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ABSTRACT
Convection in stars and planets must be maintained against viscous and Ohmic dissipation. Here, we present the first systematic
investigation of viscous dissipation in simulations of rotating, density-stratified plane layers of convection. Our simulations
consider an anelastic ideal gas, and employ the open-source code Dedalus. We demonstrate that when the convection is sufficiently
vigorous, the integrated dissipative heating tends towards a value that is independent of viscosity or thermal diffusivity, but
depends on the imposed luminosity and the stratification. We show that knowledge of the dissipation provides a bound on the
magnitude of the kinetic energy flux in the convection zone. In our non-rotating cases with simple flow fields, much of the
dissipation occurs near the highest possible temperatures, and the kinetic energy flux approaches this bound. In the rotating
cases, although the total integrated dissipation is similar, it is much more uniformly distributed (and locally balanced by work
against the stratification), with a consequently smaller kinetic energy flux. The heat transport in our rotating simulations is in
good agreement with results previously obtained for 3D Boussinesq convection, and approaches the predictions of diffusion-free
theory.
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1 INTRODUCTION

Convection occurs in the interior of every main-sequence star and
in many planets, and must be maintained against a finite amount of
viscous and Ohmic dissipation. In a steady state, the dynamics and the
dissipation are therefore linked; constraints on one yield constraints
on the other.

Many authors have explored this link. For example, the widely-
employed theory of Rayleigh-Bénard convection developed by Gross-
mann & Lohse (2000) relies on the exact relationship between viscous
dissipation and heat transport (Shraiman & Siggia 2000); in their
model, the heat transport depends crucially on whether the viscous
and thermal dissipation occur primarily in the bulk of the convective
domain or in the boundary layers that form at its top and base. Jones
et al. (2022) have recently explored an extension of this theory to the
density-stratified case, with the spatial distribution of the dissipation
again playing a vital role. In the stellar context, Anders et al. (2022)
have shown that the magnitude of the dissipation within a convection
zone strongly influences the amount of convective overshooting into
adjacent stable layers. The form and magnitude of the dissipation is
likewise crucial in a variety of efforts to go “beyond mixing length
theory” (MLT) (e.g., Kupka et al. 2022, Canuto 1997, Viallet et al.
2013, Meakin & Arnett 2010, Arnett et al. 2015). In the Sun, where
the form and magnitude of convective flows in the deep convection

★ E-mail: s.lance@exeter.ac.uk
† E-mail: laura.currie@durham.ac.uk
‡ E-mail: m.k.m.browning@exeter.ac.uk

zone are currently the subject of much debate (e.g., Vasil et al. 2021),
the total dissipation may provide important constraints on the flows
(Ginet 1994). Ohmic dissipation in particular is thought to limit the
depth of zonal winds in Jupiter (Liu et al. 2008, Kaspi et al. 2018,
Kaspi et al. 2020), may constrain magnetism in the interiors of low-
mass stars (Browning et al. 2016), and could influence the radii of
hot Jupiters (Batygin & Stevenson 2010).

The purpose of this paper is to provide new constraints on the
magnitude and spatial distribution of the viscous dissipation that
may be occurring in stellar convection zones. Few prior works have
systematically investigated this in the astrophysically-relevant case of
a gas with density and temperature stratification, and none have done
so when rotation is also present. Here we study this issue within one of
the simplest possible systems that captures convection, rotation, and
stratification, by conducting a series of hydrodynamic simulations
of stratified (anelastic) convection in a rotating Cartesian domain,
situated at a fixed latitude. The vast majority of the simulations
presented here are 2D, although we compare some of these results
to a very small number of 3D simulations. Many elements that are
important in real stars — including, crucially, magnetic fields —
are thus absent here. However, this setup has the great advantage
that it allows us to sample parameter regimes that would be difficult
or impossible to probe in equivalent detail in a full 3D spherical
geometry.

In particular, we are able to assess how the dissipation scales with
luminosity, rotation rate, and stratification in the limit where the
diffusivities are small (i.e., when the convective supercriticality is
high). In what follows, we argue that in this regime the dissipation rate
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(integrated over the convection zone) depends only on the luminosity
and the stratification, and is (at fixed supercriticality) independent of
rotation. However, the spatial distribution of this dissipation — and
with it, many other aspects of the dynamics — does depend on
rotation, as detailed below.

In the remainder of this introduction, we summarise prior bounds
on the viscous and Ohmic dissipation, and describe how our work
extends these. In Section 2 we detail our simulation setup. In Section
3 we provide a brief, qualitative overview of the dynamics in our
simulations. In Section 4 we examine the magnitude and spatial
distribution of the dissipation in these simulations, and how these
scale with the convective driving, the stratification, and the rotational
influence. In Section 5 we explore the links between the dissipation,
dynamics, and heat transport. We show there that knowledge of the
dissipation provides novel constraints on the kinetic energy flux. We
close in Section 6 with a summary of our results and their possible
astrophysical implications.

1.1 Overview of prior work: bounds and constraints on
dissipative heating

In the interior of a star, the microphysical diffusion of momentum,
heat, or magnetic fields is typically very small compared to other
physical processes, so that the relevant non-dimensional numbers
(e.g., the Reynolds, Rayleigh, and magnetic Reynolds numbers) are
usually very large (e.g., Kulsrud 2005, Brun & Browning 2017,
Jermyn et al. 2022). This need not imply, however, that viscous and
Ohmic dissipation are negligible.

To place our discussion on a firmer footing, and to highlight some
of the aims of our work, we briefly describe the thermodynamic
constraints on the dissipation here. More complete discussions can
be found in Hewitt et al. (1975) (hereafter HMW75), in Backus
(1975), Alboussière & Ricard (2013, 2014), and Alboussière et al.
(2022).

Consider a volume 𝑉 of convecting fluid with an associated mag-
netic field 𝑩, enclosed by some surface 𝑆. Assume this surface is
impenetrable and either stress-free or no-slip, so that the normal
component of the fluid velocity 𝒖, and either all components of 𝒖
or the tangential stress vanish on 𝑆. The local rate of change of total
energy can be expressed by

𝜕
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(
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)
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with 𝑒 the fluid’s internal energy, 𝜌 its density, Ψ the gravitational
potential satisfying g = ∇Ψ, 𝑃 the pressure, 𝜏𝑖 𝑗 the contribution
to the total stress tensor from irreversible processes, 𝑘 the thermal
conductivity, 𝑇 the temperature, 𝐻 the rate of internal heat genera-
tion (e.g., by nuclear fusion or radioactive decay) or cooling (e.g.,
by any processes not included in the conductive term), and 𝜇0 the
permeability of free space. We have assumed the MHD approxima-
tion holds, so that E = −u × B + 𝜂∇ × B, where 𝜂 = 1/(𝜇0𝜎) is the
magnetic diffusivity and 𝜎 the electrical conductivity (e.g., Priest
2014). Physically, the rate of total energy change at a point is given
by the sum of the net inward flux of energy (the divergence terms in
eqn. 1) and the rate of internal heat generation.

The first global constraint is that total energy is conserved, but
this yields little insight into the magnitude of the dissipative heating.

Integrating (1) over 𝑉 gives∫
𝑆
𝑘
𝜕𝑇

𝜕𝑥𝑖
𝑑𝑆𝑖 +

∫
𝑉
𝐻 𝑑𝑉 = 0, (2)

assuming both a steady state and that the electric current,
j = (∇ × B)/𝜇0, vanishes everywhere outside 𝑉 . Equation (2) im-
plies that the net flux out of 𝑉 is equal to the total rate of internal
heating and cooling. But dissipative terms do not appear in this equa-
tion; viscous and ohmic heating do not contribute to the overall heat
flux.

To constrain the dissipation, we turn instead to the internal energy
equation, which can be written as:

𝜌
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Assuming a steady state and integrating over the fluid volume V it
can be shown that ∫

𝑉
(𝒖 · ∇)𝑃d𝑉 +Φ = 0 (4)

where the total dissipative heating rate, Φ, is defined as
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∫
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The first and second terms inside the integral represent the contri-
butions due to viscous and Ohmic effects respectively. Equation (4)
implies that the total dissipative heating, integrated over the vol-
ume, is exactly balanced by the work done against the background
stratification (Currie & Browning 2017).

Equivalently, from the first law of thermodynamics, we have

𝑇𝑑𝑠 = 𝑑𝑒 − 𝑃

𝜌2 𝑑𝜌 (6)

where 𝑠 is the specific entropy, implying that
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Following HMW75, we can divide this equation by 𝑇 , and integrate
over volume to find∫
𝑆
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(8)
Physically, this equation expresses the fact that there is a flux of

entropy in and out of the domain (first term), and that entropy can
be generated in the bulk by conduction (second term) or by heating
within the domain (third term). If the inward flux of entropy at
the bottom is less than the outward flux of entropy out the top —as
occurs if there is a temperature contrast across the domain— then the
difference must be made up by entropy generation in the convection
zone (either by conduction or dissipation).

In HMW75 this equation is used to derive an upper limit on the
total amount of dissipative heating that can occur in a convective
layer of depth 𝑑. This is given by

𝐸 ≡ Φ

𝐿
<

𝑇0 − 𝑇top
𝑇top

, (9)

where 𝑇top and 𝑇0 denote the upper and lower boundary values of the
temperature respectively and 𝐿 is the luminosity through the layer.
This upper limit corresponds to the case in equation (8) where there
is negligible entropy generation by conduction or heating, and where
the dissipation occurs at the highest possible temperature (i.e., at the
bottom of the domain). In this case, as discussed in HMW75, the
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total dissipative heating rate is bounded not by 𝐿, but by 𝐿𝑑/𝐻𝑇 ,
with 𝐻𝑇 a suitably-defined temperature scale height.

In general, however, it cannot be assumed that dissipation occurs at
the highest possible temperatures. For example, the dissipation could
be distributed more uniformly throughout the layer, or it could be
concentrated predominantly in boundary layers. In these situations, 𝐸
could in principle be much smaller than the upper bound of equation
(9).

Prior simulations have shown that in certain circumstances con-
vection can approach a version of this bound. HMW75 demonstrated
that for the specific case of a Boussinesq liquid without magnetism,
the integrated dissipation approached a value of order the bound at
high enough Rayleigh numbers 𝑅𝑎 (measuring the ratio of buoy-
ancy driving to viscous and thermal dissipation). Jarvis & McKenzie
(1980) expanded on this by investigating the case of compressible
convection in the infinite Prandtl number 𝑃𝑟 (defined as the ratio
of viscous to thermal diffusivities) regime, appropriate for convec-
tion within the Earth’s mantle. Currie & Browning (2017) (hereafter
CB17) extended these results to a gas at finite 𝑃𝑟, as appropriate for
convection in stellar interiors. In a series of 2D hydrodynamic simu-
lations without rotation, they found that the total dissipative heating
in their calculations obeyed a tighter, but purely empirical bound,
specifically (defining 𝐸 ≡ Φ/𝐿, with Φ the total viscous heating and
𝐿 the luminosity)

𝐸 =
𝑑

�̂�𝑇
(10)

where

�̂�𝑇 =
𝐻𝑇,0𝐻𝑇,top

𝐻𝑇,𝑧∗
(11)

is a modified thermal scale height involving the scale height at the
top and bottom boundaries (𝐻𝑇,top and 𝐻𝑇,0 respectively), and some
vertical height 𝑧∗, defined such that half of the fluid mass lies above
and below 𝑧∗. They showed that for sufficiently high supercriticalities,
the value of 𝐸 appeared to approach equation (10) asymptotically.

Yet not all convective systems actually approach these upper
bounds. Recently Alboussière et al. (2022), studying 2D convection
with an unusual equation of state in which entropy was a function
solely of density, found much lower levels of dissipation than sug-
gested by equation (10) in most cases. They attributed the difference
in part to the different boundary conditions adopted in their work; in
particular, they showed that for their equation of state, high levels of
dissipation (approaching the bound in eqn. 10) were only realised in
cases with rigid walls (as employed in CB17), and not in those with
periodic boundary conditions.

Together, these prior results demonstrate that different values of
the total dissipative heating are possible in stratified convection. A
central aim of this paper is to provide constraints on how much
dissipation actually occurs, for the astrophysically-relevant case of
an ideal gas with rotation.

2 METHODOLOGY

2.1 Model Setup

We model a layer of fluid contained between impermeable, free-slip
boundaries at 𝑧 = 0 and 𝑧 = 𝑑 and assume that the horizontal bound-
aries are periodic. Our coordinate system is such that the horizontal
coordinates, 𝑥 and 𝑦, correspond to longitudinal and latitudinal di-
rections respectively, and the vertical coordinate, 𝑧, corresponds to
the radial axis. In the majority of our simulations, we retain all three

components of velocity but assume all variables are independent of
𝑥, so that those simulations are 2D (however, for a few cases in §5.5
we relax this constraint and consider the fully 3D case). Gravity acts
in the negative 𝑧 direction. To drive convection, we impose a flux
𝐹 at the bottom boundary and fix entropy at the top. Note that for
our 2D simulations, 𝐹 has units of energy per time per length (rather
than per area, as in the 3D cases) and 𝐹 is related to luminosity, 𝐿,
by 𝐹 = 𝐿/𝐴 where, in 2D cases, 𝐴 is the horizontal box length and
in 3D cases 𝐴 is the horizontal cross-sectional area.

To investigate the effects of rotation on such a convective layer
we consider a tilted f-plane, where the rotation vector takes the form
𝛀 = (0,Ω cos𝛼,Ω sin𝛼) where Ω is the rotation rate, and 𝛼 is the
latitude. We conducted cases at 𝛼 = 90◦ and 𝛼 = 45◦; for clarity,
in almost all of our discussion below we focus on cases at 𝛼 = 90◦,
which corresponds to a vertical rotation vector, aligned with gravity
and representative of polar latitudes on a spherical body.

To allow for the effects of a density stratification, we use the anelas-
tic equation set under the Lantz-Braginsky-Roberts (LBR) approxi-
mation (Lantz 1992, Braginsky & Roberts 1995). This is expected to
be valid when the flows are sufficiently subsonic and the stratification
is nearly adiabatic. We diffuse entropy instead of temperature (see
discussions in, e.g., Lecoanet et al. 2014). We also consider only
the hydrodynamical problem, so there is no Lorentz force and all
dissipation is viscous.

The governing equations (in dimensionless form) are

𝜕𝒖
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1
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�̄�
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)
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𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
(14)

where 𝒖 = (𝑢, 𝑣, 𝑤) is the fluid velocity, 𝑠 is the specific entropy, 𝑝 is
the pressure, �̄� and 𝑇 are the reference state density and temperature
(defined in (17) below) and

𝜏𝑖 𝑗 = �̄�

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3
𝛿𝑖 𝑗∇ · 𝒖

)
. (15)

These quantities are all dimensionless and were obtained from their
dimensional counterparts using 𝑑 as the characteristic length scale,
𝑑2/𝜈 as the characteristic time scale (where 𝜈 is the kinematic vis-
cosity), and 𝜈/𝑑 as the characteristic velocity. Specific entropy has
characteristic scale 𝐹𝑑

𝜅𝜌0𝑇0
, where 𝜌0 and 𝑇0 are, respectively, the val-

ues of the reference state density and temperature at the bottom of
the domain and 𝜅 is the thermal diffusivity. The characteristic scales
for 𝑝, density, and temperature are 𝜌0𝜈

2/𝑑2, 𝜌0, and 𝑇0 respectively.
Luminosity has scale 𝐹𝐴, where 𝐴 has either characteristic scale 𝑑

in 2D or 𝑑2 in 3D.
Equations (12) - (14) contain several dimensionless parameters

defined as follows:

𝑃𝑟 =
𝜈

𝜅
, 𝑇𝑎 =

4Ω2𝑑4

𝜈2 , 𝑅𝑎𝐹 =
𝑔𝑑4𝐹

𝜈𝜅2𝜌0𝑐𝑝𝑇0
, 𝜃 =

𝑔𝑑

𝑐𝑝𝑇0
, (16)

where 𝑐𝑝 is the specific heat capacity at constant pressure and 𝑔 is
the acceleration due to gravity. In this work we take 𝜈, 𝜅, 𝑐𝑝 and 𝑔

to be constant (i.e., they do not vary with depth). 𝑃𝑟 is the Prandtl
number and is taken to be unity throughout this study. 𝑇𝑎 is the
usual Taylor number (quantifying Coriolis forces relative to viscous
effects) and 𝑅𝑎𝐹 is a flux-based Rayleigh number. Alongside 𝑅𝑎𝐹
it will also be useful to consider the traditional Rayleigh number
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defined as 𝑅𝑎 =
𝑔𝑑3Δ𝑠
𝜅𝜈 , where Δ𝑠 is the entropy difference across

the layer.𝑇𝑎 and 𝑅𝑎𝐹 will be varied to examine solutions at different
rotation rates and at different levels of convective driving.

The reference state is taken to be a time-independent, hydrostatic,
ideal gas given by

𝑇 = (1 − 𝜃𝑧), �̄� = (1 − 𝜃𝑧)𝑚, (17)

where 𝑚 = 3
2 is the polytropic index.

We will refer to the number of density scale heights across our
layer, 𝑁𝜌, to quantify the degree of stratification. This is defined as

𝑁𝜌 = ln
�̄�0
�̄�top

= −𝑚 ln (1 − 𝜃). (18)

In dimensionless terms the boundary conditions amount to en-
forcing 𝜕𝑠

𝜕𝑧
= −1 at 𝑧 = 0 and 𝑠 = 0 at 𝑧 = 1. The impermeable

and stress-free boundary conditions become respectively 𝑤 = 0 and
𝜕𝑣
𝜕𝑧

= 0 on 𝑧 = 0, 1 (for the 3D simulations in §5.5 , we we also have
𝜕𝑢
𝜕𝑧

= 0).
We solve this system using the pseudo-spectral code Dedalus

(Burns et al. 2020). Our simulations at low and moderate 𝑅𝑎𝐹 gen-
erally use 256 grid points in the horizontal and 128 in the vertical
with an aspect ratio of two (i.e., the box is twice as wide as it is tall);
at higher 𝑅𝑎𝐹 , higher resolutions were required (with up to 640 grid
points in the vertical direction), and in a few of the highest-resolution
cases (at 𝑇𝑎 = 1011) we have considered an aspect ratio of 1.075
instead. The 3D cases in §5.5 have an aspect ratio of two.

The simulations were initialised either by imposing very small
entropy perturbations on a motionless base state, or (for some cases
at higher 𝑅𝑎𝐹 ) from an evolved state at lower 𝑅𝑎𝐹 .

It is convenient to specify the buoyancy driving in a convective sys-
tem by reference to the value of 𝑅𝑎𝐹 at which convection first occurs,
the critical Rayleigh number 𝑅𝑎𝑐 . To find 𝑅𝑎𝑐 , we constructed an
eigenvalue problem (EVP) solver using Dedalus (Burns et al. 2020),
from which we obtain a grid of growth rates for a given input range
of 𝑅𝑎𝐹 and 𝑘𝑦 values, where 𝑘𝑦 is the horizontal wavenumber. We
then used the open-source Eigentools package (Oishi et al. 2021) to
find 𝑅𝑎𝑐 (taking into account only those modes that would fit into the
finite computational domain). Rotation and stratification both mod-
ify the values of 𝑅𝑎𝑐 (see, e.g., Chandrasekhar 1967, Mizerski &
Tobias 2011). For the parameters studied here, 𝑅𝑎𝑐 then varies from
of order 100 (for, e.g., cases at 𝑁𝜌 = 4, 𝑇𝑎 = 0) to nearly 108 (for
cases at 𝑇𝑎 = 1011).

3 OVERVIEW OF RESULTING DYNAMICS

The convective flows in this system are influenced by rotation, by
stratification, and by the level of buoyancy driving. We have con-
ducted simulations that sample a wide variety of possible states
within this multi-dimensional parameter space. We consider cases
ranging from the nearly-Boussinesq limit (𝑁𝜌 = 0.2, with a density
contrast from top to bottom of only 1.22) up to stronger stratifi-
cations with 𝑁𝜌 = 4 (density contrast of 55). The energy passing
through the system is quantified by the flux-based Rayleigh number
𝑅𝑎𝐹 , as defined above; our simulations sample both laminar flows
near convective onset (with 𝑅𝑎𝐹 close to 𝑅𝑎𝑐) and more turbulent
states that have 𝑅𝑎𝐹 ∼ 106𝑅𝑎𝑐 . The rotation rate in our simula-
tions is quantified by the Taylor number defined above, which varies
between 𝑇𝑎 = 10 and 𝑇𝑎 = 1011. The Ekman number is also com-
monly used to quantify the influence of rotation relative to viscosity;
𝐸𝑘 = 𝑇𝑎−1/2, so here varies from 3.16 × 10−1 to 3.16 × 10−6. We
conducted simulations at latitudes of 90◦ and 45◦, but in almost all

Table 1. Input parameters and selected output quantities for example simula-
tions presented in this paper. Indicated are the number of density scale heights
across the layer (𝑁𝜌), the supercriticality of the simulation 𝑅𝑎𝐹/𝑅𝑎𝑐 , the
critical Rayleigh number 𝑅𝑎𝑐 , the Taylor number 𝑇𝑎, the convective Rossby
number 𝑅𝑜𝑐 , the latitude 𝛼 (for rotating cases only), and the output quantities
𝐸, and 𝑁𝑢. Full machine-readable table available online.

𝑁𝜌 𝑅𝑎𝐹/𝑅𝑎𝑐 𝑅𝑎𝑐 𝑇𝑎 𝑅𝑜𝑐 𝛼 𝐸 𝑁𝑢

1.4 3.16 × 101 6.74 × 105 108 0.46 90◦ 0.82 8.61
1.4 1.78 × 102 6.74 × 105 108 1.09 90◦ 0.92 15.3
1.4 5.62 × 102 6.74 × 105 108 1.95 90◦ 0.95 19.6
1.4 103 6.74 × 105 108 2.60 90◦ 0.98 22.1
1.4 104 6.74 × 105 108 8.21 90◦ 1.05 35.0

the figures below have chosen to focus on cases at 90◦ for clarity.
(None of the key quantities reported in this paper, or their scalings
with 𝑅𝑎𝐹 and 𝑇𝑎, appeared to depend significantly on the choice of
latitude.) Table 1 lists the input parameters and key derived quantities
for a small number of these simulations; the full table is available
online. At each 𝑁𝜌, simulations were performed at a range of loga-
rithmically spaced supercriticalities. For cases performed at a fixed
supercriticality (e.g., Figures 3 and 6), they were instead logarithmi-
cally spaced in 𝑇𝑎.

Increasing the rotation rate stabilises the system against convec-
tion, increasing the value of 𝑅𝑎𝑐 . Thus for simulations at constant
𝑅𝑎𝐹 , increasing 𝑇𝑎 in isolation would eventually result in a sys-
tem that no longer convects. In much of our discussions below we
therefore choose to compare simulations at varying 𝑇𝑎 but con-
stant supercriticality, 𝑅𝑎𝐹/𝑅𝑎𝑐 . We also quantify rotation using
Ro𝑐 =

√︁
𝑅𝑎𝐹/(𝑇𝑎𝑃𝑟) (as in, e.g., Hindman et al. 2020; see also

Gilman 1978), which assesses the buoyancy driving relative to the
Coriolis force (see Anders et al. 2019 for a discussion of how this re-
lates to other measures of rotation). We sample both rapidly-rotating
cases (with some having volume-averaged values of 𝑅𝑜𝑐 < 1) and
ones in which rotation has little dynamical role (𝑅𝑜𝑐 ≫ 1).

Many different types of flow are possible within this parameter
space. Three illustrative examples can be seen in Figure 1, which
shows the specific entropy 𝑠 for (top row) a non-rotating case at
RaF = 104Ra𝑐 with a moderate density stratification (𝑁𝜌 = 1.4),
(middle row) a rotating case (𝑇𝑎 = 108) with the same stratification
but 𝑅𝑎𝐹 = 56.2𝑅𝑎𝑐 ≈ 3.8 × 107, and (bottom row) a rotating case
(𝑇𝑎 = 108) at 𝑅𝑎𝐹 = 104𝑅𝑎𝑐 ≈ 6.8 × 109.

In our non-rotating simulations, for which a typical case is shown
in the topmost panel of Figure 1, the convection tends to consist of
a small number of convective cells, and to be steady in time. These
simple flow patterns persist to surprisingly high values of 𝑅𝑎𝐹 in the
setup investigated here (as also seen in Boussinesq simulations with
stress-free boundaries in, e.g., Wang et al. 2020); in some other prob-
lem formulations (e.g., with fixed entropy or temperature boundary
conditions) the flow tends to become visibly turbulent at lower values
of 𝑅𝑎 (see examples in, e.g., Anders & Brown 2017; Rogers et al.
2003). When rotation is dynamically significant, as shown in the
middle panel, the convective patterns tend to align with the axis of
rotation in accordance with the Taylor-Proudman theorem. Rotating
cases at the same 𝑇𝑎 but even higher 𝑅𝑎𝐹 (as shown in the bottom
panel), in which the Coriolis force is small relative to inertia, exhibit
time-dependent flow with structure on many spatial scales.

Most of our simulations behave, qualitatively, like one of the three
examples in Figure 1. The non-rotating simulations (as sampled in
the top panel) represent one extreme; the rotating, very high-𝑅𝑎𝐹
cases (as in the bottom panel) are another. The single-celled case is
presumably not realised in any actual star, but serves as a useful limit,
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Figure 1. Specific entropy 𝑠 in three cases sampling different parameter
regimes. All cases have 𝑁𝜌 = 1.4; top panel is a non-rotating case (𝑇𝑎 = 0)
with 𝑅𝑎𝐹 = 104𝑅𝑎𝑐 ; middle panel has 𝑇𝑎 = 108 and 𝑅𝑎𝐹 = 56.2𝑅𝑎𝑐 ;
bottom panel has 𝑇𝑎 = 108 and 𝑅𝑎𝐹 = 104𝑅𝑎𝑐 .

showing what can occur when a convective plume travels almost
unimpeded from the top to the bottom of the domain; in this limit (as
we demonstrate below) most of the dissipation occurs in the bottom
boundary layer. The cases with rotation are more realistic, exhibiting
flow and dissipation throughout the domain. Below, we explore (for
several different stratifications) how the dissipation and dynamics
vary in between these extremes, as a function of rotational influence.

4 THE MAGNITUDE AND SPATIAL DISTRIBUTION OF
VISCOUS DISSIPATION

4.1 The maximum value of viscous dissipation at high 𝑅𝑎𝐹

Here, we examine whether the high levels of dissipation found in
CB17 are realised in rotating cases as well. We find that, for the
levels of stratification examined here, the total amount of dissipa-
tive heating in the rotating simulations appears to approach a similar
upper bound to that realised in non-rotating calculations. The mod-
els here were conducted with a different aspect ratio than in CB17
(here the horizontal layer size is twice its depth, whereas in CB17
they were equal) and different boundary conditions (here periodic,
impermeable in CB17), so we also indirectly show that these results
are, for an ideal gas equation of state, not directly dependent on these
factors.

Figure 2 shows 𝐸 for a representative selection of cases at dif-
ferent 𝑅𝑎𝐹 and 𝑇𝑎, for three different stratifications. For our non-

101 102 103 104 105 106
RaF/Rac

0.0
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E

Nρ=1.4

Nρ=2.0

Nρ=0.5

Figure 2. Calculated values of 𝐸 at a range of stratifications and supercrit-
icalities for sample non-rotating (black) and rotating cases (blue). Values of
𝑁𝜌 = 0.5 (circles), 1.4 (stars, and blue squares), and 2.0 (pluses) are used.
The horizontal black lines represent the value of equation (10) for each value
of 𝑁𝜌. The rotating cases are at latitude 90◦ with 𝑇𝑎 = 108. Note that due to
the effect of rotation on the critical Rayleigh number, the rotating cases have
considerably larger values of 𝑅𝑎𝐹 for a given stratification.

dimensional setup, 𝐸 is given by

𝐸 =
𝑃𝑟2𝜃

𝐴𝑅𝑎𝐹

∫
𝑉
𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
𝑑𝑉. (19)

Recall that 𝐴 is now non-dimensional, and so for our 2D simulations
it is equal to the aspect ratio of the layer, while for the 3D cases 𝐴

is equal to the aspect ratio squared. The horizontal lines in Figure 2
show the value of equation (10) at each value of 𝑁𝜌. At high enough
supercriticalities, both the rotating and non-rotating cases appear to
approach this limiting value, which is dependent on the layer depth
and stratification but independent of 𝑅𝑎𝐹 (and likewise also inde-
pendent of viscosity or diffusivity). We have found no cases that
exceed this value, but (because it is only an empirical bound) cannot
rule out the possibility that it would be exceeded at higher 𝑅𝑎𝐹 or
for other parameter regimes. We have displayed example cases at
𝑇𝑎 = 108; our cases at 𝑇𝑎 = 1011 and latitude 45◦ exhibit identical
behaviour. Both the rotating and non-rotating cases shown here ex-
ceed 𝐸 = 1 (i.e., the total integrated dissipative heating exceeds the
imposed luminosity) at high enough 𝑅𝑎𝐹 . However, we cannot rule
out different asymptotic values of 𝐸 for the rotating and non-rotating
cases, as discussed in more detail below.

It is clear from Figure 2 that the empirical bound on dissipative
heating given by equation (10) is approached only for sufficiently
high 𝑅𝑎𝐹/𝑅𝑎𝑐 , and that the value of 𝑅𝑎𝐹/𝑅𝑎𝑐 needed to reach
the upper bound is different for each 𝑁𝜌. The largest 𝑁𝜌 cases have
not quite reached the asymptotic upper limit as they have not been
performed at a high enough supercriticality.

A complementary view but instead focused on the influence of
rotation is provided by Figure 3, which shows 𝐸 for a selection
of cases at fixed supercriticality (here 𝑅𝑎𝐹 = 102𝑅𝑎𝑐) and three
different 𝑁𝜌 but varying 𝑇𝑎 (i.e., with varying rotational influence

MNRAS 000, 1–16 (2023)



6 Lance et al.

100 103 106 109 1012
Ta

0.0

0.2

0.4

0.6

0.8

1.0

E Roc=18.0→0.63

Roc=2.8→0.29

Roc=21.2→0.76

Nρ=0.5
Nρ=1.0
Nρ=1.4

Figure 3. The values of E for a range of rotation rates. All cases have a fixed
supercriticality of 𝑅𝑎𝐹/𝑅𝑎𝑐 = 102; we consider stratifications of 𝑁𝜌 = 0.5,
1, and 1.4. The labels show the range of the convective Rossby number 𝑅𝑜𝑐
for increasing values of Ta at each stratification. All simulations shown are at
latitude 90◦, except for the point at 𝑇𝑎 = 1011 which is at 45◦.

relative to viscous effects). In the regime probed here, it is clear that
the presence of rotation does not greatly alter the volume-integrated
magnitude of viscous dissipation despite significant changes in the
dynamics.

Note that because rotation stabilises the system against convection,
the high-𝑇𝑎 cases shown here have appreciably higher 𝑅𝑎𝐹 than non-
rotating cases at the same supercriticality. We have that Ra𝑐 ∝ Ta

2
3

(Chandrasekhar 1967), so for example cases at 𝑇𝑎 = 1011 require
𝑅𝑎𝐹 about 107 times higher than non-rotating equivalents to reach
the same supercriticality. The convective flow fields in the rotating
cases are, at equivalent 𝑅𝑎𝐹/𝑅𝑎𝑐 , more complex than in the non-
rotating cases, but they eventually asymptote to similar levels of
viscous dissipation. Further, the cases shown here span a range of
convective Rossby numbers, from 𝑅𝑜𝑐 ≈ 22 in the lowest-𝑇𝑎 cases
to ≈ 0.3 at 𝑇𝑎 = 1011, and so sample both cases in which rotation
plays little dynamical role (with 𝑅𝑜𝑐 ≫ 1) and those in which it is
more significant (𝑅𝑜𝑐 < 1).

4.2 Entropy generation by dissipation and conduction

In the previous section, we suggested that in both rotating and non-
rotating cases, the total viscous dissipation at first increases with
increased buoyancy driving (higher 𝑅𝑎𝐹 ) and then plateaus at or
below a fixed value (10) that depends on the layer height and strati-
fication but is independent of the rotation rate or diffusivities. Here
we begin to explore how this arises. To do so, we consider entropy
generation by conduction and dissipation at varying 𝑅𝑎𝐹 .

In a steady state, the energy entering the convection zone at the
bottom boundary (by conduction) must equal the energy leaving at
the top boundary (also by conduction). The top boundary is at a
lower temperature than the bottom one, so the conductive entropy
flux out the top is larger than the entropy flux entering the domain;
the difference must be made up by entropy generation within the
domain, associated with either conduction or viscous dissipation. For
our simulations (employing entropy diffusion and without magnetic
fields), this implies that

0 =

∫
𝑉

[
∇ ·

(
�̄�𝑇∇𝑠
𝑇

)
+ �̄�𝑇∇𝑠 · ∇𝑇

𝑇2 + 𝑃𝑟2𝜃

𝑅𝑎𝐹

1
𝑇
𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

]
𝑑𝑉, (20)

and so

𝐴(𝑒𝑁𝜌/𝑚 − 1)︸            ︷︷            ︸
𝑑𝑆𝑜𝑢𝑡−𝑖𝑛 )

=

∫
𝑉

�̄�𝑇∇𝑠 · ∇𝑇
𝑇2 𝑑𝑉︸                 ︷︷                 ︸

𝑑𝑆𝑐𝑜𝑛𝑑

+ 𝑃𝑟2𝜃

𝑅𝑎𝐹

∫
𝑉

1
𝑇
𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
𝑑𝑉︸                       ︷︷                       ︸

𝑑𝑆𝑑𝑖𝑠𝑠

,

(21)
which follows from equation (14) after integration (using the diver-
gence theorem and the constraint of mass conservation). We have

also used
[
− �̄��̄�

𝜕𝑠
𝜕𝑧

�̄�

] 𝑧=1

𝑧=0
= 𝑒𝑁𝜌/𝑚 − 1. For reference, we note that the

dimensional equivalent of equation (21), retaining entropy diffusion,
would be

𝐿

(
1

𝑇top
− 1
𝑇0

)
=

∫
𝑉

𝜅�̄�𝑇∇𝑠 · ∇𝑇
𝑇2 𝑑𝑉 +

∫
𝑉

1
𝑇
𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
𝑑𝑉, (22)

and the dimensional equivalent for temperature diffusion, and includ-
ing magnetism and internal heating, is equation (8).

In Figure 4, we examine the terms in (21) for a series of calculations
at varying 𝑅𝑎𝐹 , 𝑁𝜌, and 𝑇𝑎. In all cases the sum of the terms on
the right hand side of equation (21) (𝑑𝑆𝑐𝑜𝑛𝑑 and 𝑑𝑆𝑑𝑖𝑠𝑠) correctly
matches 𝑑𝑆𝑜𝑢𝑡−𝑖𝑛, the mismatch between the entropy flux at the top
and bottom boundaries. As 𝑅𝑎𝐹 increases, the relative contributions
of conduction (𝑑𝑆𝑐𝑜𝑛𝑑) and dissipation (𝑑𝑆𝑑𝑖𝑠𝑠) change: at low 𝑅𝑎𝐹
both processes contribute to the entropy balance, whereas at high
enough 𝑅𝑎𝐹 there is negligible entropy generation by conduction
within the bulk.

In the non-rotating cases the bulk becomes nearly isentropic at
high 𝑅𝑎𝐹 , so that the conductive entropy generation term 𝑑𝑆𝑐𝑜𝑛𝑑 is
then confined mainly to thin thermal boundary layers whose width
(discussed in §5.4) decreases with 𝑅𝑎𝐹 . Thus 𝑑𝑆𝑐𝑜𝑛𝑑 scales roughly
with the width of these boundary layers; as shown in §5.4, the largest
(top) boundary layer width scales as 𝑅𝑎−1/4

𝐹
in our simulations. We

have therefore plotted a corresponding 𝑅𝑎
−1/4
𝐹

dependence in Figure
4 to guide the eye; in the non-rotating cases 𝑑𝑆𝑐𝑜𝑛𝑑 appears to follow
this trend reasonably well. (The line is not a fit; it is chosen to pass
through the fourth data point for illustrative purposes.) The behaviour
in the rotating cases is more complicated, as discussed below, partly
because in these cases the entropy gradient (and hence also 𝑑𝑆𝑐𝑜𝑛𝑑)
is nonzero in the bulk.

These trends are linked to the values of 𝐸 explored above. We
have overplotted the measured values of 𝐸 at each 𝑅𝑎𝐹 in Figure 4.
The simulations with the highest 𝐸 values are those in which entropy
generation by conduction is negligible; further, in non-rotating cases
the 𝑅𝑎𝐹 -dependence of 𝐸 is well-matched by the 𝑅𝑎𝐹 -dependence
of 𝑑𝑆𝑑𝑖𝑠𝑠 (which in turn is linked to the width of the thermal boundary
layers as noted above).

These results also help us understand why simulations must be run
at much higher 𝑅𝑎𝐹 to reach the “dissipative asymptote" when the
stratification is strong (i.e., at high 𝑁𝜌). The purely conductive state
has

𝑑𝑆𝑐𝑜𝑛𝑑 = 𝑑𝑆𝑜𝑢𝑡−𝑖𝑛 = 𝐴(𝑒𝑁𝜌/𝑚 − 1), (23)

which increases with increasing 𝑁𝜌.
However, knowledge of 𝑑𝑆𝑑𝑖𝑠𝑠 alone is not sufficient to determine

the actual value of 𝐸 at each 𝑅𝑎𝐹 . In the limit of high 𝑅𝑎𝐹 , when
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𝑑𝑆𝑐𝑜𝑛𝑑 is negligible, we know that

𝑑𝑆𝑑𝑖𝑠𝑠 =
𝑃𝑟2𝜃

𝑅𝑎𝐹

∫
𝑉

1
𝑇
𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
𝑑𝑉 = 𝑑𝑆𝑜𝑢𝑡−𝑖𝑛 = 𝐴(𝑒𝑁𝜌/𝑚 − 1).

(24)
Meanwhile, recall that 𝐸 = 𝑃𝑟2 𝜃

𝑅𝑎𝐹𝐴

∫
𝑉
𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

𝑑𝑉 , so the highest pos-
sible 𝐸 value consistent with the known 𝑑𝑆𝑑𝑖𝑠𝑠 occurs if all the
dissipation is at the highest possible temperature. As noted in §1,
the firm upper bound of HMW75 corresponds to this limit. More
generally, the value of 𝐸 actually attained depends on both the
magnitude of the dissipative entropy generation term 𝑑𝑆𝑑𝑖𝑠𝑠 and
on where it occurs. For example if −𝜏𝑖 𝑗𝜕𝑢𝑖/𝜕𝑥 𝑗 ≡ 𝑄0 were con-
stant throughout the domain, we would have 𝐸 = − 𝑃𝑟2 𝜃

𝑅𝑎𝐹
𝑄0, with

𝑑𝑆𝑑𝑖𝑠𝑠 = − 𝑃𝑟2 𝜃
𝑅𝑎𝐹

𝑄0𝐴
∫ 1
0 (𝑑𝑧/𝑇), which (upon substituting for 𝑇 and

integrating) gives

𝑑𝑆𝑑𝑖𝑠𝑠 = − 𝑃𝑟2

𝑅𝑎𝐹

𝑄0𝐴𝑁𝜌
𝑚

. (25)

Equating this to 𝑑𝑆𝑜𝑢𝑡−𝑖𝑛 allows us to solve for 𝑄0 in this limit. This
in turn allows calculation of 𝐸 for this situation,

𝐸 =
𝑚𝜃

𝑁𝜌
(𝑒𝑁𝜌/𝑚 − 1), (26)

which reduces to 𝐸 ≈ 𝜃 = 1 − 𝑒−𝑁𝜌/𝑚, if 𝑁𝜌 is small.
Our rotating cases at very high 𝑅𝑎𝐹 , which have 𝑅𝑜𝑐 > 1 and

exhibit intricate flow fields, exhibit 𝐸 close to the value predicted by
equation (26), though they slightly exceed it at the highest 𝑅𝑎𝐹 we
have probed. They always remain below the limit of equation (10).
For example, at 𝑁𝜌 = 1.4, equation (26) yields 𝐸 ≈ 1.00, whereas
equation (10) gives 𝐸 ≈ 1.21 and equation (9) yields 𝐸 ≈ 1.54; our
highest-𝑅𝑎𝐹 , 𝑇𝑎 = 108 simulation at that stratification, shown in
Figure 2, has 𝐸 ≈ 1.05. In comparison, many of our non-rotating
simulations (which have simpler flow fields) exhibit values of 𝐸 that
exceed equation (26), the predicted value of𝐸 for uniform dissipation.
For example, at 𝑁𝜌 = 2, equation (26) would yield 𝐸 ≈ 1.54, whereas
our highest-𝑅𝑎𝐹 non-rotating simulations at that stratification have
𝐸 ≈ 2.08. This is closer to, but does not exceed, the limit described
by equation (10), which for the same stratification is 2.15. (We have
found no cases that exceed the empirical bound in eqn. 10, which is
always tighter than the firm bound of eqn. 9. For example, at 𝑁𝜌 = 2,
the latter is 2.8, which is significantly larger than in our highest-𝑅𝑎𝐹
cases.)

If the dissipation were uniformly distributed throughout the do-
main, equation (26) would provide a useful bound on 𝐸 . Some of
our simulations exceed this bound, so evidently in at least these cases
the dissipation is not uniform: a disproportionate amount must oc-
cur at higher temperatures, allowing 𝐸 to be higher than suggested
by equation (26) while still satisfying the entropy constraint that
𝑑𝑆𝑑𝑖𝑠𝑠 = 𝑑𝑆𝑜𝑢𝑡−𝑖𝑛. In the following section we explore how and
when this occurs.

4.3 The spatial distribution of dissipation

Here, we determine where the dissipation occurs in our simulations.
We show — in particular by examination of a “dissipation half-
height" (defined to be the height by which half of the dissipation
occurs) — that the non-rotating cases at high 𝑅𝑎𝐹 which approach
the CB17 upper bound correspond to situations in which much of
the dissipation occurs close to the bottom of the domain and there is
negligible entropy generation by conduction in the bulk. In rotating
cases, the dissipation is more uniformly distributed throughout the
interior.
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Figure 4. Entropy generation terms as given in equation (21) for example
non-rotating (top panel) and rotating (bottom panel) simulations at 𝑁𝜌 = 1.4
and varying 𝑅𝑎𝐹 . Shown for each case are the entropy production due to
conduction (𝑑𝑆𝑐𝑜𝑛𝑑) and viscous dissipation (𝑑𝑆𝑑𝑖𝑠𝑠), together with their
sum (𝑑𝑆𝑡𝑜𝑡 ). Also shown (as horizontal green line) is the entropy mismatch
𝑑𝑆𝑜𝑢𝑡−𝑖𝑛 for each case; in all cases the sum of 𝑑𝑆𝑐𝑜𝑛𝑑 and 𝑑𝑆𝑑𝑖𝑠𝑠 matches
𝑑𝑆𝑜𝑢𝑡−𝑖𝑛. For comparison, we also plot the value of 𝐸 for each case, and
indicative 𝑅𝑎−1/4

𝐹
scaling over the 𝑑𝑆𝑐𝑜𝑛𝑑 values; see text for discussion of

this scaling.

We begin by defining 𝐿𝑑𝑖𝑠𝑠 (𝑧) = 𝐴
∫ 𝑧
0 𝑄𝑑𝑖𝑠𝑠𝑑𝑧

′, where 𝑄𝑑𝑖𝑠𝑠

is the horizontal average of − 𝑃𝑟2 𝜃
𝑅𝑎𝐹

𝜏𝑖 𝑗𝜕𝑢𝑖/𝜕𝑥 𝑗 (the local dissipative
heating). Here 𝐿𝑑𝑖𝑠𝑠 represents the total dissipative heating up to
height 𝑧, so if the heating were uniformly distributed throughout the
interior (with 𝑄𝑑𝑖𝑠𝑠 a constant) 𝐿𝑑𝑖𝑠𝑠/𝐿 would be a linear function
of height, increasing from zero at the lower boundary to −𝐸 at the
top. Qualitatively, we find that 𝐿𝑑𝑖𝑠𝑠 (𝑧) is close to linear for our
rotating cases; the dissipative heating is nearly uniform throughout
the domain. In our non-rotating cases, by contrast, much of the dis-
sipation occurs near the lower boundary. Examples, and a discussion
of how these are linked to the buoyancy work and to the dynamics,
can be found in §5.1 below.

A simple, quantitative assessment of the sites where dissipation
occurs is provided by Figure 5, which shows what we call the “dis-
sipation half-height" 𝑧𝑑𝑖𝑠𝑠 in a range of cases. We define this as the
location at which 𝐿𝑑𝑖𝑠𝑠 reaches half its maximum (absolute) value.
That is,

|𝐿𝑑𝑖𝑠𝑠 (𝑧𝑑𝑖𝑠𝑠) |
𝐿

=

∫ 𝑧𝑑𝑖𝑠𝑠

0
𝑄𝑑𝑖𝑠𝑠𝑑𝑧 =

𝐸

2
. (27)

If the convection and dissipation were uniform throughout the do-
main, 𝑧𝑑𝑖𝑠𝑠 would be 0.5; meanwhile if the dissipation occurs pre-
dominantly at the lower boundary, 𝑧𝑑𝑖𝑠𝑠 will tend towards the width
of the lower dynamical boundary layer. In both the rotating and
non-rotating cases, 𝑧𝑑𝑖𝑠𝑠 declines at first with increasing supercriti-
cality: more and more of the dissipation occurs close to the bottom
boundary. In the non-rotating cases it appears to level out (i.e., is ap-
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Figure 5. Values of 𝑧𝑑𝑖𝑠𝑠 for a range of non-rotating and rotating simulations
at a range of stratifications, 𝑁𝜌. All rotating cases shown are at latitude 90◦.

proximately constant) at high enough 𝑅𝑎𝐹 . In the non-rotating cases
studied here — that is, in 2D and at 𝑃𝑟 = 1 specifically — at high
enough 𝑅𝑎𝐹 the flow consists of a steady cell of convection. Thus
there is dissipation around the single downflow plume, and in the
top and bottom dynamical boundary layers, but very little elsewhere
in the bulk. In this limit, 𝑧𝑑𝑖𝑠𝑠 is related to the point at which the
flow is bent from the vertical towards the horizontal, and this occurs
progressively nearer the lower boundary at moderate 𝑅𝑎𝐹 .

In the rotating cases, the dissipation is more uniformly distributed
throughout the domain, so 𝑧𝑑𝑖𝑠𝑠 is (at any given 𝑅𝑎𝐹 ) higher than
in the non-rotating cases. However, 𝑧𝑑𝑖𝑠𝑠 still declines as 𝑅𝑎𝐹 in-
creases. Note that at fixed 𝑇𝑎, as sampled here, increasing 𝑅𝑎𝐹/𝑅𝑎𝑐
implies decreasing rotational influence on the dynamics, so that the
cases at high 𝑅𝑎𝐹 and lower 𝑧𝑑𝑖𝑠𝑠 have a higher Rossby number.

A complementary view is provided by Figure 6, which examines
the value of 𝑧𝑑𝑖𝑠𝑠 in a series of cases at the same supercritical-
ity 𝑅𝑎𝐹 = 102𝑅𝑎𝑐 but varying 𝑇𝑎. Here we find that 𝑧𝑑𝑖𝑠𝑠 in-
creases with increasing 𝑇𝑎 (i.e., with increasing rotation rate). That
is, stronger rotation leads to more of the dissipation occurring in the
bulk of the domain, far from the lower boundary. There is a fairly
sharp transition between a “low-𝑧𝑑𝑖𝑠𝑠" state at low 𝑇𝑎 (high Rossby
number) to a “high-𝑧𝑑𝑖𝑠𝑠" state for higher 𝑇𝑎; beyond this, 𝑧𝑑𝑖𝑠𝑠
increases slowly with increasing 𝑇𝑎 (i.e., with increasing rotational
influence). This transition is connected to the transition from single-
cell states (as achieved in non-rotating cases or at very low 𝑇𝑎) to
much more intricate, time-dependent flows realised at higher 𝑇𝑎 and
𝑅𝑎𝐹 .

These changes in the spatial distribution of the dissipation must
be linked to changes in the flow field. Since the local dissipative
heating is related to the stress tensor 𝜏𝑖 𝑗𝜕𝑢𝑖/𝜕𝑥 𝑗 , changes in either
the magnitude of 𝑢, or in the characteristic lengthscales present in
the flow, will affect 𝑄𝑑𝑖𝑠𝑠 . Both these quantities are expected to
depend on rotation rate (e.g., Aurnou et al. 2020; Currie et al. 2020;
Nicoski et al. 2023), so it is natural that the dissipation exhibits some
dependence on this as well. However, 𝐿𝑑𝑖𝑠𝑠 must obey the bounds
described in §4.2 at all rotation rates.
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Figure 6. Values of 𝑧𝑑𝑖𝑠𝑠 for a range of simulations at fixed supercriticality,
𝑅𝑎𝐹 = 102𝑅𝑎𝑐 for stratifications of 𝑁𝜌 = 0.5, 1.0, and 1.4 and a range of
Ta. All cases shown are at latitude 90◦, except for the point at 𝑇𝑎 = 1011

which is at 45◦.

Flows in 3D, or in real stars, are bound to exhibit more complexity
at all rotation rates, and so we do not expect the numerical values
of 𝑧𝑑𝑖𝑠𝑠 (for example) to be the same in such cases. Equivalently,
the relative proportion of bulk and boundary dissipation might well
be different. (In the context of stellar convection, with no imperme-
able boundaries, the equivalent of "boundary" dissipation might be
convective plumes that are dissipated only when they reach adjacent
stably-stratified layers.) The extremely low-𝑧𝑑𝑖𝑠𝑠 states seen here at
low 𝑇𝑎 are also unlikely to be realised in any real star, since they
occur only for single-cell flows with little bulk dissipation. However,
we expect that both the thermodynamic bounds discussed here, and
the general trend towards increasing dissipation in the bulk at higher
rotation rates, may be robust.

5 LINKS BETWEEN DYNAMICS, HEAT TRANSPORT,
AND DISSIPATION

In a steady state, dissipation and dynamics are linked, so insight
into either one yields constraints on the other. Here, we briefly ex-
plore how systematic variations in the governing parameters of this
problem (namely 𝑅𝑎𝐹 , 𝑇𝑎, and 𝑁𝜌) lead to changes in the energy
transport and in the flow fields, and we explore how these are related
to changes in the magnitude and spatial distribution of the dissipa-
tion. Our discussion here is also intended to help place our work in
context with a large body of previous research on heat transport in
both non-rotating and rotating convection.

In stellar astrophysics, the main purpose of a convective theory is
to provide estimates of the entropy gradient needed to carry a certain
luminosity outwards (e.g., Gough & Weiss 1976). For example, in
standard stellar evolution theory, the radius of a star depends on its
specific entropy, and how this varies with depth (see, e.g., discussions
in Ireland & Browning 2018). There is also substantial astrophysical
interest in properties of the flow itself — e.g., its magnitude at each
depth — since these in turn will affect mixing, the transport of
heat and angular momentum, and the generation of magnetic fields.
Hence, we focus our discussions here on the heat transport, on the
related question of how entropy varies with height in our simulations,
and on the magnitude of the flows themselves. In Section 5.2, we
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Figure 7. Fluxes of energy provided by different transport terms in the total
energy equation (left panels) and internal energy equation (right panels), for
example 2D cases at (top) 𝑁𝜌 = 4 without rotation and (bottom) 𝑁𝜌 = 1.4
with rotation (𝑇𝑎 = 108).

demonstrate that a quantity of particular interest, the kinetic energy
flux, can be estimated given knowledge of the dissipative heating.

5.1 Energy balances and transport terms

In this section we begin to quantify the links between energy transport
in our simulations, and where the dissipation occurs.

One view of this is provided by Figure 7, which assesses the energy
transport in two example calculations. The top panels consider a non-
rotating case at 𝑁𝜌 = 4, 𝑅𝑎𝐹 = 105𝑅𝑎𝑐; the bottom ones are for a
rotating case with 𝑁𝜌 = 1.4, 𝑅𝑎𝐹 = 17.8𝑅𝑎𝑐 , 𝑇𝑎 = 108.

We assess the transport in two complementary ways. The right
panels show the terms arising in the following equation, which arises
after integration and manipulation of the total energy equation (eqn.
3):

𝐿 =𝐹𝐴 = 𝑃𝑟

∫
𝑆𝑧

�̄�𝑇 𝑠𝑤 𝑑𝑆︸              ︷︷              ︸
𝐿𝑐𝑜𝑛𝑣 = 𝐴𝐹𝑐𝑜𝑛𝑣

+
∫
𝑆𝑧

−�̄�𝑇 𝜕𝑠

𝜕𝑧
𝑑𝑆︸             ︷︷             ︸

𝐿𝑐𝑜𝑛𝑑 = 𝐴𝐹𝑐𝑜𝑛𝑑

+ 𝑃𝑟

∫
𝑉𝑧

−𝑠�̄�(u · ∇)𝑇 𝑑𝑉︸                        ︷︷                        ︸
𝐿𝑏𝑢𝑜𝑦 = 𝐴

∫ 𝑧
0 𝑄𝑏𝑢𝑜𝑦𝑑𝑧

′

+ 𝑃𝑟2𝜃

𝑅𝑎𝐹

∫
𝑉𝑧

−𝜏𝑖 𝑗
𝜕𝑢𝑖

𝜕𝑥 𝑗
𝑑𝑉︸                        ︷︷                        ︸

𝐿𝑑𝑖𝑠𝑠 = 𝐴
∫ 𝑧

0 𝑄𝑑𝑖𝑠𝑠𝑑𝑧
′

, (28)

where the volume integrals are over the volume enclosed between
𝑧′ = 0 and 𝑧′ = 𝑧 and the surface integrals are over the bounding
surfaces of that volume. The convective heat flux (𝐹𝑐𝑜𝑛𝑣) is defined
by the first term; the conductive heat flux (𝐹𝑐𝑜𝑛𝑑) by the second;
the third and fourth terms define heating and cooling terms (𝑄𝑑𝑖𝑠𝑠
and𝑄𝑏𝑢𝑜𝑦) arising from the viscous dissipation and from work done
against the background stratification, respectively (as also discussed
in §4.3). As noted in CB17, these latter two terms must balance when

integrated over the entire layer, but they do not have to balance at
each depth.

The left panels instead arise from considering the total energy
balance (i.e., including kinetic energy as well as internal), which in
a steady state may be written as (see e.g., Viallet et al. 2013)

𝐿 =𝐹𝐴 =

∫
𝑆𝑧

𝑃𝑟 �̄�𝑠𝑤 + 𝑃𝑟2𝜃

𝑅𝑎𝐹
�̄�𝑤𝑝 𝑑𝑆︸                              ︷︷                              ︸

𝐿𝑒 = 𝐴𝐹𝑒

+
∫
𝑆𝑧

−�̄�𝑇 𝜕𝑠

𝜕𝑧
𝑑𝑆︸             ︷︷             ︸

𝐿𝑐𝑜𝑛𝑑 = 𝐴𝐹𝑐𝑜𝑛𝑑

+ 𝑃𝑟2𝜃

𝑅𝑎𝐹

∫
𝑆𝑧

1
2
�̄� |𝑢2 |𝑤 𝑑𝑆︸                       ︷︷                       ︸

𝐿𝐾𝐸 = 𝐴𝐹𝐾𝐸

+ 𝑃𝑟2𝜃

𝑅𝑎𝐹

∫
𝑆𝑧

−(𝜏𝑖 𝑗𝑢𝑖) · êz 𝑑𝑆︸                            ︷︷                            ︸
𝐿𝑣𝑖𝑠𝑐 = 𝐴𝐹𝑣𝑖𝑠𝑐

, (29)

defining the enthalpy flux (𝐹𝑒), the kinetic energy flux (𝐹𝐾𝐸 ) and
the viscous flux (𝐹𝑣𝑖𝑠𝑐). It is common for global-scale simulations
of stellar convection to decompose the transport in this way (e.g.,
Browning et al. 2004, Featherstone & Hindman 2016). In the notation
here, and in Figure 7, positive fluxes are defined to be vertically
upwards.

Whether considering the total or internal energy equations, in a
steady state the sum of the transport terms must equal 𝐿, the total
luminosity, which is constant throughout the layer. The sum of the
transport terms is indicated in Figure 7 by a solid line, which is
indeed constant with depth in all the sampled cases. In general, we
use 𝐿 (𝑧) as a gauge of whether a given simulation has been evolved
for a long enough time, and averaged over long enough intervals, for
the results to be time-independent. We evolved all cases in this paper
long enough for 𝐿 (𝑧) to vary by less than one percent across the
layer, and for other aspects of the dynamics (e.g., the kinetic energy
evolution) to equilibrate as well. This means that the simulations were
evolved for typically tens of viscous diffusion times, and averaged
over intervals ranging from 0.1 to several diffusion times.

The energy transport differs substantially in our non-rotating and
rotating cases. The top row in Figure 7 is an example of what can
occur in non-rotating, stratified cases: here (left panel) the enthalpy
flux exceeds the total flux in magnitude; this excess is compensated
largely by a negative (inward-directed) kinetic energy flux. Broadly
similar transport has been observed in simulations of stratified con-
vection for decades (see, e.g. Hurlburt et al. 1984 in 2D; Stein &
Nordlund 1989; Featherstone & Hindman 2016). Transport by con-
duction is small throughout the layer, outside of narrow boundary
layers.

By contrast, in the example rotating case (bottom row) the ki-
netic energy flux is negligible; the enthalpy flux is approximately
equal to the total luminosity, with conductive transport small outside
the boundary layers. At this particular 𝑅𝑎𝐹 , the conductive bound-
ary layers are still relatively large, and there is evident asymmetry
between the top boundary layer and the bottom one (which have
different widths).

The connection between this transport and the viscous dissipation
is made clearer by comparison to the right panels of Figure 7, which
considers the internal energy decomposition for the same cases. In
all cases the buoyancy work is fairly evenly distributed throughout
the domain — that is, outside of the bottom boundary layer 𝐿𝑏𝑢𝑜𝑦
rises linearly towards the top domain. The rotating case has fairly
uniform dissipative heating, with 𝐿𝑑𝑖𝑠𝑠 also nearly linear. But in
the non-rotating case, the dissipative heating 𝐿𝑑𝑖𝑠𝑠 is non-uniform:
more of the dissipation is occurring near the bottom boundary. At the
upper boundary, both 𝐿𝑏𝑢𝑜𝑦/𝐿 and 𝐿𝑑𝑖𝑠𝑠/𝐿 must approach +/−𝐸 ,
respectively, and they do so in both cases; what differs in the rotating
and non-rotating simulations is the spatial distribution of 𝐿𝑑𝑖𝑠𝑠 .
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The convective luminosity 𝐿𝑐𝑜𝑛𝑣 , as defined and plotted here, is
often larger than the total luminosity in the non-rotating cases, in
accord with the fact that 𝐿𝑑𝑖𝑠𝑠 is greater in magnitude than 𝐿𝑏𝑢𝑜𝑦
throughout much of the convection zone. In the rotating cases, where
there is approximate local balance (as well as an exact global balance)
between the dissipative heating and the “cooling” by buoyancy work,
the convective luminosity is closer to unity.

5.2 Predicting the kinetic energy flux from the viscous
dissipation

The transport revealed here differs in some important ways from that
envisioned in MLT, and some of these differences are connected to
where the viscous dissipation occurs. In this section we consider
the kinetic energy flux, which is not explicitly included in classical
MLT (e.g., Gough & Weiss 1976) but is a robust feature of strati-
fied convection in stellar environments. Generally we find that the
enthalpy flux exceeds the total luminosity by a considerable amount,
and is compensated for by the inward-directed KE flux. However,
prior work has not clearly established what sets the amplitude of
these fluxes. Might it be possible, for example, for a star like the Sun
to have a thousand solar luminosities moving outwards in the en-
thalpy flux, and 999 moving inwards via the KE flux? In this section
we show that knowledge of the viscous dissipation can answer this
question, and more generally provide constraints on the magnitude
of the kinetic energy flux.

Following CB17, we define 𝐹𝑜𝑡ℎ𝑒𝑟 =
∫ 𝑧
0 (𝑄𝑏𝑢𝑜𝑦 +𝑄𝑑𝑖𝑠𝑠)𝑑𝑧′, so

that if conduction is negligible the total flux 𝐹 ≈ 𝐹𝑐𝑜𝑛𝑣 + 𝐹𝑜𝑡ℎ𝑒𝑟 .
Equivalently, 𝐹𝑜𝑡ℎ𝑒𝑟 = 𝐹𝑝+𝐹𝐾𝐸 +𝐹𝑣𝑖𝑠𝑐 , where 𝐹𝑝 = 1

𝐴

∫
𝑆𝑧

𝑤𝑝 𝑑𝑆.
Hence 𝐹𝑜𝑡ℎ𝑒𝑟 is equivalent to the steady-state transport associated
with processes other than the convective flux as defined above. Out-
side of the boundary layers, prior work has found that 𝐹𝐾𝐸 is gener-
ally larger in magnitude than 𝐹𝑝 or 𝐹𝑣𝑖𝑠𝑐 (e.g., Viallet et al. 2013) ,
so that in the bulk 𝐹𝑜𝑡ℎ𝑒𝑟 ≈ 𝐹𝐾𝐸 .

If the local dissipation and buoyancy work terms do balance at
each depth, then 𝐹𝑜𝑡ℎ𝑒𝑟 is zero. This in turn implies negligible
kinetic energy flux. This is approximately the state attained in some
of our rotating cases: there, both 𝐿𝑑𝑖𝑠𝑠 and 𝐿𝑏𝑢𝑜𝑦 are linear in 𝑧,
and of similar magnitude, so that 𝐹𝑜𝑡ℎ𝑒𝑟 ≪ 𝐹.

In our non-rotating 2D cases, by contrast, the concentration of
much of the dissipative heating near the bottom boundary implies
a substantial mismatch between dissipative heating and buoyancy
work throughout much of the bulk, so 𝐹𝑜𝑡ℎ𝑒𝑟 is no longer negligible.
This in turn requires a substantial kinetic energy flux.

We can use these ideas to place simple bounds on the magnitude
of the kinetic energy flux. Consider the extreme case in which none
of the viscous dissipation occurs in the bulk (i.e., it is all in a com-
paratively narrow bottom boundary layer). At some depth just above
this boundary layer, nearly all the integrated viscous heating will
have occurred, but very little of the integrated work will have; in
the notation employed here, 𝐿𝑏𝑢𝑜𝑦/𝐿 will be close to zero, while
𝐿𝑑𝑖𝑠𝑠/𝐿 will be nearly equal to its value at the top of the domain.
The latter is bounded by 𝐸 = 𝑑/�̂�𝑇 , as discussed above, so we have
𝐿𝑜𝑡ℎ𝑒𝑟/𝐿 ≈ 𝐸 just above the bottom boundary. Hence, if the “other”
transport is dominated by the KE flux (rather than 𝐿𝑝 or 𝐿𝑣𝑖𝑠𝑐) we
expect the maximum absolute value of 𝐿𝐾𝐸/𝐿 to be bounded by the
value of 𝐸 at each stratification.

We examine this prediction in Figure 8, which shows the maximum
absolute value of the kinetic energy flux in a series of calculations
at varying 𝑁𝜌 at high supercriticality (𝑅𝑎𝐹 ≥ 104𝑅𝑎𝑐), along with
the limiting value of 𝐸 given by equation (10) and the actual value
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Figure 8. Comparison between KE flux amplitudes in theory and simulation.
Shown as a solid line is the estimate of eqn. (10) for 𝐸 in non-rotating
convection at very high 𝑅𝑎𝐹 , which we argue in the text provides a bound on
the maximum KE flux amplitude. Also shown are the values of 𝐸 in sample
non-rotating simulations (at high but finite supercriticality) and the maximum
absolute values of the KE flux in the same simulations.

of 𝐸 attained in the simulation. For cases at 𝑁𝜌 of two or less, the
measured 𝐸 values adhere closely to the limiting value (indicated
by the black line); at the highest 𝑁𝜌, the measured values are lower
than the theory. The KE flux closely tracks the measured value of
𝐸 at each stratification (lying slightly below it), in keeping with the
simple model described above.

These results suggest that at high enough 𝑅𝑎𝐹 the maximum pos-
sible amplitude of the kinetic energy flux may be estimated simply
by calculating 𝐸 = 𝑑/�̂�𝑇 (eqn. 10). Our non-rotating cases, which
consist of simple uni-cellular flows, actually approach this limit.
However (as noted above) in rotating cases the dissipative heating
more nearly balances the buoyancy work at each height, leading to
significantly smaller kinetic energy fluxes. Likewise, more complex
flows (as likely realised at higher 𝑅𝑎𝐹 in real stars) likely lead to
smaller KE fluxes as well. We speculate, though, that the limits on
the KE flux developed here are unlikely to be exceeded by real con-
vective flows. For this to occur, the dissipation and buoyancy work
would have to be even more imbalanced than in our single-plume
non-rotating cases; for uniform buoyancy work, this would require
the dissipation to be concentrated to an even smaller part of the
domain than in these simulations.

5.3 Entropy profiles and Nusselt number scalings

In previous sections, we saw that the energy transport in our simula-
tions — and in particular the relative contributions of conduction and
convection — varied in response to changes in the key controlling
parameters 𝑁𝜌, 𝑅𝑎𝐹 , and 𝑇𝑎. Here we explore how these variations
arise, and in particular how they are linked to the entropy gradients
established by the convection.

In our work entropy is fixed at the upper boundary; at the lower
boundary its gradient is fixed. Recall also that we have assumed that
conductive transport is proportional to entropy gradients (rather than
temperature gradients). Together, these imply that in the absence
of convection, we would expect a linear specific entropy profile,
extending from 𝑠 = 0 at the top to Δ𝑠𝑐𝑜𝑛𝑑 at the bottom. For the
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Figure 9. Horizontally-averaged specific entropy as a function of depth in two
example cases, both at 𝑁𝜌 = 1.4. The solid (orange) line is for a rotating case
at 𝑇𝑎 = 108 and the dashed (blue) line is for a non-rotating case (𝑇𝑎 = 0).

models considered here, Δ𝑠𝑐𝑜𝑛𝑑 is

Δ𝑠𝑐𝑜𝑛𝑑 =
1
𝜃𝑚

[𝑒𝑁𝜌 − 1] . (30)

If convection occurs, a smaller total entropy contrast between the
top and bottom boundaries,Δ𝑠, is required to carry the same imposed
𝐹. In our simulations the total Δ𝑠, and its variation with height, are
functions of 𝑁𝜌, 𝑅𝑎𝐹 , and 𝑇𝑎. We assess these for two illustrative
cases in Figure 9, which shows ⟨𝑠⟩(𝑧) (where ⟨·⟩ denotes a horizontal
average) for both a rotating case (at 𝑇𝑎 = 108, 𝑅𝑎𝐹 = 17.8𝑅𝑎𝑐) and
a rotating one (with 𝑅𝑎𝐹 = 104𝑅𝑎𝑐) at 𝑁𝜌 = 1.4. In both cases,
conduction must carry all the energy within some distance of the
boundaries, so there are steep entropy gradients at the top and bottom
of the domain; the entropy gradient is smaller in the bulk. The total
Δ𝑠 across the layer is similar in the two cases, but its spatial variation
is different: in the non-rotating the interior is nearly isentropic (⟨𝑠⟩ is
close to a vertical line), whereas in the rotating case there is a visible,
finite slope to ⟨𝑠⟩ throughout the bulk.

To analyse these trends quantitatively, we turn to an average mea-
sure of the heat transport over the domain (rather than to its spatial
variation). In studies of Rayleigh-Bénard convection, it is custom-
ary to encapsulate this via the Nusselt number 𝑁𝑢, a dimensionless
measure of the heat transport relative to that provided by conduction.
There is no universally-accepted definition of 𝑁𝑢 that makes sense
for all boundary conditions, stratifications, and with/without rotation,
but sensible definitions have the property that they are large when
convection is efficient, and tend to one as the convection vanishes
(i.e., as all transport becomes conductive). For the mixed fixed-flux,
fixed-entropy boundary conditions here, we choose to adopt

𝑁𝑢 =
Δ𝑠𝑐𝑜𝑛𝑑

Δ𝑠
(31)

as our definition of 𝑁𝑢. This is a global measure of the efficiency
of the convective flow — more efficient convection should have a
smaller Δ𝑠 across the layer, and so a higher 𝑁𝑢 — but normalised to
the Δ𝑠𝑐𝑜𝑛𝑑 that would be required to carry the flux in the absence of

convection. This is akin to the definition for Boussinesq convection
adopted by, e.g., Kazemi et al. (2022).

The resulting measures of 𝑁𝑢 are plotted for a sample of cases
with varying 𝑅𝑎𝐹 , 𝑁𝜌, and𝑇𝑎 in Figure 10. We have also overplotted
several previously-proposed scaling relations, as discussed below.
We have chosen here not to normalise each case by 𝑅𝑎𝑐 , primarily
because 𝑅𝑎𝑐 varies so much across the simulations sampled here; in
general, each “track" of simulations shown begins with 𝑅𝑎𝐹 of order
ten times critical at that 𝑁𝜌 and 𝑇𝑎.

First, consider the non-rotating, weakly-stratified cases at 𝑁𝜌 =

0.5. These are well-matched by the power law 𝑁𝑢 ∝ 𝑅𝑎
1/4
𝐹

, which is
obtained if transport within the bulk is entirely by convection, trans-
port within narrow thermal boundary layers is by conduction, and
the width of the boundary layers is set by the requirement that they
be marginally stable against convection (Malkus 1954). The scaling
at higher 𝑁𝜌 appears to be slightly less steep than this. For compar-
ison, we have overplotted 𝑁𝑢 ∝ 𝑅𝑎

2/9
𝐹

. This scaling would arise if
𝑁𝑢 ∝ 𝑅𝑎2/7 (from 𝑅𝑎𝐹 = 𝑁𝑢𝑅𝑎), as has often been reported in
non-rotating experiments and simulations (see, e.g., discussions in
Grossmann & Lohse 2000; Siggia 1994). None of our data are con-
sistent with the so-called “ultimate regime" scaling 𝑁𝑢 ∝ (𝑅𝑎𝑃𝑟)1/2

(e.g. Chavanne et al. 1997), which has been conjectured to apply at
very high 𝑅𝑎.

The rotating cases exhibit steeper 𝑁𝑢(𝑅𝑎𝐹 ) scalings. Figure 10
shows a series of cases at fixed 𝑇𝑎 = 108 and a smaller number of
cases at 𝑇𝑎 = 1011. Note that the cases at 𝑇𝑎 = 1011 are situated
at 45◦ rather than 90◦. At moderate 𝑅𝑎𝐹 (where 𝑅𝑜𝑐 is small) the
dependence of 𝑁𝑢 on 𝑅𝑎𝐹 appear to be reasonably well described by
the overplotted scaling 𝑁𝑢 ∝ 𝑅𝑎

3/5
𝐹

. At higher 𝑅𝑎𝐹 , when rotation
is unimportant dynamically (large 𝑅𝑜𝑐), the 𝑇𝑎 = 108 cases latch on
to the non-rotating scalings. The slope of the 𝑁𝑢(𝑅𝑎𝐹 ) relation is
similar for the cases at 𝑇𝑎 = 108 and 𝑇𝑎 = 1011. Note that for fixed
𝑇𝑎, increasing 𝑅𝑎𝐹 is equivalent to increasing 𝑅𝑎𝐹/𝑅𝑎𝑐 , so a plot
of 𝑁𝑢 as a function of 𝑅𝑎𝐹/𝑅𝑎𝑐 would exhibit the same slope.

This behaviour is consistent with prior results in different settings.
For example, the transition from a steep “rotating" 𝑁𝑢(𝑅𝑎) relation
to a shallower “non-rotating" one was reported by (King et al. 2009)
to occur in plane-layer experiments and accompanying Boussinesq
simulations (with fixed temperature and no-slip boundaries); see
also discussions in King et al. (2013) and Aurnou et al. (2020).
Simulations in spherical shells (see discussions in Gastine et al.
2016, Long et al. 2020b, discussing fixed-temperature and fixed-flux
simulations respectively) likewise exhibit similar trends.

Interestingly, the 𝑁𝑢 ∝ 𝑅𝑎
3/5
𝐹

scaling seen in our rotating cases
is in accord with the expectations of rotating mixing-length theory
(Currie et al. 2020, Barker et al. 2014, Stevenson 1979). The same
scaling law also arises in the classical “CIA balance," which sup-
poses a dynamical balance between Coriolis, inertial, and buoyancy
terms in the momentum equation (Aurnou et al. 2020, Vasil et al.
2021) and in asymptotic theories of convection at low Rossby num-
ber (Julien et al. 2012). In these theories, the transport is predicted
to follow 𝑁𝑢 ∝ (𝑅𝑎𝐹/𝑅𝑎𝑐)3/5 ∝ (𝑅𝑎𝐹𝑇𝑎−2/3)3/5, which (upon
substituting in the definitions for 𝑅𝑎𝐹 , 𝑁𝑢, and 𝑇𝑎) is diffusion-free.
This suggests that in the rapidly-rotating limit the diffusive boundary
layers are playing a less significant role in the heat transport. In di-
mensional terms, this scaling implies that the entropy gradient in the
bulk of the convection zone becomes steeper when rotation is more
rapid, scaling as 𝑑𝑠/𝑑𝑧 ∝ Ω4/5, with Ω the angular velocity.
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Figure 10. Dimensionless heat transport (Nusselt number) as a function of 𝑅𝑎𝐹 for a sample of rotating and non-rotating cases at different 𝑁𝜌.

5.4 Boundary layers and the link to dissipation

The trends explored above arise partly from the varying influence
of viscous and thermal boundary layers in our simulations. In this
subsection, we explore how the widths and other properties of these
boundary layers vary as the supercriticality of the convection, the
density stratification, and the rotational influence are changed. We
also discuss the manner in which the boundary layers, heat trans-
port, flow amplitudes, and dissipation are linked — and demonstrate
explicitly that knowledge of some of these aspects constrains the
others.

Many different definitions of the boundary layers have been em-
ployed in the literature on Boussinesq convection, but our inclusion
of rotation, our use of a fixed-flux thermal boundary condition at the
bottom boundary, and our adoption of stress-free velocity boundary
conditions together implies that some of these definitions are not
relevant (see discussion in Long et al. 2020a). We choose here to
adopt the simple method suggested by Long et al. (2020a), defining
the width of these layers (near the top and bottom of the domain)
to be the points at which the advective and conductive contributions
to the heat transport are equal. Inside the boundary layer conduction
dominates the heat transport; outside it convection does. Long et al.
(2020a) demonstrate that this method gives sensible results in a va-
riety of Boussinesq settings (with and without rotation), though to
our knowledge it has not been previously employed to study anelastic
convection simulations.

At the top and bottom boundaries conduction must carry all the
energy (because in our simulations the vertical convective velocity
goes to zero there, and because near-surface radiative cooling has
been ignored). The value of the horizontally averaged entropy gradi-
ent 𝑑⟨𝑠⟩/𝑑𝑧 at the bottom boundary is therefore determined by the
energy flux entering the domain. At the top boundary, the entropy is
fixed (rather than its gradient), but in a steady state the simulation
must still develop a sufficiently large entropy gradient to carry the
same energy flux out the top boundary. Specifically, because we have

assumed that conduction diffuses entropy, we must have

𝐹 = 𝐹𝑐𝑜𝑛𝑑 = −�̄�𝑇 𝑑⟨𝑠⟩
𝑑𝑧

(32)

at both the top and bottom boundaries. (As elsewhere, all variables
here are dimensionless; the dimensional version would have a factor
of 𝜅 on the right hand side of the equation.) Because we are con-
sidering stratified convection, the density at the top of the domain
is smaller than at the bottom, so we expect the entropy gradients
𝑑 ⟨𝑠⟩ /𝑑𝑧 that develop will be greater at the outer boundary than at
the inner one.

We now suppose that within the conductive boundary layers
𝑑⟨𝑠⟩/𝑑𝑧 is approximately uniform, and equal to

𝑑⟨𝑠⟩
𝑑𝑧

≈ Δ𝑠𝑏𝑙

𝛿𝑏𝑙
≈ − 𝐹

�̄�𝑇
(33)

where Δ𝑠𝑏𝑙 is the entropy jump across the boundary layer and 𝛿𝑏𝑙 is
its width, �̄� and 𝑇 are evaluated at the top or bottom of the domain
(for the top and bottom boundary layers respectively), and where we
have assumed conduction carries all the flux within the boundary
layer.

In Figure 11 (top) we compare the resulting predictions for
Δ𝑠𝑏𝑙/𝛿𝑏𝑙 to measurements in example simulations. We show the
ratio of Δ𝑠𝑏𝑙/𝛿𝑏𝑙 in the bottom boundary layer to that in the top; the
horizontal lines denote

�̄�top𝑇top

�̄�0𝑇0
(34)

for each stratification, which this ratio should approach (per eqn. 33,
and given that 𝐹 is the same at both boundaries). The agreement
between the measured values and the estimated value is good at high
𝑅𝑎𝐹 for all stratifications shown, in both rotating and non-rotating
cases. At low 𝑅𝑎𝐹 the agreement is less good. With increasing 𝑁𝜌
the boundary layers become increasingly asymmetric, so that for
example in cases with 𝑁𝜌 = 2, Δ𝑠𝑏𝑙/𝛿𝑏𝑙 is more than 25 times
larger in the top boundary layer than in the bottom. This, again, is a
consequence of the much smaller densities and temperatures at the
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Figure 11. Properties of top and bottom boundary layers at varying 𝑅𝑎𝐹 , 𝑁𝜌,
and 𝑇𝑎. Top panel shows the ratios of the dimensionless entropy gradients
across the bottom and top boundary layers (as defined in the text); bottom
panel shows the width of the top and bottom boundary layers in example non-
rotating cases at 𝑁𝜌 = 1.4. The horizontal lines show the result of evaluating
equation (34) at each stratification.

top of these stratified domains, which then require a much larger
entropy gradient to carry the imposed flux out the top boundary.

In the bottom panel of Figure 11 we show how the top and bottom
boundary layer widths vary with 𝑅𝑎𝐹 for example cases at 𝑁𝜌 = 1.4.
As expected, the boundary layers grow thinner at higher 𝑅𝑎𝐹 . The
top and bottom boundary layers appear to follow slightly different
trends: we have overplotted 𝛿𝑏𝑙 ∝ 𝑅𝑎

−1/4
𝐹

, which appears to match
the top boundary layer data well, and 𝑅𝑎

−1/3
𝐹

, which matches the
bottom boundary layer well.

These findings are consistent with, and aid in understanding, our
findings for the dynamics and heat transport (i.e., 𝑁𝑢(𝑅𝑎𝐹 ) scalings)
in previous sections. In the non-rotating cases at high 𝑅𝑎𝐹 nearly the
entire Δ⟨𝑠⟩ across the whole domain occurs in the top and bottom
boundary layers; hence their width determines the overall Nusselt
number for the entire domain. (In rotating cases, the entropy contrast
across the bulk can approach or exceed that in the boundary layers;
see discussions in, e.g., Barker et al. 2014, Currie et al. 2020.) The
top boundary layer is, in our stratified calculations, probably the more
restrictive of these because it is thicker; we expect thus expect that
in these calculations the Nusselt number should scale approximately
as the height of the layer divided by the width of this boundary

layer. Here, this implies that 𝑁𝑢 should scale as 𝑅𝑎
1/4
𝐹

, which is in
agreement with many of our findings for the non-rotating cases in
Section 5.3 above.

The steeper heat-transport scalings exhibited by rotating cases are
linked to where dissipation occurs. This is because the dissipation
and the work done against the background stratification must balance;
this balance gives rise to the exact relationship in Boussinesq convec-
tion between the 𝑁𝑢(𝑅𝑎𝐹 ) relationship and the viscous dissipation
(Shraiman & Siggia 2000), and to a more complex analogue of this in
the anelastic case (as shown recently by Jones et al. 2022). Changes
in where the dissipation occurs — which in turn arise because the
convective velocities and lengthscales change in the presence of ro-
tation, as discussed above — thus also give rise to changes in the
heat transport.

This link between dissipation and transport has led some prior
authors to separate the viscous dissipation into “bulk" and “bound-
ary" contributions — see, e.g., Grossmann & Lohse (2000), Jones
et al. (2022), Gastine et al. (2016) — and to posit that transitions in
the heat transport correspond to changes between bulk-dominated or
boundary-dominated dissipation (Grossmann & Lohse 2000). In our
simulations, we cannot usefully divide the dissipation in this way; be-
cause the boundary layers as defined here become very thin at high
𝑅𝑎𝐹/𝑅𝑎𝑐 , the dissipation is almost always “bulk-dominated." We
have argued above that 𝑧𝑑𝑖𝑠𝑠 provides, for our setup, a more mean-
ingful distinction between cases where the dissipation is concentrated
near the boundaries and those where it is distributed throughout the
domain. We find that cases that fall on the rotating scaling relation
𝑁𝑢 ∝ (𝑅𝑎𝐹/𝑅𝑎𝑐)3/5 systematically have larger 𝑧𝑑𝑖𝑠𝑠 than those
which follow the non-rotating heat transport scalings (𝑁𝑢 ∝ 𝑅𝑎

1/4
𝐹

).

5.5 Comparison to fully three-dimensional flows

The simulations presented in the preceding figures were restricted to
two spatial dimensions (i.e., assuming axisymmetry in one dimen-
sion). In this section we provide a preliminary view of whether the
key quantities assessed in this paper – namely the overall levels of
dissipation (as measured by 𝐸) and its spatial distribution (as en-
capsulated by 𝑧𝑑𝑖𝑠𝑠 and by the spatial distribution of 𝐿𝑑𝑖𝑠𝑠) – are
different in 2D and 3D cases.

In Figure 12, we examine the energy transport in two example 3D
cases and their closest 2D equivalents. We display both non-rotating
cases (bottom panel, at 𝑅𝑎𝐹 ≈ 2.3 × 104 ≈ 100𝑅𝑎𝑐) and rotating
ones (top panel, at 𝑇𝑎 = 106, 𝑅𝑎𝐹 = 3.3 × 105 ≈ 10𝑅𝑎𝑐 , at 45
degrees latitude). The 2D/2.5D cases have the same 𝑅𝑎𝐹 as the 3D
ones. All cases have 𝑁𝜌 = 1.4, and an aspect ratio of 2:1 (i.e., the
horizontal dimensions extend twice as far as the vertical one). The
3D cases were run at resolutions of 256× 256× 128, and evolved for
more than a diffusion time. In the figure, data from the 2D cases are
over-plotted as symbols, with data from the 3D cases as lines.

It is clear that the energy transport in the 3D cases is very similar
to that realised in the 2D/2.5D cases. In the non-rotating case, for ex-
ample, 𝐿𝑑𝑖𝑠𝑠 has a steep slope near the lower boundary, and a smaller
one in the bulk; this reflects the fact that much of the dissipation is
occurring near the lower boundary. In the rotating case, 𝐿𝑑𝑖𝑠𝑠 is less
sharply peaked, reflecting the more even distribution of dissipation
throughout the bulk. In both cases, the other transport terms (𝐿𝑐𝑜𝑛𝑑 ,
𝐿𝑏𝑢𝑜𝑦 , 𝐿𝑐𝑜𝑛𝑣 , and the total transport 𝐿) are also quite similar in 2D
and 3D.

The other bulk quantities of interest to us – 𝐸 and 𝑧𝑑𝑖𝑠𝑠 – are
also similar in 2D and 3D. The rotating 3D case shown here has
(time-averaged) 𝐸 = 0.69 and 𝑧𝑑𝑖𝑠𝑠 = 0.61; the corresponding 2.5D
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Figure 12. Internal energy transport in rotating (top) and non-rotating (bot-
tom) cases in both 2D and 3D. The rotating cases are at latitude 45◦.

case had 𝐸 = 0.66 and 𝑧𝑑𝑖𝑠𝑠 = 0.60. The non-rotating 3D case has
𝐸 = 0.80 and 𝑧𝑑𝑖𝑠𝑠 = 0.21; the corresponding 2D case had 𝐸 = 0.82
and 𝑧𝑑𝑖𝑠𝑠 = 0.17. Crucially, this suggests that in 3D cases 𝑧𝑑𝑖𝑠𝑠
exhibits a similar dependence on rotation as it did in 2.5D: namely,
it is significantly larger when rotation is present (because more of
the dissipation is distributed in the bulk in that case) than in the non-
rotating case (where much of the dissipation is concentrated near the
boundaries).

These results suggest that the key quantities examined in this paper
may not be too sensitive to the assumption of axisymmetry. We defer
a more detailed study of the 3D cases to later work.

6 DISCUSSION AND CONCLUSIONS

We have presented the first systematic investigation of viscous dissi-
pation in a rotating, stratified plane layer of convection, studied here
within the anelastic approximation for an ideal gas. We have shown
that, for fixed convective supercriticality 𝑅𝑎𝐹/𝑅𝑎𝑐 and moderate
stratification, the total dissipative heating does not depend apprecia-
bly on rotation rate. However, the spatial distribution of the dissi-
pation does vary with rotation, and this has a number of important
consequences for the dynamics and heat transport.

The total dissipation is thermodynamically bounded by eqn. (9),
which corresponds to the case in which there is negligible entropy
generation by conduction in the bulk of the domain and all the dis-
sipation occurs at the highest possible temperature. In practice we
have not found any cases in which the dissipation exceeded the tighter,
empirical bound of eqn. (10), which does not depend directly on the
diffusivities or on rotation rate. Our non-rotating cases, which ex-
hibit simple mono-cellular flows, approach the latter bound at high
enough 𝑅𝑎𝐹/𝑅𝑎𝑐 . These represent an extreme case in which very
little dissipation occurs in the bulk of the convection zone, so we
regard them as a limit on 𝐸 that is unlikely to be exceeded by more
realistic flows.

In rotating cases the viscous dissipation is more uniformly dis-
tributed throughout the layer than in corresponding non-rotating
cases. In the non-rotating simulations, much of the dissipation oc-
curs near the bottom of the computational domain, so that although
there is a global balance between dissipation and work done against
the background stratification, these quantities do not balance at each
depth. We defined a new quantity 𝑧𝑑𝑖𝑠𝑠 , the height at which half
the total viscous dissipation has occurred, which encapsulates the
spatial distribution of the dissipation in a simple way, and used it to
characterise our simulations in different regimes.

We have shown that the heat transport scalings (𝑁𝑢(𝑅𝑎𝐹 )) in
our rotating cases appear to be consistent with theoretical diffusion-
free predictions arising from either “rotating mixing length theory"
(Stevenson 1979, Barker et al. 2014, Currie et al. 2020) or, equiv-
alently, from a conjectured balance between Coriolis, inertial, and
buoyancy forces (e.g., Aurnou et al. 2020, Gastine et al. 2016, Vasil
et al. 2021). Prior work has shown this in other settings (mainly
within the Boussinesq approximation).

We have shown that these changes in heat transport are linked to
where in the domain the dissipation occurs. This is similar to the
case in Boussinesq convection, where prior work (e.g., Grossmann
& Lohse 2000) has established that the 𝑁𝑢(𝑅𝑎𝐹 ) heat transport
relation varies depending on whether the dissipation is “bulk" or
“boundary" dominated, and broadly in line with very recent theo-
retical predictions for the anelastic case (Jones et al. 2022). Here,
the situation is more complex than in the Boussinesq case because
of the background stratification, but the same basic trends appear to
hold. In particular, we find that cases which follow the “rotating"
heat transport relation are those for which 𝑧𝑑𝑖𝑠𝑠 is especially high.

We also established that, for the setup examined here, the thermal
boundary layers in our simulations are asymmetric – the top one
being considerably larger than the bottom – and that the thicknesses
of the top and bottom boundary layers scale differently with 𝑅𝑎𝐹 .

Finally, we have explored the link between dissipation and the ki-
netic energy flux. We developed a simple model of the kinetic energy
flux in our non-rotating cases – based on the idea that dissipation ap-
proaches the upper bound at high enough 𝑅𝑎𝐹 , and that much of the
dissipation occurs near the lower boundary – and showed that it pro-
vided a reasonably accurate prediction of the maximum (negative)
kinetic energy flux attained in our simulations for each stratification
at high enough 𝑅𝑎𝐹 . We have argued that this provides an upper
bound on the kinetic energy flux achievable by real convection.

If our results are applicable to real stars, one conclusion is that
rapidly-rotating stars should exhibit less convective overshooting
into adjacent stably-stratified regions than slowly-rotating ones. From
the perspective adopted here, this is because in rotating convection
zones the buoyancy work at each depth is more nearly balanced lo-
cally (rather than just globally) by dissipation. Equivalently, the more
rapidly rotating cases have more dissipation per unit volume in the
bulk (all else being equal). For a fixed stratification, this will imply
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(following the discussion in, e.g., Anders et al. 2022) that convec-
tive motions in rotating stars will have less kinetic energy when they
reach the boundary of the Schwarzschild-unstable region, so they
will penetrate less deeply into the adjacent layers.

Similarly, we expect a smaller kinetic energy flux in rotating stars
and planets than in non-rotating ones. The dynamical consequences
of this are not yet clear, but we intend to explore them in the future.
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