
Discovery Immunology, 2022, 1, 1–13
https://doi.org/10.1093/discim/kyac003
Advance access publication 26 July 2022
Review

Review

Expression of antimicrobial host defence peptides in the 
central nervous system during health and disease
Katie J Smith and Emily Gwyer Findlay*,

Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
*Correspondence: Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK.  
Email: Emily.findlay@ed.ac.uk

Summary 
Antimicrobial host defence peptides (HDP) are critical for the first line of defence against bacterial, viral, and fungal pathogens. Over the past 
decade we have become more aware that, in addition to their antimicrobial roles, they also possess the potent immunomodulatory capacity. 
This includes chemoattracting immune cells, activating dendritic cells and macrophages, and altering T-cell differentiation. Most examinations of 
their immunomodulatory roles have focused on tissues in which they are very abundant, such as the intestine and the inflamed skin. However, 
HDP have now been detected in the brain and the spinal cord during a number of conditions. We propose that their presence in the central 
nervous system (CNS) during homeostasis, infection, and neurodegenerative disease has the potential to contribute to immunosurveillance, 
alter host responses and skew developing immunity. Here, we review the evidence for HDP expression and function in the CNS in health and 
disease. We describe how a wide range of HDP are expressed in the CNS of humans, rodents, birds, and fish, suggesting a conserved role in 
protecting the brain from pathogens, with evidence of production by resident CNS cells. We highlight differences in methodology used and how 
this may have resulted in the immunomodulatory roles of HDP being overlooked. Finally, we discuss what HDP expression may mean for CNS 
immune responses.
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Introduction
Antimicrobial host defence peptides (HDP) are a family of 
short peptides with diverse sequences, produced both con-
stitutively and in response to bacterial, viral, and fungal 
infections. They are expressed in multiple tissues and fluids 
throughout the body, including serum, saliva, semen, sweat, 
lung, intestine, and skin [1–6]. Cells that are well documented 
to produce HDP include neutrophils, mast cells, macrophages, 
Paneth cells, and mucosal epithelium [7–10]. Features of 
abundant HDP are shown in Table 1.

In addition to their antimicrobial capacities, HDP are 
potent immunomodulators. In particular, defensins, and 
cathelicidins can alter dendritic cell activation and differenti-
ation [11–14], skew T-cell differentiation [13, 15], halt mac-
rophage mRNA translation [16], and chemoattract immune 
cells including monocytes and T cells [17] (Fig. 1). As such, 
their production not only drives defence against infiltrating 
infection but also substantially alters immunity during infec-
tious and inflammatory disease (HDP immunomodulatory 
capacities are summarized in Fig. 1).

The expression of a variety of peptides has been widely 
described in many tissues, with a particular abundance in the 
intestine [18, 19], lung [20, 21], and skin [22–24]. However, 
one exception has been the central nervous system (CNS). 
The production of HDP by resident and infiltrating cells of 

the CNS, and their capacity to modulate immunity there, has 
not previously been reviewed, despite mounting evidence that 
HDP are indeed present at this site (Fig. 2 and Table 2). Here, 
we review the expression and discuss the potential functions 
of HDP throughout the nervous system of multiple species in 
health, infection, and neurodegenerative disease.

Cathelicidin
The short cationic peptide cathelicidin has multiple well-
defined antimicrobial and immunomodulatory roles. Its ex-
pression has been described in many tissues such as the skin 
[25], intestine [6], airways [21], and reproductive system [26, 
27]. Many cell types can produce cathelicidin; it is stored at 
a high concentration in neutrophil secondary granules and 
can also be produced by monocytes, macrophages, mast 
cells, adipocytes, and some T-cell subsets [10, 28–30]. It has 
direct and indirect anti-bacterial, anti-viral, and anti-fungal 
action [31–33], with direct killing observed against the respi-
ratory syncytial virus [32], many bacterial species including 
Escherichia coli and Streptococcus pneumoniae (reviewed in 
[34]) and fungal species including Candida albicans [35]. As 
a consequence, mice lacking cathelicidin are more susceptible 
to a variety of infections [31, 36, 37].

Cathelicidin is also a powerful immunomodulator and un-
derstanding its impact is a burgeoning field of immunology. 
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For example, it can mature dendritic cells and up-regulate their 
T cell priming capacities [11, 13, 14], chemoattract innate 
and adaptive immune cells, enhance T-cell survival and Th17 
differentiation [15, 17, 38], and induce re-epithelialization 
and re-endothelialization following damage [39, 40]. It is 
therefore important to understand whether cathelicidin is 
expressed in the CNS, and whether its immunomodulatory 
roles are important at that site.

Health
During steady state, cathelicidin is expressed in the human 
CNS: in patients with conditions that do not clinically 
alter cerebrospinal fluid (CSF) composition (idiopathic 
cephalgia, ischialgia due to discopathy, and idiopathic fa-
cial nerve palsy) cathelicidin has been detected in the fluid 
(in the range 0.01–0.07μM) [41]. Interestingly, this is sim-
ilar to the mean cathelicidin concentration in healthy plasma, 
which is 0.07 μM (n = 58, SD = 0.20) [7]. Dot blot hy-
bridization demonstrated cathelicidin expression in whole 
healthy human brain homogenate to be, strikingly, at similar 
levels to the colon and the lung [21]. A more recent study 

that generated a single cell atlas of the human spinal cord 
showed that cathelicidin mRNA was expressed—albeit at 
low concentrations—in some astrocyte and oligodendro-
cyte populations [42]. Finally, recent work from our labora-
tory has shown that cathelicidin is expressed at the protein 
level in human post-mortem brain tissue from donors who 
did not die from neurological causes [43]. In these samples, 
cathelicidin was expressed by neutrophils, CD68+ microglia/
macrophages, and endothelial cells, which to our knowledge 
is the first demonstration of these cells expressing cathelicidin 
in a healthy brain [43]. Thus, cathelicidin mRNA and protein 
are expressed during homeostasis in the human CNS.

Cathelicidin is also present in the central nervous systems 
of rodents, birds, and small mammals. mRNA encoding rat 
cathelicidin was detected in the olfactory bulb, medulla ob-
longata, and spinal cord of healthy brains [44]. In this study, 
rat cathelicidin was also detected in primary cell cultures 
of the hippocampus, striatum, cerebellum, and medulla ob-
longata. Furthermore, CMAP27, a chicken cathelicidin-like 
antimicrobial peptide, is expressed at the mRNA level in 
the brain [45]. This data suggests cathelicidin expression is 

Table 1: Features of antimicrobial peptides expressed in the CNS. PDB—reference code for entry in the protein data bank. Created with BioRender.
com.

Peptide Structure Size (# residues, human form) Charge 

Cathelicidin

Human CAMP (LL-37)
PDB: 2KSO
Wang., 2008

37 Cationic +6

Beta defensin 1

Human DEFB1
PDB: 1KJ5
Schibli et al., 2001

36 Cationic +4

Beta defensin 2

Human DEFB4
PDB: 1FQQ
Sawai et al., 2001

41 Cationic +6

Dermcidin

Human DCD
PDB: 2KSG
Jung et al., 2010

48 Anionic −5

Hepcidin

Human HAMP
PDB: 2KEF
Jordan et al., 2009

25 Cationic +3
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conserved across different species in the steady-state CNS. 
In contrast, cathelicidin mRNA was not detected in healthy 
mouse brains using northern blot analysis [46], nor in our 
examinations of the healthy mouse spinal cord [43], making 
mice unusual in their lack of CNS cathelicidin expression.

Infection
As HDPs are critical in the innate immune response, it is likely 
they are important innate responders to infection in the CNS. 
Not surprisingly, cathelicidin levels are elevated in human 
CSF during infection. During active bacterial meningitis, 
cathelicidin is increased up to 0.02 μM in the CSF of patients, 
compared to 0.0025 μM in the healthy controls of this study 
[47]. Cathelicidin concentration positively correlates with 
CSF bacterial count [48] and with CSF white cell counts [49]. 
Similarly, CSF cathelicidin was elevated in children with tu-
berculous meningitis compared to healthy controls [50]. 
Moreover, in human CSF cathelicidin levels are increased in 
tuberculosis meningitis-positive HIV patients compared to tu-
berculosis meningitis-182 negative HIV patients [51].

Experiments to determine the cellular source of CNS 
cathelicidin have determined a surprisingly wide range 
of resident and infiltrating cells able to produce it. During 
Neisseria meningitidis infection, rat cathelicidin production 
increased in endothelial cells and infiltrating neutrophils 
in the meninges, as measured by immunohistochemical 

analysis [52]. It was also detected in the brains of rats 12, 
22, and 39 h after Streptococcus pneumoniae infection [53] 
and can be produced by microglia and astrocytes following 
Pneumococcal meningitis infection [47]. Moreover, neutro-
phil extracellular traps coated with high concentrations of 
cathelicidin are released in the CSF following bacterial menin-
gitis infection in rats [54] and Streptococcus suis infection in 
piglets [55]. In mice, cathelicidin is expressed in the meninges 
and brain parenchyma after pneumococcal infection and mice 
lacking cathelicidin have increased mortality following infec-
tion with Streptococcus pneumonia to induce meningitis [56]. 
Moreover, cathelicidin is expressed in the meninges and brain 
parenchyma of mice after pneumococcal infection.

Therefore, in many species cathelicidin is upregulated 
during CNS infection and can be produced by glial cells, en-
dothelial cells, and infiltrating neutrophils. As cathelicidin 
has potent anti-bacterial and anti-viral activity, it is highly 
likely that cathelicidin will be involved in clearance of CNS 
invading pathogens. However, cathelicidin also has powerful 
immunomodulatory roles. In one study, it promoted signal 
transduction in glial cells leading to IL-6 production, in a 
manner dependent on ERK1/2, p38 MAPK, and NFκB [57]. 
Its role in glial cell function appears complex, with some 
evidence that it may play a regulatory role—for example 
cathelicidin-knockout glial cells have a pronounced pro-
inflammatory response following meningitis infection [58]. 

Figure 1: Known immunomodulatory effects of host defence peptides. Created with BioRender.com.
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Unpicking how regulation of immune responses is separate 
from cathelicidin’s direct anti-endotoxic and anti-inflamma-
tory effects will take considerable work.

Neurodegeneration
HDP-secreting neutrophils migrate into the CNS during 
neuroinflammation. Neutrophil infiltration into the spinal 
cord and brain tissue has been observed in mouse models 
of Alzheimer’s disease (AD) [59, 60] and multiple sclerosis 
(MS) [61, 62]. Importantly, cathelicidin-positive neutrophils 
are present in the spinal cord in experimental autoimmune 
encephalomyelitis (EAE), a mouse model of MS. Depletion 
of neutrophils or cathelicidin attenuates the development of 
EAE [43, 60, 62–64] and in AD models this can improve cog-
nitive decline [65].

In humans, neutrophils are present in the CSF and in ac-
tive lesions of neuromyelitis optica patients [66]. Moreover, 
it has been shown that neutrophils release extracellular traps 
(NETs) in the brain parenchyma of AD patients [60]. MS pe-
ripheral blood neutrophils have increased activation markers 

and enhanced degranulation [67]. As cathelicidins, as well 
as other HDPs including defensins, are secreted during de-
granulation and are present on NETs, these studies suggest 
HDP could have a functional role during neutrophil effector 
mechanisms in these diseases.

Immunohistochemistry in post-mortem brains from 
patients with Alzheimer’s disease (AD) showed cathelicidin 
expression to be increased in microglia and astrocytes 
compared to healthy donor brain samples [68]. We have re-
cently shown that cathelicidin is expressed in active lesions 
in the brains of patients with MS and in the spinal cords of 
mice undergoing the model of MS experimental autoimmune 
encephalomyelitis (EAE) [43]. In both cases, the majority of 
cathelicidin was released by neutrophils, but it was also seen 
expressed by microglia and by endothelial cells. Not only is 
cathelicidin expressed in the CNS but also it plays a key role 
in promoting damaging inflammation such that mice lacking 
the peptide are resistant to developing severe EAE. Therefore, 
during MS cathelicidin plays a role in potentiating harmful 
immune responses.

Figure 2: The expression of host defence peptides across the central nervous system in health, infection and neurological disease. Created with 
BioRender.com.
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Defensins
Defensins are cationic peptides with a characteristic series of 
cysteine residues, which form an antiparallel β-sheet struc-
ture. There are two classes, α- and β-defensins [69], which 
have broad anti-microbial, anti-viral, and anti-fungal activity 
[70]—for example they have demonstrated activity against 
Staphylococci [71], herpes simplex virus [72], influenza virus 
[73], HIV [74], and Candida albicans [75].
α-defensins are stored in neutrophil primary granules at 

high concentrations and are released from Paneth cells in 
the intestine [69, 76]. They have been associated with CNS 
infections previously, being elevated in the CSF of children 
with bacterial meningitis (with a median of 23μg/ml in 
infected subjects and with no control subjects having de-
tectable defensins in the CSF) [77]. Using LC–MS/MS anal-
ysis and ELISA techniques, α-defensin 1 was detected in the 
CSF of patients with West Nile neuroinvasive disease and 
non-WNV CNS infections [78]. It is expected that these CSF 
defensins are being released from neutrophils, and there are no 
published papers to our knowledge showing the expression of 
α-defensins by CNS-resident cells. To examine this further, we 
have carried out mining of published sequencing datasets of 
neurons, astrocytes, microglia, and oligodendrocytes. None 
of these datasets showed any expression of the alpha defensin 
genes Defa1, Defa2, Defa3, Defa4, Defa5, or Defa6. It is likely 
therefore that they are only being released by neutrophils, and 
also that the methods we use currently have led to the impact 
and quantity of this being underestimated (see note at end on 

Methodology). For the remainder of this review, we will focus 
on β-defensins.
β-defensins are not only associated with infection but also 

have significant immunomodulatory roles. Their production 
is increased in monocytes by LPS but also by IFN-γ and vi-
tamin D [9, 79] indicating inflammation-related and not only 
infection-related mediators can switch on defensin expres-
sion.

Defensins have multiple roles in many immune cells. For 
example, human β-defensin 3 modulates TLR4 signalling 
[80], chemoattracts monocyte/macrophages [81], alters mac-
rophage differentiation and increases their IL-4 production 
[82], and enhances dendritic cell responses to bacterial DNA 
in a TLR-9 dependent manner [12]. Mouse βD-14 switches 
CD4+ CD25− T cells into regulatory T cells inducing expres-
sion of FOXP3 and CTLA-4 [83]. β-defensins can also be 
anti-inflammatory, as hBD3 in the presence of LPS inhibits 
IL-6 and TNF-α accumulation in the human myelomonocytic 
cell line THP-1 and peripheral blood monocytes derived 
macrophages [84]. As a family of peptides, therefore, they 
have the varied immunomodulatory capacity that affects both 
innate and adaptive immune cells.

Health
In humans, early work analyzing the widespread expression 
of hBD-1 in the CNS showed it is not expressed in the mRNA 
isolated from the brain (although the specific region was not 
specified) [85]. Further, more specific, a study of frozen brain 

Table 2: 

Peptide Expression in the CNS Cellular source References 

Cathelicidin Whole brain, olfactory bulb, 
medulla oblongata, spinal 
cord, hippocampus, striatum, 
cerebellum, dorsolateral pre-
frontal cortex, anterior cin-
gulate cortex, meninges, CSF

Microglia, astrocytes, motor neurons, 
Purkinje cells, olfactory bulb neurons, 
dorsolateral prefrontal cortex, ante-
rior cingulate cortex, BBB endothleial 
cells, infiltrating neutrophils, menin-
geal cells, neuronal cell lines

Bals et al. (1998), Bergman et al. (2005), van 
Dijk et al. (2005), Bergman et al. (2006), 
Brandenburg et al. (2009), Brandenburg et 
al. (2008). Brandenburg et al. (2010), Lewis 
et al. (2014), Lee et al. (2015), Byfield et al. 
(2011), de Buhr et al. (2017), Postolache et 
al. (2020), Hassel et al. (2018)

Beta defensin 1 Whole brain, choroid plexus, 
hippocampus, spinal cord

Neuronal cells, astrocytes Huttner et al. (1997), Nakayama et al. (1999), 
Hiratsuka et al. (2001), Froy et al. (2007), 
Maxwell et al. (2003), Morrison et al. 
(2003), Zhang et al. (1998), Hao et al. 
(2001), Schluesener and Meyermann (1995), 
Williams et al. (2013), Fleming et al. (2006)

Beta defensin 2 Whole brain (low levels) Immortalized brain capillary endothelial 
cells, neuronal cells

Huttner et al. (1997); Hiratsuka et al. (2001), 
Froy et al. (2007), Maxwell et al. (2003), 
Morrison et al. (2003), Tiszlavicz et al. 
(2011), Hao et al. (2001), Soman et al. 
(2009)

Dermcidin Pons, paracentral gyrus, locus 
ceruleus, nucleus raphe 
pontis, substantia nigra, lat-
eral hypothalamic nuclei

Unknown Porter et al. (2003)

Hepcidin Whole brain, choroid plexus, 
cortex, thalamus, hippo-
campus, striatum, substantia 
nigra, choroid plexus, spinal 
cord, dorsal root ganglia

Astrocytes, epithelial cells of choroid 
plexus, neurons, immortalized mouse 
microglia

Hanninen et al. (2009),, Hanase et al. (2020), 
Raha-Chowdhury et al. (2015), Zechel et 
al. (2006), Pandur et al. (2019), Urrutia et 
al. (2013); Wang et al. (2008), Zarruk et al. 
(2015), and Varga et al. (2018)
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tissue of patients without CNS disorders showed that hBD-1 
mRNA is expressed in the choroid plexus but not in the cere-
bral cortex, cerebellum, pia mater, or leptomeningeal vessels 
[86]. In this study, hBD-2 was not detected in any brain re-
gions examined. The first study used northern blot analysis to 
assess hBD-1 expression, whilst the latter used RT-PCR anal-
ysis. This highlights the requirement for multiple experimental 
techniques to fully understand HDP expression within tissues; 
as detailed below (see ‘A note on methodology’), detection of 
HDP is sometimes difficult. Moreover, this data suggests in 
humans there is a regional expression of hBD-1 as well as dif-
ferential expression of individual defensins. The choroid plexus 
serves as an interface between the CNS and the periphery, is a 
niche for resident immune cells, and has been shown to be the 
site of T-cell stimulation in the CNS [87–90]. As the choroid 
plexus was the only site in the brain that expressed hBD-2 in 
this study, it is possible that hBD-2 expression at this site is part 
of the immune surveillance of the CNS by immune cells. Further 
understanding of the function of human defensins in the CNS 
during steady-state may help elucidate these differences.
β-defensins are expressed in the brain of a wide variety of 

species. Porcine BD-1 is expressed in the brain of 4–5-week-
old pigs [91]. Studies using RT-PCR show that Rbd1 and Rbd2 
are expressed at low levels in the rat brain [92, 93] and the 
bovine β-defensin is expressed in the meninges and choroid 
plexus of healthy adult cows [94]. Likewise, Defb9, Defb10, 
Defb11, and Defb35 are expressed in the adult mouse brain 
and Defb10, Defb11, and Defb35 are expressed in the neonate 
[95, 96]. In health, the levels of the beta-defensin homologue, 
gcdefb1, in Chinese grass Carp showed the highest expression 
in the brain compared to other tissues [97]. In other healthy 
fish such as mandarin [98] and orange-spotted grouper [99], 
β-defensin transcripts are present but are expressed at low 
levels in the brain. The duck β-defensin-2 homologue is also 
expressed at low levels in the brain in healthy ducklings [100]. 
In addition, members of the β-defensin family are differen-
tially expressed; in rainbow trout, for example, four novel 
members of the family were identified but only omBD-3 was 
expressed at low levels in the brain [101], and in the blunt 
snout bream maBD-2 was expressed in the brain, but not 
maBD-2 [102].

Thus, defensins are expressed widely and are conserved 
across different species. It is likely that the expression of 
defensins during a steady state plays a role in immune sur-
veillance and may have important functions in regulating im-
mune responsiveness of resident CNS cells. However, whether 
the expression of different defensins, and their expression in 
different brain regions possess different functions is unclear 
and warrants further investigation.

Infection
Surprisingly, there are very few studies investigating the ex-
pression of β-defensins in the CNS following infection. One 
study demonstrated the expression of hBD-2 mRNA and pro-
tein by immortalized human brain capillary endothelial cells 
after Chlamydophila pneumoniae infection [103]. Another 
study demonstrated that stimulating astrocytes cell cultures 
with LPS, IL-1β, or TNF-α—to model infection—stimulated 
the production of hBD1 and hBD2 mRNA and protein, whilst 
meningeal fibroblasts and microglia were only able to express 
hBD1 mRNA [104]. These results suggest a possible role for 
hBD2 in early immune responses of the brain.

Neurodegeneration
It has been suggested that β-defensins could play a role in 
the neuroimmune function and during neurodegeneration 
[105]. Williams and colleagues hypothesize that conditions 
such as hyperglycaemia and increased insulin resistance, 
which are present in many neurological conditions, may alter 
defensin expression; for example, high glucose induces hBD2 
and hBD3 mRNA expression from primary epithelial cells in 
vitro. In addition, they suggest that abnormal expression of 
β-defensins could contribute to loss of AMP-induced regula-
tion of dendritic cells and chronic inflammation.

Similarly, levels of hBD-2 were significantly elevated in the 
sera and in the CSF of patients with AD compared to age-
matched controls [106]. In addition, hBD-1, but not hBD-2 or 
h-BD-3, is present within hippocampal astrocytes as well as 
in neurons and the choroid plexus and is increased in patients 
with AD [107].

Dermcidin
Dermcidin is a non-classical HDP that shares no homology 
with other known antimicrobial peptides [3]. It is secreted 
constitutively by eccrine sweat glands at a concentration 
of ~1–10 µg/ml, and is transported to the epidermal sur-
face [3]. Dermcidin is proteolytically cleaved into an active 
form which is 47 amino acids in length [3] and, unlike other 
positively charged HDPs, its charge is −5 [3]. It has potent 
antimicrobial activity, contributing to the immune defence of 
the skin [108]. Broad spectrum activity against several dif-
ferent pathogens has been described such as Staphylococcus 
epidermidis, Pseudomonas aeruginosa, Pseudomonas putida, 
methicillin-resistant S. aureus, Listeria monocytogenes, and 
Salmonella typhimurium [109–111]. This peptide was orig-
inally identified in humans [3], and interestingly dermcidin 
has no homologue in rodents or other mammals except for 
primates [108].

Health
Dermcidin is expressed in the uninfected brain; northern blot 
analysis showed dermcidin expression specifically in the pons 
of healthy adult and foetal human brains, with low expres-
sion also noted in the paracentral gyrus of the cerebral cortex 
[112].

An AP-Dermcidin fusion protein showed strong binding to 
neurons in the locus ceruleus, nucleus raphe pontis, substantia 
nigra, and the lateral hypothalamic nuclei and weak binding 
to almost all neurons in the healthy human adult brain [112]. 
The authors suggest that dermcidin could be acting as a sur-
vival factor for neurons that have increased sensitivity to reac-
tive oxygen species [112]. Similarly, Y-P30 (the first 30 amino 
acids of the dermcidin precursor protein [108]), has been 
detected in neonatal rats and human foetal brains in the neo-
cortex and hippocampus. Under oxidative stress conditions, 
Y-P30 has been shown to promote the survival of retinoblas-
toma cells, hepatocellular carcinoma cell line HuH7, and the 
prostate cancer cell line PC-3M [113, 114].

Infection
Dermcidin has broad antimicrobial activity against many 
bacteria including Staphylococcus, Listeria and Salmonella 
species, but to our knowledge its activity during CNS infec-
tion has not been investigated. High dermcidin production 
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is exclusive to the pons of the healthy human brain [112]. 
As the pons has an active relationship with the periphery 
[115], expression of dermcidin in this brain region could be 
an important mechanism for innate defence against infec-
tion. However, it remains to be clarified whether dermcidin 
is expressed in the non-inflamed brain at the protein level. 
Alternatively, it is possible that dermcidin has more important 
neuro-modulatory and neurological maintenance functions, 
some of which are yet to be discovered.

Neurodegeneration
In serum samples from AD patients, dermcidin expression 
was increased and it was suggested as a potential biomarker 
for disease [116], but other studies are so far not available.

As discussed above, the dermcidin precursor protein Y-P30 
can promote neuronal survival [112–114]; however, this has 
not been investigated under neurodegenerative conditions. 
Other research has demonstrated that Y-P30 also promotes 
neurite outgrowth from thalamic and cerebellar neurons and 
is neuroprotective following optic nerve damage [113, 114, 
117–119]. Therefore, as Y-P30 can be neuroprotective during 
injury, perhaps if the dermcidin expression is dysregulated 
this could lead to abnormal neuronal maintenance and po-
tential neurodegeneration. However, testing this hypothesis 
will require significant further study.

Hepcidin
Hepcidin is a cysteine-rich cationic peptide produced in 
the liver, which has multiple immunomodulatory and 
antimicrobial activities including against Candida albicans, 
Aspergillus fumigatus, Escherichia coli, Staphylococcus au-
reus, Staphylococcus epidermidis, and group B Streptococcus 
[120]. Mutations in HAMP have been identified in patients 
suffering from hereditary hemochromatosis [121]. This role 
appears to be unrelated to its action as an antimicrobial pep-
tide, as these patients do not have increased susceptibility to 
infections, but to its immunomodulatory action. Hepcidin 
also has many non-immunomodulatory functions throughout 
the brain, specifically its role with regard to iron homeostasis 
which has been reviewed extensively elsewhere [122, 123].

Health
Hepcidin mRNA is present in the uninfected human brain 
with relatively high expression found in the cortex, cere-
bellum, thalamus, medulla oblongata, and hippocampus, 
with the highest expression in the cortex and thalamus [124]. 
Hepcidin has also been detected within granular structures 
of astrocytes and in the epithelial cells of the choroid plexus 
[125].

It is also widely distributed in healthy mouse and rat brains 
and spinal cord. In mice, hepcidin-1 and hepcidin-2 are 
present in the CNS and immunohistochemistry of hepcidin-1 
was observed in many regions such as the olfactory bulb, 
cortex, hippocampus, amygdala, thalamus, hypothalamus, 
mesencephalon, cerebellum, pons, spinal cord, as well as in 
dorsal root ganglia of the peripheral nervous system [126]. 
The same study showed using immunohistochemistry that 
hepcidin-1 was expressed by neurons and glia cells in the 
adult mouse CNS [126]. The authors failed to show a sim-
ilar distribution of hepcidin by in situ hybridization which 
they suggest is because the mRNA signal is below the detec-
tion limit [126]. As hepcidin is an important iron regulator 

in the periphery, the authors suggest it is possible the same is 
occurring in the CNS.

In rats, Raha-Chowdhury showed by RT-PCR that 
hepcidin mRNA was expressed at low levels throughout the 
brain, while in situ hybridization showed hepcidin mRNA 
was restricted to the endothelium of blood vessels and the 
choroid plexus [127]. Hepcidin protein was expressed in the 
sub-ventricular zone, cortex, and the CSF, and associated with 
the epithelial cells of the choroid plexus, endothelial cells, 
pericytes, and astrocytes. The authors suggested that due to 
their observation that hepcidin is expressed in all layers of 
the BBB blood vessel walls and pericytes, peripheral hepcidin 
could also be crossing the intact BBB into the CNS [127].

Infection
There is increasing evidence that hepcidin acts as an 
antimicrobial agent in the CNS. Intravenous LPS injection in 
rats significantly increases hepcidin mRNA and protein ex-
pression in the cortex and the substantia nigra but not in the 
striatum or hippocampus [128, 129]. Similarly, peripheral ad-
ministration of LPS in mice increases hepcidin gene expres-
sion in the choroid plexus [130]. It is not clear whether the 
regional specificity of hepcidin upregulation is physiologically 
functional, or if it is due to differences in the sensitivity of 
methods used, as other studies have failed to detect hepcidin 
mRNA in the cortex [127]. This LPS-induced expression was 
mediated through the IL-6/STAT3 pathway in the mouse 
cortex and hippocampus [131]; in IL-6 KO mice, hepcidin 
mRNA levels in these regions are significantly reduced [131]. 
Another study showed that this same pathway also occurs in 
the choroid plexus during ageing in rats [132].

Interestingly, there may be cell-specific regulation of LPS-
mediated expression of hepcidin in the brain. Hepcidin 
mRNA is expressed at a much lower level in neurons than in 
astrocytes, and treatment with IL-6 in IL-6 KO astrocytes and 
neurons resulted in higher increased expression in astrocytes 
compared to neurons [133]. There is also evidence for cell-cell 
communication in this pathway, with LPS increasing hepcidin 
expression in neurons only when in culture with microglia, 
indicating microglia were the source of IL-6 (131). Thus, 
bacterial agents directly activate inflammatory signalling 
pathways which lead to the production of hepcidin in CNS 
resident cells—this is likely part of the CNS immune response.

Hepcidin is an important modulator of iron homeostasis 
and acts as a regulator of cellular iron release by binding to 
ferroportin 1 [134]. Its production in immortalized mouse mi-
croglia cells increases after stimulation with the inflammatory 
mediator CX3CL1, typically expressed on neurons [135]; it is 
also produced by astrocytes and microglia in response to LPS, 
TNF, and IL-6 [136]. This emphasizes how HDPs are able to 
support communication between CNS cells and demonstrates 
the relationship between inflammation and iron metabolism 
in the CNS.

Finally, hepcidin release from astrocytes has been shown 
to induce neuronal apoptosis. Astrocyte-specific hepcidin 
knockdown mice had decreased levels of cleaved caspase 3 
in neurons (a marker of increased apoptosis). The authors 
showed that the lack of hepcidin production by astrocytes 
protects neurons from inflammation-stimulated apoptosis by 
reducing neuronal iron concentration [137]. It is possible that 
hepcidin production in the CNS can induce apoptosis of other 
cells such as resident or infiltrating immune cells, which acts 
as an important immunomodulatory function.
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Neurodegeneration
It is well known that iron accumulation is a hallmark of 
neurodegenerative disease [138–140] and the implications 
of iron pathophysiology in neurological diseases have been 
reviewed extensively elsewhere [141–143]. Abnormal iron 
levels in the brain are involved in the formation of free 
radicals, which have been associated with oxidative damage 
and neuronal death [141]. Hepcidin regulates iron accumu-
lation in microglia and astrocytes in diseases including AD, 
sporadic amyotrophic lateral sclerosis, Parkinson’s disease, 
and Sanfilippo syndrome [144–147]. Hepcidin levels increase 
with age in the rat in the cortex, striatum, hippocampus, and 
substantia nigra [148] and this was associated with increased 
pathological hallmarks of AD. However, a study showed 
that hepcidin was significantly reduced in post-mortem 
hippocampal lysates from patients with AD compared to 
healthy controls [149]. It is currently unclear why hepcidin 
expression is decreased in patients with AD [141, 149]. A 
reduction in hepcidin would lead to increased brain iron 
content which could partially explain the increased iron ex-
pression in the brains of patients with AD [141]. A recent 
study showed that overexpression of hepcidin in astrocytes 
of APP/PS1 mice significantly improved cognitive decline and 
partially reduced Aβ plaque formation in the cortex. They 
showed that overexpression of hepcidin reduced iron content 
in neurons which reduced iron accumulation-induced oxida-
tive stress and cortex neuronal death [150]. Therefore, per-
haps a similar mechanism is occurring in the human AD brain. 
Moreover, expression of the HAMP gene is upregulated in 
the spinal cord during the mouse model of multiple sclerosis, 
experimental autoimmune encephalomyelitis (EAE) [151], 
and in the cortex during the cuprizone model of demyelina-
tion [152]. Therefore, it is likely that dysregulated hepcidin 
leads to aberrant iron accumulation in multiple neurological 
diseases.

A note on Amyloid-β
Interestingly, a review by Gosztyla and colleagues collated 
evidence indicating a relationship between Aβ peptides in 
AD and their proposed function as HDP [153]. Aβ peptides 
are considered the driving force leading to the develop-
ment of AD; however, drugs targeting Aβ have not been 
successful in terms of reducing cognitive decline [154]. 
Moreover, one of the common adverse reactions of anti-Aβ 
treatment is increased incidence of infections, suggesting a 
link between Aβ and the fight against infection [153, 155, 
156]. Specifically, Aβ has been suggested to function as an 
antimicrobial HDP. This was first proposed by Robinson 
and Bishop in the bioflocculant hypothesis, which stated 
that Aβ deposited by glial cells forms a web that surrounds 
neurons and protects them from pathogens [157]. They ref-
erence a study [158] showing intracerebroventricular in-
jection of LPS promoted Aβ deposition in transgenic mice 
that overexpress mutated human APP, and suggest this 
provides evidence that Aβ can bind pathogens [157]. Since 
this was proposed, multiple studies have demonstrated ev-
idence in support of the bioflocculant hypothesis. For ex-
ample, Aβ can inhibit viral replication of influenza [159] 
and has shown to have antimicrobial activity against many 
microorganisms [153, 160] such as Candida albicans, 
Streptococcus pneumoniae, and Pseudomonas aeruginosa, 

and Aβ exhibited higher potency than cathelicidin for some 
pathogens [161]. Aβ oligomers bind AD-associated herpes 
simplex virus [162], and prevent the virus from entering 
cells [163] suggesting a protective role for Aβ in CNS innate 
immunity [164]. Intriguingly, amyloid fibrils are present on 
NETs [165] suggesting amyloid fibrils may be an important 
mediator of innate immunity. Finally, Aβ can be expressed by 
immortalized microglial cells following LPS exposure [166], 
demonstrating that it could be released from activated im-
mune cells within the CNS in response to infection.

A note on methodology
The central nervous system (CNS) was long considered an 
immune privileged site [167], separated from peripheral cells 
by the blood brain barrier. However, we now understand that 
immune cells do cross this barrier [168, 169] and patrol the 
brain and spinal cord during homeostasis, infection, and neu-
rological disease. Indeed, granulocytes, including neutrophils, 
are present in the naïve mouse brain [170], comprising the 
third-largest tissue-resident leukocyte population in health 
[171]. In particular, neutrophils were noted in the dura mater, 
pia mater, and ependyma [171]. As neutrophils are one of 
the main cellular sources of HDP, storing cathelicidin and 
defensins in particular in abundance, neutrophil infiltration 
into the CNS is likely to contribute to HDP expression at 
this site.

HDP-secreting neutrophils also migrate into the CNS 
during neuroinflammation. Neutrophil infiltration into the 
spinal cord and brain tissue has been observed in mouse 
models of Alzheimer’s disease (AD) [59, 60] and multiple 
sclerosis (MS) [61, 62]. Importantly, cathelicidin-positive 
neutrophils are present in the spinal cord in EAE. Depletion 
of neutrophils or cathelicidin attenuates the development 
of EAE [43, 60, 62–64] and in AD models this can improve 
cognitive decline [65]. In humans, neutrophils are present in 
the CSF and in active lesions of neuromyelitis optica patients 
[66]. In other human neurological diseases, alterations to neu-
trophil populations have been noted.

This raises the possibility that if HDP are stored in 
infiltrating and/or resident neutrophils, or other granular 
cells, mRNA assays may not detect expression as the HDP is 
not actively being transcribed. Therefore, further studies are 
required which utilize a variety of complementary techniques 
to elucidate under what conditions HDP are expressed and 
by which cell types in the CNS. This is particularly true for 
understanding the role of neutrophil-derived and NET-coated 
HDP in the nervous system; we know neutrophils are present 
but unpicking their roles is technologically challenging.

In many of the papers described in this review, the cellular 
source of the HDP was not identified. In cells other than 
neutrophils, published single-cell RNA sequencing data from 
CNS studies can be exploited to pinpoint the expression of 
HDP. Likewise, as reagents improve, the cellular source of 
HDP in species other than humans and mice can be deter-
mined through co-localization with specific cell markers.

Finally, there are limitations in the availability of effective 
antibodies for detection the of HDP. For example, few reliable 
anti-HDP flow cytometry or immunofluorescence antibodies 
exist. Thus, the development of better reagents is essential to 
generate a complete map of HDP expression across the CNS 
across health, infection, and disease.
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Concluding remarks
Host defence peptides are not limited to mucosal sites or ac-
tive infections; instead, we have shown that they are expressed 
in the central nervous system of a wide range of species. This 
broad expression—during infection and also sterile inflam-
mation and neurodegeneration—suggests the peptides have 
multiple roles. We propose HDP have important functions 
not only as the first line of defence against pathogens but also 
as important immunomodulators. As the field develops and 
we understand the immunomodulatory roles of HDP in more 
detail, it is likely we will understand nervous system HDP to 
have roles we have not so far considered.
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