficient to have primordial fluctuations exit and then re-enter the horizon as in ΛCDM+GR
with inflation (again, see figure 2).

4 Constraints from cosmological probes

4.1 A new formalism for cosmological parameter constraints

Although the cosmological impact of the parameter α alone is relatively weak other than in
the very early Universe (see section 3), several studies have nevertheless placed constraints on
α using late-time cosmological probes [26, 39]. While these do provide valuable independent
constraints on α, they are uninformative compared to bounds due to other effects. More
importantly, we have seen in section 3.1 that to use observational information that relates to
the sound horizon we must impose a strong prior from BBN of |α| ≲ 1017 m2 [18]. This is
the only meaningful way of using this information without assuming an inflationary model
and doing a more detailed analysis of the sound horizon in 4DEGB. If we take this as a
prior for a cosmological analysis using e.g. CMB and BAO data, the resulting constraints
on α will then be completely prior-dominated.

Given the stringent constraints on α from equation (1.5), the GL formulation is very
highly constrained. However, the full 4DEGB theory, with an additional free parameter
C, has not been confronted with data (for one exception, see [24], which discusses how
one might constrain C from theoretical considerations and existing observational bounds,
but does not perform a full cosmological parameter inference analysis). Motivated by the
lack of conclusive constraints on the parameter C in the literature, and by the stringent
observational constraints on α as described above, we now introduce a version of the 4DEGB
equations in the limit of small α.

We develop the equations of 4DEGB in the limit where terms in α, αA, αA2 or αA3

are negligible compared to terms in αA4 = αC2. In this small-α limit and with k = 0,
equation (3.2) takes the form:

H(z) = H0

√
Ωm0(1 + z)3 + (Ωr0 + α̃C)(1 + z)4 + ΩΛ0 (4.1)

where we define a new dimensionless parameter

α̃C ≡ α̃C̃2 (4.2)

where C̃ ≡ CH−2
0 , and αC ≡ αC2 such that α̃C = αCH

−2
0 .

In the small-α limit, this will be the only parameter to enter both background and
perturbation equations. We assume α̃C is finite and seek to empirically constrain it. At times
substantially past nucleosynthesis, the background is then equivalent to that of a ΛCDM
universe with a “dark radiation” term that depends on α̃C .

We can now look at the set of equations (2.43) in the same limit. These reduce to:

k2δφ+ 3δφ′′ =3(Φ′ + Ψ′)

12αCΦ − 12αCδφ
′ − 2a2(k2Ψ + 3HΨ′ + 3H2Φ)=8πGa4δρ
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Ψ′ + HΦ=−4πGa2(1 +ω)ρv

Φ=Ψ + 8πGa2Π

3Ψ′′ + 3H(Φ′ + 2Ψ′) + k2(Ψ − Φ) + (6H′ − 3H2)Φ=12πGa2δρ

δ′ =3Hδ

(
w− δp

δρ

)
+ (1 +w)

(
3Ψ′ − ∇2v

)
2∇4Π + 3∇2δp+ 3(1 +w)ρ̄

[
(1 − 3w)∇2v+ ∇2v′ + ∇2Φ

]
=0

(4.3)

where δφ = δϕ√
C

is the same order of magnitude as Φ with respect to the constant C. For a
derivation of the equations above, we refer the reader to appendix B.

This limit of 4DEGB at the background level behaves like a ΛCDM universe with an
additional contribution to the dark relativistic degrees of freedom. Interestingly, the parameter
α̃C couples this background dark radiation term (which has a purely geometric origin) to the
modified equations for structure growth. This offers the prospect of differentiating 4DEGB
from modifications to the standard model of particle physics that cause dark radiation, since
the equations for growth will be different.

We can also look at equations (146c) and (146d) from [18] in the same limit. These
reduce to:

a2∂2Ḟi + 16πG(1 + ω)a4ρ̄vi = 0
a2γ̈ij + 2Ha2γ̇ij − a2∂2γij = 8πGa4Πij .

(4.4)

These tell us that the tensor and vector perturbations reduce to those from ΛCDM in the
small-α limit, even though the scalar perturbations are modified. Then any data that depends
only on the vector and tensor perturbations (such as data from gravitational waves) won’t
enforce additional constraints on our parameter α̃C .

In the following subsections we use cosmological probes of background equations to
constrain our parameter α̃C . In section 4.3 we also introduce some qualitative effects of the
modifications to the scalar perturbations on the power spectrum.

4.2 Background constraints on α̃C as a non-interacting dark radiation with a
geometrical origin

Tests of dark radiation have been carried out extensively in the literature (see, e.g., [38, 40–43]).
We can take advantage of existing constraints and map them onto the question of constraining
the α̃C parameter of 4DEGB in the small-α limit. We first place background constraints by
using datasets that don’t require the assumption of a GR+ΛCDM structure growth history.

We will find it productive here and in the following section to examine how analyses that
consider additional beyond-standard model neutrinos can equally constrain a cosmological
model with standard model neutrinos and 4DEGB gravity, parameterized by α̃C in the
small-α limit. Flexibility in the number of such early-Universe relativistic degrees of freedom
is often parameterized by:

Ων0 = Neff
7
8

( 4
11

)7/8
Ωγ0 (4.5)
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where Neff is the effective number of relativistic neutrino species (equal to 3.044 for standard
model neutrinos only) and Ωγ0 is the dimensionless photon density parameter. Constraints
on Neff from this ΛCDM+Neff model exist in the literature from a number of probes of the
cosmological background dynamics (see, e.g., [40, 41]), and we will take advantage of this here.

At the level of the background only, we can treat α̃C as if it were a contribution from
an additional massless particle that neither interacts nor decays. Doing so, we can write
down an equivalence between α̃C in 4DEGB and Neff in GR:

α̃C = (Neff − 3.044)7
8

( 4
11

)7/8
Ωγ0 = ∆Neff

7
8

( 4
11

)7/8
Ωγ0 (4.6)

It is important to emphasize that α̃C has a geometrical origin — we are not proposing
to test a model with a varying number of neutrinos. We are testing a 4DEGB universe with
standard model neutrinos (with Neff, SM = 3.044). This means we will allow, for example,
negative values of α̃C which correspond to Neff < 3.044, but the number of physical neutrino
species Neff, SM will always be the standard 3.044. We emphasize also that this equivalence
should only be seen as a valid description of background cosmological observables; those
that are sensitive to the growth of structure require consideration of modifications to the
perturbation equations.

With this in mind, we can initially consider constraints from 4He abundances (which
give a conservative bound of |Neff| ≤ 3.5 [40]). This maps to an upper bound on α̃C of:

|α̃C | ≲ 10−5.

4.2.1 Constraints on α̃C from the CMB

Next, we will look at data from the Atacama Cosmology Telescope (ACT), specifically that
taken with its second-generation polarization-sensitive receiver ACTPol [44]. This dataset
provides information about the CMB anisotropies, which in general depend on the perturbative
behavior of the theory as well as the background behaviour. In practice, the effect of small
modifications to the perturbation equations (which will change the Sachs-Wolfe and Integrated
Sachs-Wolfe effects) is apparent only at angular multipoles ℓ ≲ 200 [45]. The ACTPol analysis
that we build on here takes a minimum multipole of 600 in the CMB temperature auto-
spectrum, and 350 in the E-mode polarization auto-spectrum as well as the cross-spectrum
between E-mode polarization and temperature, which means we can treat it effectively as a
background-only probe. We use posterior chains of cosmological parameters obtained with
the actpollite likelihood for a ΛCDM+Neff model, which results in Neff = 2.42±0.43 (using
the maximum marginalized likelihood at a 68% confidence level) [46].

This translates to a constraint for 4DEGB (with standard neutrinos) of:

α̃C = (−3.5 ± 2.4) × 10−6h2 = (−9 ± 6) × 10−6 (4.7)

at 68% confidence level, which is consistent with zero at the 1.34σ level. h is the dimensionless
Hubble constant defined byH0 = 100h km s−1Mpc−1 and we have used the maximum posterior
value for h from the ACTPol analysis in question in our calculations.

As we can see in figure 4, the analysis of [46] prefers a lower Neff than the standard
model (or in 4DEGB a negative α̃C). An interesting feature of 4DEGB is that it provides
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Figure 4. ACTPol posterior results for a ΛCDM universe with varying Neff . We map this analysis
onto our scenario of interest, with Neff playing an equivalent role to α̃C in 4DEGB for background-only
probes. α̃C is consistent with zero within 1.34σ. We are displaying the 1σ, 2σ and 3σ confidence
regions in the contour plot, and the 1σ and 2σ regions in the 1D posterior probability distribution
for α̃C .

a modified gravity framework that mimics a continuous variation of Neff from its ΛCDM
value of 3.044, including values Neff < 3.044. Few models are well-motivated theoretically for
Neff < 3.044 [38], so 4DEGB provides an interesting new precedent, which should be borne
in mind should future constraints also favour a negative value for ∆Neff . While we cannot
draw conclusions from all-sky CMB Planck data without accounting for a modification to the
scalar perturbation equations, we note here for completeness that this preference for a lower
value of Neff does not seem to persist in Planck data [38] for a ΛCDM+GR model.

4.3 Effect of modified perturbations in 4DEGB on the matter power spectrum

Having considered the background-only effect of α̃C , we now examine the growth of perturba-
tions in this small α limit of 4DEGB. We incorporate the 4DEGB background and perturbation
equations within a bespoke cosmological Boltzmann code to study the qualitative behaviour
of small-α 4DEGB in a perturbed universe. We use a modified version of equations (4.1)
and (4.3) (see appendix C) to recover the matter power spectrum P (k). The Boltzmann code
we use is constructed following the methodology of [47]. In taking this approach, we prioritize
ease of implementation rather than the computational efficiency which would be gained by
modifying the highly optimised public packages CAMB [48] or CLASS [49]. We validate our
Boltzmann code against these packages in the GR case and find excellent agreement.
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Figure 5. Present-day (z = 0) linear matter power spectrum for small-α 4DEGB. The middle (solid
black) curve is the power spectrum for a ΛCDM model. The values of α̃C displayed here are chosen to
be of the same order of magnitude as background constraints of section 4.2. The dotted (green) and
dash-double dotted (gray) curves show the ΛCDM+Neff model with extra neutrino densities equivalent
to the plotted values of α̃C (∆Ων0 = α̃C = 8 × 10−6 and −8 × 10−6 respectively), which correspond
to Neff = 5.46 and 0.62 respectively. When varying Neff , we fix {Yp,Ω0

M ,Ω0
B ,Ω0

R, h, As, ns} to be the
fiducial cosmological parameters from [38]. We approximate all neutrinos as massless.

The resulting power spectra can be seen in figure 5. We see that the difference in P (k)
between 4DEGB and ΛCDM with the equivalent Neff value is non-negligible for α̃C ≈ ±8 ×
10−6. The difference in the paired spectra is larger at large scales (low k); to understand
this, we turn to the second equation in (4.3), which suggests that the α̃C term is more
dominant when k is smaller. Beyond this large-scale effect, there is also a scale-dependent
deviation between the two theories as we move to smaller scales (larger k). Combined, these
effects suggest that there is potential for the degeneracy between this sector of 4DEGB and
ΛCDM+Neff to be broken by observational probes sensitive to changes in the power spectrum
(such as weak gravitational lensing, galaxy clustering, CMB spectra at lower multipoles which
probe perturbation effects, or CMB lensing). Although the fractional deviations between
the two models in figure 5 are small, upcoming surveys such as Euclid [50] and the Rubin
Observatory Legacy Survey of Space and Time (LSST, [51]) may be capable of observationally
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distinguishing these percent-level effects. Such an analysis is beyond the scope of this paper
but is of great interest for future work.

5 Conclusion

4DEGB gravity has broad theoretical interest as a competitor to general relativity, primarily
because it is a 4-dimensional higher-curvature theory of gravity that enjoys all the basic
features of higher-dimensional Lovelock gravity. It has also provoked substantial observational
interest as a theory with few extra parameters compared to ΛCDM+GR, which has resulted
in the Glavin-Lin version being extensively investigated, and its single parameter α being
well-constrained. Here we have for the first time studied the implications of scalar-tensor
4DEGB, providing the first observational constraints on a geometric term parametrized
by a constant C.

Considering a background spacetime that is homogeneous and isotropic and a perturbed
spacetime that only depends on scalar functions, we find that the stress-energy perturbations
are that of a perfect fluid with anisotropic stress. This in turn dictates that there are 7
unknown functions correcting the cosmic background. We have provided the first derivation of
the complete set of equations necessary for computing these 7 unknown functions for both flat
and curved spatial hyper surfaces. The conservation of stress-energy provides two equations
of motion (that do not differ from GR), while the gravitational and scalar field equations
provide the other five. The complete set forms a nonlinear coupled PDE system that does not
have a closed form solution. These equations become the first order perturbation equations
of general relativity in the appropriate limit.

We have explored some consequences of α in the very early universe, where the small,
allowable values of this parameter can still have important cosmological effects. We find
that the sound horizon in 4DEGB depends on the behaviour of the universe at early times,
meaning that the value of the parameter α and the exact redshift at which sound propagation
begins to matter both affect the measured solution for the sound horizon. We show that
this issue can be alleviated somewhat, though this requires imposing a minimum scale factor
after which 4DEGB becomes relevant. Furthermore, we have shown that 4DEGB can resolve
the horizon problem: the particle horizon diverges at early times, meaning that all particles
will have been in causal contact at some very early time. This solution fails for very low
values of α if we enforce a cutoff to this classical theory at the Planck time. This is because
the aforementioned divergence is logarithmic and therefore is very slow to diverge even for a
very small minimum time. This theory also fails to act as a replacement for an inflation-type
model in the early Universe because it does not resolve the flatness problem.

Unlike the Glavin-Lin formulation, full 4DEGB contains a dark radiation-like term at
the background level, whose associated parameter C has remained largely unconstrained in
the literature before now. Introducing a new parameter α̃C = αC

H2
0

= αC2

H2
0

we have shown that,
under the assumption that α is small (justified by prior constraints on this parameter [18]),
the equations describing the theory at times substantially past inflation depend only on
α̃C . The late-time behaviour of the theory can then be constrained as a combination of
background “dark radiation” effects and a modification to structure growth. We have shown
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that the 4DEGB parameter is constrained using CMB data from ACTPol to

α̃C = α̃C̃2 = (−9 ± 6) × 10−6 =⇒ αC = (−10 ± 7) × 10−58 h2 m−2 ≈ (−4 ± 3) × 10−58 m−2

(5.1)
where we have used the conversion factor H2

0 = (1.17 × 10−52)h2 m−2. This implies αC is
consistent with zero within 1.34σ. Interestingly, ACTPol data seems to prefer a lower value
of Neff than that suggested from the standard model (or in 4DEGB a negative α̃C). 4DEGB
enjoys the interesting feature of being a geometrical alternative to continuously varying Neff,
including values of Neff < 3.044 that are much less theoretically motivated in other settings.
This may prove interesting in the future, should further cosmological observables favour
such values of Neff in a ΛCDM+Neff model.

While we completed a qualitative analysis of the power spectrum in this paper, modifying
an efficient public Boltzmann solver to compute this quantity would enable further constraints
on αC using observables sensitive to cosmic structure growth. This would enable us to
break the degeneracy between this branch of 4DEGB and GR+ΛCDM with a varying Neff .
Figure 5 shows that the power spectrum (and therefore σ8 and S8) will be modified in 4DEGB
compared to ΛCDM (or ΛCDM+Neff). It would therefore be interesting to investigate in
future work what impact this sector of 4DEGB might have on the S8 tension.

Finally, we note that there are other potential avenues of exploration of the cosmological
consequences of 4DEGB in the very early universe. We have not here discussed the implications
of a 4DEGB universe in terms of the behaviour and evolution of super-horizon perturbations,
or the implications regarding early-universe singularities or lack thereof in these theories. A
universe dominated by 4DEGB at early times might have an effect on the scale dependence or
non-gaussianity of the primordial power spectrum which would be interesting to investigate.
As yet no such calculation has been attempted. The work presented here on the sound
horizon and its divergent behaviour as a → 0 suggests that these may be fruitful avenues
for further work.
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A Equations of motion for k ̸= 0 spatial sections

Here we will present the gravitational and scalar field equations for non-flat (k ≠ 0) spatial
curvature where we compute in conformal time with the line element outlined by (2.17).
While some of the presentations will be redundant, we nonetheless will proceed with clarity
in our calculations. The background calculations are carried out in section 2.2.1 so we will
not repeat them here, and instead just note that the solution to (2.6) is given as

ϕ̄′ = H +A ⇒ ϕ̄ = ln(a) +Aη +B (A.1)

which used in conjunction with (2.5) yields the finalized gravitational field equations(
H2 + k

)2
α

a2 + H2 + k = 8πGa2ρ̄

3 + αC2

a2(
H2 + k

) (
4H′ − H2 − k

)
α

a2 + H2 + 2H′ + k = −8πGa2p̄− αC2

a2

(A.2)

where we have made the substitution A2 = −k + C. The conservation of stress-energy
∇µT

µν = 0 yields only one equation for the background, that being

ρ̄′ = −3H(p̄+ ρ̄) (A.3)

For the first order equations we will present first with the arbitrary constantA and then
make the substitution A2 = −k + C, placing a box around the finalized equation. Beginning
with the scalar field equation, which is found in section 2.2.2

α
(
A2 + k

) (
∇2(δϕ− Φ) + 3A

(
Ψ′ + Φ′)− 3

(
Ψ′′ + δϕ′′)) = 0 (A.4)

αC
(
∇2(δϕ− Φ) + 3

√
−k + C

(
Ψ′ + Φ′)− 3

(
Ψ′′ + δϕ′′)) = 0. (A.5)

For the gravitational field equations, we will consider the ηη component first. The stress
energy tensor remains the same δTηη = a2δρ+ 2a2Φρ̄. Computing δEηη = 8πG(a2δρ+ 2a2Φρ̄)
and using the first equation of (A.2) we arrive at the simplified expression

4αA2
[
3A2Φ−3A(δϕ′ +Ψ′)−∇2(δϕ+Ψ)−3k(Ψ−Φ)

]
−4αk

[
3A(δϕ′ +Ψ′)+∇2δϕ

]
+2A∇2Ψ−6H(A+2αk)Ψ′ −12αH2

(
(k+H2)Φ−kΨ

)
+6a2(kΨ−H2Φ)=8πGa4δρ.

(A.6)

2(A+2kα)(∇2Ψ−3HΨ′ +3(kΨ−ΦH2))+4αC
(
3ΦC−∇2(Ψ+δϕ)−3

√
−k+C(δϕ′ +Ψ′)

)
=8πa4Gδρ.
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Any one of the time-spatial equations δE0i = 8πGδT0i has no corresponding zeroth order
equation so calculating this directly yields

4αA2
[
A(Φ,i − δϕ,i) − (δϕ′

,i +ψ′
,i)
]

+ 4αkA(Φ,i − δϕ,i) + 2H(A + 2αk)Φ,i + 2AΨ′
,i − 4αkδϕ′

,i

= −8πGa4(1 +w)ρ̄v,i

2H(A + 2αk)(Φ + Ψ′) + 4αC
(√

−k+C(Φ − δϕ) − δϕ′ − Ψ′
)

= −8πG(1 +w)a4ρ̄v. (A.7)

For a mixed spatial-spatial component δEij = 8πGδTij for i ̸= j we have

∇i∂j(2αA2(Φ + Ψ) + 4αH′Ψ − AΦ − BΨ) = 8πGa4∇i(∂jΠ) (A.8)
2α(−k + C)(Φ + Ψ) + 4αH′Ψ − AΦ − BΨ = 8πGa4Π. (A.9)

For the diagonal spatial components we employ the same procedure as with the flat case.
We consider all the components individually and compute the trace, δErr + δEθθ + δEϕϕ =
8πG(δTrr + δTθθ + δTϕϕ); using the 2nd equation of (A.2), this gives

4αA2
(
3A2Φ + 3A(Φ′ − δϕ′) − ∇2(Φ + Ψ) − 3(Ψ′′ + δϕ′′) + 3k(Φ − Ψ)

)
+ 12kαA(Φ′ − δϕ′)

+ 4H′
(
6HαΨ′ + 3(4H2 + a2 + 2kα)Φ − 6kαΨ − 2∇2Ψα

)
+ 2A∇2Φ + 6H(A + 2kα)Φ′ + 2B∇2Ψ

− 12αkδϕ′′ + 6AΨ′′ + 12Ha2Ψ′ − 12H2(ΦH2 + k(Φ − Ψ)) + 6a2(H2Φ − kΨ) = 24πGa4δp

(A.10)
(B + 2kα)∇2Ψ + (A + 2kα)(∇2Φ + 3Ψ′′) + 2αC

(
−∇2Φ − 3(δϕ′′ + Ψ′′) − 3k(Φ + Ψ) − 3

√
−k+Cδϕ′

)
2H′

(
−2α∇2Ψ + 12αHΦ + 3a2Φ + 6αkΦ − 6αkΨ + 6αHΨ′

)
+ 6αC2Φ + 6Ha2Ψ′ + 3a2(H2 − kΨ)

+ 3
(
2αH3 + 2α(−k+C)3/2 + Ha2 + 2Hαk+ 2kα

√
−k+C

)
Φ′ − 6α(H2 + k)(H2Φ − Ψk) = 12πGa4δp.

We now need to consider the conservation of stress energy, ∇µT
µν = 0. Considering the

time component first ∇µT
µη = 0, we obtain the same zeroth and first order equations as

in the flat case; hence

δρ′ = (1 + w)
(
3Ψ′ − ∇2v

)
ρ̄− 3H(δρ+ δp) . (A.11)

For the spatial components there are some slight modifications. For any spatial coordinate
i, the equation ∇µT

µi = 0 becomes

∂i

(
∇2Π + (3w + 3)ρ̄v′ − 3(1 + w)(3w − 1)Hρ̄v + 3(1 + w)ρ̄Φ + 3δp+ 6kΠ

)
= 0. (A.12)

Taking the spatial divergence of this yields

∇i
(
∂i

(
∇2Π + (3w+ 3)ρ̄v′ − 3(1 +w)(3w− 1)Hρ̄v+ 3(1 +w)ρ̄Φ + 3δp+ 6kΠ

))
= 0 (A.13)

∇2 (∇2Π + (3w+ 3)ρ̄v′ − 3(1 +w)(3w− 1)Hρ̄v+ 3(1 +w)ρ̄Φ + 3δp+ 6kΠ
)

= 0 (A.14)
∇4Π + 3(1 +w)ρ̄∇2v′ − 3(1 +w)(3w− 1)Hρ̄∇2v+ 3(1 +w)ρ̄∇2Φ + 3∇2δp+ 6k∇2Π = 0 . (A.15)

B Scalar perturbations in the small-α limit

We start with equations (2.43). We derive an approximation for these scalar perturbations
in the following limits:
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1. α is small, meaning α/H2
0 ≪ 1. This is a reasonable approximation given [12] gives us

priors −10−83 ≲ α̃ ≲ 10−43. We can then write A = C = D = a2 and B = −a2.

2. C is large. Specifically, we assume large enough that αC = αC2 is finite and affects
late universe dynamics, but small enough that αC1/2, αC and αC3/2 terms can be
neglected.

3. α is small enough that the background equation reduces to H2 = 8πGρ
3 + αC

a4 .

Using these approximations we can rewrite the first equation in (2.43) as:

k2δϕ+ 3δϕ′′ = 3
√
C(Φ′ + Ψ′). (B.1)

We can do this because we know ∇2Φ ≪
√
CΦ′ and Ψ′′ ≪

√
CΨ′. This suggests that

δφ = δϕ√
C

is the same order of magnitude as the metric perturbations Φ and Ψ, so that
we can re-write our equation as:

k2δφ+ 3δφ′′ = 3(Φ′ + Ψ′). (B.2)

Then using the same approximations we can rewrite the second equation in (2.43) as:

12αCΦ − 12αCδφ
′ − 2a2(k2Ψ + 3HΨ′ + 3H2Φ) = 8πGa4δρ. (B.3)

The remaining equations reduce to their GR equivalent:

Ψ′ + HΦ = −4πGa2(1 +ω)ρv

Φ = Ψ + 8πGa2Π

3Ψ′′ + 3H(Φ′ + 2Ψ′) + k2(Ψ − Φ) + (6H′ − 3H2)Φ = 12πGa2δρ

δ′ = 3Hδ

(
w− δp

δρ

)
+ (1 +w)

(
3Ψ′ − ∇2v

)
2∇4Π + 3∇2δp+ 3(1 +w)ρ̄

[
(1 − 3w)∇2v+ ∇2v′ + ∇2Φ

]
= 0 .

(B.4)

C Coupled differential equations for the Boltzmann solver

The following derivations follow the procedures outlined in [47, 56].
The Boltzmann equations for photons, photon polarization, neutrinos, dark matter and

baryons are independent of the cosmological model (they describe the equations in any given
expanding spacetime with perturbations). They will therefore be the same in ΛCDM and
4DEGB. These can be written as (see equation (22) in [47]):

Θ′ + ikµΘ = Ψ′ − ikΦ − τ ′
[
Θ0 − Θ + ikµvb − 1

2P2Π
]

Θ′
P + ikµΘP = −τ ′

[
ΘP + 1

2(1 − P2)Π
]

δ′ − k2v = 3Ψ′
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v′ + Hv = −Φ

δ′
b − k2vb = 3Ψ′

v′
b + Hvb = −Φ + τ ′R

k
(vb + 3Θ1)

N ′ + ikµN = Ψ′ − ikµΦ
(C.1)

where all quantities are defined as in [47], except for Φ[47] = −Ψ, Ψ[47] = Φ and v[47] = kv.
Care should also be taken when comparing derivatives (the prime symbol in [47] indicates a
derivative with respect to x = ln a). To explicitly solve the coupled ODEs we need to use
the multipole expansion of the first two equations in (C.1).

Next, by looking at (B.3) and the second equation in (B.4) (when including photon and
neutrino perturbations) we find that the relevant Einstein equations take the form:

k2Ψ + 3H(Ψ′ + HΦ) = 6αC(Φ − δφ′)
a2 + 4πGa2 [ρδ + ρbδb + 4ργΘ0 + 4ρνN0]

Φ = Ψ − 12H2
0

k2a2 [Ωγ0Θ2 + Ων0N2] .
(C.2)

We also need an additional differential equation for δφ which is given by (B.2):

k2δφ+ 3φ′′ = 3(Φ′ + Ψ′). (C.3)

C.1 Initial conditions for the coupled ODEs

In the early universe for small k, the first equation in (C.2) reduces to:

Ψ′

η
+ Φ
η2 − 2α̃C

(Ωr0 + α̃C)η2 (Φ − δφ′) = −28πGa2ρ

3

(
ργ0
ρ

Θ0 + ρν0
ρ

N0

)
=⇒

Ψ′

η
+ Φ
η2 − 2α̃C

(Ωr0 + α̃C)η2 (Φ − δφ′) = − 2
η2

( Ωr0
Ωr0 + α̃C

)
((1 − fν)Θ0 + fνN0)

(C.4)

where we have used the background equation 8πGa2ρ
3 = H2 − H2

0 α̃C

a2 , so that H = 1
η and a =

H0
√

Ωr0 + α̃Cη, and where fν = ρν

ρr+ρν
= 1

8
7Neff

( 11
4 )4/3+1

when all neutrinos are massless. Now

we use the fact that for small k, Ψ′ = Θ′
0 = N ′

0 together with the derivative of (C.4)×η2 to get:

ηΨ′′ + Ψ′ +
(

1 − 2α̃C

α̃C + Ωr0

)
Φ′ + 2α̃C

Ωr0 + α̃C
δφ′′ = − 2Ωr0

Ωr0 + α̃C
Ψ′. (C.5)

Next we employ the ansatz Ψ = (1 + ϵ)Φ in the early universe, where ϵ is a constant to
be determined. Then, using (C.2) for small k (i.e. δφ′′ = (2 + ϵ)Φ′), we get:

(1 + ϵ)ηΦ′′ +
(

2 + ϵ− 2α̃C

Ωr0 + α̃C
+ 2Ωr0

Ωr0 + α̃C
(1 + ϵ) + 2α̃C

Ωr0 + α̃C
(2 + ϵ)

)
Φ′ = 0 =⇒

(1 + ϵ)ηΦ′′ + (4 + 3ϵ)Φ′ = 0.
(C.6)
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This equation is solved by Φ = ηP for P = 0, 1 − 4+3ϵ
1+ϵ , which are respectively a growing

and a decaying mode for ϵ > −1.This means the early-universe growing mode has solution
Φ = Φi (defined at some early time ηi) which is a constant. This implies δφ′ = δφ′

i is also
a constant in the early universe (at some early time ηi).

We can now find the initial conditions for other quantities as a function of Φi and δφ′
i

both. We start with the bottom line of equation (C.4) with Ψ′ = 0 and Θ0,i = N0,i to get:(
1 − 2α̃C

Ωr0 + α̃C

)
Φi + 2α̃C

Ωr0 + α̃C
δφ′

i = − 2Ωr0
Ωr,0 + α̃C

Θ0,i =⇒

Θ0,i = −1
2

{Ωr0 − α̃C

Ωr0
Φi + 2α̃C

Ωr0
δφ′

i

}
.

(C.7)

Next, we use the third equation in (C.1) as well as the multipole expansion of the first
equation in (C.1) (see the first equation in (22) from [47]) with adiabatic initial conditions
( δ

Θ0
is constant) to get:

δi = 3Θ0,i. (C.8)

We also use the first equation in (22) from [47] with Φ′ = 0, 3Θ1+vb ≈ 0 and Θ2 ≪ 1 to get:

Θ1,i = kη

3 (Φi + Θ0,i) =⇒ Θ1,i = kΦi

6H

{Ωr0 + α̃C

Ωr0
− 2α̃C

Ωr0

δφ′
i

Φi

}
. (C.9)

The third equation in (C.1) as well as the first equation in (22) from [47] (with adiabatic
initial conditions) also give:

−k2vi = (3Φ′ − δ′)i = (3Θ′
0 + 3kΘ1 − δ′)i ≈ 3kΘ1,i =⇒ Θ1,i = −kvi

3 . (C.10)

To find the value of ϵ, we first note that the seventh and eighth equations in (22)
from [47] in the early universe imply:

N ′′
2 ≈ 2k

5 N ′
1 = 2k2

15 (N0 − 2N2 + Φ) (C.11)

and the second equation in (C.2) with Θ2 ≪ N2 and a = H0
√

Ωr0 + α̃Cη implies:

N2 = −Ωr0 + α̃C

Ωr0

(kη)2(Φ − Ψ)
12fν

. (C.12)

Differentiating (C.12) and equating to (C.11) (with N2 ≪ |Φ + N0|) we get:

N0 = 5
4fν

(Ωr0 + α̃C

Ωr0

)
Ψ −

( 5
4fν

(Ωr0 + α̃C

Ωr0

)
+ 1

)
Φ (C.13)

which, using N0,i = Θ0,i = −1
2

{
Ωr0−α̃C

Ωr0
Φi + 2α̃C

Ωr0
δφ′

i

}
implies:

Ψi = 4fν

5

( Ωr0
Ωr0 + α̃C

){(
1 − Ωr0 − α̃C

2Ωr0
+ 5

4fν

(Ωr0 + α̃C

Ωr0

))
Φi − α̃C

Ωr0
δφ′

i

}
=⇒

Ψi =
(2fν

5 + 1
)

Φi − 4fνα̃C

5(Ωr0 + α̃C)δφ
′
i.

(C.14)
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This satisfies the requirements of the ansatz for sufficiently small α̃C , fν and δφ′
i. It also

allows us to find:

N2,i = k2a2

12H2
0 Ων0

(
5

2fν
+ 1

) (Ψi + 2α̃C

Ωr0 + α̃C
δφ′

i

)
, Nℓ = k

(2ℓ+ 1)HNℓ−1, ℓ > 2. (C.15)

The derivation for the moments of the photon polarization perturbations can be found
in [47]. Turning now to the scalar field, we notice that in the early universe (C.3) is the
equation for a simple harmonic oscillator with frequency ω = k√

3 . This will have a general
homogeneous solution:

δφ = δφi cos
(
k√
3
η

)
+

√
3δφ′

i

k
sin
(
k√
3
η

)
(C.16)

where δφi is the initial value of the scalar field at some early time ηi and δφ′
i is the initial

value of its derivative. When Φ′ ̸= 0, there will also be a particular integral solution
to equation (C.3). In the early universe, if Φ′ ≲ O(η), this particular solution will be
δφi ≲ O(η3) =⇒

(
dδφ

d(ln a)

)
i

= O(η3
i ) ≈ 0.

In the interest of simplicity we look at the special initial condition in which the scalar
field is initially at rest at a minimum of its effective potential, with δφi = δφ′

i = 0. However,
we acknowledge that in general this theory is not necessarily constructed to behave like
GR in the early universe. Therefore an interesting avenue for future research could be the
exploration of the effect of different initial conditions on perturbations in 4DEGB.

We can then write down the relevant initial conditions as:

Θ0,i = −1
2

(Ωr0 − α̃C

Ωr0
Φi

)
δm,i = 3Θ0,i

Θ1,i = kΦi

6H(ηi)

(Ωr0 + α̃C

Ωr0
Φi

)
vm,i = −3

k
Θ1,i

N0,i = Θ0,i( dδφ
d(ln a)

)
i

= O(η3
i ) ≈ 0

δφi = 1
3

( dδφ
d(ln a)

)
i

≈ 0

(C.17)

and all other initial conditions have the same form as their GR equivalent as described in [47].
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