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Abstract

This thesis investigates the capabilities of classical and quantum sublinear
algorithms through the lens of complexity theory. The formal classification of
problems between “tractable” (by constructing efficient algorithms that solve them)
and “intractable” (by proving no efficient algorithm can) is among the most fruitful
lines of work in theoretical computer science, which includes, amongst an abundance
of fundamental results and open problems, the notorious P vs. NP question.

This particular incarnation of the decision-versus-verification question stems
from a choice of computational model : polynomial-time Turing machines. It is far
from the only model worthy of investigation, however; indeed, measuring time up
to polynomial factors is often too “coarse” for practical applications. We focus on
quantum computation, a more complete model of physically realisable computation
where quantum mechanical phenomena (such as interference and entanglement) may
be used as computational resources; and sublinear algorithms, a formalisation of
ultra-fast computation where merely reading or storing the entire input is impractical,
e.g., when processing massive datasets such as social networks or large databases.

We begin our investigation by studying structural properties of local algorithms,
a large class of sublinear algorithms that includes property testers and is characterised
by the inability to even see most of the input. We prove that, in this setting, queries –
the main complexity measure – can be replaced with random samples. Applying this
transformation yields, among other results, the state-of-the-art query lower bound
for relaxed local decoders.

Focusing our attention onto property testers, we begin to chart the complexity-
theoretic landscape arising from the classical vs. quantum and decision vs. verification
questions in testing. We show that quantum hardware and communication with
a powerful but untrusted prover are “orthogonal” resources, so that one cannot be
substituted for the other. This implies all of the possible separations among the
analogues of QMA, MA and BQP in the property-testing setting.

We conclude with a study of zero-knowledge for (classical) streaming algo-
rithms, which receive one-pass access to the entirety of their input but only have
sublinear space. Inspired by cryptographic tools, we construct commitment protocols
that are unconditionally secure in the streaming model and can be leveraged to
obtain zero-knowledge streaming interactive proofs – and, in particular, show that
zero-knowledge is achievable in this model.

ix



Chapter 1

Introduction

This introduction begins with a broad overview of our topics of investigation: sublinear
algorithms and quantum computation. In the remainder (Sections 1.1 to 1.3) we
discus the mathematical landscape where they stand, key results in the literature and
our main contributions; formal definitions and proofs are then covered in Chapters 4
to 6.

An algorithm is sublinear if it does not have sufficient resources to access and/
or store the entirety of its input,1 but still performs some nontrivial computational
task under these constraints. Such limitations can arise in different scenarios, which,
in turn, characterise different models: if an algorithm can only probe its input at a
few positions, we call it local ; settings where data is distributed across devices that
are distant from one another, or where it is processed in a long stream of updates,
correspond to other (sublinear) models.

Clearly, not every problem is solvable locally. The simplest of examples is
computing the parity of a string x ∈ {0, 1}n: since flipping a single bit flips the result,
it is not hard to see that this task requires inspecting all n coordinates. (Interestingly,
this is false for certain quantum algorithms; see Section 5.5.3.1.) Nonetheless, there
is a rich collection of problems solvable by an algorithm under severe constraints,
such as:

• property testers [RS96, GGR98], probabilistic algorithms that solve approximate
decision problems by only probing a minuscule portion of their input;

• locally decodable codes (LDCs) [KT00] and locally testable codes (LTCs) [GS06],
error-correcting codes which admit, using a small number of queries to their

1While sublinear-time is often used as a synonym for sublinear, this terminology is often inaccurate.
Efficiency in query complexity or space does not always imply time-efficient algorithms; in this
thesis, we do not study time complexity unless explicity stated.
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input, algorithms able to decode individual symbols and test the validity of the
encoding, respectively;

• proof systems that allow for efficient verification of a computation that is too
costly to perform locally. Notable among these are probabilistically checkable
proofs (PCPs) [FGL+91, AS98, ALM+98], which are encodings of NP proofs
that can be verified by examining only (say) 3 of its bits; and

• streaming algorithms [MP80, AMS99, BBD+02, Mut05], whose fundamental
constraint is space. In the streaming model an algorithm receives complete but
one-pass access to an n-bit string, and must compute some feature of it with
sublinear space. Interest in this type of algorithm is motivated by applications
to massive datasets and online algorithms (see, e.g., the book [Gam10]).

Quantum computation. Quantum mechanics has upended not only our under-
standing of physics, but has deep and far-reaching implications on the nature of
computation. Discussions on them draw as far back as Feynman, who noted quantum
computers may be able to simulate quantum physics exponentially more efficiently
than classical computers [Fey82] and also considered their limits [Fey86].

Loosely speaking, while a classical bit (of a randomised algorithm) is described
by a distribution over the “states” 0 and 1, a quantum bit (qubit) is given by a
superposition of the quantum states |0⟩ and |1⟩. A quantum computer manipulates a
collection of (say) n qubits and then performs a measurement on them, which yields
an n-bit string (drawn from some distribution) as outcome. While the end result is
of the same “type” – a distribution over bit strings – extremely complex distributions
can be obtained from a small number of operations on a few qubits, possibly requiring
an exponentially larger number of operations to simulate classically; this is at the
heart of the speedups achievable by such computers.

Although the question of whether quantum computers are provably more
powerful than their classical counterparts has been explored extensively, many fun-
damental problems remain unanswered, and those that have been settled include
important caveats. On the theoretical side, it has been known for two decades that
quantum algorithms able to compute a boolean function on every input can be at
most polynomially more efficient than classical ones [BBC+01] (in terms of query
complexity, the main benchmark for most sublinear models of computation);2 if the
algorithm is only required to compute the function on a subset of the inputs, however,

2The sixth-power separation in [BBC+01] has recently been improved to a tight fourth-power
[ABK+21] as a consequence of the sensitivity theorem [Hua19].
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exponential separations are well known [Sim97, AA18]. Recently, moreover, an
oracle separation between BQP (the complexity class that captures polynomial-time
quantum computation) and the entire polynomial-time hierarchy was shown [RT22].3

Interest in quantum computation intensified after Shor’s construction of
quantum polynomial time algorithms for factorisation and discrete logarithms [Sho99],
“breaking” two fundamental problems that underpin standard cryptographic hardness
assumptions. On the practical side, despite a flurry of recent technical breakthroughs
[AAB+19, ZWD+20, WBC+21, MLA+22] towards quantum supremacy – a claim
that is, and is likely to remain, highly contested [HZN+20, KRS23] – any forecast of
reliable, programmable large-scale quantum computation is far from certain.

1.1 A structural theorem for local algorithms

This section overviews the results of Chapter 4.
Sending information across a noisy channel is a ubiquitous problem, whose

theoretical study dates back to the foundational work of Shannon [Sha48]. The
solution, error-correcting codes (or codes, for short), aims to strike a balance between
redundancy (to protect against corruption) and efficiency: when a k-bit message is
encoded into n bits, we would like n to not be much larger than k.

But what if the receiver is only interested in part of the message? Perhaps
they only wish to confirm the date of an event, or inspect the last few lines of an
email to determine if they recognise the sender. In this case, standard codes offer no
choice but to decode the entire message and then discard irrelevant information.

Locally decodable codes (LDCs) enable the receiver to efficiently recover only
the information it requires: inspecting a few bits of the encoding suffices to decode
a bit of the message. Relaxed LDCs (rLDCs) also allow the decoding algorithm to
abort if it detects a corruption, a mild relaxation that enables dramatically improved
constructions. Note that LDCs and rLDCs do not read the entirety of their input, and
make decisions based on a small local view thereof; that is, they are local algorithms.4

However, this umbrella term groups algorithms that are in fact very distinct.
Local algorithms perform fundamentally different tasks, such as testing, self-correcting,
decoding, computing a local function, or verifying the correctness of a proof. Moreover,
these tasks are often performed under different promises (e.g., proximity to a valid

3Oracle separations are obtained by endowing algorithms in both classes with the ability to solve
some (fixed, possibly very complex) problem in a single time step. They provide reasonable, albeit
not conclusive, evidence that the classes are indeed distinct.

4This terminology makes explicit that the (sublinear) parameter of interest is the algorithm’s
query complexity, as opposed to, say, space (as in the streaming model).
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codeword in the case of LDCs, or, in the case of property testing, having either zero
or large distance to a prescribed set).

Nevertheless, despite such diversity, one of our main conceptual contributions
is capturing a fundamental structural property that is common to all of algorithms
above and beyond, which in turn implies sufficient structure for obtaining Theorem 1,
the main result of Chapter 4. We build on work of Fischer, Lachish and Vasudev
[FLV15] as well as Gur and Lachish [GL21], which imply an essentially equivalent
structure for non-adaptive testers and local decoders, respectively; our generalisation
captures both and extends beyond them to the adaptive setting, as well as to other
classes of algorithms.

More specifically, we first formalise the notion of local algorithms in the
natural way: they are simply probabilistic algorithms that compute some function
f(x), with high probability, by making a small number of queries to the input x.
We then observe that, except for degenerate cases, having a promise on the input
is necessary for algorithms that make a sublinear number of queries to it. Finally,
we formalise a natural robustness condition that captures this phenomenon and is
shared by most reasonable interpretations of local algorithms.

1.1.1 Robustness

We say that a local algorithm is robust if its output is stable under minor perturbations
of the input.5 More precisely, a (ρ0, ρ1)-robust local algorithm M for computing a
partial function f : P → {0, 1} (where P ⊂ {0, 1}n) is a local algorithm that satisfies
the following: Mw = 0, with high probability, for every input w (which may or may
not belong to P) that is ρ0-close to x such that f(x) = 0; and, Mw = 1 (w.h.p.) for
every w that is ρ1-close to x such that f(x) = 1.

We illustrate the expressivity of robust local algorithms via two examples:
property testers and locally decodable codes. We remark that, similarly, locally
testable codes, locally correctable codes, relaxed LDCs, PCPs of proximity, and other
notions can all be cast as robust local algorithms (see Sections 4.2.2 to 4.2.4).

Locally decodable codes. An LDC is a code that admits algorithms for decoding
each individual bit of the message of a moderately corrupted codeword; that is, a code
C : {0, 1}k → {0, 1}n with decoding radius δ for which there exists a probabilistic
algorithm D that, given an index i ∈ [k], makes queries to a string w promised to

5Note that the notion of robustness is a priori orthogonal to locality; however, as robustness
is arguably the main structural property of local algorithms, we restrict the discussion to their
intersection.
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(a) A local decoder for the code C with decod-
ing radius δ. Codewords whose ith message
bit equals 0 (resp. 1) for a fixed i comprise
C0 (resp. C1). The decoder is robust in the
δ
2 -neighbourhood of C, shaded blue and green.
Inputs in the red area are within distance δ
from C, but their δ

2 -neighbourhoods are not.

(b) An ε-tester for property Π. In-
puts in the blue shaded area are 2ε-
far from Π, where the tester is ro-
bust. While inputs in the red shaded
area are rejected by the tester, this
is not necessarily the case for their
ε-neighbourhoods.

Figure 1.1: Casting local decoders and property testers as robust local algorithms.

be δ-close to a codeword C(x) and outputs Dw(i) = xi with high probability. LDCs
made a profound impact on several areas of theoretical computer science (see, e.g.,
[Tre04, Yek12, KS17] and references therein), and led to practical applications in
distributed storage [HSX+12].

Observe that D can be viewed as a
(
δ
2 ,

δ
2

)
-robust local algorithm for local

decoding with decoding radius δ
2 , that is, for the function f : [k]×P → {0, 1} where

P = B δ
2
(ImC) is the δ

2 -neighbourhood of C.6 This is because the δ
2 -neighbourhood

of any point that is δ
2 -close to a codeword is still within the decoding radius, and

thus the algorithm decodes the same value when given either a codeword or a string
in its neighbourhood; see Figure 1.1a.

Property testing. Property testers are algorithms that solve approximate decision
problems by only probing a minuscule part of their input, and are one of the most
widely studied types of sublinear algorithms (see, e.g., the textbook [Gol17]).

An ε-tester T for a property Π makes queries to a string x and, with high
probability, outputs 1 if x ∈ Π, and outputs 0 if x is ε-far from Π. Here, unlike with
local decoders, there is no robustness at all with respect to 1-inputs:7 we can only
cast T as an (ε, 0)-robust local algorithm for the function f : P → {0, 1} where P

6Note that f additionally receives a coordinate i ∈ [k] as explicit input, which is allowed by the
formal definition of robustness (see Definition 4.3).

7Unless the tester is tolerant : an (ε1, ε2)-tolerant tester is, by definition, ε1-robust with respect
to its 1-inputs.
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is the union of Π and the complement of its 2ε-neighbourhood. We refer to such
robustness as one-sided.

Note that while T does not ε-test Π robustly, it is robust when viewed as a
2ε-tester: doubling the proximity parameter ensures the ε-neighbourhood of each
0-input is still rejected (see Figure 1.1b).

By the previous discussion, our scope includes local algorithms that only exhibit one-
sided robustness. Accordingly, we define robust local algorithms (without specifying
parameters) as (ρ0, ρ1)-robust local algorithms where max{ρ0, ρ1} = Ω(1). While
dealing with one-sided robustness is significantly more technically involved, with
some additional effort (see Section 4.5.2) our results also hold for this type of local
algorithm.

1.1.2 Main result

By capturing structural properties that are common to all robust local algorithms, we
obtain a transformation that converts them into (uniform) sample-based algorithms.

Sample-based algorithms are provided with uniformly distributed labeled
samples, or, alternatively, query each coordinate independently with some fixed
probability; they received significant attention in recent years [GR16, FGL14, BGS15,
FLV15, CFSS17, BMR19b, BMR19a].8 Adopting the latter perspective, the sample
complexity of such an algorithm is the expected number of coordinates that it samples.

In the following, we use n to denote the input size and assume the alphabet Γ

over which the input is defined is not too large (e.g., |Γ| ≤ n1/q4 suffices).

Theorem 1 (Theorem 4.7, informally stated). Every robust local algorithm with
query complexity q can be transformed into a sample-based local algorithm with sample
complexity n1−1/O(q2 log2 q).

We stress that the robustness in Theorem 1 is only required on part of the
input space (i.e., need only be one-sided); indeed, otherwise the structural properties
captured become much more restrictive (and are not shared by, e.g., property testers).

Remark. Although Theorem 1 assumes an algorithm M that is Ω(1)-robust, a
weaker condition suffices. Supposing (without loss of generality) that ρ0 ≥ ρ1, only a
single input x must imply Mw = 0 when w is Ω(1)-close to x; then the result follows
even for ρ0 = Θ(n−1/q) = o(1).

8More accurately, these are uniform sample-based testers (in contrast to the [BGS15] tester,
which queries coordinates in a random subspace). We adopt the original terminology of [GR16] for
simplicity.
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Moreover, the transformation in Theorem 1 is optimal up to a quadratic factor
in the dependency on the query complexity; that is, q-query robust local algorithms
cannot be transformed into sample-based algorithms with sample complexity n1−1/o(q)

(see Theorem 4.12).
The proof of Theorem 1 relies on an analysis of the query behaviour of robust

local algorithms by partitioning their local views into relaxed sunflowers and using
volume lemmas implied by their robustness. We build on the Hajnal–Szemerédi
theorem to analyse sampling from relaxed sunflowers (see Section 3.1 for a detailed
technical overview).

By the generality of our definition, we can apply Theorem 1 to a wide family
of well-studied algorithms, such as locally testable codes, locally decodable and
correctable codes, relaxed LDCs, universal LTCs, PCPs of proximity, and more (see
Section 4.2).

We note that [FLV15] and [GL21] obtain an essentially equivalent transfor-
mation for testers and decoders, respectively, through “lossy” versions of our relaxed
sunflower lemmas (they extract one relaxed sunflower from the local views, rather
than partition them) that applies to non-adaptive algorithms; by a trivial transforma-
tion from adaptive to non-adaptive algorithms that incurs an exponential increase in
the query complexity, these previous works show transformations whose sample-based
algorithms have complexity n1−1/ exp(q), which we reduce to n1−1/poly(q) (indeed, as
far down as n1−1/Õ(q2)).

1.1.3 Applications

We proceed to the main applications of Theorem 1, which range over three fields of
study: coding theory, property testing and probabilistic proof systems.

Relaxed locally decodable codes. Despite the success and attention that LDCs
received since their systematic study was initiated by Katz and Trevisan [KT00], the
best construction of O(1)-query LDCs has super-polynomial blocklength (cf. [Efr12],
building on [Yek08]). This barrier led to the study of relaxed LDCs, introduced
in the foundational work of Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan
[BGH+06]. In a recent line of research, relaxed LDCs and variants thereof were
applied to PCPs [MR10, DH13, RR20a], property testing [CG18], data structures
[CGW13] and probabilistic proof systems (e.g., [GR17]; see also Section 5.2.2).

Loosely speaking, this relaxation allows the local decoder to abort on a small
fraction of the indices, yet, crucially, still avoid errors. More accurately, a relaxed
LDC C : {0, 1}k → {0, 1}n with decoding radius δ is a code that admits a probabilistic
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algorithm D (a decoder) which, on input index i ∈ [k], queries a string w ∈ {0, 1}n

that is δ-close to a codeword C(x), and satisfies the following: (1) if the input is a
valid codeword (i.e., w = C(x)), the decoder outputs xi with high probability; and
(2) otherwise, with high probability, the decoder must either output xi or an “abort”
symbol ⊥, indicating it detected an error and is unable to decode.9

This seemingly modest relaxation allows for obtaining dramatically stronger
parameters. Indeed, [BGH+06] constructed a q-query relaxed LDC with blocklength
n = k1+1/Ω(

√
q), and raised the problem of whether it is possible to obtain better

rates; the best known construction, obtained in recent work of Asadi and Shinkar
[AS21], improves it to n = k1+1/Ω(q). We stress that proving lower bounds on relaxed
LDCs is significantly harder than on standard LDCs, and indeed, the first non-trivial
lower bound was only recently obtained in [GL21]. It shows that, to obtain query
complexity q, the code must have blocklength

n ≥ k
1+ 1

O(22q ·log2 q) .

This shows that O(1)-query relaxed LDCs cannot obtain quasilinear length, a question
raised in [Gol11], but still leaves exponential room for improvement in the dependency
on query complexity (note that even for q = O(1) this strongly affects the asymptotic
behaviour). Indeed, eliminating this exponential dependency was raised as the main
open problem in [GL21].

Since the robustness framework captures relaxed LDCs as well, we resolve the
aforementioned open problem by obtaining a lower bound with exponentially better
dependency on the query complexity. Along the way, we also extend the lower bound
to hold for relaxed decoders with two-sided error, resolving another problem left open
in [GL21].

Theorem 2 (Corollary 4.3, informally stated). Any relaxed locally decodable code
C : {0, 1}k → {0, 1}n with constant decoding radius δ and query complexity q must
have blocklength at least

n ≥ k
1+ 1

O(q2 log2 q) .

This also makes significant progress towards resolving the problem due to
[BGH+06], by narrowing the gap between lower and upper bounds to merely a
quadratic factor.

9As observed in [BGH+06], these two conditions suffice for obtaining a third condition which
guarantees that the decoder only outputs ⊥ on an arbitrarily small fraction of the coordinates.
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Property testing. As an immediate corollary of Theorem 1, we obtain that any
constant-query testable property (up to 5

√
log n-query, in fact) admits a sample-based

tester with sublinear sample complexity.

Theorem 3 (Corollary 4.1, informally stated). Any property Π ⊆ {0, 1}n that is
ε-testable with q queries admits a sample-based 2ε-tester with sample complexity
n1−1/O(q2 log2 q).

Using Theorem 3, we also show an application to multi-testing (Corollary 4.2),
where the goal is to simultaneously test a large number of properties (namely, up to
k = exp

(
n1/ω(q

2 log2 q)
)

of them) that are each testable with q adaptive queries.

Proofs of proximity. Proofs of proximity [RVW13] are probabilistic proof systems
that allow for delegation of computation in sublinear time. They were studied exten-
sively in recent years, finding applications in cryptography with both computational
[KR15] and information-theoretic security [RRR21, BRV18].

In the non-interactive setting, we have a verifier that wishes to ascertain the
validity of a given statement, using a short (sublinearly long) explicitly given proof,
and a sublinear number of queries to its input. Since the verifier cannot even read
the entire input, it is only required to reject inputs that are far from being valid.
Thus, the verifier is only assured of the proximity of the statement to a correct one.
Such proof systems can be viewed as the NP (or, more accurately, MA) analogue of
property testing, and are referred to as MA proofs of proximity (MAPs).

As such, one of the most fundamental questions regarding proofs of proximity
is their relative strength in comparison to testers; that is, whether verifying a proof
for an approximate decision problem can be done significantly more efficiently than
solving it. One of the main results in [GR18] is that this can indeed be the case.
Namely, there exists a property Π which: (1) admits an adaptive MAP with proof
length O(log n) and query complexity q = O(1); and (2) requires at least n1−1/Ω(q)

queries to be tested without access to a proof.10

In Section 4.5.3 we use Theorem 1 to show that the foregoing separation is
nearly tight.

Theorem 4 (Theorem 4.11, informally stated). Any property Π ⊆ {0, 1}n that admits
an adaptive MAP with query complexity q and proof length p also admits a tester
with query complexity p · n1−1/O(q2 log2 q).

10We remark that the bound in [GR18] is stated in a slightly weaker form. However, it is
straightforward to see that the proof achieves the bound stated above. See Section 4.5.3.
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Interestingly, we remark that we rely on Theorem 4 to prove the (near)
optimality of Theorem 1 (see Section 4.5.3 for details).

1.1.4 Open problems

There remain several interesting directions and open problems related to robust local
algorithms that we wish to highlight. Firstly, we stress that our structural theorem
is extremely general, and indeed the robustness condition that induces the structure
required by Theorem 1 appears to hold for most reasonable interpretations of robust
local algorithms. It would be interesting to see whether our framework (or a further
generalisation of it) could imply applications to other families of local algorithms,
such as PAC learners, local computation algorithms (LCAs), and beyond.

Open Problem 1. Can Theorem 1 and the framework of robust local algorithms
be used to obtain query-to-sample transformations for PAC learners and LCAs?

One promising direction that we did not explore is on rate lower bounds for
PCPs of proximity (PCPPs). Such bounds are notoriously hard to get, and indeed
the only such bounds we are aware of are those in [BHLM09], which are restricted to
special setting of 3-query PCPPs. Since our framework captures PCPPs, and in light
of the rate lower bounds it allowed us to obtain for relaxed LDCs, it seems feasible
to obtain rate lower bounds on PCPPs as well.

Open Problem 2. Can we obtain rate lower bounds on q-query PCPs of proximity
for q > 3?

Another interesting question involves the optimality of our transformation.
Recall that Theorem 1 transforms q-query robust local algorithms into sample-based
local algorithms with sample complexity n1−1/O(q2 log2 q), whereas in Section 4.5.3 we
show that any such transformation must yield an algorithm with sample complexity
n1−1/Ω(q). This still leaves a quadratic gap in the dependency on query complexity.
We remark that closing this gap could lead to fully resolving an open question raised
in [BGH+06] regarding the power of relaxed LDCs.

Open Problem 3. What is the optimal sample complexity obtained by a transfor-
mation from robust local algorithms to sample-based local algorithms?

Note, moreover, that we focus on query (or sample) complexities and provide
a computationally inefficient transformation, iterating over exponentially many input
strings; the computational cost of such transformations is an interesting problem in
its own regard.
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Open Problem 4. Are there efficient transformations from robust to sample-based
algorithms?

1.2 Complexity separations in quantum property testing

This section overviews Chapter 5.
Is it easier to check a candidate solution for a problem than computing one

from scratch? The decision vs. verification problem has long been a powerful driving
force in theoretical computer science. P vs. NP is but one facet of the question,
whose analogues are major open problems in the settings of randomised algorithms
(BPP vs. MA) and quantum computation (BQP vs. QMA), among a multitude of
computational models. Indeed, the study of proof systems either in the quantum
setting or in (classical) property testing is well established.11

Exploration of the power of quantum algorithms for verification (rather than
decision) began with Kitaev and Watrous [Wat00, KW00], who defined the complexity
class QMA. The setting is as follows. A polynomial-time algorithm (“Arthur”) with
quantum capabilities receives a classical bit string x as input and must decide whether
it belongs in a language L; to do so, it receives an additional quantum state as a
proof from an all-powerful agent (“Merlin”) and must satisfy the following with high
probability: if x ∈ L, there exists at least one quantum state that convinces Arthur of
this fact; but if x /∈ L, then every quantum state fails to convince Arthur otherwise.

Several features of QMA have been mapped out, but some – in particular
the relationship to its classical counterpart, MA – remain elusive. For example, as
opposed to MA, it is not known whether QMA can achieve perfect completeness
(although there exists an oracle separation [Aar09]). Likewise, it is not known whether
problems verifiable by quantum algorithms provided with a classical proof (QCMA)
are a strict subset of QMA, but there exists an oracle separation between the two as
well [AK07].

One may consider the setting where both quantum resources and interaction
are allowed; then certain classical results translate to the quantum setting, but others
do not: with interaction, one may achieve perfect completeness [KW00] (in contrast
to QMA); on the other hand, quantum resources provide at most a polynomial
advantage, as QIP = IP [Wat03]. We refer to the survey [VW16] for further discussion
of quantum proofs, but highliht that the breakthrough characterisation MIP∗ = RE

11The standard terminology in property testing is proofs of proximity, which include, among
others, PCPs of proximity, interactive proofs of proximity, and MA proofs of proximity (MAPs).
We henceforth adopt such terminology, noting it is synonymous with proof systems in the property
testing setting.
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[IV12, NW19, JNV+21] is the culmination of a rich line of work on interactive
protocols with multiple quantum provers.

Quantum property testing. Quantum property testing is a fundamental model of
sublinear-time quantum computation. Its importance stems both from the practical
difficulty in manipulating large quantum states, as well as from the fertile ground
that it provides for complexity theoretic investigations of the power of quantum
mechanics as a computational resource. Accordingly, this model has garnered a large
amount of attention in the last decade (see, e.g., [CFMW10, HA11, ACL11, CM13,
OW15, ABRW16, NV17, AA18, BOW19, GL20, BCL20], and the survey [MW16]).

Accordingly, quantum testers are defined as quantum query algorithms that
solve the approximate decision problem of membership in a subset Π (of possibly
quantum objects); that is, the tester must accept if its input is in the property Π

and reject if it is far from Π with respect to a natural metric.12

Recall that property testing problems are a special case of promise problems,
which suggests that quantum algorithms may outperform classical ones on (at least
some) testing tasks. There is more than one way the problem can be “made quantum”,
however: we may (1) test classical properties with a quantum algorithm;13 (2)
test quantum properties with a classical algorithm; or (3) test quantum properties
quantumly. We summarise some results of the first type (which is our focus) below,
and refer to the survey [MW16] for the others.

The technique of amplitude amplification [BHMT02] may be applied to any
tester with perfect completeness to immediately obtain a speedup (see Section 5.4);
in particular, the trivial ε-tester that checks identity to some fixed string can have
its query complexity improved from Θ(1/ε) to Θ(1/

√
ε), and so can the well-known

tester for linearity of boolean functions [BLR93].
For classically testing if a boolean function is a k-junta (i.e., depends on at

most k coordinates of its input), it is known that Θ̃(k) queries are both necessary
[CG04] and sufficient [Bla09] (for a constant proximity parameter ε). Quantum testing,
however, can be performed with O(

√
k) queries [ABRW16], below the classical lower

bound.
Distribution testing can also be sped up with quantum resources: testing

12Note that, unlike in the classical case, where Hamming distance is with few exceptions the
natural choice, there are many natural metrics on the set of unitary matrices (e.g., those induced by
the operator or Hilbert-Schmidt norms).

13A quantum tester has access to an n-bit string x via a query oracle that extends a classical
query the natural way: when the algorithm sends the state |i⟩ |0⟩ to the oracle, it receives the state
|i⟩ |xi⟩ (and this extends to superpositions by linearity). The tester’s output is the measurement
outcome of some fixed qubit.
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if a distribution over [n] is uniform requires Ω(
√
n) samples [GR11], but O(n1/3)

quantum “samples” suffice [BHH11, CFMW10] (with constant proximity parameter,
and an appropriate definition of a quantum sample); moreover, for testing whether
two distributions are identical, a classical lower bound of Ω(n2/3) [Val11] can be
overcome by a quantum algorithm with query complexity O(

√
n) [BHH11].

Chapter 5 is concerned with the notion of QMA proofs, the quantum analogue of
NP proofs, in property testing. Namely, we investigate the following question:

What is the power of QMA proofs for quantum property testing?

We show that such quantum proofs of proximity (i.e., quantum testers with
additional access to a proof, or, equivalently, quantum proof systems in the property-
testing setting) are an extremely interesting class of algorithms: they achieve improved
parameters for a large family of properties (those that are decomposable; see Theo-
rem 5.14) and have a rich complexity-theoretic landscape (see Figure 1.2).

1.2.1 Quantum proofs of proximity

A Quantum Merlin-Arthur (QMA) proof of proximity protocol for a property of
unitaries Π, with respect to proximity parameter ε, is naturally defined as follows.
The verifier, a computational device given oracle access to a unitary U , receives a
quantum state |ψ⟩ from an all-powerful but untrusted prover. Making use of these
two resources, it must decide whether U ∈ Π or U is ε-far from Π with respect to a
specific metric. Such a protocol is said to verify (or test) Π if, with high probability,
the verifier accepts in the former case and rejects in the latter (see Section 5.1 for
a formal definition). We remark that the notion of QMA proofs of proximity is
implicit in the literature as QMA query algorithms for approximate decision problems
(e.g., the permutation testing problem [Aar12, ST23]). In Chapter 5 we initiate the
systematic study of the notion of QMA proofs of proximity (QMAPs), and explore
its power and limitations.

The complexity of a QMAP protocol is measured with respect to the amount
of resources required by the verifier. Namely, we will evaluate the efficiency of a
protocol by its proof complexity p (the number of qubits in the proof |ψ⟩) and query
complexity q (the number of oracle calls made by the verifier for a worst-case input
U). In particular, both parameters should be sublinear in nontrivial protocols.
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1.2.2 Our results

Our main results are divided into two parts: we first chart fundamental aspects of the
complexity landscape surrounding quantum proofs of proximity; and then proceed
to algorithmic results, where we show sufficient conditions for properties to admit
efficient QMAP protocols.

We write QMAP(ε, p, q) for the class of ε-testable properties by a QMA proof
of proximity protocol with proof length p and query complexity q (acronyms in
regular font refer to algorithms and protocols, while, e.g., QMAP and MAP denote
complexity classes).

Complexity separations. Our first collection of results aims to chart the complex-
ity landscape of quantum proofs of proximity. Recall that QMAP(ε, p, q) is the class
of ε-testable properties by a QMAP with proof complexity p and query complexity q.
The classes MAP (MA proofs of proximity) and IPP (interactive proofs of proximity)
are defined analogously. PT(ε, q) and QPT(ε, q) are the properties admitting classical
and quantum ε-testers with query complexity q, respectively, and QCMAP(ε, p, q) is
the restriction of QMAP(ε, p, q) where the proofs are classical bit strings. Formal
definitions of all of these classes can be found in Section 2.4 and Definition 5.1.

We write complexity classes with the parameters omitted (e.g., QMAP) to
denote the corresponding class of properties such that for some proximity parameter
ε ∈ (0, 1) that is a universal constant, there is a protocol with proof and query
complexities bounded by polylog(n).

We begin by showing the existence of a property that admits efficient QMAPs,
yet neither quantum property testers nor MAPs can efficiently test it.

Theorem 5. There exists a property Π such that, for any small enough ε = Ω(1),

Π ∈ QMAP
(
ε, log n,O(1)

)
and

Π /∈ QPT
(
ε, o(n0.49)

)
∪MAP(ε, p, q)

when p · q = o(n1/4). In particular,

QMAP ̸⊆ QPT ∪MAP .

Theorem 5 is, in fact, implied by a stronger result. We show that, for certain
properties, MAPs are stronger than quantum testers (MAP ̸⊆ QPT, Theorem 5.5);
and, for others, quantum testers are stronger than MAPs (QPT ̸⊆ MAP, Theorem 5.6).
Combining these results, we conclude that QCMAP ̸⊆ QPT∪MAP, i.e., even QMAPs

14



with classical proofs suffice to obtain an exponential speedup over both MAPs and
quantum testers.

Having shown the aforementioned separation, a natural question poses itself:
are there cases in which a quantum proof cannot be substituted for a classical one?
We observe that a straightforward adaptation of a known result shows this is indeed
the case, albeit only for subconstant proximity parameters : the QMA vs. QCMA oracle
separation of Aaronson and Kuperberg [AK07] carries over to the property testing
setting, implying QMAP(1/

√
n, log n, 1) ̸⊆ QCMAP(1/

√
n, p, q) if √pq = o(

√
n) (see

Section 5.7 for details).
We then shift to proving limitations on the algorithmic power of QMAPs,

showing that there exist explicit properties that are extremely difficult for such
protocols. First, we observe that known lower bounds on the complexity of QMA

protocols for the Permutation Testing problem [Aar12, ST23] yield an explicit property
that does not have any QMA protocol of polylogarithmic proof length and query
complexity, and establishes that IPP ̸⊆ QMAP (see Section 5.8 for details). We thus
obtain the complexity landscape shown in Figure 1.2.

Finally, we present an entire class of properties that cannot be solved by
efficient QMAP protocols. This extends and simplifies one of the main results of
[FGL14], which obtains the same result for classical MAPs.

Theorem 6 (Corollary 5.1, informally stated). If a non-trivial property Π is k-
wise independent and ε = Ω(1) is sufficiently small, then Π /∈ QMAP(ε, p, q) when
pq = o(k).

Algorithms. We show two general classes of properties whose structure allows
for efficient QMAP (QMA proof of proximity) protocols. Moreover, these protocols
only require classical proofs (though the verifier is quantum).14 The first class is
comprised of what we call decomposable properties, which generalise the “parameterised
concatenation properties” introduced in [GR18].

Roughly speaking, a property Π is (k, s)-decomposable if testing whether
x ∈ Π can be reduced, with a message of length s from the prover, to that of testing
whether x(i) ∈ Λ(i) for k smaller strings x(i) and properties Λ(i) (see Definition 5.8).
Since there may be many decompositions of the same string, the prover message is
said to specify a decomposition, i.e., a mapping x 7→ x(i) and Π 7→ Λ(i).

14Equivalently, all of the results in this section rely on QCMAP protocols. They are thus slightly
stronger, continuing to hold if we replace QMA by QCMA in the theorem statements.
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[GR18]

Theorem 5.20,
implicit in [AK07]

Theorem 5.23, implied
by [GLR21, ST23]

Figure 1.2: Classification of complexity classes. An arrow from A to B indicates a
property requiring nΩ(1) proof length or query complexity by algorithms of A but
only polylog(n) proof/query complexity by algorithms of B (coloured red or grey
when with respect to a proximity parameter ε = Ω(1) that is a universal constant;
and violet when ε = Ω(1/

√
n).) The (dashed) grey arrows are previously known

separations.

Theorem 7 (Theorem 5.14, informally stated). If a property Π is (k, s)-decomposable
into strings of length m, each of which is ε-testable by a MAP protocol with proof
complexity p and query complexity q = q(m, ε) = mα/εβ, then

Π ∈ QMAP(ε, s+ kp, q′) ,

where q′ is much smaller than q for many parameter values α and β.

As applications of Theorem 5.14, we show: a QMAP for k-monotonicity that
is more efficient than the best known (classical) testers and MAPs for a wide range
of parameters (in this case α = 0 and β = 1; see Corollary 5.6 and the discussion
in Section 5.5.2); and a QMAP for the property of Eulerian graph orientations
(Corollary 5.5, where α = 1 and β = 0) with a quadratic speedup over the best known
MAP [GR18].

The second class of properties amenable to QMA proofs of proximity are those
admitting one-sided (classical) MAPs which do not receive a proximity parameter
explicitly, but rather reject strings ε-far from the property with probability that is a
function of ε. Such algorithms are called proximity-oblivious MAPs and readily admit
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quantum speedups (via the technique of amplitude amplification; see Section 5.4).

Theorem 8. If a property Π admits a proximity-oblivious MAP protocol with proof
complexity p and query complexity q, which always accepts x ∈ Π and rejects when x

is ε-far from Π with probability ρ(ε) > 0, then

Π ∈ QMAP

(
ε, p,O

(
q√
ρ(ε)

))
.

Applying Theorem 8, we obtain quadratically better QMAPs for read-once
branching programs and context-free languages (Corollaries 5.3 and 5.4) as compared
to the best-known classical MAPs [GGR18].

Exact decision. Classically, casting exact decision problems in the framework of
proofs of proximity (i.e., testing with respect to proximity parameter ε = 1/n) is
completely trivial except for degenerate cases, as most functions of sublinear query
complexity are extremely simple. Rather surprisingly, this is not the case quantumly,
and indeed, setting ε = 1/n in the aforementioned corollaries of Theorems 7 and 8
(the applications to k-monotonicity, graph orientations, branching programs and
context-free languages in Corollaries 5.3 to 5.6) yields sublinear algorithms for the
corresponding exact decision problems. For layered branching programs, we also
prove Theorem 5.17, which improves on the parameters of Corollary 5.3 and lifts the
read-once restriction.

Lastly, we prove that QMAP protocols are useful beyond proximity-oblivious and
decomposable properties. The problem of testing bipartiteness of a graph does not
fit either class, yet admits an efficient protocol nonetheless (Theorem 5.18).

1.2.3 Open problems

We merely begin the exploration of quantum proofs of proximity, leaving a host of
uncharted research directions. We wish to highlight a small number of open problems
of particular interest.

In Figure 1.2, the diagram of complexity class separations, an evident short-
coming is the absence of QMAP ̸⊆ QCMAP in the natural setting of parameters, i.e.,
with proximity ε = Ω(1) rather than ε = Θ(1/

√
n).

Open Problem 5. What is the largest proximity parameter ε such that

QMAP
(
ε,polylog(n),polylog(n)

)
̸⊆ QCMAP(ε, p, q)
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with some proof and query complexities satisfying pq = nΩ(1)?

Given our focus on quantum MA (i.e., non-interactive) proofs of proximity, it
is natural to ask what is achievable by allowing quantum property testers to interact
with quantum provers, as opposed to static proofs.

Open Problem 6. What is the power of quantum IP proofs of proximity (QIPPs)?

More specifically, it is known that there exist classical interactive proof
of proximity (IPP) protocols with Õ(

√
n) proof and query complexities for large

classes of languages [RVW13, RR20b]. Moreover, these complexities are optimal (up
to polylogarithmic factors) for classical protocols, under reasonable cryptographic
assumptions [KR15]. Could quantum interactive proofs break the square-root barrier?

Open Problem 7. Can QIPPs test logspace-uniform NC languages with o(
√
n)

proof and query complexities?

Finally, while we show a strong lower bound for QMAPs for k-wise independent
properties, they do not rule out the existence of sublinear QMAP protocols for such
properties. Could a stronger lower bound be shown?

Open Problem 8. Do there exist maximally hard properties for QMAPs, requiring
Ω(n) query complexity when the proof complexity is p = cn for some c = Ω(1)?

We note that the question has an easy (negative) answer if we take c = 1: with
a proof (allegedly) equal to the input string x, a QMAP based on Grover search can
test with O(1/

√
ε) = O(

√
n) queries. Moreover, [RS04] provides a (positive) answer

for proximity parameter ε = 1/n: there exists a property Π ⊂ {0, 1}n for which
deciding whether x ∈ Π or x /∈ Π requires proof and query complexities satisfying
p + q = Ω(n) (indeed, this is true of most bipartitions of {0, 1}n). Then taking
c = Ω(1) small enough implies q = Ω(n). Thus, similarly to Open Problem 5, while
we have answers for subconstant ε, the problem is open when ε = Ω(1).

1.3 Streaming zero-knowledge

This section discusses Chapter 6.
Processing more information than one is able to store is an increasingly

common requirement for real-world algorithms. From network analytics to particle
colliders, algorithms must often read and quickly summarise bursts of information –
or risk missing the next. Tasks of this type are solved by streaming algorithms, which
have a small amount of memory and one-pass access to a massive data stream.
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Zero-knowledge protocols enable a computational party to prove a mathemat-
ical statement without revealing anything other than the fact that it is true. They
are fundamental objects of study in theoretical computer science, having provided a
highly fertile ground for investigations in complexity theory and cryptography (see,
e.g., [Vad99, Gol02, Vad07, Gol08] and references therein), and led to consequential
practical applications [BCG+13, BCG+14, BBHR18, BCG+19, BCR+19] (see also
the survey [SYZ+21] and references therein).

In recent years, interactive proofs in the data stream model received a great
deal of attention [CTY11, CMT12, CMT13, Tha13, CCGT14, CCM+15, Tha16,
DTV15, CH18, CG19, CGT20]. Streaming interactive proofs (SIPs) are proof systems
where the computationally bounded party is bounded not in its time complexity, but
rather in space and input access. More precisely, an SIP is an interactive protocol
between a powerful but untrusted prover P and a space-bounded streaming verifier V
whose sequential, one-pass access applies to the input as well as the prover’s messages.
(That is, V receives its input x as a stream of symbols x1, x2, . . . , xn; and likewise
for messages sent by P .) We note that prover and verifier observe the same stream,
which only the former can store in its entirety.

Remarkably, SIPs allow low-space streaming algorithms to efficiently verify
key problems in the data stream model that are completely intractable without the
assistance of a prover. Indeed, the aforementioned sequence of works constructed SIPs
with polylogarithmic-space verifiers for a large collection of problems, many of which
require linear space for a streaming algorithm alone (such as the index and frequency
moment problems). The underlying power that enables current constructions of SIPs
to achieve exponentially improved space complexity essentially boils down to two
powerful and expressive protocols: sumcheck and polynomial evaluation, which can
in turn be applied to a plethora of problems.

Yet, despite the extensive study of streaming interactive proofs over the last
decade, no zero-knowledge SIPs were known prior to our work. Indeed, it is not
obvious a priori whether this notion is at all possible: for instance, while traditional
zero-knowledge prevents leakage of information to a polynomial-time adversary about
some hard computation on an input x (e.g., about a witness that certifies x is in a
language), in the streaming setting a space-bounded verifier must learn no additional
information about x itself – even if its runtime is unbounded.

Zero-knowledge in the streaming model. Recall that in the traditional setting,
which deals with polynomial-time algorithms, a protocol is zero-knowledge if, for
every (possibly malicious) verifier Ṽ , there exists a simulator S

Ṽ
whose output cannot
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be told apart (either computationally or statistically) from a real interaction between
P and Ṽ by any distinguisher D; and if this holds up to negligibly small error, the
protocol can be safely repeated or composed.

In the streaming model, algorithms are restricted to one-pass sequential access
to their input and the primary resource is space, rather than time. Accordingly, we say
that an SIP is zero-knowledge if Ṽ , S and D are streaming algorithms; when Ṽ has s
bits of memory, the simulator has roughly s space and we allow the distinguisher D to
have an arbitrary poly(s) amount of memory. (See Section 6.1 for formal definitions.)
Albeit similar, this notion is distinct to its poly-time analogue in two fundamental
ways.

Negligible distinguishing bias is a robust notion of security in the setting of
polynomial-time computation because it prevents polynomial-time adversaries from
boosting their advantage by repeating (polynomially) many executions. However, in
the data stream model, the one-pass restriction on input access precludes this strategy
altogether; indeed, streaming problems often become trivial with a single additional
pass. We therefore define secure protocols as those achieving o(1) distinguishing
bias, which ensures that the probability of information leakage tends to zero. (See
Remark 6.1 for a more detailed discussion of alternative “hybrid” models and security
bounds.)

The second crucial distinction is that the notion of zero-knowledge for SIPs
is unconditional, i.e., does not rely on computational assumptions, faithfully to
the nature of the data stream model. This differs markedly from past work on
zero-knowledge protocols where the verifier is able to process incoming messages
in a streaming fashion (e.g., [GKR15, CMT12]), whose zero-knowledge property is
still with respect to the standard setting: while the honest verifier is a streaming
algorithm, the protocols are only secure against polynomial-time adversaries. In this
work, adversaries are also streaming algorithms.

Chapter 6 explores the extent to which zero knowledge streaming interactive proofs
(zkSIPs) can outperform streaming algorithms: does there exist a problem they solve
more efficiently? If so, can they do so for a natural problem such as index, or even
more ambitiously, achieve an exponential reduction in the space complexity for key
problems in the data stream model?

1.3.1 Main results

The main contribution of Chapter 6 is a strong positive answer to the questions
above, providing the tools to construct zero-knowledge streaming interactive proofs
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for essentially any problem within the reach of current (non-zero-knowledge) SIPs.
In more detail, our main results are zero-knowledge versions of the two building

blocks underlying all known SIPs: the sumcheck and polynomial evaluation protocols,
from which we derive zkSIPs for central streaming problems in Section 1.3.2. In doing
so, we obtain exponentially smaller space complexity for the fundamental index and
frequency moment problems (among others) when compared to streaming algorithms
alone.

We remark that all our zkSIPs are two-stage protocols with a setup and an
interactive stage. The setup is non-interactive and consists merely of a random
string (see Section 3.3.3), which can be reused in multiple interactive executions
(of possibly different protocols). With this simple preprocessing step, we achieve
essentially optimal time and communication complexities (i.e., subpolynomial or even
polylogarithmic – as do the best non-zero-knowledge SIPs – and dramatically smaller
than the complexity of streaming the input) in the interactive stage.

Sumcheck Zero-Knowledge SIP. The following theorem gives a zero-knowledge
sumcheck SIP, which allows a streaming algorithm to decide whether the sum of
evaluations of a low-degree polynomial over a large structured set (a subcube) matches
some prescribed value. Sumcheck is one of the most important interactive proof
protocols, and is extremely useful for SIPs in particular.

We state the following theorem (see Theorems 6.10 and 6.11 for the formal ver-
sion) in generality, but note that standard parameter settings imply space complexity
s = polylog(n) as well as O(n1+δ) (for any constant δ > 0) and no(1) communication
in the setup and interactive stages, respectively. (The time complexity is of the same
order as the communication in both stages.) This is the case in all of our applications.

Theorem 9 (Sumcheck zkSIP). For every dimension m, field F and evaluation set
H, there exists a sumcheck zkSIP where the verifier streams an m-variate low-degree
polynomial f and computes

∑
β∈Hm f(β) with s = O(m2 log |F|) bits of space. The

protocol communicates Õ(|F|m) bits in its setup stage and |F|log log |F| · poly(|F|) bits
in the interactive stage.

The round complexity (the number of messages sent or received by each party
throughout the SIP) is m+O(1), a small constant larger than that of the standard
sumcheck protocol.

We stress that while sumcheck is traditionally used (in the polynomial-time
setting) to verify exponentially large sums in polynomial time, this is not the goal of
the streaming variant, as sums of evaluations over a large set can be obtained incre-
mentally for functions computable in low space (a class that includes polynomials).
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Nevertheless, the sumcheck protocol achieves exponential savings in space
complexity for problems that require large space without interaction: it enables
efficient verification of sums of polynomials that an input defines implicitly, which
require linear space to compute otherwise.

Polynomial Evaluation Zero-Knowledge SIP. We proceed to our second main
result, a zero-knowledge streaming polynomial evaluation protocol. (See Theorems 6.7
and 6.8 for the formal statements.) It allows a streaming algorithm to access data
that was already seen but not stored, by saving a small fingerprint of the stream.
Similarly to sumcheck, this is a general-purpose protocol that is widely applicable to
the design of SIPs.

Theorem 10 (Polynomial evaluation zkSIP). For every dimension m and field F,
there exists a polynomial evaluation zkSIP where the verifier streams an m-variate
low-degree polynomial f followed by an evaluation point β and computes f(β) with
O(m log |F|) bits of space. The communication complexity is Õ(|F|m) in the setup
and poly(|F|) in the interactive stage.

As in Theorem 9, standard parameter settings imply zkSIPs with polyloga-
rithmic space, no(1) time and communication complexity (in the interactive stage)15

as well as near-linear communication in the setup. The round complexity is O(1).

Streaming commitment protocols. En route to proving Theorems 9 and 10,
we construct tools for the design of zkSIPs which we find of independent interest.
Namely, we provide two types of commitment protocols for streaming algorithms.

We remark that in the polynomial-time setting, the existence of secure com-
mitment schemes is equivalent to the existence of one-way functions [IL89, Nao91,
HILL99], so it may seem surprising that our results hold unconditionally. However,
in the incomparable model of streaming algorithms, which are not time-bounded, but
are instead severely constrained with respect to space and input access, we show that
no cryptographic assumption is needed.16

The following result shows that not only does a streaming commitment protocol
exist, but that it can be made linear ; that is, the sender may commit to a sequence
of messages and decommit to a linear combination thereof, with linear coefficients of
the receiver’s choosing.

15A nontrivial security guarantee still holds with polylog(n) communication, but with no(1) the
protocol becomes secure against arbitrary polylog(n)-space adversaries; see Remark 6.9.

16We refer to commitment protocols rather than schemes in the streaming model to avoid ambiguity
with the polynomial-time analogue; see Definition 6.5.
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Theorem 11 (Theorem 6.5, informally stated). There exists a commitment protocol
whereby an unbounded-space sender commits a tuple α ∈ Fℓ to a streaming receiver
and decommits to a linear combination α · β, with linear coefficients β chosen by the
receiver. The receiver’s space complexity is O(ℓ log |F|) and the protocol communicates
Õ
(
|F|3ℓ

)
bits.

The second component is a new notion of a streaming commitment, which we
call temporal. This protocol allows a streaming verifier to “timestamp” its message,
providing evidence that it was chosen before certain information was streamed.

Theorem 12 (Theorem 6.6, informally stated). Let Γ be an alphabet and A a space-s
streaming algorithm with s = polylog |Γ|. If A streams z ∼ Γv and v is large enough,
the following holds: independently of its computation after z, with high probability A
can output at most s symbol-certificate pairs (α, i) ∈ Γ× [v] such that α = zi.

In other words, A(z) cannot remember more than s symbol-certificate pairs
for the string z; and the bound is unchanged if A obtains information uncorrelated
with z after reading the stream.

1.3.2 Applications

Recall that Theorems 9 and 10 provide zero-knowledge versions of the general
tools that essentially underlie all known SIPs, namely, the sumcheck and polynomial
evaluation protocols. We demonstrate the power and flexibility of our tools by deriving
from them explicit zkSIPs for streaming problems of fundamental importance: index

and frequency-moment, as well as point-query, range-count, selection

and inner-product.
As mentioned in the previous section, while the following statements highlight

space complexities, the communication complexities are no(1) in the interactive stage
and O(n1+δ) for arbitrarily small δ in the setup stage.

In the index problem, a streaming algorithm reads a length-n string x followed
by an index j ∈ [n], and its goal is to output xj . index is a hard problem for streaming
algorithms, requiring linear space to solve [RY20]. By instantiating our zkSIP for
polynomial evaluation with respect to the low-degree extension of the input evaluated
at the index j, we obtain the following.

Corollary 1 (Corollary 6.1, informally stated). There exists a zkSIP for index with
logarithmic verifier space complexity.

Note that this matches the complexity of the non-zero-knowledge SIP of [CCM+15].
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In the frequency-momentk (or Fk) problem, an algorithm streams x ∈ [ℓ]n

and its task is to compute Fk(x) =
∑

i∈[ℓ] φ
k
i , the kth moment of the frequency vector

(φ1, . . . , φℓ), where φi is the number of occurrences of i in x. This is a central problem
in the streaming literature, which is well known to require linear space to compute
[AMS99]; by instantiating our sumcheck protocol with respect to the low-degree
extension of the frequency vector, we obtain a zero knowledge protocol for the exact
computation of Fk.

Corollary 2 (Corollary 6.5, informally stated). For every ℓ ∈ [n] and k, there exists
a zkSIP that computes Fk with polylog(n) verifier space complexity.

Lastly, we illustrate the flexibility of our protocols by constructing additional
zkSIPs for several other problems: point-query (where the input is a stream of
integer updates to an ℓ-dimensional vector y followed by an index j and the task is to
output yj); range-count (where the input is a sequence of points in [ℓ] followed by
a range R ⊆ [ℓ] and the task is to output the number of occurrences in R); selection

(which generalises the computation of the median); and inner-product (where
the task is to output the inner product between the frequency vectors of a pair of
streams).

Corollary 3 (Corollaries 6.2 to 6.4 and 6.6, informally stated). There exist polylog(n)-
space zkSIPs for point-query, range-count, selection and inner-product.

1.3.3 Open problems

This work opens several avenues for future research; in this short section, we highlight
four particularly compelling directions.

Achieving zero-knowledge versions of the main building blocks in the SIP
literature suggests a natural question: can all SIPs be endowed with zero-knowledge?
That is, denoting by SIP (respectively, zkSIP) the class of languages that admit
SIPs (respectively, zkSIPs) with polylog(n) space complexity, we raise the following
problem.

Open Problem 9. Is SIP equal to zkSIP?

In our two-stage protocols, the communication complexity is dominated by the
setup (which consists of a reusable random string of near-linear length); the remainder
of the protocol is extremely efficient, with no(1) (or even polylog n) communication
and time complexity. Making this parameter sublinear would be a major step towards
practical applicability.

24



Open Problem 10. Can zero-knowledge SIPs achieve sublinear communication
complexity?

Lastly, recall that the notion of security in this work is (unconditional and)
computational, where streaming adversaries detect a simulation with at most o(1)
bias. It is natural to ask whether stronger notions are achievable – both with respect
to an adversary’s capabilities and feasible security bounds – which raise the following
questions. (For concreteness, one may consider SIPs for index.)

Open Problem 11. Are there SIPs with statistical (or even perfect) zero-knowledge?

Open Problem 12. Can security bounds of 1
poly(n) or 1

nω(1) be obtained for compu-
tational zkSIPs?
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Chapter 2

Notation and standard results

This chapter introduces common notation and definitions that are used throughout
this thesis, along with standard results.

For an integer ℓ ≥ 1, we denote by [ℓ] the set {1, 2, . . . , ℓ}. Sets S such that
|S| = q are called q-sets. The complement of S is denoted S. An arbitrary polynomial
in ℓ is denoted poly(ℓ), and polylog(n) denotes poly(log n).

We use lowercase Latin letters to denote positive integers (e.g., d, i, j, n) or
strings (e.g., x, y), with x generally denoting a binary string that is the input of a
computational problem and n its length. Our notation for matrices is the same as
for strings (lowercase Latin letters), and it will be clear from context which is the
case; when x is a matrix, we use xi to refer to the ith row of x.

Lowercase Greek letters usually denote (possibly constant) functions in n with
codomain [0, 1] (e.g., ε, δ) or elements of a finite alphabet or field (e.g., α, β); in the
latter case, ρ and σ are random elements. Uppercase letters usually denote either
algorithms (e.g., D,T, V ) or sets; additionally, T is used as the indeterminate of a
polynomial.

As integrality issues do not substantially change any of our results, equality
between an integer and an expression (that may not necessarily evaluate to one) is
assumed to be rounded to the nearest integer.

Multi-sets of sets. To prevent ambiguity, we call (multi-)sets comprised of objects
other than points (such as sets, trees or tuples) (multi-)collections in this work, and
denote them by the calligraphic capitals D,S, T .

Vectors and matrices. We use vectors or tuples, interchangeably, to refer to
elements of a vector space over a finite field F. Such tuples are denoted with boldface
(e.g., α,β) and random tuples are denoted ρ,σ. We use α · β to denote the inner
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product between the two vectors, and, when the dimension of α matches the number
of rows of a matrix x, we use α · x to denote the vector corresponding to the linear
combination of the rows of x with coefficients α, i.e.,

∑
iαixi. (Equivalently, we

assume vectors to be in row form.)

Asymptotic notation. For two functions f, g : N→ N, we say f = O(g) if there
exist c > 0 and n0 ∈ N such that c · g(n) ≥ f(n) for all n ∈ N \ [n0].1

Furthermore, f = Õ(g) stands for f = O(h) where h = g · polylog(g), and
f = Ω̃(g) for f = Ω(h) where h = g/polylog(g). Lastly, f = o(g) means f/g vanishes
asymptotically: limn→∞

f(n)
g(n) = 0.

Additionally, we sometimes use α ∈ f as a shorthand for α ∈ Im f and f|g for
f ◦ g.

Distance measures. The distance between strings (over an alphabet Γ that is
often F2 = {0, 1}) is induced by normalised Hamming weight : for x, y ∈ Fn, the
(normalised) Hamming weight of x is |x| := |{i∈[n]:xi ̸=0}|

n and the distance between x
and y is ∆(x, y) = |{i∈[n]:xi ̸=yi}|

n .
For unitary matrices U, V , unless otherwise stated, we consider the distance

measure to be that induced by the normalised Hilbert-Schmidt norm: the norm of A
is ∥A∥ :=

√
1
n Tr(A†A) =

√
1
n

∑n
λ∈Λ(A†A) λ

2, where Λ(AA†) is the set of eigenvalues

of AA†; and the distance between U and V is ∆(U, V ) = ∥U − V ∥.
We say two objects X,Y are ε-close if ∆(X,Y ) ≤ ε, and otherwise they are

ε-far. The ball of radius ε around X is Bε(X) = {Y : Y is ε-close to X}, and the
ball Bε(S) around a set S is the union over Bε(X) for each X ∈ S. The notion of
distance with respect to sets extends naturally: X is ε-close to a set S if ∆(X,Y ) ≤ ε
for some Y ∈ S, and it is ε-far from S otherwise.

2.1 Probability and concentration

We use X ∼ µ to denote a random variable with distribution µ, and write X ∼ S for
the uniform distribution over a set S. All probability spaces we consider in this thesis
are discrete (and finite); we denote events with square brackets, e.g., E = [X > 0],
with the probability of the event E denoted P[E] = P[X > 0] and the expected value
of X denoted E[X]. We sometimes make the sources of randomness in a probabilistic
expression explicit, and when we do they are assumed to be independent; e.g., only
when X and Y are independent do we write PX∼µ,Y∼λ[E].

1Denoting f ∈ O(g) would be more accurate, but we follow the widely adopted abuse of notation.
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Concentration inequalities. We will make thorough use of the following versions
of the Chernoff and Hoeffding inequalities (stated, e.g., in [MU05]).

Lemma 2.1 (Additive Chernoff-Hoeffding bound). Let X1, . . . , Xk be independent
Bernoulli random variables distributed as X. Then, for every δ ∈ [0, 1],

P

[
1

k

k∑
i=1

Xi ≤ E[X]− δ

]
≤ e−2δ2k and

P

[
1

k

k∑
i=1

Xi ≥ E[X] + δ

]
≤ e−2δ2k.

Lemma 2.2 (Multiplicative Chernoff-Hoeffding bound). Let X1, . . . , Xk be indepen-
dent Bernoulli random variables distributed as X. Then, for every δ ∈ [0, 1],

P

[
1

k

k∑
i=1

Xi ≥ (1 + δ)E[X]

]
≤ e−

δ2kE[X]
3 and

P

[
1

k

k∑
i=1

Xi ≤ (1− δ)E[X]

]
≤ e−

δ2kE[X]
2 .

Lemma 2.3 (Hoeffding’s inequality). Let X1, . . . , Xk be independent random variables
distributed as X ∈ [a, b]. Then, for every δ ∈ [0, 1],

P

[
1

k

k∑
i=1

Xi ≤ (1− δ)E[X]

]
≤ e−

(
δE[X]
b−a

)2
k and

P

[
1

k

k∑
i=1

Xi ≥ (1 + δ)E[X]

]
≤ e−

(
δE[X]
b−a

)2
k
.

2.2 Quantum information and computation

We use calligraphics (e.g., H) to denote arbitrary finite-dimensional Hilbert spaces.
U(H) denotes the set of unitary operators on H; the conjugate transpose of U ∈ U is
denoted U † and satisfies UU † = I, the identity operator of H.

A pure state is a unit vector in the Hilbert space H, and is usually represented
in Dirac notation, e.g., |ψ⟩. We write dim(H) to denote the dimension of H, and its
computational (or canonical) basis is denoted {|i⟩ : i ∈ [dimH]}; when H = (C2)⊗k,
the computational basis can equivalently be labeled by {|x⟩ : x ∈ {0, 1}n}. (The
states |i⟩ and |x1⟩ ⊗ · · · ⊗ |xk⟩, where x is the binary representation of i, coincide.)
For brevity, we also represent |0⟩⊗n as |0⟩.
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A mixed state is a distribution on pure states {pk, |ψk⟩}; it is represented
as a density matrix ρ =

∑
pk |ψk⟩⟨ψk| ∈ S(H), where S(H) is the set of positive

semi-definite operators with unit trace. Typically we divide a Hilbert space into
registers, e.g. H = H1 ⊗H2, and we sometimes write H \H2 to denote H1; we also
write ρH1 to specify that ρ ∈ S(H1).

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. If a
(unitary U or) projector Π in a Hilbert space H1 ⊗H2 acts trivially (as the identity
I) in H2, we may write Π or ΠH1 to denote Π ⊗ IH2 . A collection of projectors
M = (Πi)i∈S is a projective measurement when

∑
i∈S Πi = I, and a submeasurement

when there exists a projector Π such that
∑

i∈S Πi = I−Π.
The application of M to a pure state |ψ⟩ yields outcome i ∈ S with probability

pi = ∥Πi |ψ⟩∥2; we denote sampling from this distribution by i← M(ρ), and in this
case the post-measurement state is |ψi⟩ = Πi |ψ⟩ /

√
pi. We also use σ ← M(ρ) to

denote the mixture of post-measurement states Πi |ψ⟩ /
√
pi with probability pi. A

two-outcome projective measurement is called a binary projective measurement, and
is written as M = (Π, I−Π), where Π is associated with the outcome 1, and I−Π

with the outcome 0.
The set of linear operators mapping H to K is denoted by L(H,K); the

shorthand L(H) stands for L(H,H). The set T (H,K) consists of the linear mappings
from L(H) to L(K).

We say T is a completely positive (CP) map if T ⊗ IK is positive for all H,
where IK is the identity of the Hilbert space K . Furthermore, T is a completely
positive trace preserving (CPTP) map if T is CP and trace preserving, i.e., such that
Tr(T (ρ)) = Tr(ρ) for all ρ. For every CPTP map T : S(H) → S(H) there exists a
unitary dilation U that operates on an expanded Hilbert spaceH⊗K, so that, with TrK

the partial trace operator that traces out K, we have T (ρ) = TrK(U(ρ⊗ |0⟩⟨0|K)U †).
As a unitary dilation of a circuit T can be written as a circuit of size O(|T |), we may
assume without loss of generality that quantum computations that output a (classical)
string consist of applying unitaries, performing a measurement and outputting the
outcome.

For further details on quantum information and computation, see [NC16].

2.3 Algorithms and protocols

We use the same term to refer to computational problems and to protocols that solve
them, but distinguish the two cases with different fonts (so that the pep and sumcheck
protocols solve the pep and sumcheck problems, respectively). We distinguish
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complexity classes and the algorithms they contain similarly: e.g., P, NP and BQP

are complexity classes whose problems are solvable by P, NP and BQP algorithms,
respectively, while IP is a complexity class characterised by IP protocols.

Query algorithms. We denote by Mx(z) the output of algorithm M given direct
access to input z and query access to string x (see Section 2.3.1). Probabilistic
expressions that involve a randomised algorithm M generally omit the inner ran-
domness of M ; e.g., P[A(X) = 0] (if the distribution of X is known from context)
or PX∼µ[A(X) = 0] are shorthand for PX∼µ,r∼{0,1}m [A(X; r) = 0], where r is A’s
internal randomness. The number of coin tosses A makes is its randomness complexity.

The minimax principle. We shall often make use of the minimax principle, and
assume, without loss of generality, that a computationally unbounded algorithm A

whose goal is to maximise some value Ex∼µ[f(A(x))] (e.g., the probability that A(x)
equals x) can be assumed to be deterministic, and thus given by a function x 7→ a(x);
equivalently, A can be taken as the deterministic algorithm that maximises E[f ◦a(x)]
for the distribution of inputs µ.

Streaming. When A is a streaming algorithm, x is read sequentially in one pass,
from the first symbol (x1) to the last. When A(x, y, z) reads multiple inputs, A(y)
denotes the partial execution of A after it has read x. When the entries of a length-n
string x are taken over a finite alphabet Γ, we may also use x for the equivalent bit
string of length n log |Γ|.

The snapshot of an algorithm is synonymous with its memory state; when A
reads a sequence of more than one input, e.g., A(x, y), the “snapshot of A after x” is
the snapshot immediately before the first symbol of y is streamed (i.e., after A has
read and processed the last symbol of x). When A is interacting in a protocol and
sends a message between reading x and y, the snapshot after x is that immediately
before sending the message.

Protocols. We generally use P to denote an algorithm with unbounded compu-
tational resources. In a protocol, two algorithms P and V interact by exchanging
messages in a predefined order; after all messages have been exchanged, V chooses an
output that we denote ⟨P, V ⟩ and call the output of the protocol. When V rejects or
P aborts midway through the interaction, we assume the algorithm proceeds until
the end of the protocol with dummy messages (e.g., strings of zeroes).
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2.3.1 Local algorithms and the query model

Local (or sublinear-query) algorithms are an extremely important class of sublinear
algorithms, our main object of study. Such algorithms are defined in the query model,
where (in the classical case) the input x is given as an oracle that returns xi when
input the coordinate i. (We describe the quantum case in the end of this subsection.)

The maximal number of queries M performs over all strings x and outcomes
of its coin tosses is interchangeably referred to as its query complexity or locality
q. When q = o(n), where n is the length of the string x, we say M is a (q-)local
algorithm. If the queries performed by M are determined in advance (so that no
query depends on the result of any other query), M is non-adaptive; otherwise, it is
adaptive. Finally, if M queries each coordinate independently with some probability p,
we say it is a sample-based algorithm. Since we will want to have an absolute bound
on the sample complexity (i.e., the number of coordinates sampled) of sample-based
algorithms, we allow them to cap the number of coordinates they sample.

Adaptivity. Adaptive local algorithms are characterised in two equivalent manners:
a standard description via decision trees and an alternative that makes more direct
use of set systems. Let M be a q-local algorithm for a decision problem (i.e., which
outputs an element of {0, 1}) with oracle access to a string over alphabet Γ and no
access to additional input (what follows immediately generalises by enumerating over
explicit inputs).

The behaviour of M is characterised by a collection {(Ts, s) : s ∈ {0, 1}r} of
decision trees, where r is the randomness complexity of M ; the trees are |Γ|-ary, have
depth q, edges labeled by elements of Γ, inner nodes labeled by elements of [n] and
leaves labeled by elements of {0, 1}. The execution of Mx proceeds as follows. It (1)
flips r random coins, obtains a string s ∈ {0, 1}r and chooses the decision tree Ts to
execute; (2) beginning at the root, for q steps, queries the coordinate given by the
label at the current vertex and follows the edge whose label is the queried value; and
(3) outputs the bit given by the label of the leaf thus reached.

Quantum query algorithms. A quantum algorithm V with query access to a
bit string x ∈ {0, 1}n is specified by a sequence of unitary operations V0 . . . Vq, that
do not depend on the input x. A query to x is given by the unitary Ux on log n+ 1

qubits such that

Ux |i⟩ |b⟩ = |i⟩ |b⊕ xi⟩ .
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We denote by V U the output of V with oracle access to a unitary U . Similarly,
V U (n) denotes the case where V has access to an additional explicit input n.

The final state of an algorithm that makes q queries to the oracle, before
measurement, is given by

Vq(Uf ⊗ I)Vq−1(Uf ⊗ I) . . . V1(Uf ⊗ I)V0 |0⟩ .

The overall Hilbert space H used by the algorithm is split into three registers
X ⊗ W ⊗ B, and the verifier’s memory is initialised to the state |0⟩. The oracle
acts on X and one additional qubit, the workspace W can have arbitrary size and B
represents the single-qubit output of the algorithm. The final step of the algorithm
is to measure the B register in the computational basis and return the outcome.

For an introduction to (classical and) quantum query complexity, see [BW02];
and for a recent summary of the progress in the last two decades, see [Aar21].

2.4 Property testing

A property tester is a local algorithm that solves the approximate decision problem
of membership in a set Π. (For a thorough introduction to property testing, see the
book [Gol17].) We choose to define property testers in the most general form we
consider, namely, as parties in interactive protocols; then more restricted variants
(including standard testers) follow as simple restrictions of the definition.

An interactive proof of proximity (IPP) for Π is a proof system that solves the
problem of testing Π. The verifier algorithm receives as input a proximity parameter
ε and has oracle access to x. It queries x in at most q coordinates and interacts with
an all-powerful but untrusted prover by exchanging m messages, where the total
number of communicated bits is c. The verifier must accept when x ∈ Π and reject
when x is ϵ-far from Π, with bounded probability of error; the outcome of such an
interaction is denoted ⟨P (x), V x⟩. Formally,

Definition 2.1. An interactive proof of proximity (IPP) for a property Π = ∪nΠn

is an interactive protocol with two parties: a (computationally unbounded) prover P
and a verifier V , which is a probabilistic algorithm. The parties send messages to
each other in turns, with the first sent from prover to verifier, and at the end of the
communication, the following two conditions are satisfied:

1. Completeness: For every ε > 0, n ∈ N, and x ∈ Πn, there exists a prover P
such that

P [⟨P (x), V x⟩(n, ε) = 1] ≥ 2/3 ,

32



where the probability is over the coin tosses of V .

2. Soundness: For every ε > 0, n ∈ N, x ∈ {0, 1}n that is ε-far from Πn and for
every computationally unbounded (cheating) prover P̃ it holds that

P
[〈
P̃ (x), V x

〉
(n, ε) = 1

]
≤ 1/3 ,

where the probability is over the coin tosses of V .

The query complexity q of the protocol is the maximum number of queries
the verifier makes to x in its execution; the message complexity m is the number of
messages exchanged between prover and verifier; and the communication complexity
c is the total number of bits communicated by these messages.

The set of properties Π for which there exists an IPP protocol with proximity
parameter ε with m messages, communication complexity c and query complexity q is
denoted IPP(ε, c, q,m).

When the completeness condition holds with probability 1, i.e., the verifier
always accepts when x ∈ Π, we call the protocol one-sided. Moreover, if the verifier
does not receive ε explicitly, but rejects inputs that are ε-far from Π with detection
probability ρ(n, ε), where ρ : N× [0, 1]→ [0, 1] is monotonically nondecreasing in ε,
the protocol is said to be proximity-oblivious.

A Merlin-Arthur proof of proximity (MAP) for Π is an IPP where the entire
communication is a single message from the prover to the verifier (i.e., an IPP with
message complexity 1); the class MAP(ε, p, q) is thus defined as IPP(ε, p, q, 1). The
formal definition of the quantum generalisation of MAPs is given in Chapter 5 (and
the corresponding complexity class in Definition 5.1).

A property tester is an IPP with c = m = 0, i.e., where no communication oc-
curs. In this case, the verifier is called a tester, and we define PT(ε, q) := IPP(ε, 0, q, 0).

2.5 Discrete algebra and coding theory

A code C : Fk → Fn (where F is a finite field) is an injective mapping from messages
of length k to codewords of blocklength n. The rate of the code C is k/n and its
distance is the minimum, over all distinct messages x, y ∈ Fk, of ∆(C(x), C(y)). We
shall sometimes slightly abuse notation and use C to denote the set of all of its
codewords

{
C(x) : x ∈ Fk

}
⊂ Fn. If the mapping C is linear, we say C is a linear

code.
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Low-degree extensions. For any field F and integer k such that |F| ≥ k, we
consider [k] ⊆ F via a canonical injection (e.g., taking the image of ℓ ∈ [k] as the
field element whose binary representation is the same as that of ℓ). Accordingly, we
write ℓ ∈ F as shorthand for the field element corresponding to the image of ℓ ∈ [k]

via this canonical injection.
For a string y ∈ Fk, the low-degree extension (LDE) with degree d and

dimension m where |F| ≥ d+ 1 and k ≤ (d+ 1)m, denoted ŷ, is the unique m-variate
polynomial of individual degree d that coincides with y in [k]; more precisely, viewing
[k] ⊆ [d + 1]m ⊆ Fm, the LDE ŷ : Fm → F is the unique polynomial satisfying
ŷ(i) = yi for all i ∈ [k].2 Our notation for the polynomial ŷ omits the degree and
dimension, as they will be clear from context.

When y is a matrix, we use ŷ(α,β) to denote the linear combination of the
LDEs of the rows with linear coefficients β, i.e., ŷ(α,β) =

∑
i βiŷi(α).

2.6 Information theory

We will make use of several notions of information theory and approximations of
information-theoretic quantities. The q-ary entropy function is defined as

Hq(t) = t logq(q − 1)− t logq t− (1− t) logq(1− t) (2.1)

=
1

log q

(
t log(q − 1)− t log t− (1− t) log(1− t)

)
=

1

log q

(
t log(q − 1) +H2(t)

)
,

where Hq(0) = 0; we also use the shorthand H for H2, which simplifies to

H(t) = H(1− t) = −t log t− (1− t) log(1− t). (2.2)

We will make use of the following approximation for the (natural) logarithm
function: for 0 ≤ t ≤ 1/2,

−t(1 + t) ≤ ln(1− t) ≤ −t. (2.3)

Recall that a Hamming ball of radius δ around the point b ∈ Γk is defined as
B(b, δ) :=

{
a ∈ Γk : d(a, b) ≤ δ

}
. Setting γ := |Γ| for ease of notation, we will use

the following approximation to the ball’s volume: defining ε = 1− δ, when k is large
2If (d+ 1)m > k, uniqueness is ensured by padding y with zeroes to obtain y′ of length (d+ 1)m,

and embedding the latter.
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enough and ε = k−1 polylog(k), then

γHγ(δ)k ≥ |B(b, δ)| = Ω

(
γHγ(δ)k

√
εk

)
=

γHγ(δ)k

polylog(k)
.3 (2.4)

The entropy of a discrete random variable X taking values in Γ is

H(X) = −
∑
α∈Γ

P[X = α] log
(
P[X = α]

)
.

Every such random variable satisfies

H(X) ∈ [0, log |Γ|]. (2.5)

The conditional entropy H(X|Y ) is the entropy of the conditional random
variable, which satisfies

H(X|Y ) ≤ H(X). (2.6)

If X,Y are independent, then

H(X,Y ) = H(X) +H(Y ). (2.7)

The last property of entropy we will make use is the chain rule: for random variables
X1, . . . , Xn,

H(X1, . . . , Xn) =
n∑

i=1

H(Xi|X1, . . . , Xi−1). (2.8)

For ease of notation, when (X,Y ) are jointly distributed over Γ2 with marginals
µ and λ, respectively, we denote the distribution of Y conditioned on X = x as λx.
The KL divergence between the distributions is

KL(µ || λ) =
∑
α∈Γ

µ(x) log
µ(α)

λ(α)
. (2.9)

KL divergence upper bounds the Euclidean distance between probability
3The lower bound is a simplification of

|B(b, δ)| ≥ γHγ(δ)k ·
exp

(
1

12k+1
− 1

12δk
− 1

12εk

)
√

2πδ(1− δ)k
;

since 1
εk

= o(1), the numerator is 1− o(1), and the denominator is of order Θ(
√
εk) = polylog(k).

(See, e.g., [GRS12].)
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vectors via Pinsker’s inequality as follows (see, e.g., [BLM13]):

∥µ− λ∥2 ≤
KL
(
µ || λ

)
2 ln 2

. (2.10)

Finally, the mutual information is defined as (and equivalent to)

I(µ : λ) := I(X : Y ) (2.11)

= I(Y : X)

= H(Y )−H(Y |X)

= EX∼µ[KL(λX || λ)].
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Chapter 3

Technical overview

In this chapter, we provide high-level overviews of the techniques used to prove the
theorems in Chapters 4 to 6. These are given in order: Section 3.1 discusses our
structural theorem for local algorithms proved in Chapter 4; Section 3.2 gives an
overview of quantum proofs of proximity, the object of study of Chapter 5; and lastly,
Section 3.3 discusses streaming zero-knowledge, the topic of Chapter 6.

3.1 Lower bounds for local algorithms

We now proceed to an outline of the techniques used and developed in Chapter 4,
where we prove Theorem 1 and its applications. Our techniques build on and simplify
ideas from [FLV15, GL21], but are significantly more general and technically involved,
and in particular, offer novel insight regarding adaptivity in local algorithms.

Our starting point, which we outline in Section 3.1.1, generalises the techniques
of [GL21] (which are, in turn, inspired by [FLV15]) to the setting of robust local
algorithms. Then, in Section 3.1.2, we identify a key technical bottleneck in previous
works: adaptivity. We discuss the fundamental challenges that adaptivity imposes,
and in Section 3.1.3 we present our strategy for meeting these challenges and the
tools that we develop for dealing with them, as well as describe our construction.
Subsequently, in Section 3.1.5, we provide an outline of the analysis of our construction,
which relies on the Hajnal–Szemerédi theorem to sample from structured set systems
we call daisies.

The setting. Recall, from Section 1.1.2, that our goal is to transform a robust
(query-based) local algorithm into a sample-based algorithm with sublinear sample
complexity. Towards this end, letM be a (ρ0, ρ1)-robust local algorithm for computing
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a function f : {0, 1}n → {0, 1}.1 Since we also need to deal with one-sided robustness,
assume without loss of generality that ρ1 = 0 and ρ := ρ0 = Ω(1). Recall that the
algorithm M receives query access to a string x ∈ {0, 1}n, flips at most r random coins,
makes at most q queries to this string and outputs f(x) ∈ {0, 1} with probability at
least 1− σ.

For simplicity of exposition, we assume that the error rate is σ = Θ(1/q), the
query complexity is constant (q = O(1)), and the randomness complexity r is bounded
by log(n) + O(1). We remark that the analysis trivially extends to non-constant
values of q, and that we can achieve the other assumptions via simple transformations,
which we provide in Section 4.3.4, at the cost of logarithmic factors in q. In the
following, our aim is to construct a sample-based local algorithm N for computing
the function f , with sample complexity O

(
n1−1/2q

2)
= n1−1/O(q2).

3.1.1 The relaxed sunflowers method

As a warm-up, we first suppose that the algorithm M is non-adaptive. (This section
gives an overview of the techniques of [GL21], which suffice in the non-adaptive case.)
Then we can simply represent M as a distribution µ over a collection of query sets S,
where each S ∈ S is a subset of [n] of size q, and predicates {fS : {0, 1}q → {0, 1}}S∈S ,
as follows. The algorithm M draws a set S ∈ S according to µ, queries S, obtains
the local view x|S (i.e., x restricted to the coordinates in S), and outputs fS(x|S).

Consider an algorithm N that samples each coordinate of the string x in-
dependently with probability p = 1/n1/2q

2 (and aborts in the rare event that this
exceeds the desired sample complexity).2 Naively, we would have liked Nx to emulate
an invocation of the algorithm M by sampling the restriction of x to a query set
S ∼ µ.

Indeed, if the distribution µ is “well spread”, the probability of obtaining
such a local view of M is high. Suppose, for instance, that all of the query sets are
pairwise disjoint. In this case, the probability of N sampling any particular local
view is pq, and we expect N to obtain Ω(pqn) = Ω(n1−1/2q) local views (recall that
the support size of µ, i.e., the number of query sets, is O(n) by our assumption
of log n+ O(1) randomness complexity). However, if µ is concentrated on a small
number of coordinates, it is highly unlikely that N will obtain a local view of M .
For example, if M queries the first coordinate of x with probability 1, then we can
obtain a local view of M with probability at most p, which is negligible.

1In general, the function f may depend on an explicitly given parameter (e.g., an index for
decoding in the case of relaxed LDCs), but for simplicity of notation, we omit this parameter in the
technical overview.

2This choice of p will be made clear in Section 3.1.5; see Footnote 10.
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Fortunately, we can capitalise on the robustness condition to deal with this
problem. We first illustrate how to do so for an easy special case, and then deal with
the general setting.

Special case: sunflower query set. Suppose that µ is concentrated on a small
coordinate set K and is otherwise disjoint, i.e., the support of µ is a sunflower with
kernel K of size at most ρn; see Figure 3.1a. Since the query sets are disjoint outside
of K, by the discussion above we will sample many sets except for the coordinates in
K (i.e., sample the petals of the sunflower). Recall that if x is such that f(x) = 0,
then the (ρ, 0)-robust algorithm M outputs 0, with high probability, on any input y
that is ρ-close to x. Thus, even if we arbitrarily assign values to K and use them to
complete sampled petals into full local views, we can emulate an invocation of M
that will output as it would on x.

If all inputs in the promise of M were robust (as is the case for LDCs, but
not for testers, relaxed LDCs,3 and PCPPs), then the above would suffice. However,
recall that we are not ensured robustness when x is such that f(x) = 1. To deal with
that, we can enumerate over all possible assignments to the kernel K, considering
the local views obtained by completing sampled petals into full local views by using
each kernel assignment to fill in the values that were not sampled. Observe that: (1)
when the input x is a 1-input and N considers the kernel assignment that coincides
with x, a majority of local views (a fraction of at least 1− σ) will lead Mx to output
1; and (2), when x is a 0-input, a minority of local views (a fraction of at most σ)
will lead Mx to output 1 under any kernel assignment.

The sample-based algorithm N thus outputs 1 if and only if it sees, for some
kernel assignment, a majority of local views that lead M to output 1. Recall that
there is asymmetry in the robustness of M (while 0-inputs are robust, 1-inputs
are not), which translates into asymmetric output conditions for N . Note, also,
that correctness of this procedure for 0-inputs requires that not even a single kernel
assignment would lead N to output incorrectly; but our assumption on the error
rate ensures that the probability of sampling a majority of petals whose local views
will lead to an error is sufficiently small to tolerate a union bound over all kernel
assignments, as long as |K| is small enough.

General case: extracting a heavy daisy from the query sets. Of course,
the combinatorial structure of the query sets of a local algorithm is not necessarily

3The type of robustness that relaxed LDCs admit is slightly more subtle, since it deals with a
larger alphabet that allows for outputting ⊥. See discussion in Section 4.5.2.
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(a) A sunflower with one of its sets
shaded. The intersection of any two
sets results in the same set, the ker-
nel.

(b) A daisy with its kernel shaded, whose
boundary is the dashed line. Outside the ker-
nel each point is covered by a bounded number
of petals.

Figure 3.1: Sunflowers and daisies.

a sunflower and may involve many complex intersections. While we could use the
sunflower lemma to extract a sunflower from the collection of query sets, we stress
that the size of such a sunflower is sublinear, which is not enough in our setting (as
we deal with constant error rate).

Nevertheless, we can exploit the robustness of M even if its query sets only
have the structure of a relaxed sunflower, referred to as a daisy, with a small kernel.
Loosely speaking, a t-daisy is a sunflower in which the kernel is not necessarily the
intersection of all petals, but is rather a small subset such that every element outside
the kernel is contained in at most t petals;4 see Figure 3.1b (and see Section 4.3.1 for
a precise definition).

Using a daisy lemma [FLV15, GL21], we can extract from the query sets (the
support of µ) of the robust local algorithm M a t-daisy D with t roughly equal to
ni/q and a kernel K of size roughly n1−i/q, where i ∈ [q] bounds the size of the petals
of D. Moreover, the weight µ(D) =

∑
S∈D µ(S) is significantly larger than the error

rate σ of M (recall that we assumed a sufficiently small σ = Θ(1/q)). Thus, even if
the daisy contains all local views that lead to an error, their total weight would still
be small with respect to that of local views leading to a correct decision; hence, the
query sets in the daisy D well-approximate the behaviour of M , and we can disregard
the sets in the support of µ that do not belong to D at the cost of a negligible increase
to the error rate.

Crucially, the intersection bound t implies that sampling a daisy is similar
to sampling a sunflower : since petals do not intersect heavily, with high probability
many of them are fully queried (as is the case with sunflowers). The bound on |K|,
on the other hand, allows us to implement the sampling-based algorithm we discussed

4In Definition 4.11, a t-daisy has t as a function from [q] to N and allows for a tighter bound
on the number of intersecting petals. We use the simplified definition of [GL21] in this technical
overview.
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for the sunflower case, except with respect to a daisy. The kernel is sufficiently small
so that the output of M is unchanged under any assignment to K, and suffices to
tolerate a union bound when considering all possible assignments to K.

It follows that the daisy D provides enough “sunflower-like” structure for the
sample-based algorithm N defined previously to succeed, with high probability, when
it only considers the query sets in D and enumerates over all assignments to its
kernel.

3.1.2 The challenge of adaptivity

Let us now attempt to apply the transformation laid out in the previous section to a
robust local algorithm M that makes q adaptive queries. In this case, M may choose
to query distinct coordinates depending on the answers to its previous queries, and
thus there is no single distribution µ that captures its query behaviour.

Observe that now, rather than inducing a distribution on sets, the algorithmM

induces a distribution over decision trees of depth q, as the behaviour of a randomised
query-based algorithm Mx can be described by choosing a decision tree according to
its random string, then performing the adaptive queries according to the evaluation of
that tree on the input x ∈ {0, 1}n. By our assumption on the randomness complexity
of M , this distribution is supported on Θ(n) decision trees. Note that for any fixed
input x, the decision tree collapses to a path, and hence the distribution over decision
trees induces a distribution over query sets, which we denote µx (see Figure 3.2).

A naive way of transitioning from decision trees to sets is by querying all of the
branches of each decision tree. Alas, doing so would increase the query complexity of
M exponentially from q to (more than) 2q, which would in turn lead to a sample-based
algorithm with a much larger sample complexity than necessary. Thus, we need
to deal with the far more involved structure induced by distributions over decision
trees, which imposes significant technical challenges. For starters, since our technical
framework inherently relies on a combinatorial characterisation of algorithms, we first
need to find a method of transitioning from decision trees to (multi-)sets without
increasing the query complexity of the local algorithm M .

To this end, a key idea is to enumerate over all random strings and their
corresponding decision trees, and extract all q-sets (i.e., sets of size q) corresponding
to each branch of each tree. This leaves us with a combinatorial multi-set S (as
multiple random strings may lead to the same decision tree, and branches of distinct
decision trees may query the same set) with Θ(2q · n) = Θ(n) query sets, of size q
each, corresponding to all possible query sets induced by all possible input strings.5

5We remark that this treatment of multi-sets allows us to significantly simplify the preparation
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Figure 3.2: Decision tree of a 3-local algorithm. When the input x is such that x1 = 1,
x3 = 0 and x5 = 0, the branch highlighted in blue (and dashed) queries {1, 3, 5} and outputs
1. When x1 = 0 and x4 = 1, this tree induces the query set {1, 2, 4}; when x1 = 1 and
x3 = 0, it induces the set {1, 3, 5}. This “collapsing” of the query behaviour is illustrated on
either side of the tree.

Note that S contains the elements of the support of µx for all inputs x ∈ {0, 1}n and
that, for any fixed input x, the vast majority of these query sets may not be relevant
to this input: each S ∈ S \ supp(µx) corresponds to a branch of a decision tree that
the bits of x would have not led to query.

This already poses a significant challenge to our approach, as we would have
liked to extract a heavy daisy D from the collection S which well-approximates the
query sets of M independently of any input. However, it could be the case that the
sets that are relevant to an input x (i.e., supp(µx)) induce a completely different
daisy (with potentially different kernels over which we’ll need to enumerate) than the
relevant sets for a different input y that differs from x on the values in the kernel,
and so it is not clear at all that there exists a single daisy that well-approximates the
query behaviour of the adaptive algorithm M for all inputs.

Furthermore, the above also causes problems with the kernel enumeration
process. For each assignment κ to the kernel K, denote by xκ ∈ {0, 1}n the word
that takes the values of κ in K and the values of x outside of K. Recall that the crux
of our approach is to simulate executions of Mxκ , for each kernel assignment κ, using
the values of the sampled petals and plugging in the kernel assignment to complete
these petals into local views (assignments to full query sets). Hence, since relevant
sets corresponding to different kernel assignments may be distinct, it is unclear how
to rule according to the local views that each of them induce.

We overcome these challenges in the next section with a more sophisticated
extraction of daisies that, crucially, does not discard any query sets of the adaptive
algorithm M . Specifically, we will partition the (multi)-collection of all possible query

for combinatorial analysis that was used in previous works involving sunflowers and daisies.
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sets into a collection of daisies and simultaneously analyse all daisies in the partition
to capture the adaptive behaviour of the algorithm.

3.1.3 Capturing adaptivity in daisy partitions

Relying on techniques from [FLV15, GL21], we can not only extract a single heavy
daisy, but rather partition a (multi-)collection of query sets into a family of daisies,
with strong structural properties on which we can capitalise. This allows us to apply
our combinatorial machinery without dependency on a particular input, and analyse
all daisies simultaneously.

Daisy partition lemma. A refinement of the daisy lemma in [GL21], which we
call a daisy partition lemma (Lemma 4.1), partitions a multi-set S of q-sets into q+1

daisies {Di : 0 ≤ i ≤ q} (see Figure 3.3) with the following structural properties.

1. D1 is a n1/q-daisy, and for i > 1, each Di is a t-daisy with t = n(i−1)/q;

2. The kernel K0 of D0 coincides with that of D1, and, for i > 0, the kernel Ki of
Di satisfies |Ki| ≤ q|S| · n−i/q;

3. The petal S \Ki of every S ∈ Di has size exactly i.

Moreover, the kernels form an incidence chain Kq = ∅ ⊆ Kq−1 ⊆ · · · ⊆ K1 = K0.
Note that D0 is vacuously a t-daisy for any t, since its petals are empty; and that
our assumption on the randomness complexity of M implies |Ki| = O(n1−i/q) when
i > 0.

We may thus apply the daisy partition lemma to S and assert that, for
any input x, there exists some i ∈ {0, . . . , q} such that µx(Di) is larger than 1/q

(recall that, for all x, the support of µx is contained in S); that is, each input may
lead to a different heavy daisy, but there will always be at least one daisy that
well-approximates the behaviour of the algorithm on input x. Alas, with only a local
view of the input word, we are not able to tell which daisies are heavy and which are
not.

It is clear, then, that a sample-based algorithm that makes use of the daisy
partition has to rule not only according to a single daisy, but rather according to all
of them. But how exactly it should do so is a nontrivial question to answer, given
that there are multiple daisies (and kernels) potentially interfering with one another.

Adaptivity in daisy partitions. A natural approach for dealing with multiple
daisies simultaneously is by enumerating over every assignment to all kernels (i.e., to
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(a) A collection S of 3-sets before being
partitioned.

(b) The collection S partitioned into 4
daisies: D0 (shaded in grey), D1 (green),
D2 (yellow) and D3 (purple).

(c) D0, with sets en-
tirely contained in
the kernel K0.

(d) D1 with K1 =
K0, where each S ∈
D1 has a petal S\K1

of size 1.

(e) D2 with K2 ⊆
K1, where each S ∈
D2 has a petal S\K2

of size 2.

(f) D3, with kernel
K3 = ∅. Each S ∈
D3 has a petal S \
K3 = S of size 3.

Figure 3.3: Daisy partition.

∪iKi) and, for each such assignment, obtaining local views from all daisies and ruling
according to the aggregated local views. Note that the incidence chain structure
implies that enumerating over assignments to K0 suffices, since each assignment to
K0 induces assignments to Ki for all i.

However, this approach leads to fundamental difficulties. Recall that correct-
ness of the sample-based algorithm on 0-inputs depends on no kernel assignment
causing an output of 1. Although for any assignment to Ki this happens with suffi-
ciently small probability to ensure it is unlikely to happen on all 2|Ki| assignments
simultaneously, this does not hold true for assignments to larger kernels. More
precisely, since |Ki−1| may be larger than |Ki| by a factor of n1/q, an error rate that
is preserved by 2|Ki| assignments becomes unbounded if the number of assignments
increases to 2|Ki−1|. This leads us to only consider, for query sets in Di, assignments
to Ki rather than to the union of all kernels.

Put differently, we construct an algorithm that deals with each daisy inde-
pendently, and whose correctness follows from a delicate analysis that aggregates
local views taken from all daisies, which we outline in Section 3.1.5. We begin by
considering a sample-based local algorithm N that extends the strategy we used for
a single daisy as follows. On input x ∈ {0, 1}n, it:
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(1) samples each coordinate of the string x independently with probability p =

1/n1/2q
2 ;

(2) for each i ∈ {0, . . . , q} and each assignment κ to the kernel Ki of the daisy Di,
outputs 1 if a majority of local views leads M to output 1; and

(3) outputs 0 if no such majority is ever found.

First, note that since the algorithm N is constructed in a white-box manner,
it has access to the description of all decision trees induced by the query-based
algorithm M . Hence Nx is able to determine which local views correspond to a
valid execution of M . Denoting by Q the set of coordinates that were sampled, an
assignment κ to Ki induces, for each query set S ⊂ Q ∪Ki, the assignment xκ|S ; the
sample-based algorithm N can check whether each such S is a relevant query set (i.e.,
belongs to the support of µxκ) by verifying it arises from some branch of a decision
tree of M that xκ would have led to query. This allows N to ignore the non-relevant
query sets and overcome the difficulty pointed out in the previous section.6

However, we remain with the issue that motivated searching for heavy daisies
in the first place: there is no guarantee that every Di well-approximates the algorithm
M on all inputs. This is due to the use of relative estimates: if x is a 0-input and
µx(Di) is smaller than the error rate σ, even when N considers the correct kernel
assignment x|Ki

with respect to x, it may find a majority of local views that leads
Mx to output 1; indeed, nothing prevents all the “bad” query sets, which lead Mx to
erroneously output 1, from being placed in the same daisy Di.

The solution is to use a simpler decision rule: absolute rather than relative.
We count the number of local views leading to an output of 1, outputting 1 if and
only if it crosses a threshold. The upper bound σ on the weight of “bad” query sets
limits their number, and a large enough threshold prevents them from causing an
incorrect output even if no local view leads to the correct one. Note that a different
threshold τi is needed for each daisy Di, since the probability of sampling petals
decreases as i increases. The thresholds τi must thus be carefully set to take this into
account.

Finally, note that whenever the daisy D0 leads to an output of 1, this happens
(almost) independently of the input : the assignment to every S ∈ D0 is determined
solely by the assignment to K0, because S ⊂ K0. Therefore, the sample-based
algorithm N disregards D0 in its execution.

6We remark that in the accurate description of our construction (see Section 4.4.1), we capture
all the information contained in the decision trees via tuples that contain, besides the query set, the
assignment that led to it being queried as well as the output of the algorithm when it does so. The
daisy partition lemma then allows to partition these tuples based on the structure of the sets they
contain.
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The algorithm. By the discussion above, we obtain the following description for
the sample-based algorithm Nx (with some parameters that we will set later).

1. Sample each coordinate of x independently with probability p = 1/n1/2q
2 . If

the number of samples exceeds the desired sample complexity, abort.

2. For every i ∈ [q] and every assignment κ to Ki, perform the following steps.

(a) Count the number of sets in Di with local views that lead M to output 1,
which are relevant for the assignment κ and the queried values. If i = 1,
discard the sets whose petals are shared by at least α local views.7

(b) If the number is larger than the threshold τi, output 1.

3. If every assignment to every kernel failed to trigger an output of 1, then output
0.

In the next section we will present key technical tools that we develop and
apply to analyse this algorithm, as well as discuss the parameters τi = γi · npi (where
γi = Θ(1)) and α = Θ(1), and show it indeed suffices for the problem we set out to
solve.

3.1.4 Two technical lemmas

To establish the correctness of the aforementioned sample-based algorithm, we shall
first need two technical lemmas about sampling daisies. We will then proceed to
provide an outline of the analysis of our algorithm.

We sketch the proofs of two simple, yet important technical lemmas that will
be paramount to our analysis: (1) a lemma that allows us to transition from arguing
about probability mass to arguing about combinatorial volume; and (2) a lemma that
allows us to efficiently analyse sampling petals of daisies with complex intersection
patterns.

The volume lemma. We start by showing how to derive from the probability
mass of query sets (i.e., the probability under µx when the input is x) a bound on the
volume that the union of these query sets cover. This is provided by the following
volume lemma, which captures what is arguably the defining structural property of
robust local algorithms.

Recall that the sample-based algorithm N uses the query sets of a (ρ, 0)-robust
algorithm M with error rate σ, which comprise the support of the distributions µx

7The extra condition for i = 1 is necessary to deal with the looser intersection bound t = n1/q >
n(i−1)/q on D1. We discuss this in the next section.
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for all inputs x. Intuitively, these sets cannot be too concentrated (i.e., cover little
volume), as otherwise slightly corrupting a word (in less than ρn coordinates) could
require M to output differently, a behaviour that is prevented by the robustness of
M . This intuition is captured by the following volume lemma.

Lemma 3.1 (Lemma 4.3, informally stated). Let x ∈ {0, 1}n be a non-robust input
(a 1-input in our case) and S be a subcollection of query sets in the support of µx. If
S covers little volume (i.e., ∪S < ρn), then it has small weight (i.e., µx(S) < 2σ).

We stress that the robustness of the 0-inputs yields the volume lemma for
1-inputs.8 Note that the contrapositive of the volume lemma yields a desirable
property for our sample-based algorithm: for any (non-robust) 1-input x, the query
sets in supp(µx) must cover a large amount of volume, so that we can expect to
sample many such sets.

The Hajnal–Szemerédi theorem. Once we establish that a daisy covers a large
volume, it remains to argue how this affects the probability of sampling petals from
this large daisy, which is a key component of our algorithm. Recall that sampling the
petals of a sunflower is trivial to do. However, with the complex intersection patterns
that the petals of a daisy could have, we need a tool to argue about sampling petals
of daisies.

First, recall that the daisy partition lemma ensures that each Di is a t-daisy
where t = nmax{1,i−1}/q, for all i. Observe that if Di is a 1-daisy (which we call a
simple daisy), that is, each point outside the kernel Ki is contained in at most one set
S ∈ Di, then the sets in Di have pairwise disjoint petals, so sampling them is exactly
like sampling petals of a sunflower: these petals are sampled independently from one
another, and we expect their number to be concentrated around the expectation of
pi|Di| (recall that all petals have size i).

Of course, there is no guarantee that Di is a simple daisy, though we expect it
to contain a simple daisy if it is large enough. Indeed, greedily removing intersecting
sets yields a simple daisy of size Θ(|Di|/t), but this does not suffice for our purposes
because most of the sets in Di are discarded.

Instead, we rely on the Hajnal–Szemerédi theorem to obtain a “lossless” transi-
tion from a t-daisy to a collection of simple daisies, from which sampling petals is easy.
The Hajnal–Szemerédi theorem shows that for every graph G with m vertices and
maximum degree ∆(G), and for any k ≥ ∆(G) + 1, there exists a k-colouring of the

8This is a rather subtle consequence of adaptivity; in the nonadaptive setting a symmetric volume
lemma for b-inputs can be shown using robustness on b-inputs, for b ∈ {0, 1}.
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vertices of G such that every colour class has size either ⌊m/k⌋ or ⌈m/k⌉. By applying
this theorem to the incidence graph G of the petals of query sets (i.e., the graph with
vertex set Di where we place an edge between S and S′ when (S ∩ S′) \Ki ̸= ∅),
which satisfies ∆(G) ≤ 2t (see Claim 4.5) we obtain a partition of Di into t simple
daisies of the same size (up to an additive error of 1), and hence obtain stronger
sampling bounds.

3.1.5 Analysis

With the two tools of Section 3.1.4, we proceed to the analysis proper. Note that
the probability that N samples too many coordinates (thus aborts) is exponentially
small, hence we assume hereafter that this event did not occur.

We proceed to sketch the high-level argument of the correctness of the sampled-
based algorithm N , described in the previous section, making use of tools above.
This follows from two claims that hold with high probability: (1) correctness on
non-robust inputs, which ensures that when x is a 1-input (i.e., is non-robust), there
exists i ∈ [q] such that when N considers the kernel assignment x|Ki

(which coincides
with the input), the number of local views that lead to output 1 crosses the threshold
τi; and (2) correctness on robust inputs, which, on the other hand, ensures that when
x is a 0-input (i.e., is robust), for every kernel Ki and every kernel assignment, the
number of local views that lead to output 1 does not cross the threshold τi.

In the following, we remind that when the sample-based algorithm N considers
a particular assignment κ to a kernel and counts the number of local views that lead
to output 1, the algorithm only considers views that are relevant to xκ (the input x
where the values of its kernel are replaced by κ); that is, local views that arise from
some branch of a decision tree of the adaptive algorithm M that would have led it to
query these local views. While N does not know all of x, after collecting samples
from x and considering the kernel assignment κ, it can check which local views are
relevant to xκ (see discussion in Section 3.1.3).

Correctness on non-robust inputs. We start with the easier case, where x is a
non-robust input (in our case, f(x) = 1). We show that there exists i ∈ [q] such that
when N considers the kernel assignment x|Ki

, the number of local views that lead to
output 1 crosses the threshold τi = γi · npi. We begin by recalling that N disregards
the daisy D0, whose query sets are entirely contained in the kernel K0, and arguing
that this leaves sufficiently many query sets that lead to output 1. Indeed, while
we could not afford this if D0 was heavily queried by M given the 1-input x (i.e., if
µx(D0) is close to 1− σ), an application of the volume lemma shows this is not the
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case: since |K0| = o(n), this volume is smaller than ρn, implying µx(D0) < 2σ for
all 1-inputs x.

Apart from D0, the query sets in the daisy D1 whose petals are shared by at
least α local views (for a parameter α to be discussed shortly) are also discarded,
and we need to show that the loss incurred by doing so is negligible as well. This is
accomplished with a slightly more involved application of the volume lemma: since
the sets of D1 have petals of size 1, the subcollection C ⊆ D1 of sets that are discarded
covers a volume of at most |K1|+ |C|/α. For a sufficiently large choice of a constant
α > 0, we have |C|/α ≤ ρn/2 (recall that C ⊆ supp(µx) and |supp(µx)| = Θ(n) by
the assumption on the randomness complexity of M). Since |K1| = o(n) and in
particular |K1| < ρn/2, applying the volume lemma to C shows that µx(C) < 2σ.

Finally, the total weight of all query sets in supp(µx) that lead to output 0 is
at most σ (by definition of the error rate σ). This implies that the subcollection of
supp(µx) that leads to output 1 and is not disregarded has weight at least 1− 2σ −
2σ − σ = 1− 5σ, and, for a sufficiently small value of σ (recall that σ = Θ(1/q)), we
have 1− 5σ ≥ 1/2.

We now shift perspectives, and in effect use the volume lemma in the con-
trapositive direction: large weights imply large volumes. By a simple averaging
argument, it follows that at least one daisy Di has weight at least (1− 5σ)/q ≥ 2σ,
and thus, by the volume lemma, covers at least ρn coordinates. Therefore, since
|supp(µx)| = Θ(n) and µx is uniform over a multi-collection of query sets, this daisy
contains Θ(n) “good” sets (that lead to output 1 and were not discarded). For the
analysis, using the Hajnal–Szemerédi theorem, we partition the t-daisy Di into t

simple daisies of size Θ(n/t). Each such simple daisy has disjoint petals of size i,
so that Ω(npi/t) petals will be sampled except with probability exp

(
−Ω(npi/t)

)
.

Finally, this implies that, by setting γi = Θ(1) small enough, when N considers the
kernel assignment x|Ki

to Ki, at least τi = γi · npi petals are sampled except with
probability

O(t) · exp
(
−Ω

(
npi

t

))
= exp

(
−Ω

(
n
1−max{1,i−1}

q
− i

2q2

))
= o(1).

(Recall that t = nmax{1,i−1}/q and the sampling probability is p = 1/n1/2q
2 .)

Correctness on robust inputs. It remains to show the harder case: when x is
a robust input (in our case, f(x) = 0), then all kernel assignments to all daisies
will make the local views that lead to output 1 fail to cross the threshold. This
case is harder since, by the asymmetry of N with respect to robust and non-robust
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inputs, here we need to prove a claim for all kernel assignments to all daisies, whereas
in the non-robust case above we only had to argue about the existence of a single
assignment to a single kernel.

We begin with a simple observation regarding D0, then analyse the daisies
Di for i > 1, and deal with the more delicate case of D1 last. Recall that D0 is
disregarded by the algorithm N , and that by the asymmetry of N with respect to 0-
and 1-inputs, this only makes the analysis on robust inputs easier. Indeed, Nx is
correct when no kernel assignment to any of the Di’s leads to crossing the threshold τi
of local views on which the query-based algorithm M outputs 1. Thus, by discarding
the query sets in D0, we only increase the probability of not crossing these thresholds.

Fix i > 0 and an arbitrary kernel assignment κ to Ki. Then, the relevant sets
that N may sample are those in the support of µxκ (recall that xκ is the word obtained
by replacing the bits of x whose coordinates lie in Ki by κ). Since |Ki| = o(n), it
follows by the robustness of x that xκ is ρ-close to x, and thus the weight of the
collection O ⊆ supp(µxκ) of query sets that lead to output 1 is at most σ. For the
sake of this technical overview, we focus on the worst-case scenario, where all of
these “bad” sets are in the daisy Di (i.e., O ⊆ Di) and |O| is as large as possible (i.e.,
|O| = Θ(n)), and show that even that will not suffice to cross the threshold τi.

By the randomness complexity of the algorithm M , the size of O is Θ(n).
We apply the Hajnal–Szemerédi theorem and partition O into Θ(t) simple daisies of
size Θ(n/t). Recall that the petals of query sets in Di have size i and are disjoint;
therefore, each of these simple daisies has γi · npi/t sampled petals with probability
only exp

(
−Ω(npi/t)

)
.9 By an averaging argument, the total number of sampled

petals crosses τi = γi · npi with probability at most

O(t) · exp
(
−Ω

(
npi

t

))
= exp

(
−Ω

(
n
1− i−1

q
− i

2q2

))
= exp

(
−Ω

(
n
1− i

q
+ 1

2q

))
;

recall that t = n(i−1)/q and the sampling probability is p = 1/n1/2q
2 , so pi ≥ 1/n1/2q.

Since the daisy partition lemma yields a bound of O(n1−i/q) for the size of the kernel
Ki, a union bound over all 2|Ki| kernel assignments ensures the threshold is crossed
with probability o(1).10

9We stress that the expected number of sampled petals is smaller in the robust case than in
the non-robust one. This is what allows us to show the total number of queried petals is at least
τi = γinp

i with probability exp
(
−Ω(npi/t)

)
in the robust case but 1 − exp

(
−Ω(npi/t)

)
in the

non-robust, for the same constant γi.
10Recall that we set the sampling probability to be p := 1/n1/β with β = 2q2. This choice is

justified as follows: the union bound requirement that 2|Ki| multiplied by the probability of crossing
the threshold be small translates into 1/q − i/β > 0 for all i ∈ [q − 1]. Then i = q − 1 requires
β = Ω(q2).
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We now analyse D1 and stress that the need for a separate analysis arises
from the looser intersection bound on this daisy: D1 is a t-daisy with t = n1/q,
whereas for all other i the bound is t = n(i−1)/q. This implies that there is no “gap”
between the expected number of queried petals in each simple daisy Θ(np/t) =

Θ(n1−1/q−1/(2q
2)) = o(n1−1/q) and the size of the kernel |K1| = O(n1−1/q), so a union

bound as in the case i > 1 does not suffice.
This is precisely what the “capping” performed by N on D1 is designed to

address: the query sets O ⊆ supp(µxκ) that lead to output 1 will only be counted by
N if their petals are shared by at most α query sets. Then, by the Hajnal–Szemerédi
theorem, we partition O into α = Θ(1) simple daisies of size Θ(n). Each simple
daisy will have more than τi/α = Θ(np) queried petals with probability at most
exp(−Ω(np)), so that the total number of such petals across all simple daisies exceeds
τj with probability at most exp(−Ω(np)). This provides the necessary gap: as
Θ(np) = Ω(n1−1/2q

2
) and |K1| = O(n1−1/q), a union bound over all 2|K1| assignments

to K1 shows the threshold is crossed with probability o(1).

This concludes our high-level proof of correctness, and thus of Theorem 1 (see
Section 4.4.2 for the full proof). For an overview of how to derive our applications
from Theorem 1, see Section 4.5.

3.2 Quantum proofs of proximity

We now proceed to a discussion of the high-level ideas of Chapter 5, which contains
proofs of the theorems stated in Section 1.2.2. Our discussion is divided into lower
bounds and algorithmic techniques.

In Section 3.2.1, we introduce some of the lower bound techniques that we use
in charting the complexity landscape of quantum proofs of proximity. En route, we
extend the framework of Blais, Brody and Matulef [BBM12] to show lower bounds
for quantum property testers. To the best of our knowledge, this is the first quantum
testing lower bound proved via a reduction from quantum communication complexity,
an open question raised by Montanaro and de Wolf [MW16, Question 4]. In addition,
we show how to prove lower bounds on QMAP algorithms via an argument about
the threshold degree of boolean functions.

In Section 3.2.2 we show how to construct quantum proofs of proximity for
properties that can be decomposed into sub-problems, and we prove that these
QMAP protocols outperform both quantum testers as well as classical proof of
proximity protocols. Moreover, we give an overview of an efficient QMAP protocol
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for a natural property of bounded-degree graphs, bipartiteness, which does not fall
into the decomposability paradigm.

3.2.1 Lower bounds

We highlight two techniques that we exploit to prove complexity separations and
limitations on QMAPs: (1) proving quantum testing lower bounds via reductions from
quantum communication complexity [BBM12], which we use to show a separation
between MAPs and quantum testers; and (2) proving QMAP lower bounds by
studying the threshold degree of boolean functions.

Quantum testing lower bounds via reductions from communication com-
plexity. The methodology of [BBM12] has proven very successful for showing
classical property testing lower bounds. However, extending this methodology to the
quantum setting poses an inherent difficulty that we expand upon next. Following the
exposition of [MW16], we illustrate the methodology and the difficulty in the quantum
setting by considering the problem of testing whether a function f : {0, 1}n → {0, 1}
is k-linear, i.e., a Fourier character of weight k.

We can obtain query complexity lower bounds on testers via a reduction
from the randomised communication complexity problem of disjointness, as follows.
Recall that, in the disjointness problem, Alice receives x ∈ {0, 1}n and Bob receives
y ∈ {0, 1}n (for lower bound purposes, we may assume without loss of generality that
both bit strings are promised to have Hamming weight k/2 for some known k ∈ [n]),
and their goal is to decide whether or not there exists an index i ∈ [k] such that
xi = yi = 1, while communicating a minimal number of bits.

Suppose that there exists a property tester for k-linearity with query complex-
ity q. We will use this tester to construct a communication complexity protocol for
disjointness (i.e., deciding if, for every i ∈ [n], either xi = 0 or yi = 0) as follows. First,
Alice and Bob use shared randomness and simulate the tester on the input f , inter-
preted as a function mapping {0, 1}n to {0, 1} defined as f(z) =

⊕
i∈[n] zi ·(xi⊕yi). To

simulate a query f(z), Alice computes A(z) =
⊕

i∈[n] zi ·xi and sends it to Bob, while
Bob computes B(z) =

⊕
i∈[n] zi · yi and sends it to Alice. Since f(z) = A(z)⊕B(z),

each query to f incurs 2 bits of communication. Moreover, if x and y are disjoint,
then f is k-linear; and if they are not disjoint, f is ℓ-linear for some ℓ < k, and is
in particular 1/2-far from every k-linear function. Therefore, the simulated tester
indeed solves the communication problem, so that the Ω(k) lower bound for the latter
implies an Ω(k) lower bound for testing k-linearity.

An attempt to extend this to quantum testers, however, reveals a severe
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bottleneck in the reduction. Note that, classically, the fact that Alice and Bob can
use shared randomness to fix a deterministic tester to simulate is crucial: at every
step, both parties know which query z the tester will make next without the need to
communicate it. The problem is that there is no way to fix the “quantumness” using
shared randomness. Details follow.

While disjointness is still hard in the quantum communication complex-
ity model, communicating the query (which may be in a superposition) that the
quantum tester requires will incur a linear overhead, rendering the reduction use-
less. Namely, to simulate a query to f in superposition, the parties need to ex-
change all n qubits at each round: Alice would apply the unitary (on n+ 1 qubits)
|z⟩ |b⟩ 7→ |z⟩ |b⊕A(z)⟩, and send the (n + 1)-qubit state to Bob, who applies
|z⟩ |b⊕A(z)⟩ 7→ |z⟩ |b⊕A(z)⊕B(z)⟩ = |z⟩ |b⊕ f(z)⟩ and returns them to Alice.
Simulating a single query then requires the communication of 2n+ 2 qubits, rather
than the 2 needed by a classical tester. Thus, the reduction can only prove a degen-
erate Ω(1) testing lower bound. This is, in fact, not surprising, since k-linearity is
testable with O(1) queries by the Bernstein-Vazirani [BFNR08] algorithm!

While the discussion above might suggest that communication complexity can
only yield trivial quantum testing lower bounds, we show this is not the case; indeed,
the absence of nontrivial (quantum) applications of the technique thus far points
to a conceptual barrier that is clarified by a coding-theoretic perspective similar
to [Gol20], which reveals that the linear overhead is not inherent to any quantum
reduction. Observe that testing k-linearity is a special case of testing a subset of a
code: namely, a k-linear function f where f(z) = w · z corresponds to the Hadamard
encoding of the string w with Hamming weight k (which maps w ∈ {0, 1}n into the
codeword C(w) = (w · z : z ∈ {0, 1}n) with blocklength n′ = 2n). Note that the
aforementioned quantum simulation strategy is efficient, in the sense that it requires
only O(log n′) qubits to communicate a representation of the length-n′ encoding; the
issue is the Hadamard code’s exponential blocklength n′ = 2n, which renders the
simulation’s efficiency moot. As we see next, however, the same reduction yields
nontrivial bounds if we choose the code appropriately.

Given a linear code C : {0, 1}n → {0, 1}n′ with n′ = poly(n), only log n′ =

O(log n) qubits are necessary to represent C(x) and C(y). More precisely, Alice can
apply the O(log n)-qubit unitary |i⟩ |b⟩ 7→ |i⟩ |b⊕ C(x)i⟩ and send all O(log n) qubits
to Bob, who applies |i⟩ |b⟩ 7→ |i⟩ |b⊕ C(y)i⟩ and returns them. This composition of
unitaries is

|i⟩ |b⟩ 7→ |i⟩ |b⊕ C(x)i ⊕ C(y)i⟩ = |i⟩ |b⊕ C(x⊕ y)i⟩ ,
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simulating a query with logarithmic, rather than linear, overhead.
Therefore, the Ω(

√
n) quantum communication lower bound for disjointness

[Raz03] implies an (n′)Ω(1) lower bound for the problem of testing a subset of C.
Indeed, we show that, for a linear code C : Fn → Fn′ (over a larger field of odd
characteristic), the property {C(z) : z ∈ {0, 1}n}, of booleanity,11 which may be of
interest in PCP constructions, has a quantum testing lower bound of Ω(

√
n/ log n)

via a reduction from disjointness (see Section 5.2.2 for details). We remark that since
this technique is used to show a separation between quantum testers and MA proofs
of proximity, we use codes that are locally testable and relaxed locally decodable, which
allow for efficient testing by a MAP. Since there exist such codes with a nearly-linear
blocklength [BGH+06, AS21], the lower bound we obtain is only slightly worse than
a square root.

QMAP lower bounds via threshold degree. We prove lower bounds for QMAPs
via the threshold degree of related functions. A function f : {0, 1}n → {0, 1} is said to
have threshold degree (at most) d if there exists a degree-d polynomial P (X1, . . . , Xn)

over R such that f(x) = 1 if P (x) > 0 and f(x) = 0 if P (x) < 0; in other words, the
threshold degree of f is the smallest degree of a polynomial that sign-represents f .

As a first step, we show that the inclusion QMA ⊆ PP [MW05] (in the
polynomial-time setting, implied by the technique known as Marriott-Watrous ampli-
fication) carries over to the property testing setting, implying QMAP ⊆ UPP.12 Next,
we show that the query complexity of a UPP algorithm that computes f is exactly the
threshold degree of f (this result is folklore, but we provide a proof for completeness).
Since a property Π induces the (partial) function fΠ such that fΠ(x) = 1 when x ∈ Π

and fΠ(x) = 0 when x is ε-far from Π, the query complexity of a UPP algorithm
that “tests” Π (i.e., computes fΠ) is a lower bound on the product pq of the proof
and query complexities of any QMAP protocol for testing Π. Finally, we show that if
Π is k-wise independent (i.e., looks perfectly random on any subset of k coordinates)
and not too large, the threshold degree of fΠ is at least k, so that pq = Ω(k) (see
Section 5.3 for details).

In particular, any code with linear dual distance and small enough rate is an
example of a hard property for QMAPs, requiring proof and query complexities that

11In fact, we show (and use to prove the separation QPT ̸⊆ MAP) a lower bound for non-booleanity;
but the symmetry of the model of communcation complexity implies the same lower bound holds
for booleanity as well.

12UPP is the query model version of the class PP of unbounded-error randomised algorithms,
where in particular the amount of randomness available to the algorithm is unbounded. Since PP
algorithms run in polynomial time, they may access at most a polynomial number of random bits;
this restriction does not hold for UPP.
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satisfy pq = Ω(n) for proximity parameter ε = Ω(1).

3.2.2 Algorithmic techniques

As a warm-up, consider the exact decision problem of verifying that an n-bit string
x has even parity. This is maximally hard for both IP algorithms and quantum
query algorithms, requiring Ω(n) queries to the bit string, and thus asymptotically
no better than trivially querying every coordinate. As we will see next, however,
QMA algorithms can capitalise on having a proof and quantum processing power to
break the linear barrier.

We rely on the technique of amplitude amplification [BHMT02] to obtain
such an algorithm with sublinear proof and query complexities. Loosely speaking,
amplitude amplification takes a (randomised) decision algorithm that always accepts
yes-inputs and rejects no-inputs with probability ρ, and produces an algorithm with
rejection probability 2/3 (for no-inputs) using the former algorithm only O(1/√ρ)
times as a subroutine.

We can thus obtain a QMA (query) algorithm for the parity problem as follows.
The proof string specifies the purported parities of each block of an equipartition of the
input x ∈ {0, 1}n into p blocks of length n/p. The verifier first checks that the proof
string has even parity, rejecting immediately otherwise. Then, the verifier performs
amplitude amplification on the following subroutine: sample i ∈ [p] uniformly at
random, read the entire block of n/p bits and check that its parity coincides with
that claimed by the proof; if so, accept, and reject otherwise.

Note that the aforementioned subroutine always accepts if x has even parity
and the proof corresponds to the parity of every block. On the other hand, if a string
has odd parity and the proof has even parity, at least one bit of the proof disagrees
with the corresponding block, so that the subroutine rejects with probability at least
1/p. Since we need only repeat O(√p) times, each of which queries n/p bits, the
query complexity of our algorithm is q = O(n/

√
p); in particular, if p = n2/3 then

q = O(n2/3).
This is a special case of a more general phenomenon, which holds for all

decomposable properties (see Section 5.5.3 for a discussion of how exact decision
follows as a special case). Since amplitude amplification can only be applied to
one-sided algorithms (i.e., those that always accept a valid input), we restrict our
attention to this type of algorithm hereafter.

Decomposable properties. A property Π is (k, s)-decomposable if a “specification”
of length s efficiently reduces testing Π to testing k smaller properties Λ(1), . . . ,Λ(k).
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More precisely, Π is (k, s)-decomposable if,

1. there exists some s-bit string that specifies a set of k properties Λ(i) as well as
k strings x(i) ∈ {0, 1}mi whose bits are determined by a small number of bits
of x; and

2. ε-testing x ∈ {0, 1}n with respect to Π reduces to testing x(i) with respect to
Λ(i) in the following sense: when x ∈ Π then x(i) ∈ Λ(i) for all i ∈ [k], whereas
when x is ε-far from Π, then x(i) is εi-far from Λ(i) for some εi satisfying
Ei[εi] = Ω(ε), where the expectation over i means that i is sampled with
probability proportional to mi.

If the specification is short (i.e., s = O(k log n)), we say Π is succinctly k-decomposable
(see Section 5.5 for details). Decomposable properties generalise the notion of
parametrised k-concatenation properties introduced in [GR18], which corresponds to
the special case of a (k, 0)-decomposition that is an equipartition of the input string.

Our simplest example of a decomposable problem is that of testing the set of
k-monotone functions f : [n]→ {0, 1}, i.e., functions that change from non-decreasing
to non-increasing and vice-versa at most k − 1 times. A natural decomposition of
this property is to specify the set of at most k − 1 “critical points”, which induce a
set of at most k subfunctions fi that are monotone and overlap with fi−1 and fi+1

at their endpoints; then, it suffices to test for (1-)monotonicity of each subfunction.
More precisely, this property is (k, (k − 1) log n)-decomposable (thus succinctly k-
decomposable), and given the (alleged) critical points n1 < n2 < · · · < nk−1, the
subproperty Λ(i) for odd (resp. even) i is the set of non-decreasing (resp. non-
increasing) functions on [mi], where mi = ni − ni−1 + 1 (with n0 = 1 and nk = n).
Note, moreover, that if f is ε-far from k-monotone, then its absolute distance from
all functions specified by the critical points is at least εn; thus, denoting by εi the
distance of fi to Λ(i), we have

∑
i εimi ≥ εn, implying Ei[εi] = Ω(ε). We remark

that decomposing other properties (e.g., branching programs, context-free languages,
and Eulerian graph orientations) is much less straightforward and often allows for
breaking the property into any desired number of sub-properties, which in turn admits
proof length versus query complexity tradeoffs. See Section 5.5 for details.

Given a (k, s)-decomposable property that admits MAPs for the subproperties
Λ(i), a natural protocol for Π is to sample i ∈ [k] uniformly at random and execute
the verifier for Λ(i). Note that, if these MAPs have proof complexity p and query
complexity q, the protocol for Π has proof length s+ kp. Moreover, Ei[εi] = Ω(ε)

means that a randomly chosen i ∈ [k] is (in expectation) at distance roughly ε from
Λ(i), so it is reasonable to expect that O(1/ε) classical repetitions of the base protocol
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would ensure a rejection with high probability, and that a QMAP protocol can make
do with only O(1/

√
ε) repetitions using amplitude amplification.

The above outline glosses over the fact that we have no information on the
distribution of errors (ε1, . . . , εk). For example, it may be that most εi are of the
same order of magnitude (in which case a random i ∈ [k] is likely to point to a
mildly corrupted x(i)), or it may be that a few εi are very large while all other εi
are small or even zero (in which case x(i) is unlikely to be corrupted for a random
i ∈ [k], but when it is, the amount of corruption is large). Fortunately, this issue
can be addressed by the technique of precision sampling [Lev87], incurring a merely
logarithmic overhead. We thus obtain a QMAP protocol for ε-testing Π with proof
complexity s + kp and query complexity comparable to q (and often smaller; see
Theorem 5.14 for details).

Bipartiteness testing. Consider the problem of testing whether a bounded-degree
graph G (given as an oracle to its adjacency list) is bipartite or far from any bipartite
graph. (Note that this is not a decomposable property.) There exists a MAP protocol
for a promise variant of this problem, where graphs are rapidly-mixing [GR18]. We
will show that it is possible to combine quantum speedups obtained by amplitude
amplification and by replacing a classical subroutine with a more efficient quantum
analogue.

Let us first consider the (classical) MAP verifier for bipartiteness, which
receives a subset of vertices S of size k, allegedly on the same side of a bipartition,
as a proof. To test with respect to proximity parameter ε, the verifier repeats the
following procedure: sample a uniformly random vertex v, take roughly n/(kε) short
(lazy) random walks starting from v, recording whether the walk ended at a vertex in
S as well as the parity of the walk (i.e., the parity of the number of non-lazy steps).
If two walks start from the same vertex v and end in S with different parities, then
reject; otherwise, accept. Setting m := n/k, the query complexity of (one iteration
of) the verifier is m/ε (ignoring constants and polylogarithmic factors).

If the graph is bipartite and the proof S is indeed on the same side of a
bipartition, there cannot exist two paths from the same vertex into S with different
parities (as that would imply a path of odd length with both endpoints on the same
side). Therefore, the verifier always accepts in this case. If the graph is ε-far from
bipartite, however, each iteration finds evidence to this effect with probability Ω(ε).
Thus, the classical verifier samples a new vertex roughly 1/ε times, for a total query
complexity of m/ε2.

Now, one immediate way to improve this algorithm is to perform amplitude
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amplification: the resulting algorithm repeats the procedure 1/
√
ε times, improving

the query complexity to m/ε3/2. A second (and less straightforward) strategy is
to use the quantum collision-finding algorithm [Amb07] to reduce the number of
random walks taken from each vertex to (m/ε)2/3, as in [ACL11].13 This strategy
reduces the required number of queries to m2/3/ε5/3, improving the dependency on
m but achieving a worse one on ε.

Of course, this begs the question: why not apply both optimisations? In-
deed, we show how to tweak the classical MAP verifier in order to do so, and thus
simultaneously obtain the speedups from each of them.14

More precisely, sample a uniformly random vertex v and let gv denote the
mapping r 7→ (a, b) ∈ {0, 1}2 obtained by executing a random walk starting from v

with r as its inner randomness, where a = 1 if the walk stops at a vertex in S and b is
the parity of the walk. The collision-finding algorithm is capable of finding a pair r0, r1
such that gv(ri) = (1, i) for i ∈ {0, 1}, if such a pair exists. The query complexity of
the collision-finding algorithm is the domain size to a 2/3 power, and, since we take
m/ε walks from v, the number of queries is (m/ε)2/3. Although such a collision is not
guaranteed to exist for all starting vertices v, it is for a fraction of roughly ε of them.
By applying amplitude amplification to the procedure described in this paragraph,
we obtain a QMAP protocol for bipartiteness with proof length O(k log n) and query
complexity Õ((m/ε)2/3 · 1/

√
ε) = Õ((n/k)2/3/ε5/6) (see Theorem 5.18 for details).

3.3 Streaming zero-knowledge proofs

For concreteness, we focus on the construction of zero-knowledge SIPs for one of the
most fundamental problems in the data stream model: index.

We begin with a bird’s eye view of our ideas and the challenges that arise in
their implementation. The starting point of our efforts is Section 3.3.1, where we
describe the polynomial evaluation protocol (pep), from which a (non zero-knowledge)
SIP for the index problem follows. An attempt to make this protocol zero-knowledge
faces two fundamental challenges, which we address in Sections 3.3.2 and 3.3.3 via
the construction of two types of streaming commitment protocols.

13Here and throughout, we use the term collision-finding to refer to Ambainis’s algorithm that, for
any f with 1-certificate complexity at most 2, uses Θ(n2/3) queries and with constant probability
outputs a 1-certificate when run on any input x ∈ f−1(1).

14Amplitude amplification requires that the algorithm be invertible, i.e., be given by a unitary A,
as the technique repeatedly applies A and A−1. For this reason, it is often said to apply to quantum
algorithms without intermediate measurements (as these make an algorithm non-invertible), which
is not the case for collision-finding. However, the (standard) principle of deferred measurement (see,
e.g., [NC16]) allows us to transform any quantum algorithm A into a reversible A′ with the same
query complexity, and apply amplitude amplification to the latter.
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In Section 3.3.4, we apply the foregoing protocols to obtain a streaming
interactive proof for index and briefly discuss the proof of its zero-knowledge property,
which requires an involved simulator argument. Finally, Section 3.3.5 sketches another
application of this framework that obtains an additional powerful and flexible tool: a
zero-knowledge streaming sumcheck protocol.

3.3.1 A starting point: the polynomial evaluation protocol

Recall that in the index problem, a streaming algorithm with s bits of memory
reads a length-n string x over an alphabet Γ (one symbol at a time), followed by a
coordinate j ∈ [n], and its goal is to output xj ∈ Γ. It is well-known that index is
maximally hard for streaming algorithms, requiring s = Ω(n) space for the output to
be correct with nontrivial probability.

First, note that obtaining an efficient SIP for index is non-trivial even without
zero-knowledge. Indeed, the naive approach of having the prover P reveal the index j
before V streams x, allowing the verifier to only store xj , fails: both parties observe
the same stream of information (recall Section 1.3), so P only learns j long after V
has seen xj . Any communication in an SIP before the input stream must therefore
be independent of it.

Remarkably, an exponential reduction in space complexity is possible despite
both prover and verifier not knowing the index j before it appears in the stream. We
recall the SIP in [CCM+15, CCM+19], upon which we build, and argue why it is not
zero-knowledge to begin with. Their SIP is an application of pep, the polynomial
evaluation protocol (Protocol 6.1), which enables a small-space algorithm to recover
any element that was streamed but not stored, using only a small fingerprint of the
stream.

We embed the input stream into an object with algebraic structure in a space
of size much larger than n, namely, by viewing xi ∈ F, for a large enough finite field
F, and considering an m-variate low-degree polynomial x̂ that interpolates across
all xi (recall Section 2.5); we call the polynomial x̂ : Fm → F of individual degree
d = d(m,n) the low-degree extension (LDE) of x. (Usual parameter settings satsify
d,m ≤ log n and |F| = polylog n.)

The protocol proceeds as follows. The verifier samples a random evaluation
point ρ ∼ Fm and computes the fingerprint x̂(ρ), which can be evaluated in low
space via standard online Lagrange interpolation. After V learns j, it enlists P in the
recovery of xj : it sends P a line L : F→ Fm incident to j (viewing this index as an
element of Fm) and ρ, where L(0) = j and L(ρ) = ρ for a random ρ ∼ F, whereupon
P replies with the (low-degree) univariate polynomial x̂|L = x̂ ◦ L.
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If P is honest, then V can easily recover xj = x̂(j) = x̂|L(0). However, P
could easily cheat if V made no further checks: the prover could just as well pick
α ∈ F arbitrarily and send any low-degree polynomial g such that g(0) = α to
(falsely) convince V that xj = α. By having V only accept the prover’s claim that
xj = g(0) if g also agrees with the fingerprint, i.e., if g(ρ) = x̂|L(ρ) = x̂(ρ), the verifier
thwarts this (and any other) attack: since both ρ and ρ are unknown to the prover,
to convince the verifier of an incorrect answer g(0) ̸= x̂|L(0), the prover must send a
polynomial g ̸= x̂|L that agrees with x̂|L at a random point; and if F is sufficiently
large, the probability of this event (ρ being a root of the nonzero polynomial g− x̂|L)
is arbitrarily small.

(a) V streams x (in blue), learns x̂(ρ) =
x̂|L(ρ) and sends L. The prover replies with
x̂|L, revealing xj and x̂(ρ) (in green) along
with evaluations of x̂ that V cannot learn on
its own (in red).

(b) A first attempt at preventing leakage:
sending the evaluation table of x̂|L in “locked
boxes” and only unlocking the points checked
by the verifier.

Figure 3.4: Leakage in the SIP for index via evaluation of the bivariate polynomial
x̂ : F2 → F, and an (unsuccessful) attempt to prevent it.

The protocol outlined above is, however, not zero-knowledge: after all, V learns
not only xj , but the restriction of x̂ to an entire line L through j (see Figure 3.4a).
Note that learning the restriction of x̂ to (say) a random line R does not necessarily
constitute leakage: V could simply compute a few evaluations (rather than only one)
of x̂|R, which fully determine the polynomial. The issue is that L is a function of the
coordinate j, which V does not know prior to streaming x.

In the next section we will take our first steps towards making the protocol
zero-knowledge, i.e., ensuring that the verifier learns nothing beyond the value xj .
Note that the honest V only evaluates x̂|L at two points, ρ and 0; what if P could
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send the evaluations of x̂|L in “locked boxes” and only open the pair that the verifier
needs?

3.3.2 Curtailing leakage with commitments

To make the foregoing approach more precise, let us first assume the existence of
a commitment protocol that allows P to transmit any field element α to V in two
steps: sending a string commit(α), from which V is unable to extract any information
about α; and later, upon the verifier’s request, revealing a field element β such that,
if β ̸= α, then V can detect that the P is being dishonest.

With such a commitment protocol in hand, a natural attempt to prevent the
pep protocol from leaking information is to have the prover P send a commitment
to x̂|L, the restriction of the input’s LDE to the line chosen by V (rather than
sending the polynomial in the clear). That is, the prover would commit to the
evaluation table of x̂|L, sending

(
commit(x̂|L(ρ′)) : ρ′ ∈ F

)
, after which V can reveal

its random evaluation point ρ and P decommits only to the evaluations of 0 and
ρ (see Figure 3.4b). This does indeed reveal less information (2 rather than |F|
evaluations of x̂), but is still far from what we set out for.

There are two severe shortcomings with this idea; we shall tackle one now and
defer the other to Section 3.3.3. First we need to ask: what is to prevent a cheating
prover from committing to a function g that is inconsistent with x̂|L? Indeed, since
V is (by design) unable to learn the field elements that were committed to, it cannot
detect whether the function is a low-degree polynomial; then a cheating prover may
commit to any α ̸= xj = x̂|L(0) as the claimed evaluation at 0, while committing
to the correct evaluations elsewhere. The resulting function is not a low-degree
polynomial anymore, but V is oblivious to this fact.

Therefore, we require a scheme that allows not only to commit to a function,
but to also ensure it is a low-degree polynomial. We solve this problem by constructing
an algebraic commitment protocol, whereby P commits to a set of field elements
and can decommit to any linear combination of them. Then P may commit to
d+ 1 points – which uniquely determine a degree-d polynomial g – and V requests a
decommitment to the linear combination that coincides with g(ρ) (see Figure 3.5).
We next present the basic commitment protocol, and then extend it to be algebraic.

The basic protocol. Recall that our goal is to construct a commitment protocol
between asymmetric parties, allowing a computationally unbounded P to send and
later reveal a message α ∈ F to a low-space verifier V . We focus on the first step,
where P sends a hidden message, and deal with how to reveal it later. A natural
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(a) Commitments to an interpolating set of
x̂|L.

(b) Decommiting to a point outside the in-
terpolating set.

Figure 3.5: Preventing leakage by committing to x̂|L as an interpolating set for the
polynomial. To decommit to an evaluation outside the set, the scheme must be
algebraic.

attempt is to play the prover’s strength against the verifier’s weakness: we know,
from the hardness of index, that the space limitation of V prevents it from recalling
an item from a long stream whose position is only revealed later; we can thus have P
send a long stream y with the message hidden at a coordinate k that is revealed at
the end.

While the idea seems intuitively sound, there are nontrivial issues to address.
For example, the string-coordinate pair (y, k) should not have any structure from
which V could extract information, which we can ensure by sampling both uniformly
at random; but to prove security for this strategy, index must be hard to solve
on average. Luckily, reductions from one-way communication complexity enable us
to prove this fact: one-way protocols where Alice receives x ∼ {0, 1}n and sends
an s-bit message to Bob, who receives j ∼ [n] and attempts to output xj , succeed
with probability at most 1

2 +O(
√
s/n) [RY20]. We show that the bound extends to

larger alphabets, carrying over to space-s streaming algorithms (see Proposition 6.1
and Lemma 6.2).

In short, we have P encode its message α ∈ F as the solution to a random
index instance, exploiting the problem’s average-case hardness to ensure that V is
unable to extract α; more precisely, P sends a uniformly random string-coordinate
pair (y, k) and then the “correction” γ = α − yk.15 Of course, the discussion thus

15We remark that while replacing yik with α (rather than sending a random element and a
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far only shows how P can commit; but we also need a decommitment protocol
whereby V can check that P is being honest when it reveals β (which may or may
not coincide with the message α). Fortunately, we already have a tool V can use to
solve index with an untrusted prover’s assistance! The decommitment thus consists
of an execution of pep by P and V with respect to the instance (y, k): this allows V
to learn yk and check that γ + yk = β, i.e., that the correction γ sent earlier matches
the (alleged) message.

Recall that we are building technical tools towards a zkSIP for index, so we
ultimately exploit the hardness of a problem to solve an instance of the same problem.
Should we not expect, then, that the same leakage issues should arise with respect
to the “virtual” instance (y, k) as they did with the “real” instance (x, j)? While
this may appear to be circular reasoning, we stress that revealing evaluations of ŷ
leaks no information whatsoever about the input; indeed, (y, k) is a uniform random
variable that is independent of (x, j). Put differently, V only obtains information
about uniformly random strings that are completely uncorrelated with the input. See
Section 6.2.2 for details.

Making the scheme algebraic. We now extend the foregoing idea into an algebraic
protocol, which allows P to commit to a tuple of field elements α = (α1, . . . ,αℓ)

and decommit to a linear combination α · β. (Committing to a polynomial and
decommitting to an evaluation follows as a special case; see Section 6.2.1.) Note that
such an extension seems to follow if linear combinations “commute” with commitments;
that is, by showing that linear combinations of a fingerprint (as defined in Section 3.3.1)
match a fingerprint of the linear combinations, we should be able to use essentially
the same strategy of the basic scheme: committing with a random index instance
and decommitting with pep. Details follow.

Consider a trivial extension of the scheme that allows P to transmit a pair
of messages α, α′ ∈ F: sending two independent commitments (y, k, α − yk) and
(y′, k′, α′ − y′k′). The key observation is that, if V saves two fingerprints at the same
evaluation point ρ, then linear combinations and low-degree extensions do commute:
for any β, β′ ∈ F, defining z := βy + β′y′, we have ẑ(ρ) = βŷ(ρ) + β′ŷ′(ρ); in short,
low-degree extending is a linear operation.

A problem still remains, however: since k ≠ k′ with overwhelming probability,
an execution of the pep protocol enables V to learn zk = βyk+β

′y′k; but the correction
for y′ refers to another coordinate k′ ≠ k (with overwhelming probability). We address

correction later) looks simpler, then (y, k) ceases to be a random index instance, and it is not clear
how to show a reduction from index.
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this issue by hiding both messages at the same index, i.e., setting k′ = k and only
revealing the coordinate after both y and y′ are sent; see Section 6.2.3 for details.

3.3.3 From honest to malicious verifiers: temporal commitments

Recall that a source of leakage in the index protocol of Section 3.3.1 is the prover
P sending the restriction of x̂ (the LDE of the input) to a line L in the clear. In
the previous section, we constructed a prover-to-verifier scheme that enables P to
commit to a low-degree polynomial and decommit to a single evaluation of it. We
may then use it to modify the original protocol, having P instead commit to x̂|L and
decommit to the points inspected by V .

While this modification amounts to significant progress – indeed, it achieves
an honest-verifier SIP for index– there is a second major challenge to address. The
issue is that if a verifier Ṽ cheats, it can use the protocol to extract information that
it could not have learned on its own, as we will see next. The goal of this section is
to describe a strategy that prevents leakage of information without requiring that Ṽ
behave honestly; in other words, we would like to make the protocol malicious-verifier
zero-knowledge.

Concretely, consider the (cheating) verifier Ṽ that ignores the input string x,
reads j and requests the line through j and j+1 from the prover. P then commits to
the restriction of x̂ to this line and decommits to the evaluation of the LDE at both
j and j + 1. This reveals xj and xj+1 to Ṽ , which shows clearly that the modified
protocol still leaks: xj is the only information the verifier should learn that it could
not have computed on its own, but the protocol also reveals xj+1 (which is just as
hard to compute as the jth coordinate).

An idealised scenario: V -to-P commitments. Let us assume, for the moment,
that there also exists a commitment protocol in the reverse direction, allowing V to
commit and later reveal a message to P . We will show how, in this idealised setting,
we can prevent information leakage altogether. Note that the difficulty posed by a
malicious verifier Ṽ is the usage of an allegedly random evaluation point ρ that is, in
reality, a function of the input.

If Ṽ proves that ρ is indeed random, however, we may conclude that Ṽ could
have computed x̂(ρ) alone – and thus that no leakage occurs. The idealised scheme
allows Ṽ to do (almost) that, by having it commit to ρ before reading the input
stream and decommit to it at a later step (after the prover’s commitment). While
this does not ensure ρ is random, the fact that Ṽ cannot decommit to anything other
than ρ constrains its evaluation point to be chosen before the input stream, so that it
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cannot be a function of the input.
Of course, it is not at all clear that such a commitment protocol, allowing

a weak computational party to commit to a computationally unbounded one, even
exists; after all, the commitment step generally exploits their very difference to hide
the message, as we did in the previous section. Is this just wishful thinking?

The solution: a temporal commitment. We will now see that, perhaps surpris-
ingly, we can once again exploit the space limitation of Ṽ to accomplish this goal.
What we obtain in fact falls short of a full-fledged commitment protocol: roughly
speaking, the temporal commitment will enable a space-s verifier Ṽ to reveal not one,
but s messages. But this collection is still determined before the input, so that it
remains fit for purpose (incurring a small overhead in the simulator algorithm that
we discuss in the following section).

As discussed above, we cannot expect Ṽ to be able to send a hidden message to
P : however Ṽ may try to hide it, P can simply store the entirety of the communication
and extract the message itself. Since sending is out of the picture, could Ṽ instead
commit by receiving a message? Note that, while somewhat counter-intuitive, this
would allow Ṽ to play what is essentially its only strength, its private randomness,
against P . Recall, moreover, that there is a temporal aspect to the positions of a
long stream z that Ṽ can remember: if it remembers zi, this can be seen as evidence
that i was determined no later than when z was seen.

Let us now make the idea more precise, and construct our verifier-to-prover
temporal commitment protocol. The main idea is to impose some cost onto the ability
of Ṽ to “unlock” the decommitment from P , without overly constraining the honest
verifier V . Note that after P sends the commitment to a low-degree polynomial,
having V reveal the point ρ = L(ρ) at which it computed x̂ is not a problem (as
opposed to revealing ρ before P sends the polynomial, which allows the prover to
cheat easily). Therefore, we will have Ṽ reveal its alleged evaluation point ρ along
with a certificate c(ρ) that shows Ṽ selected the point before seeing the input stream.
P will only proceed with the protocol if the certificate is valid; if not, it aborts to
prevent Ṽ from learning information beyond its reach.

Given that the verifier’s scarce resource is space, we design this certificate to
require a number of bits that is not too large and yet not negligible; then the honest
V should have no trouble, as it only needs to remember one piece of information,
whereas the malicious Ṽ described before would need to store a certificate for the
evaluation point j + 1, which it does not know before reading x.

We thus prepend our index protocol with a step where P sends Ṽ a long
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string z containing all possible evaluation points (i.e., the entire domain) of the
low-degree extension x̂.16 Now, if Ṽ wants the prover, in the future, to decommit to
a polynomial evaluation at the point ρ, it must offer evidence that ρ is uncorrelated
with the input stream: Ṽ does so by revealing ρ along with the coordinate i that
contains ρ in z; i.e., the certificate for ρ is c(ρ) = i, the coordinate satisfying zi = ρ.

The temporal commitment indeed achieves what we set out for: regardless of what
Ṽ does, as long as its space is bounded we are able to extract the points it may ask P
for in advance of its streaming of x (see Section 6.2.4). Note that the commitment is
non-interactive (consisting of a single message from P to V ) and need not be rerun if
the verifier streams multiple inputs; we shall use it as the setup stage of our protocol.
Its analysis is subtle and involved: it begins with a study of a variant of index in
the one-way communication model that we call reconstruct, where, upon receipt
of a message from Alice, Bob outputs a guess for every coordinate of the input string
rather than for only one. Using tools from information theory, we obtain an upper
bound on the expected number of correct coordinates, which we call the protocol’s
score.

Next, we use the expected score bound of reconstruct to prove a related
upper bound for a problem we call pair: a variant of index where Bob, rather than
receiving the coordinate to be recovered as part of the input, is free to choose it. The
implication is that any protocol for pair has a small number C of indices such that
the output of the protocol is outside C and yet correct (i.e., a pair (i, zi) with i /∈ C)
with arbitrarily small probability. This will underpin the simulator argument that
ultimately shows our protocol is zero-knowledge, which we sketch in the next section.

3.3.4 A sketch of the zero-knowledge index protocol

We now have all of the components necessary to sketch a zero-knowledge streaming
interactive proof for index. Recall that we constructed a prover-to-verifier algebraic
commitment protocol in Section 3.3.2 and a verifier-to-prover temporal commitment
in Section 3.3.3. We will now compose them in the appropriate order, using the
temporal commitment to constrain V to choose its inner randomness before reading
the input stream; and the algebraic commitment to ensure P only reveals what the
verifier needs. The protocol follows.

16In fact, any given point has a small probability of being absent from the string. We ignore this
issue in the technical overview.
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Parameters. Without loss of generality, we consider the alphabet over which the
input string is defined to be a field of size |F| = q; that is, x ∈ Fn. We also fix
two additional parameters, d and m, which characterise the low-degree extension
x̂ : Fm → F as an m-variate polynomial of individual degree d. We assume all
parameters are known to P and V in advance.

Setup: verifier-to-prover temporal commitment. P sends V a permutation of
Fm as a string z (of length v = qm). Before receiving the string, V samples ρ ∼ Fm

and then streams z. When it sees ρ at the ℓth coordinate of z, the verifier stores ℓ.

Step 1: input streaming. V streams the input string x and records the fingerprint
x̂(ρ) as well as the target index j.

Step 2: prover-to-verifier algebraic commitment. V samples ρ ∼ F and sends
P the line L : F→ Fm through j and ρ (satisfying L(0) = j and L(ρ) = ρ).

P sends xj = x̂|L(0) (in the clear) and an algebraic commitment (y,γ, k) to
the remainder of an interpolating set of the degree-dm polynomial x̂|L : F→ F, i.e.,
to the field elements x̂|L(i) for all i ∈ [dm]. The commitment consists of a random
matrix y ∼ Fdm×p with dm rows and a large enough number p of columns; a random
(column) coordinate k ∼ [p]; and the correction tuple γ satisfying γi = x̂|L(i)− yik.

V computes the fingerprint y(σ,β) =
∑

i βiŷi(σ) after sampling (another)
evaluation point σ and setting β as the tuple that satisfies

∑
i βix̂|L(i) = x̂(ρ);17 it

also computes γ =
∑

i βiγi and stores k.

Step 3: temporal decommitment. V reveals its fingerprint’s evaluation point ρ

along with the index ℓ where it appeared in z. The prover checks that zℓ = ρ, and
only continues to the final step if the check passes.

Step 4: algebraic decommitment. P and V engage in the decommitment of
the kth coordinate of the string y′ = β · y (the linear combination of the rows yi with
coefficients βi).18 V outputs the (alleged) xj if the decommitment is consistent with
x̂(ρ), and rejects otherwise.

17Note that βi is determined solely by i and ρ: it is the evaluation χi(ρ) of the ith Lagrange
polynomial.

18This requires P to know the linear coefficients β, and, while we could have the verifier send
them, this is not necessary: P learns ρ in step 3, which allows it to determine ρ = L−1(ρ) and thus
β = β(ρ) as well.
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In an honest execution of the above protocol, the final decommitment reveals

y′k =
∑
i

βiyik

=
∑
i

βi

(
x̂|L(i)− γi

)
= x̂(ρ)− γ,

so that V , having stored x̂(ρ) and γ, can indeed perform this consistency check
(which shows the protocol is complete). The protocol’s soundness follows from that
of pep, noting that none of the mechanisms we add harm soundness (indeed, the
last check relies, as does pep, on a random evaluation of the low-degree extension),
while zero-knowledge, which we discuss next, follows from the correctness of our
commitment protocols.

Proving the zero knowledge property. We conclude with a discussion of the
simulator argument for the protocol laid out in this section. Recall that proving
zero-knowledge for the foregoing protocol entails the construction of a simulator S, a
streaming algorithm with knowledge of xj and roughly the same memory as Ṽ , which
is able to interact with Ṽ without it being able to tell whether it is communicating
with S or P .

Roughly speaking, S is does the following: after the temporal commitment
step, it inspects the memory state of Ṽ and records (almost) all the points to which
Ṽ can decommit; as shown in the last section, this is a relatively small set C. It then
streams the input and records x̂(ρ) for all ρ ∈ C.19 Upon receipt of a line L from Ṽ ,
the simulator computes and commits to an arbitrary low-degree polynomial g that
interpolates across the points in L∩C. When Ṽ requests the algebraic decommitment
to obtain an evaluation of g, the simulator checks that the evaluation point ρ is
contained in C (in which case g(ρ) matches a fingerprint x̂(ρ) known to S), proceeds
with the decommitment if that is the case, and otherwise aborts.

We note that implementing the strategy above raises yet another challenge,
namely, extracting the set C of evaluation points from the description and memory
state of Ṽ . This is accomplished via a form of white-box access to Ṽ , see Section 6.1.

The simulator S is thus able to generate the transcript of an interaction where
the message x̂|L of the algebraic commitment is replaced with another low-degree
polynomial g whose evaluations match x̂|L at all points where Ṽ is able to temporally

19We note that storing C is the most space-intensive task of S, which implies a small overhead to
its space complexity as compared to Ṽ ; see Theorem 6.8.
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decommit. Then, distinguishing between a real and a simulated transcript amounts to
distinguishing an index instance whose solution is x̂|L from one whose solution is g.

We prove that any streaming algorithm that does so with nontrivial bias implies
a one-way communication protocol for index with a small message, contradicting the
known hardness of the problem. We remark that the reduction is rather nontrivial,
as we must insert an index instance into the algebraic commitment (y,γ, k) while
ensuring the decommitment can be simulated without any knowledge about the
instance. See Theorem 6.8 for details.

Remark 3.1 (Superpolynomial to near-linear communication). We stress that, while
we may prove zero-knowledge with the strategy above, the natural reduction from
index is over a large alphabet Γ = Fdm. But then, for indistinguishability to follow,
the length p of the temporal commitment must be qdm, which implies superpolynomial
communication complexity.

We avoid this blowup via Lemma 6.2, which shows that an index (one-way)
protocol for large alphabets implies another protocol for the binary alphabet with
only a mild loss to its success probability; this restricts our ambient field to be an
extension of F2, but reduces the superpolynomial complexity to barely superlinear.

3.3.5 A general-purpose zero-knowledge SIP: sumcheck

Lastly, we briefly mention how the commitment protocols developed in Sections 3.3.2
and 3.3.3 can be used not only to solve index (and, more generally, the polynomial
evaluation problem), but also to construct another widely applicable tool: a streaming
zero-knowledge sumcheck protocol.

As before, we start with an SIP that is clearly not zero-knowledge: the
standard sumcheck protocol leaks hard-to-compute sums over subcubes. By carefully
using the algebraic and temporal commitment protocols, we can also endow the
sumcheck protocol with zero-knowledge in the data stream model. However, we note
that doing so is considerably more involved than in the case of index, owing to,
among other reasons, several rounds of interaction with nontrivial dependencies of
messages on past communication.

More precisely, we consider a slight variation of the standard sumcheck
protocol: while in the latter every round is followed by a (random) consistency check,
we instead defer all such checks to the end. It is clear that this variant is equivalent
to the standard protocol; however, without the modification, the zero-knowledge
property seems to require a strengthening of the chained commit-decommit strategy
we follow. Moreover, rather than a single algebraic commitment followed by a (single)
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decommitment, the sumcheck protocol requires many decommitments; indeed, for an
m-variate polynomial f , the prover commits to m partial sums of f , and each partial
sum is involved in two decommitments (for a total of m+ 1 decommitments).

Therefore, by extending the techniques that underpin our approach for the
index problem to a multi-round setting, we are able to construct a zero-knowledge
sumcheck SIP. Such a protocol can then be used to compute frequency moments and
inner products, problems known to require linear space without a prover’s assistance
[AMS99]. See Section 6.4 for details.
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Chapter 4

A structural theorem for local
algorithms

Overview

We prove a general structural theorem for a wide family of local algorithms,
which includes property testers, local decoders, and PCPs of proximity. Namely,
we show that the structure of every algorithm that makes q adaptive queries
and satisfies a natural robustness condition admits a sample-based algorithm
with n1−1/O(q2 log2 q) sample complexity, following the definition of Goldreich
and Ron (TOCT 2016). We prove that this transformation is nearly optimal.
Our theorem also admits a scheme for constructing privacy-preserving local
algorithms.

Using the unified view that our structural theorem provides, we obtain results
regarding various types of local algorithms, including the following.

• We strengthen the state-of-the-art lower bound for relaxed locally decod-
able codes, obtaining an exponential improvement on the dependency
in query complexity; this resolves an open problem raised by Gur and
Lachish (SICOMP 2021).

• We show that any (constant-query) testable property admits a sample-
based tester with sublinear sample complexity; this resolves a problem left
open in a work of Fischer, Lachish, and Vasudev (FOCS 2015), bypassing
an exponential blowup caused by previous techniques in the case of
adaptive testers.

• We prove that the known separation between proofs of proximity and
testers is essentially maximal; this resolves a problem left open by Gur
and Rothblum (ECCC 2013, Computational Complexity 2018) regarding
sublinear-time delegation of computation.

Our techniques strongly rely on relaxed sunflower lemmas and the Hajnal-
Szemerédi theorem.
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Organisation

This chapter is organised as follows. In Section 4.1, we briefly discuss preliminaries
for the technical sections (besides those in Chapter 2). In Section 4.2, we present our
definition of robust local algorithms and show how to cast various types of algorithms
in this framework. In Section 4.3, we provide an arsenal of technical tools, including
relaxed sunflower lemmas and a sampling lemma that builds on the Hajnal–Szemerédi
theorem. In Section 4.4, we use the foregoing tools to prove Theorem 1. Finally, in
Section 4.5, we derive our applications to coding theory, property testing, and proofs
of proximity.

4.1 Preliminaries

The description of adaptive algorithms in terms of decision trees provided in Sec-
tion 2.3.1 is complete; however, we choose to use an alternative that is amenable
to daisy lemmas (see Section 4.3.1). This is obtained by describing each decision
tree with the collection of its branches. From {(Ts, s) : s ∈ {0, 1}r} we construct
{(Sst, ast, bst, s, t) : s ∈ {0, 1}r, t ∈ [|Γ|q]}, where t identifies which branch the tuple
is obtained from. Sst is the q-set queried by the tth branch of Ts, while ast is the
assignment to Sst defined by the edges of this branch and bst ∈ {0, 1} is the output at
its leaf. We remark that the decision trees may be reconstructed from their branches,
so that this is description is indeed equivalent (though we will not need this fact).

Nonstandard notation. We shall use the following notation to study local algo-
rithms (in Chapter 4). An assignment to a set S (over alphabet Γ) is a function
a : S → Γ, which may be equivalently seen as a vector in Γ|S| whose coordinates
correspond to elements of S in increasing order. Its restriction to P ⊆ S is denoted
a|P . If x is an assignment to S and κ is an assignment to P ⊆ S, the partially replaced
assignment xκ ∈ Γn is that which coincides with κ in P and with x in S \ P (i.e.,
xκ|P = κ and xκ|S\P = xS\P ).

We now define the distribution of an algorithm, as well as its distribution
under a fixed input.

Definition 4.1 (Induced distribution). Let M be a q-local algorithm with randomness
complexity r described by the collection of decision trees {Ts : s ∈ {0, 1}r}. The
distribution µ̃M of M is given by sampling s ∈ {0, 1}r uniformly at random and
taking Ts.

Fix an arbitrary input x to M and, for all s ∈ {0, 1}r, let (Sst, x|Sst
, bst, s, t)

be the unique tuple defined by the branch of Ts followed on input x. We may thus
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discard t and the tuple (Ss, x|Ss
, bs, s) is well defined. The distribution µMx is given

by sampling s ∈ {0, 1}r uniformly at random and taking the set Ss (the first element
of the tuple (Ss, x|Ss

, bs, s)).

We note that the contents of the tuple (Ss, x|Ss
, bs, s) describe exactly how

M will behave on input x and random string s.

4.2 Robust local algorithms

We now formally introduce robust local algorithms, which capture a wide class of
sublinear algorithms, ranging from property testing to locally decodable codes. Our
main result (Theorem 1) holds for any robust local algorithm, and indeed, we obtain
our results for coding theory, testing, and proofs of proximity as direct corollaries.

While local algorithms are very well studied, their definition is typically
context-dependent, where they are required to perform different tasks (e.g., test, self-
correct, decode, perform a local computation) under different promises (e.g., proximity
to encoded inputs, being either “close” to or “far” from sets). However, structured
promises on the input are (with the exception of degenerate cases) necessary for
algorithms that only make a sublinear number of queries. This feature leads naturally
to the notion of robustness, which, loosely speaking, a local algorithm satisfies if its
output is stable under small perturbations.

In the next subsection, we provide a precise definition of robust local algorithms.
Then, in the subsequent subsections, we show how this notion captures property
testing, locally testable codes, locally decodable and correctable codes, PCPs of
proximity, and other local algorithms.

4.2.1 Definition

We begin by defining local algorithms, which are probabilistic algorithms that receive
query access to an input x and explicit parameter z and are required to compute a
partial function f(z, x) (which represents a promise problem) by only making a small
number of queries to the input x.

Definition 4.2 (Local algorithms). Let Γ be a finite alphabet, Z a finite set and
{Pz : z ∈ Z} a family of sets Pz ⊆ Γn indexed by Z. Let P := {(z, x) : z ∈ Z, x ∈ Pz}
and f : P → {0, 1} be a partial function.1 A q-local algorithm M for computing f

1We remark that allowing only rectangles P = Z ×Q as the domain of f suffices for most of our
applications (e.g., testers and local decoders), but not all. For example, in a MAP for a property Π,
there may be inputs x ∈ Π that are only contained in Pz for a single z ∈ Z. (See Section 4.5.3.)

73



with error rate σ receives explicit access to z ∈ Z, query access to x ∈ Pz, makes at
most q queries to x and satisfies

Pr[Mx(z) = f(z, x)] ≥ 1− σ.

The parameter q is called the query complexity of M (recall Section 2.3.1),
to which we also refer as locality. Throughout, when we refer to a local algorithm,
we mean a q-local algorithm with q = o(n). Another important parameter is the
randomness complexity of M , defined as the maximal number of coin tosses it makes
over all (z, x) ∈ Z×Γn (note that an execution Mx(z) is well-defined even if x /∈ Pz).

The following definition formalises the aforementioned natural notion of
robustness, which is the structural property that underlies local computation.

Definition 4.3 (Robustness). Let ρ > 0. A local algorithm M for computing
f : P → {0, 1} is ρ-robust at the point (z, x) ∈ P if Pr[Mw(z) = f(z, x)] ≥ 1− σ for
all w ∈ Bρ(x). We say that M is (ρ0, ρ1)-robust if, for all z ∈ Z and b ∈ {0, 1}, M
is ρb-robust at every x such that f(z, x) = b.

If a local algorithm M is (ρ0, ρ1)-robust and max {ρ0, ρ1} = Ω(1) (a constant
independent of n), we simply call M robust. Note that non-trivial robustness is only
possible because f is a partial function; that is, the local algorithm M solves a promise
problem where, for every parameter z, the algorithm is promised to receive an input
from Pz,0 := f−1(z, 0) on which it should output 0, or an input from Pz,1 := f−1(z, 1)

on which it should output 1.

Remark 4.1 (One-sided robustness). For our main result (Theorem 1), it suffices to
have one-sided robustness, i.e., (ρ0, ρ1)-robustness where only one of ρ0, ρ1 is non-zero.
For example, in the setting of property testing with proximity parameter ε we only
have (ε, 0)-robustness (see Section 4.2.2 for details). To simplify notation, we refer to
(ρ, 0)-robust local algorithms as ρ-robust.

Remark 4.2 (Larger alphabets). The definition of local algorithms can be further
generalised to a constant-size output alphabet Σ, in which case the partial function
is f : Γn → Σ; we assume Σ = {0, 1} for simplicity of exposition, but note that our
results extend to larger output alphabets in a straightforward manner.

We proceed to show how to capture various well-studied families of sublinear
algorithms (such as testers, local decoders, and PCPs) using the notion of robustness.
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4.2.2 Property testing

Recall, from Definition 2.1 (and the following discussion in Section 2.4) that property
testers are probabilistic algorithms that solve approximate decision problems by
making a small number of queries to their input. We restate the definition below.

Definition 4.4 (Testers). An ε-tester with error rate σ for a property Π ⊆ Γn is a
probabilistic algorithm T that receives query access to a string x ∈ Γn. The tester T
performs at most q = q(ε, n) queries to x and satisfies the following two conditions.

1. If x ∈ Π, then Pr [T x = 1] ≥ 1− σ.

2. For every x that is ε-far from Π (i.e., x ∈ Bε(Π)), then Pr [T x = 0] ≥ 1− σ.

We are interested in the regime where ε = Ω(1) (i.e., ε is a fixed constant
independent of n), and assume it to be the case in the remainder of this discussion.

Note that testers are not robust with respect to inputs in the property Π, as
changing a single coordinate of an input x ∈ Π could potentially lead to an input
outside Π. Moreover, an ε-tester does not immediately satisfy one-sided robustness,
as inputs that are on the boundary of the ε-neighbourhood of Π are not robust (see
figure Figure 1.1b).

However, by increasing the value of the proximity parameter by a factor of
2, we can guarantee that every point that is 2ε-far from Π satisfies the robustness
condition. The following claim formalises this statement and shows that testers can
be cast as robust local algorithms.

Claim 4.1. An ε-tester T for property Π ⊆ Γn is an (ε, 0)-robust local algorithm,
with the same parameters, for computing the function f defined as follows.

f(x) =

{
1, if x ∈ Π

0, if x is 2ε-far from Π.

Proof. By definition, the tester T is a local algorithm for computing f ; denote its
error rate by σ. We show it satisfies (one-sided) robustness with respect to f . Let
x ∈ Γn be an input that is 2ε-far from Π, and consider y ∈ Bε(x). By the triangle
inequality, we have that y is ε-far from Π. Thus, Pr [T y = 0] ≥ 1− σ, and so T is an
(ε, 0)-robust local algorithm for f .

Remark 4.3 (Robustness vs proximity tradeoff). The notion of a tester with
proximity parameter ε and that of an ε-robust tester with proximity parameter 2ε

coincide. Moreover, there is a tradeoff between the size of the promise captured by
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the partial function f and the robustness parameter ρ: taking any ε′ > ε, the tester
T is a ρ-robust local algorithm with ρ = ε′ − ε for computing the function

f(x) =

{
1, if x ∈ Π

0, if x is ε′-far from Π.

As ε′ increases, the robustness parameter ρ increases and the size of the domain
of definition of f decreases. In particular, taking ε′ = ε makes T a (0, 0)-robust
algorithm (i.e., an algorithm that is not robust).

4.2.3 Local codes

We consider error-correcting codes that admit local algorithms for various tasks, such
as testing, decoding, correcting, and computing functions of the message. Recall,
from Section 2.5, that a code C : {0, 1}k → {0, 1}n is an injective mapping from
messages of length k to codewords of blocklength n, whose rate is defined as k/n
and whose relative distance is the minimum, over all distinct messages x, y ∈ Γk, of
∆(C(x), C(y)). Note that hereafter we focus on binary codes, but remind that the
extension to larger alphabets is straightforward. In the following, we show how to
cast the prominent notions of local codes as robust local algorithms.

4.2.3.1 Locally testable codes

Locally testable codes (LTCs) [GS06] are codes that admit algorithms that distinguish
codewords from strings that are far from being valid codewords, using a small number
of queries.

Definition 4.5 (Locally Testable Codes (LTCs)). A code C : {0, 1}k → {0, 1}n is
locally testable, with respect to proximity parameter ε and error rate σ, if there exists
a probabilistic algorithm T that makes q queries to a purported codeword w such that:

1. If w = C(x) for some x ∈ {0, 1}k, then Pr [Tw = 1] ≥ 1− σ.

2. For every w that is ε-far from C, we have Pr [T x = 0] ≥ 1− σ.

Note that the algorithm T that an LTC admits is simply an ε-tester for the
property of being a valid codeword of C. Thus, by Claim 4.1, we can directly cast T
as a robust local algorithm.

4.2.3.2 Locally decodable and correctable codes

Locally decodable codes (LDCs) [KT00] are codes that admit algorithms for decoding
each individual bit of the message of a moderately corrupted codeword by only
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making a small number of queries to it. We recall their formal definition below.

Definition 4.6 (Definition 5.3, restated). A code C : {0, 1}k → {0, 1}n is locally
decodable with decoding radius δ and error rate σ if there exists a probabilistic
algorithm D that, given index i ∈ [k], makes q queries to a string w promised to be
δ-close to a codeword C(x), and satisfies

Pr[Dw(i) = xi] ≥ 1− σ.

Note that local decoders are significantly different from local testers and
testing in general. Firstly, decoders are given a promise that their input is close to
a valid codeword (whereas testers are promised to either receive a perfectly valid
input, or one that is far from being valid). Secondly, a decoder is given an index as
an explicit parameter and is required to perform a different task (decode a different
bit) for each parameter (see Figure 1.1a).

Nevertheless, local decoders can also be cast as robust local algorithms. In
fact, unlike testers, they satisfy two-sided robustness (i.e., both 0-inputs and 1-inputs
are robust). In the following, note that since inputs near the boundary of the decoding
radius are not robust, we reduce the decoding radius by a factor of 2.

Claim 4.2. A local decoder D with decoding radius δ for the code C : {0, 1}k → {0, 1}n

is a (δ/2, δ/2)-robust local algorithm for computing the function f defined as follows.

f(z, w) = xz, if x ∈ {0, 1}k is such that w is δ/2-close to C(x).

Proof. Take any w ∈ {0, 1}n that is δ/2-close to C(x). Then, (w, z) is in the domain
of definition of f for all explicit inputs z ∈ [k]. Now let w′ ∈ Bδ/2(w) and note that
w′ is still within the decoding radius of D. Hence, the decoder D outputs xz with
probability 1 − σ, as required. Moreover, this holds regardless whether xz = 0 or
xz = 1, and so D is (δ/2, δ/2)-robust.

Remark 4.4 (Robustness vs decoding radius tradeoff). A local decoder has decoding
radius δ if and only if it is δ/2-robust with decoding radius δ/2, and a tradeoff
between promise size and robustness parameter likewise holds in this case: for any
δ′ < δ, the decoder D is a (δ − δ′, δ − δ′)-robust algorithm for the restriction of f
to the δ′-neighbourhood of the code C. In particular, D is a (δ, δ)-robust algorithm
with the domain of f defined to be the code C.

Locally correctable codes. The notion of locally correctable codes (LCCs) is
closely related to that of LDCs, except that rather than admitting an algorithm that
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can decode any individual message bit, LCCs admit an algorithm that can correct
any corrupted codeword bit of a moderately corrupted codeword.

Definition 4.7 (Locally Correctable Codes (LCCs)). A code C : {0, 1}k → {0, 1}n is
locally correctable with correcting radius δ and error rate σ if there exists a probabilistic
algorithm D that, given index j ∈ [n], makes q queries to a string w promised to be
δ-close to a codeword C(x) and satisfies

Pr[Dw(j) = C(x)j ] ≥ 1− σ.

A straightforward adaptation of Claim 4.2 yields the following claim.

Claim 4.3. A local corrector D with correcting radius δ for the code C : {0, 1}k →
{0, 1}n is a (δ/2, δ/2)-robust local algorithm for computing the function f defined as
follows.

f(z, w) = C(x)z, if x ∈ {0, 1}k is such that w is δ/2-close to C(x).

4.2.3.3 Relaxed locally decodable codes

Relaxed locally decodable codes (relaxed LDCs) [BGH+06] are codes that admit a
natural relaxation of the notion of local decoding, in which the decoder is allowed to
output a special abort symbol ⊥ on a small fraction of indices, indicating it detected
an inconsistency, but never erring with high probability.

Definition 4.8 (Definition 5.4, restated). A code C : {0, 1}k → {0, 1}n whose distance
is δC is a q-local relaxed LDC with success rate ρ, decoding radius δ ∈ (0, δC/2) and
error rate σ ∈ (0, 1/3] if there exists a randomised algorithm D, known as a relaxed
decoder, that, on input i ∈ [k], makes at most q queries to an oracle w and satisfies
the following conditions.

1. Completeness: For any i ∈ [k] and w = C(x), where x ∈ {0, 1}k,

Pr[Dw(i) = xi] ≥ 1− σ .

2. Relaxed Decoding: For any i ∈ [k] and w ∈ {0, 1}n that is δ-close to a (unique)
codeword C(x),

Pr[Dw(i) ∈ {xi,⊥}] ≥ 1− σ .

3. Success Rate: There exists a constant ξ > 0 such that, for any w ∈ {0, 1}n that
is δ-close to a codeword C(x), there exists a set Iw ⊆ [k] of size at least ξk such
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that for every i ∈ Iw,
Pr[Dw(i) = xi] ≥ 2/3 .

Note that strictly speaking, the special abort symbol makes it so that relaxed
local decoders do not fully fit Definition 4.2, as the input-output mapping f becomes
one-to-many. Nevertheless, a simple generalisation of local algorithms, which allows
an additional abort symbol, enables us to capture relaxed LDCs as robust local
algorithms as well. We show this in Section 4.5.2.

4.2.3.4 Universal locally testable codes

Universal locally testable codes (universal LTCs) [GG18] are codes that admit local
tests for membership in numerous possible subcodes, allowing for testing properties
of the encoded message.

Definition 4.9 (Universal LTCs). A universal LTC C : {0, 1}k → {0, 1}n for a
family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

is a code such that for every
i ∈ [M ] the subcode {C(x) : fi(x) = 1} is locally testable.

Note that ULTCs trivially generalise LTCs, as well as generalise relaxed
LDCs (see details in [GG18, Appendix A]). Since universal testers can be viewed
as algorithms that receive an explicit parameter i ∈ [M ] and invoke an ε-tester for
the property {C(x) : fi(x) = 1}, then by applying Claim 4.1 to each value of the
parameter i they can be cast as robust local algorithms.

4.2.4 PCPs of proximity

PCPs of proximity (PCPPs) [BGH+06] are probabilistically checkable proofs wherein
the verifier is given query access not only to the proof, but also to the input. The
PCPP verifier is then required to probabilistically check whether the statement is
correct by only making a constant number of queries to both input and proof.

Definition 4.10. A PCP of proximity (PCPP) for a language L with proximity
parameter ε, error rate σ and query complexity q, consists of a probabilistic algorithm
V , called the verifier, that receives query access to both an input x ∈ Γn and a proof
π ∈ {0, 1}m. The verifier V is allowed to make q queries to (x, π) and satisfies the
following:

1. for every x ∈ L there exists a proof π such that Pr
[
V (x,π) = 1

]
≥ 1− σ; and

2. for every x that is ε-far from L and every proof π, it holds that Pr
[
V (x,π) = 0

]
≥

1− σ.
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We observe that PCPs of proximity with canonical proofs [GS06] (i.e., such
that the verifier rejects statement-proof pairs that are far from being the concatenation
of a valid statement with a valid proof for it) admit verifiers that are robust local
algorithms. Using the tools of [DGG19], who show that PCPPs can be endowed with
the canonicity property at the cost of polynomial blowup in proof length, we can
obtain robust local algorithms for general PCPPs.

Claim 4.4. A PCPP for a language L ⊆ Γn with proximity parameter ε > 0, error
rate σ and query complexity q can be transformed into a PCPP for L with proximity
parameter 2ε, whose verifier is an (ε, 0)-robust local algorithm with the same query
complexity and error rate.

Sketch of proof. Let V be a PCPP verifier with proximity parameter ε and error rate
σ for L ⊆ Γn, that makes at most q queries to its input-proof pair (x, π) ∈ Γn×{0, 1}m.
By [DGG19, Section 3], there exists a PCPP verifier V ′ for L with poly(m) proof
length (as well as proximity parameter ε, error rate σ and query complexity q) that
satisfies the following strengthening of the conditions in Definition 4.10: there is a
set of canonical proofs {πx}x∈L such that

1. for every x ∈ L, it holds that Pr
[
V (x,πx) = 1

]
≥ 1− σ; and

2. if (x, π) is ε-far from (y, πy) for all y ∈ L, it holds that Pr
[
V (x,π) = 0

]
≥ 1− σ.

In other words, V ′ is an ε-tester for the property Π := {(x, πx) : x ∈ L}, and we
invoke Claim 4.1.

Non-interactive proofs of proximity. MA proofs of proximity (MAPs) [GR18,
FGL14] are proof systems that can be viewed as a property testing analogue of NP
proofs. The setting of MAPs is very similar to that of PCPPs, with the distinction
that the purported proof is of sublinear size and is given explicitly, i.e., the MAP
verifier can read the entire proof. With the equivalent description of a MAP as a
covering by partial testers (Claim 5.1), every fixed proof string defines a tester, and
Claim 4.1 applies. We cover this in Section 4.5.3.

4.3 Technical lemmas

In the section we provide an arsenal of technical tools for analysing robust local
algorithms, which we will then use to prove our main result in Section 4.4. The order
in which we present the tools is according to their importance, starting with the most
central lemmas.
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Specifically, in Section 4.3.1 we discuss the notion of relaxed sunflowers that
we shall need, called daisies, then state and prove a daisy partition lemma for
multi-collections of sets. In Section 4.3.2, we apply the Hajnal-Szemerédi theorem
to derive a sampling lemma for daisies. In Section 4.3.3, we prove a simple yet
vital volume lemma for robust local algorithms, which will be used throughout our
analysis. Finally, in Section 4.3.4 we adapt generic transformations (amplification
and randomness reduction) to our setting of robust local algorithms.

4.3.1 Relaxed sunflowers

We discuss the central technical tool used in the transformation to sample-based
algorithms, which is a relaxation of combinatorial sunflowers, referred to as daisies
[FLV15, GL21]. We extend the definition of daisies to multi-sets, then state and
prove the particular variant of a daisy lemma that we shall need.

Definition 4.11 (Daisy). Suppose S is a multi-collection of subsets of [n] (i.e.,
subsets may repeat). S is an h-daisy (where h : N → N) with petals of size j and
kernel K ⊆ [n] if the following holds: every S ∈ S has a petal S \K with |S \K| = j

and, for every k ∈ [j], there exists a subset Pk ⊆ S \K with |Pk| ≥ k whose elements
are contained in at most h(k) sets from S.
A daisy with pairwise disjoint petals (1-daisy) is referred to as a simple daisy.

We remark that the notion of a daisy relaxes the standard definition of a
sunflower in two ways: (1) the kernel is not required to equal the pairwise intersection
of all sets in the collection, its structure is unconstrained; and (2) the petals P =

{S \K : S ∈ D} need not be pairwise disjoint, but rather, each point outside of
the kernel can be contained in at most h(j) sets of D; see Figure 3.1b. Note that
Definition 4.11, in contrast to sunflowers (for which pairwise disjointness disallows
multiple copies of a same set), applies to multi-sets.

These relaxations, unlike in the case of sunflowers, allow us to arbitrarily
partition any collection of subsets into a collection of daisies with strong structural
properties, as Lemma 4.1 shows.

Lemma 4.1 (Daisy partition lemma for multi-collections). Let S be a multi-collection
of q-sets of [n], and define the function h : N→ N as follows:

h(k) = n
max{1,k−1}

q .

Then, there exists a collection {Dj : 0 ≤ j ≤ q} such that

1. {Dj} is a partition of S, i.e.,
⋃q

j=0Dj = S and Dj ∩ Dk = ∅ when j ̸= k.
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2. For every 0 ≤ j ≤ q, there exists a set Kj ⊆ [n] of size |Kj | ≤ q|S| ·n−max{1,j}/q

such that Dj is an h-daisy with kernel Kj and petals of size j. Moreover, the
kernels form an incidence chain ∅ = Kq ⊆ Kq−1 ⊆ · · · ⊆ K1 = K0.

Proof. We construct the collections {Dj : 0 ≤ j ≤ q} in a greedy iterative manner,
as follows.

1. Define S0 := S.

2. Inductively define, for each 0 ≤ j ≤ q − 1:

(a) Kernel construction: Define Kj as the set of points in [n] that are contained
in at least h(j + 1) sets from S.

(b) Daisy construction: Set Dj to be all the sets S ∈ Sj such that |S \Kj | = j.

(c) Set Sj+1 to be Sj \ Dj .

3. Finally, set Dq = Sq and Kq = ∅.

We now prove that this construction yields daisies with the required properties.
For ease of notation, let di be the number of sets in S containing i for each i ∈ [n].
By definition, Sq ⊆ Sq−1 ⊆ · · · ⊆ S0 and Dj ⊆ Sj for all j. Since Dj−1 ∩ Sj = ∅ for
all j ∈ [q], it follows that Dj ∩ Dk = ∅ when j ̸= k. Also, since S = Sq ∪

⋃
0≤j<q Dj

and Sq = Dq, we have S =
⋃

0≤j≤q Dj .
Since S is comprised of q-sets,∑

i∈[n]

di = q|S|.

By the kernel construction, for each j ∈ {0, 1, . . . , q}, Kj is the set of all i ∈ [n] such
that di ≥ h(j + 1), which implies

∑
i∈Kj

di ≥ |Kj | · h(j + 1). Therefore,

q|S| =
∑
i∈[n]

di ≥
∑
i∈Kj

di ≥ |Kj | · h(j + 1)

and thus |Kj | ≤ q|S|/h(j + 1) = q|S| · n−max{1,j}/q. Note, also, that the kernel
construction ensures not only Kj ⊆ Kj−1 when j ∈ [q], but also K0 = K1 because
h(1) = h(2).

Since the petals of each S ∈ Dj have size exactly j by construction, all that
remains to be proven is the intersection condition on the petals that makes Dj an
h-daisy; namely, that for every k ∈ [j], there exists a subset Pk ⊆ S \K with |Pk| ≥ k
whose elements are contained in at most h(k) sets from Dj . Assume for the sake of
contradiction that this condition does not hold.
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Let j ∈ [q] be the smallest value for which Dj is not an h-daisy and S ∈ Dj

be a set that violates the intersection condition; then take k ≤ j to be the smallest
subset size such that every Pk ⊆ S \ Kj with size k has an element i ∈ Pk with
di > h(k) (equivalently said, j and k are minimal such that the subset L ⊂ S \Kj ,
comprised of all i with di ≤ h(k), has size at most k − 1).

Suppose first that k = 1. Then, every i ∈ S \Kj is such that di > h(2) = h(1)

and thus S \Kj ⊆ K0. But this implies S ∈ D0 (since |S \K0| = 0), a contradiction
because the intersection condition holds by vacuity on empty petals.

Suppose now that k > 1. The subset

L := {i ∈ S \Kj : di ≤ h(k)}

contains at most k − 1 points; however, by minimality of k, at least k − 1 distinct
points i ∈ L satisfy di ≤ h(k − 1) ≤ h(k). Therefore, |L| = k − 1 and

L = {i ∈ S \Kj : di ≤ h(k − 1)} .

By the definition of L, every i ∈ S \ (Kj ∪ L) satisfies di > h(k), so that i ∈ Kk−1;
therefore, S ⊆ Kk−1 ∪Kj ∪L. Since the kernels form an incidence chain, Kj ⊆ Kk−1

and thus S \ Kk−1 = L. But then |S \Kk−1| = |L| = k − 1, so that S ∈ Dk−1,
contradicting the fact that S ∈ Dj (because k − 1 < j and {Dj} is a partition).

The following claim shows an upper bound on the total number of sets in an
h-daisy that may intersect a given petal. It will be useful in order to partition a
daisy into simple daisies, as the next section will show.

Claim 4.5. Let S be a multi-collection of q-sets and {Dj : 0 ≤ j ≤ q} be a daisy
partition obtained by an application of Lemma 4.1. Then, for every j ∈ [q] and
S ∈ Dj, the number of sets in Dj whose petals intersect S \Kj (including S itself) is
at most 2h(j) = 2nmax{1,j−1}/q.

Proof. Let S be an arbitrary set in Dj . We name the elements in S \ Kj by
u1, u2, . . . , uj (by Lemma 4.1, every S ∈ Dj satisfies |S \Kj | = j). For every
k ∈ [j], let dk be the number of sets of Dj that uk is a member of.

Assume without loss of generality that dk ≤ dℓ for every k and ℓ in [j] such
that k < ℓ, as otherwise we can rename u1, u2, . . . , uj so that this holds.

By the definition of an h-daisy, for every ℓ ∈ [j], there exists a set of ℓ elements
k ∈ [j] that satisfy dk ≤ h(ℓ). Thus, [ℓ] is such a set and we know that dℓ ≤ h(ℓ). As
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the number of petals that intersect S \Kj is at most
∑j

k=1 dk, we get that

j∑
k=1

dk ≤
j∑

k=1

h(k) =

j∑
k=1

n
max{1,k−1}

q ≤ 2h(j).

The last equality follows directly from the value of h(k).

4.3.2 Sampling daisies and the Hajnal-Szemerédi theorem

Concentration of measure is an essential ingredient in our proofs, which we first
illustrate via a simplified example. Consider a collection of singletons that comprise
the petals of a combinatorial sunflower: sets P1, . . . Pk, all disjoint and of size 1,
contained in the ground set [n]. If we perform binomial sampling of the ground set
(sampling each i ∈ [n] independently with probability p), the Chernoff bound ensures
that the number of sampled petals is close to its expectation. Defining Xi as the
random variable that indicates whether Pi was sampled, we have lower and upper
tail bounds that guarantee the number of queried petals is concentrated around pn
except with exponentially small probability. Note, too, that the same holds for larger
petals: if Pi is a j-set for all i, the number of queried petals is concentrated around
pjn.

Now consider the case where P1, . . . , Pk are petals of a daisy. In this case
the Chernoff bound does not apply, since the indicator random variables Xi are no
longer independent; however, the structure of a daisy ensures there is not too much
intersection among these petals, which gives means to control the correlation between
these random variables. It is thus reasonable to expect that sampling a daisy is
similar to sampling a sunflower. This intuition is formalised by making use of the
Hajnal-Szemerédi theorem [HS70], which we state next.

Theorem 4.5. Let G be a graph with m vertices and maximum degree ∆. Then, for
any k ≥ ∆+ 1, there exists a k-colouring of the vertices of G such that every colour
class has size either ⌊m/k⌋ or ⌈m/k⌉.

We remind that integrality does not cause issues in our analyses, and we thus
assume all colour classes have size n/k. By encoding the sets of a daisy as the vertices
of an “intersection graph”, the fact that petals have bounded intersection translates
into a graph with bounded maximum degree. Applying the Hajnal-Szemerédi theorem
to this graph, we are able to partition the original daisy into a small number of large
simple daisies.
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Lemma 4.2. A daisy D with kernel K, such that each one of its petals has a non-
empty intersection with at most t− 1 other petals, can be partitioned into t simple
daisies with the same kernel, each of size |D|/t.

Proof. Construct a graph G with vertex set D by placing an edge between vertices
S and S′ when (S ∩ S′) \K ̸= ∅. By definition, the maximum degree of G is
∆(G) ≤ t− 1. The Hajnal-Szemerédi theorem implies G is colourable with t colours,
where each colour class has size |G|/t. This partition of the vertex set corresponds to
a partition of the daisy D into simple daisies {Sj : j ∈ [t]}, each of size |D|/t.

4.3.3 The volume lemma

This section proves a key lemma that makes use of daisies to prove a certain structure
on the sets that a robust local algorithm may query. Loosely speaking, the volume
lemma ensures that in order for a collection of sets to be queried with high enough
probability, it must cover a sufficiently large fraction of the input’s coordinates.

Let M be a q-local algorithm that computes a partial function f with error
rate σ (we assume the explicit input to be fixed and omit it). Recall that, for
each input x ∈ Γn, the algorithm M queries according to a distribution µx over a
multi-collection of q-sets, as defined in Definition 4.1.

Lemma 4.3 (Volume lemma). Fix x ∈ Γn in the domain of f . If there exists a
ρ-robust y ∈ Γn such that f(y) ̸= f(x), then every collection S ⊆ supp(µx) such that
|∪S| = |∪S∈SS| < ρn satisfies µx(S) ≤ 2σ.

Proof. Suppose, by way of contradiction, that there exists S ⊆ supp(µx) such that
µx(S) > 2σ and |∪S| < ρn.

For notational simplicity, assume without loss of generality that f(x) = 1, and
take a ρ-robust y ∈ Γn such that f(y) = 0. Define w to match x in the coordinates
covered by ∪S, and to match y otherwise. Then w is ρ-close to y, so that M outputs
0 when its input is w with probability at least 1− σ.

When the algorithm samples a decision tree that makes it query S ∈ S, then
M behaves exactly as it would on input x, which happens with probability at least
µx(S) > 2σ. But the algorithm outputs 1 on input x with probability at most σ, and
thus outputs 0 on input w with probability greater than σ, in contradiction with the
robustness of y.

Remark 4.6. The volume lemma requires an arbitrary ρ-robust y with f(y) ̸= f(x).
It thus suffices that a single such ρ-robust point exists for the volume lemma to hold
for every x′ such that f(x′) = f(x).
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4.3.4 Generic transformations

This section provides two standard transformations that improve parameters of an
algorithm: error reduction (Claim 4.6) and randomness reduction (Claim 4.7), which,
applied in conjunction, imply Lemma 4.4. These apply generally to randomised
algorithms for decision problems, and, when applied to robust local algorithms, both
transformations compute the same function and preserve robustness.

The following claim is an adaptation of a basic fact regarding randomised
algorithms: performing independent runs and selecting the output via a majority
rule decreases the error probability exponentially.

Claim 4.6 (Error reduction). Let M be a (ρ0, ρ1)-robust algorithm for f : P → {0, 1}
(where P ⊂ Z × Γn) with error rate σ ≤ 1/3, query complexity q and randomness
complexity r.

For any σ′ > 0, there exists a (ρ0, ρ1)-robust algorithm N for computing the
same function with error rate σ′, query complexity O(q log(1/σ′)/σ) and randomness
complexity O(r log(1/σ′)/σ).

Proof. Define N as the algorithm that makes t = 108 log(1/σ′)/σ independent runs
of M and outputs the most frequent symbol, resolving ties arbitrarily. The query
and randomness complexities of N clearly match the statement, and we must now
prove that the error rate is indeed σ′ and that N is (ρ0, ρ1)-robust.

Fix z ∈ Z and x ∈ Γn in the domain of f and let b := f(z, x). As M is
ρb-robust at x, the algorithm satisfies Pr[My(z) = b] ≥ 1− σ for all y ∈ Bρb(x). By
the Chernoff bound (Lemma 2.2),

Pr

[
My(z) ̸= b for at least

(
σ +

1

6

)
t runs

]
≤ e−

σt
3·36 = e− log 1

σ′ < 2− log 1
σ′ = σ′.

The majority rule will thus yield outcome b with probability at least 1− σ′, since at
least 1−

(
σ + 1

6

)
t ≥ t/2 runs output b (except with probability at most σ′). As x, z

and y ∈ Bρb(x) are arbitrary, the result follows.

Next, we state a transformation that yields an algorithm with twice the error
rate and significantly reduced randomness complexity. This, in turn, provides an upper
bound on the number of q-sets queried by the algorithm, such that an application of
Lemma 4.1 to this multi-collection yields daisies with kernels of sublinear size. Such
a bound on the size of the kernels is crucial to ensure correctness of the sample-based
algorithm we construct in Section 4.4.1. Our proof adapts the technique of Goldreich
and Sheffet [GS10], which in turn builds on the work of Newman [New91].
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Claim 4.7 (Randomness reduction). Let M be a (ρ0, ρ1)-robust algorithm for f : P →
{0, 1} (where P ⊂ Z × Γn) with error rate σ, query complexity q and randomness
complexity r.

There exists a (ρ0, ρ1)-robust algorithm N for computing the same function
with error rate 2σ and query complexity q, whose distribution µ̃N has support size
3n ln |Γ|/σ. In particular, the randomness complexity of N is bounded by log(n/σ) +

log log |Γ|+ 2.

Proof. Fix any explicit input z ∈ Z. Let {xj} be an enumeration of the inputs in
Γn such that Pr[Mxj (z) = bj ] ≥ 1− σ for some bj ∈ {0, 1}. Note that this includes
points in the neighbourhood of a point at which M is robust which are not necessarily
in the domain of f , so it suffices to show Pr[Nxj (z) = bj ] ≥ 1− 2σ to prove the claim
for N with the required query complexity and distribution.

Define the 2r × |{xj}| matrix E with entries in {0, 1} as follows. Denote by
bij ∈ {0, 1} the output of Mxj (z) when it executes according to the decision tree
indexed by (the binary representation of) i ∈ [2r]. Then,

Ei,j =

{
1, if bij ̸= bj

0, otherwise.

Note that Ei,j simply indicates whether Mxj (z) outputs incorrectly on input when
the outcome of the algorithm’s coin flips is (the binary representation of) i. By
construction, for each fixed j, a fraction of at most σ indices i ∈ [2r] are such that
Ei,j = 1.

Let t = 3n ln |Γ|/σ and I1, . . . , It be independent random variables uniformly
distributed in [2r]. For each fixed j ≤ |{xj}| ≤ |Γ|n and k ≤ t, we have E[EIk,j ] ≤ σ.
By the Chernoff bound,

Pr

[
t∑

k=1

EIk,j ≥ 2σt

]
≤ e−

σt
3 = e−n ln |Γ| < |Γ|−n.

Applying the union bound over all j ≤ |{xj}| ≤ |Γ|n, we obtain

Pr

[
t∑

k=1

EIk,j ≥ 2σt for some j

]
< 1.

We have thus shown, via the probabilistic method, the existence of a multi-set
Rz of size 3n ln |Γ|/σ such that

Pr[Nxj (z) ̸= bj ] ≤ 2σ,
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where N samples its random strings uniformly from Rz (rather than from {0, 1}r),
using the corresponding decision trees of M . The size of Sz is thus

∣∣µ̃N ∣∣ = 3n ln |Γ|/σ,
and this sampling can be performed with log(n/σ) + log log |Γ|+ 2 random coins.

Since the decision trees of N are simply a subcollection of those of M , the
query complexity of N is q and the claim follows.

In the next section, we need a combination of error reduction and randomness
reduction, which the following lemma provides.

Lemma 4.4. Assume there exists a ρ-robust algorithm M for computing f with query
complexity ℓ, error rate 1/3 and arbitrary randomness complexity. Then there exists
a ρ-robust q-local algorithm M ′ for f with error rate

σ =
1

4q

such that q
log 8q = O(ℓ), or, equivalently,

q = O(ℓ log ℓ).

Moreover, the distribution of M ′ is uniform over a multi-collection of decision trees
of size 6n ln |Γ|/σ.

Proof. We apply both transformations in order, omitting mention of parameters that
are left unchanged. Recall that M may have arbitrarily large randomness complexity.

1. Apply Claim 4.6 (error reduction) to M , obtaining M ′′ with error rate σ′′ = 1/8q

and query complexity q = O(ℓ log(1/σ′′)) = O(ℓ log(8q)) (as well as larger
randomness complexity).

2. Apply Claim 4.7 (randomness reduction) to M ′′, thereby obtaining a new
algorithm M ′ with error rate σ = 2σ′′ = 1

4q and support size 3n ln |Γ|/σ′′ =
6n ln |Γ|/σ on its distribution over decision trees.

4.4 Proof of Theorem 1

This section contains the main technical contribution of our work: a proof that
every robust local algorithm with query complexity q can be transformed into a
sample-based local algorithm with sample complexity n1−1/O(q2 log2 q). We begin by
providing a precise statement of Theorem 1. In the following, we remind that when
the error rate of an algorithm is not stated, it is assumed to be 1/3.
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Theorem 4.7 (Theorem 1, restated). Suppose there exists a (ρ0, ρ1)-robust local
algorithm M for the function f : P → {0, 1} (where P ⊂ Z×Γn) with query complexity
ℓ and max {ρ0, ρ1} = Ω(1). Then, there exists a sample-based algorithm N for f
with sample complexity γ · n1−1/2q2, where q = O(ℓ log ℓ) and γ = O(|Γ|q ln |Γ|).

Note that when q = Ω(
√
log n) or |Γ|q = Ω

(
n1/2q

2), the algorithm we obtain
samples linearly many coordinates, and the statement becomes trivial. Therefore,
hereafter we assume that the query complexity of M satisfies ℓ ≤ 5

√
log n (so q =

Θ( 5
√
log n log log n) = o(

√
log n)) and the alphabet size satisfies |Γ| ≤ 2

6√logn (so
|Γ|q ≤ n1/q3).

We proceed to prove Theorem 4.7. Specifically, in Section 4.4.1 we construct
a sample-based local algorithm N from the (ρ0, ρ1)-robust local algorithm M in the
hypothesis of Theorem 4.7; in Section 4.4.2, we analyse our sample-based algorithm N ;
and in Section 4.4.3 we conclude the proof by showing the lemmas proved throughout
the analysis indeed imply correctness of N .

4.4.1 Construction

Hereafter, let f : P → {0, 1} be the function in the hypothesis of Theorem 4.7. As
the following treatment is the same for all explicit inputs z ∈ Z, we assume it to be
fixed and omit it from the notation. We also assume without loss of generality that
ρ0 is a constant strictly greater than 0 (if this is not the case we simply exchange the
0 and 1 values in the truth table of f). We set ρ = ρ0.

LetM be the algorithm in the hypothesis of Theorem 4.7. We apply Lemma 4.4
and obtain a (ρ0, ρ1)-robust local algorithm M ′ for the same problem, with query
complexity q = O(ℓ log ℓ) and error rate σ = 1/4q. The algorithm N we describe
below has white box access to the local algorithm M ′. We next explain how it
extracts information from it.

Upon execution, M ′ chooses a decision tree uniformly at random according
to the outcome of its coin flips; this uniform distribution is denoted µ̃ = µ̃M

′ , whose
support size is |µ̃|. For every decision tree and every one of its branches, define a
description tuple (S, aS , b, s), where s is the random string that will cause the use of
this tree, S is the set of all the queries in this branch, aS is the assignment to these
queries that will result in M ′ using this specific branch and b is the value M ′ returns
when this occurs (as per Definition 4.1).

We assume that for every description-tuple (S, aS , b, s) the size of S is exactly
q. This can be assumed without loss of generality since it is possible to convert M ′

into an algorithm such that every decision tree and every one of its branches makes q
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distinct queries: if the same query appears more than once on a branch of a tree, all
but the first appearance can be removed by choosing the continuation that follows
the (already known) value that leads to the algorithm using this branch. In addition,
a tree can be expanded by adding queries, so that every branch has exactly q distinct
queries. Both of these changes do not change any of the parameters of the algorithm
beyond ensuring that it will query exactly q coordinates.

The algorithm N we describe next only makes use of description tuples
(S, aS , b, s) such that b = 1. To this end we set

T = {(S, aS , b, s) : (S, aS , b, s) is a description tuple such that b = 1}.

Algorithm N also requires the multi-collection S defined as follows:

S = {S : (S, aS , b, s) ∈ T }.

Specifically, it applies Lemma 4.1 to get a daisy partition of S. When the algorithm
extracts T and S from M ′ and computes a daisy partition for S, it preserves the
information that allows it to associate the set of a tuple of (S, aS , b, s) to the unique
daisy S is contained in.

The construction proceeds in two stages: preprocessing and execution. Recall
that, for any input x ∈ Γn and assignment κ to a subset S ⊆ [n], we denote by xκ
the word that assigns the same values as κ on S and the same values as x on [n] \ S.

Preprocessing. N has access to M ′, with which it computes T and S. Applying
Lemma 4.1 to S, the algorithm obtains the daisy partition

D = {Dj : 0 ≤ j ≤ q} ,

so that each tuple in T is associated with Dj for exactly one j ∈ {0, . . . , q}. Set

p := γ · n−1/2q2 ,

the sampling probability, where γ = 24|Γ|q ln |Γ|; and, for every j ∈ [q], set

τj :=
|µ̃|
2q
· pj ,

the thresholds, which will be used in the execution stage.

90



Execution. When N receives query access to a string x ∈ Γn, it performs the
following sequence of steps.

1. Sampling: Select each element in [n] independently with probability p. Denote
by Q the set of all coordinates thus obtained. If |Q| ≥ 2pn, then N outputs
arbitrarily. Otherwise, N queries all the coordinates in Q.

2. Enumeration: For every j ∈ [q] and kernel assignment κ to Kj ,2 perform the
following steps. Set a counting variable v to 0 before each iteration.

(a) Local view generation and vote counting: For every tuple (S, aS , 1, s) ∈ T
such that S ∈ Dj , increment v if S ⊂ Q∪Kj and aS assigns on S the same
values as xκ does.
In the case j = 1, if 12 ln |Γ|/(ρ · σ) sets have the same point outside K1,
disregard them in the count.3

(b) Threshold check: If v ≥ τj , output 1.

3. If the condition v ≥ τj was never satisfied, then output 0.

We proceed to analyse this construction.

4.4.2 Analysis

We remind that the explicit input z is assumed to be fixed and is omitted from the
notation. For the analysis we are interested in the behaviour of the algorithm M ′ on
a fixed input x. For this purpose, we use the distribution µx from Definition 4.1.

For x ∈ Γn we define µx to be the uniform distribution over the multi-collection
of sets {

S : (S, aS , b, s) is a description tuple such that aS = x|S
}
, (4.1)

where a description tuple is as appears in Section 4.4.1. We note that this implies
that supp(µx) has exactly one set for each decision tree M ′ may use, since when both
the randomness and the input are fixed exactly one branch of the decision tree is
used by M ′. Therefore,

|µx| = |µ̃| .

We now list the relevant parameters in the analysis with reference to where
they are obtained. By Lemma 4.4,

σ =
1

4q
, (4.2)

2Note that the algorithm does not iterate over the case j = 0. We will show in Section 4.4.2 that
this has a negligible effect.

3This is required for technical purposes when dealing with K1.
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and, for every x ∈ Γn,

|µx| = |µ̃| =
6n ln |Γ|

σ
. (4.3)

The construction of N in the previous section sets the parameters

γ = 24|Γ|q ln |Γ| , (4.4)

p = γ · n−1/2q2 , (4.5)

and, for all j ∈ [q],

τj =
|µ̃|
2q
· pj = |µx|

2q
· pj . (4.6)

(The second equality holds for all x ∈ Γn by Eq. 4.3.) Finally, the size of the collection
of tuples T , which by the construction in Section 4.3.4 is the same as that of S, is
bounded by the total number of branches over all decision trees in supp(µ̃). Thus,

|S| = |T | ≤ |Γ|q · |µ̃| = |Γ|q · |µx| , (4.7)

for every x ∈ Γn.
For our result we need an upper bound on the sizes of the kernels that

algorithm N enumerates over, which we show next.

Claim 4.8. Let {Ki : 0 ≤ i ≤ q} be the kernels of the daisy partition {Di} of S
used by the algorithm N . For every i ∈ {0, 1, . . . , q}, the kernel Ki is such that
|Ki| ≤ γ · q2 · n1−max{1,i}/q and, for n sufficiently large, |Ki| < ρn/2.

Proof. By Lemma 4.1, for every i ∈ {0, 1, . . . , q},

|Ki| ≤ q|S|n−max{1,i}/q

≤ q|Γ|q|µx| · n−max{1,i}/q (by Eq. 4.7, |S| ≤ |Γ|q · |µx|)

≤ q|Γ|q · 6n ln |Γ|
σ

· n−max{1,i}/q
(

by Eq. 4.3, |µx| ≤
6n ln |Γ|

σ

)
= 24|Γ|q · ln |Γ| · q2 · n−max{1,i}/q

(
by Eq. 4.2, σ =

1

4q

)
= γ · q2 · n1−max{1,i}/q (by Eq. 4.4, γ = 24|Γ|q ln |Γ|)

It remains to prove the second part of the claim. By the calculation above, since
ρ is constant and |Γ|q ln |Γ| · q2 = o(n−1/q) (recall that |Γ| ≤ n1/q

4 and q is sub-
logarithmic), for sufficiently large n,

|K0| ≤ γ · q2 · n1−1/q =
(
24|Γ|q ln |Γ| · q2 · n−1/q

)
n ≤ ρn/2. (4.8)
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By Lemma 4.1, Kq ⊆ Kq−1, . . . ,K1 = K0, and hence the claim follows.

Next, we provide a number of definitions emanating from algorithm N . We
define, for every x ∈ Γn, the multi-collection

Ox :=
{
S : (S, aS , 1, s) ∈ T and x|S = aS

}
,

where T is defined as in Section 4.4.1. Note that the definition of this collection
depends only on the algorithm M and not on the function f it computes. Hence, it
is well-defined for every x, and in particular for points that are ρ-close to a ρ-robust
point of the domain (where f may not be defined). We note that, since µx is defined
over the collection in Eq. 4.1 we know that

Ox ⊆ supp(µx) . (4.9)

Since the “capping parameter” 12 ln |Γ|/(ρ · σ) is used numerous times, we set

α =
12 ln |Γ|
ρ · σ

. (4.10)

We refer to the act of incrementing v as counting a vote. For each j ∈ [q], we
define the vote counting function vj : Γ

n → N to be a random variable (determined
by Q) as follows. If j > 1,

vj(x) := |{S ∈ Ox ∩ Dj : S ⊆ Q ∪Kj}| ,

and v1(x) is defined likewise, with the exception that, when more than α sets intersect
in a point outside K1, they are discarded.

Claim 4.9. Let x ∈ Γn, j ∈ [q] and κ an assignment to Kj. Then vj(xκ) is equal
(as a function of Q) to the maximum value of the counter v computed by N on input
x with kernel Kj and the kernel assignment κ to Kj.

Proof. Fix x ∈ Γn. Recall that when algorithm N computes v for a j ∈ {2, 3, . . . , q}
and a kernel assignment κ to Kj in Step 2a, it only increases v if it encounters a
tuple (S, aS , 1, s) where S ∈ Dj , S ⊂ Q ∪Kj and aS assigns on S the same values as
xκ does. Thus, by the definition of Ox, the algorithm N counts exactly all the tuples
(S, aS , 1, s) such that S ∈ Ox and S ⊂ Q ∪ Kj . These are precisely the sets that
comprise the collection whose cardinality is vj(xκ). Note that the same holds when
j = 1 due to the additional condition in Step 2a and the corresponding restriction in
the definition of v1(xκ).
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We now proceed to the main claims. The algorithm N only counts votes for
output 1, i.e. tuples with 1 as their third value, and hence it suffices to prove that:
(1) when f(x) = 1 and the kernel assignment is κ = x|Kj

(the value of x on the
indices in Kj) for some daisy Dj , the number of votes is high enough to cross the
threshold τj ; and that (2) when f(x) = 0, then every kernel assignment κ is such
that the number of votes is smaller than the threshold. These conditions are shown
to hold with high probability in Sections 4.4.2.1 and 4.4.2.2, respectively, and we
show how the theorem follows from them in Section 4.4.3.

4.4.2.1 Correctness on non-robust inputs

Claim 4.10. Let Q be the coordinates sampled by N and fix x ∈ Γn such that
f(x) = 1. There exists j ∈ [q] such that, with the kernel assignment κ = x|Kj

, the
vote counting function satisfies vj(xκ) = vj(x) ≥ τj with probability at least 9/10.

Proof. For ease of notation, let us fix x as in the statement and denoteO := Ox = Oxκ .
When j > 1, define the subcollection of O in Dj by Oj := Ox ∩ Dj ; when j = 1,
define O1 := (Ox ∩Dj) \ C, where C ⊆ Ox ∩D1 contains every S ∈ Ox ∩D1 for which
there exist at least α − 1 other sets in S′ ∈ Ox ∩ D1 that have the same petal as
S, i.e., such that S \ K1 = S′ \ K1. We also take n to be sufficiently large when
necessary for an inequality to hold.

For the claim to hold we require the existence of j ∈ [q] such that Oj is a
sufficiently large portion of O. Since

⋃
0<j≤qOj = O \ (O0 ∪ C), in order to achieve

this goal, we only need to bound the sizes of both O0 and C. As a first step, we
bound µx(O0) and µx(C), which give us a lower bound on µx

(⋃
0<j≤qOj

)
, which

we then use in order to lower bound
∣∣∣⋃0<j≤qOj

∣∣∣.
We start with µx(O0). All the sets in D0 are subsets of K0, and |K0| < ρn/2

by Claim 4.8. This implies that the cardinality of ∪O0 (the union of all sets in O0)
is strictly less than ρn, and consequently, by the volume lemma (Lemma 4.3, which
applies because f(x) = 1), we have µx(O0) ≤ 2σ.

We now proceed to bound µx(C). As C ⊆ D1, every set in C has exactly one
element in [n] \K1 and repeats at least α times, the cardinality of ∪C is at most
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|K1|+ |C|
α . By Claim 4.8, |K1| < ρn/2, and it follows that

|K1|+
|C|
α
<
ρn

2
+
|O|
α

≤ ρn

2
+
|µx|
α

(by Eq. 4.9, O = Ox ⊆ supp(µx))

≤ ρn

2
+ |µx| ·

ρ · σ
12 ln |Γ|

(
by Eq. 4.10, α−1 =

ρ · σ
12 ln |Γ|

)
=
ρn

2
+

6n ln |Γ|
σ

· ρ · σ
12 ln |Γ|

(
by Eq. 4.3, |µx| =

6n ln |Γ|
σ

)
≤ ρn .

Consequently, by Lemma 4.3, µx(C) ≤ 2σ.
By the definition of error rate, µx(O) ≥ 1 − σ. Since {Oj : 0 ≤ j ≤ q} is a

partition of O (because {Dj} is a partition),

µx

 ⋃
0<j≤q

Oj

 = µx(O)− µx(O0)− µx(C) ≥ 1− 5σ .

As µx is uniform, each element of the multi-collection O has weight exactly 1/|µx|.
Therefore,

q∑
j=1

|Oj | = |µx| · µx(∪j∈[q]Oj) ≥ |µx|(1− 5σ) ≥ |µx|/2 ,

where the last inequality follows from the assumption that 5σ ≤ 1/2 (which follows,
e.g., from q ≥ 3, which Lemma 4.4 ensures). Let j be such that

|Oj | ≥
|µx|
2q

; (4.11)

by averaging, such a j indeed exists. Our goal now is to show that with probability
at least 9/10, there are at least τj sets S ∈ Oj whose petal is in Q, i.e., such that
S \Kj ⊆ Q.

Instead of proving this directly on Oj , we do so on collections that form a
partition of Oj and have a useful structure. The sets in Oj are also in Dj , so that Oj

is also a daisy with kernel Kj . By Claim 4.5, for every set S ∈ Oj , there exist at most
2nmax{1,j−1}/q−1 sets S′ ∈ Oj \{S} whose petals have a non-empty intersection with
the petal of S, i.e, such that (S ∩ S′) \Kj ≠ ∅. This enables us to apply Lemma 4.2
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to Oj , partitioning it into {Si : i ∈ [t]} simple daisies of equal sizes, where

t ≤ 2nmax{1,j−1}/q . (4.12)

Thus, for every i ∈ [t],

|Si| =
|Oj |
t

. (4.13)

Let O′j be the multi-collection of all sets S ∈ Oj such that S \Kj ⊆ Q. In
the same manner, for every i ∈ [t], let S ′i be the multi-collection of all sets S ∈ Si
such that S \Kj ⊆ Q.

By construction, the collections {S ′i} are pairwise disjoint. Also, by the
definition of vj , we have vj(x) =

∣∣∣O′j∣∣∣ =
∑t

i=1 |S ′i|. Therefore, the event that
vj(x) ≤ τj can only occur if there exists i ∈ [t] such that |S ′i| ≤ τj/t.

Consequently, we obtain

Pr [vj(x) ≤ τj ] ≤ Pr
[∣∣S ′i∣∣ ≤ τj

t
for some i ∈ [t]

]
≤

t∑
i=1

Pr
[∣∣S ′i∣∣ ≤ τj

t

]
(union bound)

≤ tPr
[∣∣S ′1∣∣ ≤ τj

t

]
. (all Si have equal size)

We show afterwards that the probability of the event |S ′1| ≤
τj
t is strictly less

than 1/10t, which by the inequality above implies the claim.
We later use the Chernoff bound with S1, and hence we start by bounding

E[|S ′1|] from below. Recall that the petal of every set S ∈ S1 ⊆ Dj has size j (i.e.,
|S \Kj | = j), and therefore is in S ′1 with probability exactly pj . So

E[
∣∣S ′1∣∣] = |S1|pj = |Oj |pj

t
(by Eq. 4.13, |S1| = |Oj |/t)

≥ |µx|p
j

2tq

(
by Eq. 4.11, |Oj | ≥

|µx|
2q

)
(4.14)

=
τj
t
.

(
by Eq. 4.6, τj =

|µx|
2q
· pj
)

Thus,

Pr

[∣∣S ′1∣∣ ≤ 1

2
E[
∣∣S ′1∣∣]] ≥ Pr

[∣∣S ′1∣∣ ≤ τj
t

]
.

Next we show that the probability of the event |S ′1| ≤ 1
2E[|S

′
1| is at most 1/10t, which

concludes the proof. Since S1 is a simple daisy, the petals of sets in S1 are pairwise
disjoint and hence the events S \Kj ⊂ Q, for every S ∈ S1, are all independent. This
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enables us to use the Chernoff bound to get that

Pr

[∣∣S ′1∣∣ ≤ 1

2
E[
∣∣S ′1∣∣]]

≤ exp

(
−E[|S ′1|]

8

)
(Chernoff bound)

≤ exp

(
−|µx|p

j

16tq

)
(by Eq. 4.14)

≤ exp

(
−6n ln |Γ|

σ
· p

jn

16tq

)
(by Eq. 4.3)

≤ exp

(
−4q · 3 ln |Γ|p

jn

8tq

)
(by Eq. 4.2)

≤ exp

(
−3 ln |Γ|pj

4
· n1−

max{1,j−1}
q

)
(by Eq. 4.12)

≤ 1

10t
exp

(
−γj · 3 ln |Γ|

4
· n1−

max{1,j−1}
q

− j

2q2 + ln(20t)

) (
p = γ · n−1/2q2

)
≤ 1

10t
exp

(
−γ · 3 ln |Γ|

4
· n

1
q
− 1

2q + ln(10t)

)
(1 ≤ j ≤ q)

≤ 1

10t
,

where the last inequality follows for n sufficiently large because ln t ≤ max{1,j−1}
q lnn+

1 = o(n1/2q) and γ · ln |Γ| = Ω(1).

Note that, although a success probability of 9/10 suffices to ensure correctness
of a single run of N , Claim 4.10 yields a much stronger result: the failure probability
is exponentially small. This is because Claim 4.10 does not enumerate over kernel
assignments. Moreover, the analysis for the case j = 1 can be improved significantly
(as will be necessary in Claim 4.11), but this does not yield in an overall improvement
in our results.

4.4.2.2 Correctness on robust inputs

In the following claim we note that |K1|/n-robustness suffices for the analysis, since
it ensures all kernel assignments κ lead xκ to also output f(x) = 0.

Claim 4.11. Suppose the input x ∈ Γn is |K1|/n-robust for M ′ and f(x) = 0. Then,
for every j ∈ [q] and every assignment κ to the kernel Kj, the vote count satisfies
vj(xκ) < τj with probability at least 1− |Γ||Kj |/(10q).

Proof. For ease of notation, fix j ∈ [q], an assignment κ to Kj and x as in the
statement, and let O := Oxκ . If j > 1, define the subcollection of O in Dj by
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Oj := O ∩Dj ; if j = 1, define O1 := (O ∩D1) \ C, where C ⊆ O ∩ D1 contains every
S ∈ O ∩D1 for which there exist at least α− 1 other sets S′ ∈ O ∩D1 that have the
same petal as S, i.e., such that S \K1 = S′ \K1. We also take n to be sufficiently
large when necessary for an inequality to hold.

Note that xκ may not be in the domain of f , but the robustness of x allows
us to bound the size of O = Oxκ regardless. Moreover, since f(x) = 0, we know
that µx(O) ≤ σ. As µx is uniform, each element of the multi-collection has O weight
exactly 1/|µx|. Therefore, for every i ∈ [q],

|Oi| ≤ σ|µx| . (4.15)

Our goal now is, for every j ∈ [q], to upper bound the probability that there
are at least τj sets S ∈ Oj whose petal is in Q, i.e., such that S \Kj ⊆ Q.

For every j ∈ [q], let βj be such that for every set S ∈ Oj there exist at
most βj − 1 other distinct sets S′ ∈ Oj whose petal intersects the petal of S, i.e.,
(S \K1) ∩ (S′ \K1) ̸= ∅.

For the time being let us fix j ∈ [q]. By applying Lemma 4.2, we partition Oj

into {Si : i ∈ [βj ]}, such that for every i ∈ [q],

|Si| =
|Oi|
βj
≤ σ|µx|

βj
, (4.16)

where the inequality follows from Eq. 4.15, and each Si is a simple daisy of size
|O1|/βj .

Let O′j be the multi-collection of all sets S ∈ Oj such that S \Kj ⊆ Q. In
the same manner, for every i ∈ [βj ], let S ′i be the multi-collection of all sets S ∈ Si
such that S \Kj ⊆ Q. By the definition of vj and the fact that {Si} is a partition

vj(xκ) =
∣∣O′j∣∣ = βj∑

i=1

∣∣S ′i∣∣.
Since the event v1(xκ) ≥ τj can only occur if |S ′i| ≥

τj
βj

for some i ∈ [βj ], we obtain

Pr [vj(x) ≥ τj ] ≤ Pr

[∣∣S ′i∣∣ ≥ τj
βj

for some i ∈ [βj ]

]

≤
βj∑
i=1

Pr

[∣∣S ′i∣∣ ≥ τj
βj

]
(union bound)

≤ βj · Pr
[∣∣S ′1∣∣ ≥ τj

βj

]
. (all Si have equal size)
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Now our goal is to show that the event that |S ′1| ≥
τj
βj

happens with probability

at most |Γ|
−|K1|

10qβj
. Note that this is sufficient for proving the claim because plugging

this into the previous equation gives Pr [vj(x) ≥ τj ] ≤ |Γ|−|Kj |/(10q).
Since the sets in S1 are pairwise disjoint, we can and do use the Chernoff

bound. In order to do so we first bound the value of E[|S ′1|] from above. Recall that
the petal of every set S ∈ Sj ⊆ Dj has size j (i.e., |S \Kj | = j), and therefore S is
in S ′j with probability exactly pj . So,

E[
∣∣S ′1∣∣] = |S1| · pj

≤ σ · |µx| · pj

βj
(by Eq. 4.16)

=
τj
2βj

.

(
by Eq. 4.2 and Eq. 4.6, σ =

1

4q
and τj =

|µx|
2q
· pj
)

We now use the Chernoff bound, stopping at a partial result and providing
separate analyses for the cases j = 1 and j > 1.

Pr

[∣∣S ′1∣∣ ≥ τj
βj

]
= Pr

[∣∣S ′1∣∣ ≥ τj
βjE[|S ′1|]

E[
∣∣S ′1∣∣]]

≤ exp

(
−
(

τj
βjE[|S ′1|]

− 1

)2

· E[|S
′
1|]

3

)
(Chernoff bound)

≤ exp

(
− τj
3βj

)
(explained aferwards)

= exp

(
−|µx| · p

j

6qβj

)
(by Eq. 4.6)

= exp

(
− ln |Γ|npj

qβj · σ

)
, (by Eq. 4.3)

where the second inequality follows from
(

τj
βjE[|S′1|]

− 1

)2

· E[|S
′
1|]

3 being minimal when

E[|S ′1|] is at its upper bound of τj
2βj

. We next proceed to the first of the two cases.
Take j = 1. In this case, by the construction of the daisy partition (Lemma 4.1),

every set S ∈ O1 has a petal S \K1 of cardinality exactly 1. By the definition of O1,
each set S ∈ O1 has at most α− 1 other sets S′ ∈ O1 whose petal intersects the petal
of S, i.e., (S \K1) ∩ (S′ \K1) ̸= ∅ (and thus S \K1 = S′ \K1, since both petals
have size 1). Therefore, at most β1 − 1 = α − 1 distinct sets of O1 intersect each
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S ∈ O1, which follows from Eq. 4.10. Now,

exp

(
− ln |Γ|np
qα · σ

)
= exp

(
−n · p · ρ

12q

)
(by Eq. 4.10)

= exp

(
−γ · ρ

12q
· n1−1/2q2

) (
p = γ · n−1/2q2

)
=

1

10q
exp

−γ · n1−1/q · ρ · n 1
q
− 1

2q2

12q
+ ln(10q)


≤ 1

10q
exp

(
− ln |Γ| · γ · q2 · n1−1/q

)
(large enough n)

≤ |Γ|
−|K1|

10q
,

where the last inequality follows because |K1| ≤ γ · q2 · n1−1/q by Claim 4.8 (and
ln |Γ| ≤ log n).

Now, take j > 1. By Claim 4.5, βj = 2h(j − 1) = 2n(j−1)/q, which implies
the first equality in the following.

exp

(
− ln |Γ| · npj

qβj · σ

)
= exp

(
− ln |Γ| · npj

2q · σ
· n−

j−1
q

)
= exp

(
−2 ln |Γ| · pj · n1−

j−1
q

)
(by Eq. 4.2)

= exp

(
−2 ln |Γ| · γj · n1−

j−1
q
− j

2q2

) (
p = γ · n−1/2q2

)
= exp

(
−2 ln |Γ| · γj · n1−

j
q
+ 2q−j

2q2

)
≤ 1

10q
exp

(
− ln |Γ| · γ · n1−

j
q · 2n

1
2q + ln(10q)

)
(1 < j ≤ q)

≤ 1

10q
exp

(
− ln |Γ| · γ · q2 · n1−j/q

)
(large enough n)

≤ |Γ|
−|Kj |

10q
,

where the last inequality follows because |Kj | ≤ γ · q2 · n1−j/q by Claim 4.8.

4.4.3 Concluding the proof

We conclude the proof Theorem 4.7 by applying the two previous claims. Recall
that we transformed a ρ-robust local algorithm M for a function f , with query
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complexity ℓ, into a ρ-robust local algorithm M ′ with query complexity q = O(ℓ log ℓ)

and suitable error rate. Then we transformed M ′ into a sample-based algorithm N

with sample complexity n1−1/O(q2) = n1−1/O(ℓ2 log2 ℓ), an upper bound guaranteed by
the sampling step (Step 1) in the construction of N . It remains to show correctness
of the algorithm on every input in the domain of f .

We first consider errors that may arise in the sampling step. By the Chernoff
bound, it chooses more than 2pn = 2n1−j/(2q

2) points to query and thus outputs
arbitrarily with probability at most 1/10. Otherwise, it proceeds to the next steps.

In the next part of the proof we analyse vj(x) instead of analyzing v (of
Step 2a) in algorithm N ; this is sufficient, since by Claim 4.9, they are distributed
identically over Q.

Suppose the input x ∈ Γn is such that f(x) = 0. Since x is ρ-robust, it is in
particular |K1|/n-robust (because |K1| = o(n)). Then Claim 4.11 ensures that, for
every j ∈ [q] and kernel assignment κ to Kj , the vote counter satisfies vj(xκ) ≥ τj

with probability at most |Γ|−|Kj |/(10q). A union bound over all j ∈ [q] and |Γ||Kj |

assignments to the kernel Kj ensures the probability this happens, causing N to
output 1 in the threshold check step (Step 2b), is at most 1/10; otherwise, N will
enumerate over every assignment and then (correctly) output 0 in Step 3.

Now suppose x ∈ Γn is such that f(x) = 1. Then Claim 4.10 ensures that,
for some j ∈ [q], the kernel assignment κ = x|Kj

will make the vote count satisfy
vj(x) ≥ τj with probability at least 9/10, in which case N (correctly) outputs 1 in
the threshold check step (Step 2b).

Therefore, N proceeds beyond the sampling step with probability 9/10 and
outputs correctly (due to Claim 4.11 and Claim 4.10) with probability at least
9/10− 1/10 ≥ 2/3. This concludes the proof of Theorem 4.7.

Remark 4.8. Notice that the claims actually prove a stronger statement: the failure
probability is not merely 1/3, but exponentially small. For each j ∈ [q], the error
probability is

exp

(
−Ω

(
n
1− j

q
+ 2q−j

2q2

))
,

but it must withstand a union bound over exp
(
O
(
n1−j/q

))
events (corresponding to

the assignments to the kernel Kj). The smallest slackness is in the case j = q, where
the success probability is still exp

(
−Ω

(
n1/2q

))
; this implies that correctness holds

for exp
(
c · n1/2q

)
many executions, if the constant c is sufficiently small. Therefore,

the same samples can be reused for exponentially many runs of possibly different
algorithms.
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4.5 Applications

In this section, we derive applications from Theorem 4.7 which range over three fields
of study: property testing, coding theory, and probabilistic proof systems. We first
give a brief overview of the applications in the following paragraphs, then proceed to
the proofs in Sections 4.5.1 to 4.5.3.

Query-to-sample tradeoffs for adaptive testers. The application to prop-
erty testing is an immediate corollary of Theorem 4.7: since an ε/2-tester is a
(ε/2, 0)-robust algorithm for the problem of testing with proximity parameter ε/2,
Corollary 4.1 shows that any ε/2-tester making q adaptive queries can be transformed
into a sample-based ε-tester with sample complexity n1−1/O(q2 log2 q). In addition, we
also show an application to multi-testing (Corollary 4.2).

Relaxed LDC lower bound. By a straightforward extension of our definition
of robust local algorithms to allow for outputting a special failure symbol ⊥, our
framework captures relaxed LDCs (see Section 4.5.2). We remark that, although
standard LDCs have two-sided robustness, the treatment of relaxed LDCs is analogous
to one-sided robust algorithms.

By applying Theorem 4.7 to a relaxed local decoder once for each bit to
be decoded, we obtain a global decoder that decodes uncorrupted codewords with
n1−1/O(q2 log2 q) queries; by a simple information-theoretic argument, we obtain a rate
lower bound of n = k1+1/O(q2 log2 q) for relaxed LDCs (see Corollaries 4.3 and 4.4).

Tightness of the separation between MAPs and testers. Theorem 4.7 applies
to the setting of Merlin-Arthur proofs of proximity (MAPs) via a description of MAPs
as coverings by partial testers (Claim 5.1). In Section 4.5.3, we show that the
existence of an adaptive MAP for a property Π with query complexity q and proof
length m implies the existence of a sample-based tester for Π with sample complexity
m · n1−1/O(q2 log2 q) (Theorem 4.11).

This implies that there exists no property admitting a MAP with query
complexity q = O(1) and logarithmic proof length (in fact, much longer proof length)
that requires at least n1−1/ω(q2 log

2 q) queries for testers, showing the (near) tightness
of the separation from [GR18].

Optimality of Theorem 4.7. We conclude Section 4.5.3 with a direct corollary
of the tightness of the aforementioned separation between MAPs and testers of
[GR18], we obtain that the general transformation in Theorem 4.7 is optimal, up to
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a quadratic gap in the dependency on the sample complexity. This follows simply
because a transformation with smaller sample complexity could have been used to
improve Theorem 4.11, yielding a tester with query complexity that contradicts the
lower bound (see Theorem 4.12).

4.5.1 Query-to-sample tradeoffs for adaptive testers

Recall that a property tester T for property Π ⊆ Γn is an algorithm that receives
explicit access to a proximity parameter ε > 0, query access to x ∈ Γn and approxi-
mately decides membership in Π: it accepts if x ∈ Π and rejects if x is ε-far from Π,
with high probability.

By Claim 4.1, an ε-tester with ε ∈ (0, 1) is an ε-robust local algorithm that
computes the function f : Π ∪B2ε(Π)→ {0, 1} defined as follows.

f(x) =

{
1, if x ∈ Π

0, if x ∈ B2ε(Π).

Note, moreover, that a local algorithm that solves f is by definition a 2ε-
tester, accepting elements of Π and rejecting points that are 2ε-far from it with high
probability. A direct application of Theorem 4.7 thus yields the following corollary,
which improves upon the main result of [FLV15], by extending it to the two-sided
adaptive setting.

Corollary 4.1. For every fixed ε > 0, q ∈ N, any ε-testable property of strings in Γn

with q queries admits a sample-based 2ε-tester with sample complexity n1−1/O(q2 log2 q).

This also immediately extends an application to multitesters in [FLV15]. By
standard error reduction, for any k ∈ N, an increase of the sample complexity by
a factor of O(log k) ensures each member of a collection of k sample-based testers
errs with probability 1/(3k). A union bound allows us to reuse the same samples
for all testers, so that all will output correctly with probability 2/3. Taking k =

exp
(
n1/ω(q

2 log2 q)
)
, the sample complexity becomes n1−1/O(q2 log2 q) · n1/ω(q2 log2 q) =

o(n), which yields the following corollary.

Corollary 4.2. If a property Π ⊆ Γn is the union of k = exp
(
n1/ω(q

2 log2 q)
)

properties Π1, . . . ,Πk, each ε-testable with q queries, then Π is 2ε-testable via a
sample-based tester with sublinear sample complexity.

A tester for the union simply runs all (sub-)testers, accepting if and only if at
least one of them accepts. A proof for a generalisation of this corollary, which holds
for partial testers, is given in the Section 4.5.3.
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4.5.2 Stronger relaxed LDC lower bounds

Relaxed LDCs are codes that relax the notion of LDCs by allowing the local decoder
to abort on a small fraction of the indices, yet crucially still avoid errors. This
seemingly modest relaxation turns out to allow for dramatically better parameters
(an exponential improvement on the rate of the best known O(1)-query LDCs).
However, since these algorithms are much stronger, obtaining lower bounds on
relaxed LDCs is significantly harder than on standard LDCs. Indeed, the first lower
bound on relaxed LDCs [GL21] was only shown more than a decade after the notion
was introduced; this bound shows that to obtain query complexity q, a relaxed LDC
C : {0, 1}k → {0, 1}n must have blocklength

n ≥ k
1+ 1

O(22q ·log2 q) ,

In this section, we use Theorem 4.7 to obtain an improved lower bound with
an exponentially better dependency on the query complexity. We begin by recalling
the definition of relaxed LDCs.

Definition 4.12 (Definition 5.4, restated). A code C : {0, 1}k → {0, 1}n whose
distance is δC is a q-local relaxed LDC with success rate ρ, decoding radius δ ∈ (0, δC/2)

and error rate σ ∈ (0, 1/3] if there exists a randomised algorithm D, known as a
relaxed decoder, that, on input i ∈ [k], makes at most q queries to an oracle w and
satisfies the following conditions.

1. Completeness: For any i ∈ [k] and w = C(x), where x ∈ {0, 1}k,

Pr[Dw(i) = xi] ≥ 1− σ .

2. Relaxed Decoding: For any i ∈ [k] and w ∈ {0, 1}n that is δ-close to a (unique)
codeword C(x),

Pr[Dw(i) ∈ {xi,⊥}] ≥ 1− σ .

3. Success Rate: There exists a constant ρ > 0 such that, for any w ∈ {0, 1}n that
is δ-close to a codeword C(x), there exists a set Iw ⊆ [k] of size at least ρk such
that for every i ∈ Iw,

Pr[Dw(i) = xi] ≥ 2/3 .

Remark 4.9. The first two conditions imply the latter, as shown by [BGH+06].
Therefore, it is not necessary to show the success rate condition when verifying that
an algorithm D is a relaxed local decoder.
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Note that, wheneverDw outputs ⊥, it detected that the input is not valid, since
it is inconsistent with any codeword C(x). We slightly generalise local algorithms
(Definition 4.2) to capture this behaviour, by allowing them to output ⊥ as well as
the correct function evaluation f(z, x) (except for a prescribed set of valid inputs).
Formally,

Definition 4.13 (Relaxed local algorithm). Let Γ be a finite alphabet, Z a fi-
nite set and {Pz : z ∈ Z} a family of sets Pz ⊆ Γn indexed by Z. With P :=

{(z, x) : z ∈ Z, x ∈ Pz}, let f : P → {0, 1} be a partial function.
A relaxed q-local algorithm M for computing f with valid input set V ⊆ Γn

and error rate σ receives explicit access to z ∈ Z, query access to x ∈ Pz, makes at
most q queries to x and satisfies

Pr
[
Mx(z) ∈ {f(z, x),⊥}

]
≥ 1− σ.

Moreover, if x ∈ V , then M satisfies

Pr[Mx(z) ∈ f(z, x)] ≥ 1− σ.

We shall also need to generalise the notion of robustness (Definition 4.3)
accordingly.

Definition 4.14 (Robustness). Let ρ > 0. A local algorithm M for computing
f : P → {0, 1} is ρ-robust at the point (z, x) ∈ P if Pr[Mw(z) ∈ {f(z, x),⊥}] ≥ 1−σ
for all w ∈ Bρ(x). We say that M is (ρ0, ρ1)-robust if, for all z ∈ Z and b ∈ {0, 1},
M is ρb-robust at every x such that f(z, x) = b.

We remark that robustness for algorithms that allow aborting allows the
correct value to change to ⊥ (but, crucially, not to the wrong value) even if only
one bit is changed. This makes the argument more involved than an argument for
LDCs, and indeed, our theorem for relaxed LDCs relies on the full machinery of
Theorem 4.7.

Note that an algorithm that ignores its input and always outputs ⊥ fits both
definitions above, but has no valid inputs and clearly does not display any interesting
behaviour. We also remark that the set of valid inputs captures completeness (but
not the success rate) in the case of relaxed LDCs.

With these extensions, a relaxed local decoder D with decoding radius δ fits
the definition of a (relaxed) local algorithm that receives i ∈ [k] as explicit input,
where the code C comprises the valid inputs and every x ∈ C is δ-robust for D.
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While a relaxed local algorithm is very similar in flavour to a standard
local algorithm, it may not be entirely clear whether a transformation analogous to
Theorem 4.7 holds in this case as well. We next show that one indeed does: with
small modifications to the algorithm constructed in Section 4.4.1, we leverage the
same analysis of Section 4.4.2 to prove the following variant of Theorem 4.7.

Theorem 4.10. Suppose there exists a (ρ0, ρ1)-robust relaxed local algorithm M

for computing the function f : P → {0, 1} (where Z × Γn) with query complexity
ℓ = O(1) and ρ0, ρ1 = Ω(1). Let V ⊆ Γn be the valid inputs of M . Then, there exists
a sample-based relaxed local algorithm N for f with sample complexity n1−1/O(ℓ2 log2 ℓ)

with the same set V of valid inputs.

Proof. Throughout the proof, we assume the explicit input to be fixed and omit
it from the notation. First, note that error reduction (Claim 4.6) and randomness
reduction (Claim 4.7) apply in the relaxed setting: the analysis is identical on valid
inputs, and holds likewise for the remainder of the domain of f (with correctness of
M relaxed to be Mx ∈ {f(x),⊥}). Thus Lemma 4.4 enables the transformation of
M into another robust algorithm M ′ with small error rate that uniformly samples a
decision tree from a multi-collection of small size.

Recall that the construction of the sample-based algorithm in Section 4.4.1
uses a collection of triplets obtained from the behaviour of M ′ when it outputs
1. A corresponding collection can be obtained for the case where M ′ outputs 0.
Denote by Tb the collection that corresponds to output b ∈ {0, 1}, and let Nb be the
sample-based algorithm that

• uses the triplets Tb to construct its daisy partition in the preprocessing step;
• outputs b if the counter crosses the threshold in Step 2b; and
• outputs ⊥ in Step 3 if the threshold is never reached;

but is otherwise the same as the construction of Section 4.4.1.
The analysis of Section 4.4.2 applies to Nx

b : if x ∈ V , the analysis of Claim 4.10
is identical; while if x is robust and f(x) = ¬b, Claim 4.11 requires a lower bound on
the probability that M ′ outputs b when its input is x (and enables an application
of the volume lemma), which holds by the definition of error rate of a relaxed local
algorithm. Therefore, the probability of each the following events is bounded by
1/10:

(i) Nx
b outputs arbitrarily in the sampling step;

(ii) Nx
b outputs ⊥ when f(x) = b; and

(iii) Nx
b outputs b when x is robust and f(x) = ¬b.
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Finally, the relaxed sample-based algorithm N simply executes the sampling
step of N0 then the enumeration steps of N0 and N1 on these samples, outputs b
if one of Nb outputs b, and outputs ⊥ otherwise. Then, Nx = f(x) if x ∈ V and
Nx = ⊥ if x /∈ V , with probability 7/10 ≥ 2/3.

By casting a relaxed decoder as a robust relaxed local algorithm and applying
Theorem 4.10, we obtain the following corollary.

Corollary 4.3. Any binary code C : {0, 1}k → {0, 1}n that admits a relaxed local
decoder D with decoding radius δ and query complexity q = O(1) also admits a
sample-based relaxed local decoder D′ with decoding radius δ/2 and sample complexity
n1−1/O(q2 log2 q).

We are now ready to state the following corollary, which improves on the
previous best rate lower bound for relaxed LDCs [GL21] by an application of the
theorem above to the setting of relaxed local decoding. This follows from the
construction of a global decoder (which is able to decode the entire message) that is
only guaranteed to succeed with high probability when its input is a perfectly valid
codeword.

Corollary 4.4. Any code C : {0, 1}k → {0, 1}n that is relaxed locally decodable with
q = O(1) queries satisfies

n = k
1+ 1

O(q2 log2 q) .

Proof. Let D′ be the sample-based relaxed LDC with sample complexity q′ obtained
by Corollary 4.3 from a relaxed LDC with query complexity q for the code C. Reduce
the error rate of D′ to 1/3k by repeating the algorithm O(log k) times and taking
the majority output, thus increasing the sample complexity to O(q′ · log k) = n1−1/t

with t = O(q2 log2 q).
Now, consider the global decoder G defined as follows: on input w, execute the

sampling stage once and the enumeration stages of Dw(1), . . . , Dw(k) on the same
samples. A union bound ensures that, with probability at least 2/3, the outputs
satisfy Dw(i) = xi for all i if w = C(x).

The global decoder G obtains k bits of information from n1−1/t bits with
probability above 1/2. Information-theoretically, we must have

k ≤ n1−1/t

2
=
n

t−1
t

2
,

so that n ≥ 2k1+
1

t−1 . Since t = O(q2 log2 q), we have n = k1+1/O(q2 log2 q).
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4.5.3 A maximal separation between testers and proofs of proximity

Recall that a Merlin-Arthur proof of proximity (MAP, for short) for property Π is
a local algorithm that receives explicit access to a proximity parameter ε > 0 and
a purported proof string π, as well as query access to a string x ∈ Γn. It uses the
information encoded in π to decide which coordinates of x to query, accepting if
x ∈ Π and π is a valid proof for x, and rejecting if x is ε-far from Π. (In particular,
a MAP with proof length 0 is simply a tester.) In Claim 5.1, we showed that MAPs
and coverings by partial testers are equivalent, a fact that we shall use shortly.

As discussed in the Section 1.1, one of the most fundamental questions
regarding proofs of proximity is their relative strength in comparison to testers;
that is, whether verifying a proof for an approximate decision problem can be done
significantly more efficiently than solving it. This can be cast as an analogue of the
P versus NP question for property testing.

Fortunately, in the setting of property testing, the problem of verification
versus decision is very much tractable: one of the main results in [GR18] shows
the existence of a property Π which: (1) admits a MAP with proof length O(log n)
and query complexity q = O(1); and (2) requires at least n1−1/Ω(q) queries to be
tested without access to a proof. (The lower bound of [GR18] is stated in a slightly
weaker form. However, it is straightforward to see that the stronger form holds; see
discussion at the end of this section.)

While this implies a nearly exponential separation between the power of testers
and MAPs, it remained open whether the aforementioned sublinear lower bound on
testing is an artefact of the techniques, or whether it is possible to obtain a stronger
separation, where the property is harder for testers.

Claim 5.1 and Theorem 4.7 allow us to prove the following corollary, which
shows that the foregoing separation is nearly tight.

Theorem 4.11. If a property Π ⊆ Γn admits a MAP with query complexity q, proof
length m and proximity parameter ε = Ω(1), then it admits a sample-based 2ε-tester
with sample complexity m · n1−1/O(q2 log2 q).

Applying Theorem 4.11 to the special case of MAPs with logarithmic proof
length, we obtain a sample-based tester with sample complexity n1−1/O(q2 log2 q),
showing that the separation in [GR18] is nearly optimal, and in particular that there
cannot be a fully exponential separation between MAPs and testers.

Proof of Theorem 4.11. Let Π be a property and T be a MAP with proof length
m as in the statement. By Claim 5.1, there exists a collection of partial testers
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{Ti : i ≤ |Γ|m} with query complexity q that satisfy the following. Each Ti accepts
inputs in a property Πi and rejects inputs that are ε-far from Π, with Π ⊆ ∪iΠi.
By applying Corollary 4.1 to each of these testers, we obtain a collection of sample-
based testers {Si} with sample complexity q′ = n1−1/O(q2 log2 q) for the same partial
properties, but which only reject inputs that are 2ε-far from Π.

The execution of each of the Si proceeds in two steps, as defined in Section 4.4.1:
sampling (Step 1) and enumeration (Step 2). Note that the sampling step is exactly
the same for every Si.

Let k = O(m log |Γ|) such that taking the majority output from k repetitions
of Si yields an error rate of 1/(3|Γ|m). We define a new sample-based algorithm S

that repeats the following steps k times:

1. Execute both steps of S1 (sampling and enumeration), recording the output.

2. For all 1 < i ≤ |Γ|m, only execute the enumeration step of Si on the samples
obtained in Item 1, and record the output.

After all k iterations have finished, check if at least k/2 outputs of Si were 1 for some
i. If so, output 1, and output 0 otherwise.

First suppose S receives an input x ∈ Π, and let i ≤ |Γ|m such that x ∈ Πi.
Then the majority output of the enumerations steps of Si is 1 with probability
1− 1/(3|Γ|m) ≥ 2/3. Now suppose S receives an input x that is 2ε-far from Π. Then,
for each i, the majority output of the enumeration step of Si is 1 with probability
at most 1/(3|Γ|m). A union bound over all i ≤ |Γ|m ensures this happens with
probability at least 1/3, in which case S correctly outputs 0.

S is therefore a 2ε-tester for the property Π with sample complexity k · q′ =
m · n1−1/O(q2 log2 q) (recall that log |Γ| ≤ log n), and the theorem follows.

Interestingly, as a direct corollary of Theorem 4.11, we obtain that the general
transformation in Theorem 4.7 is optimal, up to a quadratic gap in the dependency
on the sample complexity, as a transformation with a smaller sample complexity
could have been used to transform the MAP construction in the MAPs-vs-testers
separation of [GR18], yielding a tester with query complexity that contradicts the
lower bound in that result.

Theorem 4.12. There does not exist a transformation that takes a robust local algo-
rithm with query complexity q and transforms it into a sample-based local algorithm
with sample complexity at most n1−1/o(q).

Proof. Let Π be the encoded intersecting messages property considered in [GR18,
Section 3.1], for which it was shown that Π has a MAP with query complexity q and
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logarithmic proof complexity, but every tester for Π requires at least n1−1/Ω(q) queries.
Suppose towards contradiction that a transformation as in the hypothesis exists.
Then, applying the transformation to the aforementioned MAP (as in Theorem 4.11)
yields a tester for Π with query complexity n1−1/o(q), in contradiction to the lower
bound.

On the lower bound in [GR18]. The separation between MAPs and testers in
[GR18] is proved with respect to a property of strings that are encoded by relaxed
LDCs; namely, the encoded intersecting messages property, defined as

EIMC =

{(
C(x), C(y)

)
:

x, y ∈ {0, 1}k, k ∈ N and
∃i ∈ [k] s.t. xi ̸= 0 and yi ̸= 0

}
,

where C : {0, 1}k → {0, 1}n is a code with linear distance, which is both a relaxed
LDC and an LTC. In [GR18] it is shown that there exists a MAP with proof length
O(log n) and query complexity q = O(1), and crucially for us, that any tester requires
Ω(k) queries to be tested without access to a proof. The best constructions of
codes that satisfy the aforementioned conditions [BGH+06, CGS22, AS21] achieve
blocklength n = O(k1+1/q) = k1+1/Ω(q), and hence the stated lower bound follows.
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Chapter 5

Quantum proofs of proximity

Overview

We initiate the systematic study of QMA algorithms in the setting of property
testing, to which we refer as QMA proofs of proximity (QMAPs). These
are quantum query algorithms that receive explicit access to a sublinear-size
untrusted proof and are required to accept inputs having a property Π and
reject inputs that are ε-far from Π, while only probing a minuscule portion of
their input.
We investigate the complexity landscape of this model, showing that QMAPs can
be exponentially stronger than both classical proofs of proximity and quantum
testers. To this end, we extend the methodology of Blais, Brody, and Matulef
(Computational Complexity, 2012) to prove quantum property testing lower
bounds via reductions from communication complexity. This also resolves a
question raised in 2013 by Montanaro and de Wolf (cf. Theory of Computing,
2016).
Our algorithmic results include an algorithmic framework that enables quantum
speedups for testing an expressive class of properties, namely, those that are
succinctly decomposable. A consequence of this framework is a QMA algorithm
to verify the parity of an n-bit string with O(n2/3) queries and proof length.
We also show a QMA algorithm for testing graph bipartitneness, a property
that lies outside of this family and yet admits a quantum speedup.

Organisation

The rest of this chapter is organised as follows. QMA proofs of proximity are formally
defined in Section 5.1, and we prove our complexity class separations in Section 5.2
(which Sections 5.7 and 5.8 complement with separations implied by known results).
Section 5.3 proves lower bounds for QMAPs and concludes the complexity-theoretic
part of the chapter. Proceeding to the algorithmic part, we show in Section 5.4 that

111



QMAP protocols enable speedups for proximity-oblivious MAPs. In Section 5.5, we
define decomposability and prove the bulk of our algorithmic results, including exact
decision problems as a special case. Finally, in Section 5.6 we show a QMAP protocol
for testing graph bipartiteness.

5.1 Definition

This section provides a formal definition of QMAPs.
A quantum Merlin-Arthur proof of proximity (QMAP) for a property Π =

⋃
Πn

is a proof system consisting of a quantum algorithm V , called a verifier, that is given
as explicit input an integer n ∈ N and a proximity parameter ϵ > 0. It has oracle
access to a unitary U ∈ V ⊆ U(2n) acting on n qubits, which belongs to a universe
V with an associated distance measure.1 Furthermore, the verifier receives a p-qubit
quantum state ρ explicitly as a purported proof that U ∈ V.

The verifier V receives n and ε as inputs, and outputs a sequence of unitary
operators V0 . . . Vq that satisfies the two following conditions.

1. Completeness. For every n ∈ N and U ∈ Πn, there exists a p-qubit quantum
state |ψ⟩ such that,2 for every proximity parameter ϵ > 0,

P
[
V U (n, ε, |ψ⟩) = 1

]
≥ 2/3 .

Equivalently, some p-qubit quantum state |ψ⟩ satisfies

∥(|1⟩ ⟨1| ⊗ I)W (|ψ⟩ ⊗ |0⟩)∥2 ≥ 2/3 ,

where |0⟩ is the initial state of the verifier and W the unitary obtained by
interspersing q calls to the oracle U between the Vi; that is, W = Vq(U ⊗
I)Vq−1 . . . (U ⊗ I)V0.

2. Soundness. For every n ∈ N, ε > 0 and p-qubit quantum state |ψ⟩, if U ∈ U(2n)
is ε-far from Πn, then

P
[
V U (n, ε, |ψ⟩) = 1

]
≤ 1/3 .

1Note that this definition generalises classical properties, where V = {Ux : x ∈ {0, 1}n} ⊂ U(2n+1),
the unitary Ux acts as Ux |i⟩ |b⟩ = |i⟩ |b⊕ xi⟩, and the distance between Ux and Uy is the Hamming
distance between x and y.

2While the proof can also be a mixed state, assuming it to be pure is without loss of generality;
see Remark 5.1.
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Equivalently, every p-qubit quantum state |ψ⟩ satisfies

∥(|1⟩ ⟨1| ⊗ I)W (|ψ⟩ ⊗ |0⟩)∥2 ≤ 1/3 ,

where W = Vq(U ⊗ I)Vq−1 . . . (U ⊗ I)V0.

The query complexity of a QMAP is number of times the verifier calls the
oracle U . More precisely, the query complexity is q = q(n, ε) if, for every n ∈ N, ϵ > 0

and U ∈ U(2n), the verifier makes at most q queries to the input. Its proof complexity
is p = p(n, ε) if, for every n ∈ N and U ∈ Πn, there exists a 2p-dimensional quantum
state |ψ⟩ satisfying both of the above conditions.

Definition 5.1 (QMAP complexity class). Fix a universe set of unitary operators
V and distance measure d : V × V → [0, 1]. QMAP(ε, p, q) is the class of properties
Π ⊆ V that admit a verifier for proximity parameter ε with query complexity q and
proof complexity p..

The complexity class QCMAP(ε, p, q) is defined as above, with the additional
restriction that the proof be classical, i.e., that the p-qubit quantum state given as
proof is a computational basis state.

V0

U

V1

U U

Vq

|ψ⟩
⊗
|0⟩

· · ·

...

Figure 5.1: Schematic of a QMAP protocol that receives a proof state |ψ⟩ and makes
q queries to a unitary U .

We also denote the class of properties that are ε-testable by quantum testers
with q queries as QPT(ε, q), that is, QPT(ε, q) := QMAP(ε, 0, q).

Remark 5.1 (Proofs are pure states). Without loss of generality, the quantum state
given as the proof is a pure state on p qubits, i.e., a rank one positive semi-definite
matrix. To see why, note that, if some mixed state ρ =

∑
pi |ψi⟩ ⟨ψi| causes the

verifier to accept with probability 2/3, then, by convexity, there exists a state |ψk⟩ in
that mixture that would also cause the verifier to output 1 with probability at least
2/3. Hence, the proof can be the pure state |ψk⟩. Likewise, if no pure state can make
the verifier accept with probability larger than 1/3, the same holds for mixed states.
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5.2 Complexity separations

Armed with a formal definition of QMAPs, we begin to chart the landscape of
complexity classes to which quantum proofs of proximity belong. In Section 5.2.1,
we provide definitions that will be necessary in the remainder of the section, mainly
pertaining to coding theory.

Our main goal is to prove Theorem 5, namely, that QMAPs can exploit
quantum resources and the availability of a proof to gain expressivity that neither
can provide separately. This theorem follows from the incomparabilty between the
classes MAP and QPT: in Section 5.2.2, we exhibit a property ΠB that is easy to test
classically with a short proof, but requires many queries (without a proof) even for a
quantum tester (Theorem 5.5); moreover, in Section 5.2.3, we show the existence of a
property ΠF that is easily testable quantumly but difficult to test classically, even
with the aid of a proof (Theorem 5.6).

The aforementioned results immediately imply the existence of a property,
namely ΠB×ΠF , which does not admit efficient MAPs nor quantum testers, requiring
large proof or query complexity, whereas a QMAP with logarithmic proof and query
complexities does exist (indeed, one with a classical proof).

Theorem 5.2 (Theorem 5, restated). There exists a property Π ⊆ {0, 1}n such that,
for any small enough constant ε > 0,

Π ∈ QCMAP(ε, log n,O(1))

and
Π /∈ QPT(ε, o(n0.49)) ∪MAP(ε, p, q)

when p · q = o(n1/4).

5.2.1 Preliminaries

We first define the necessary notions of local codes that will be used in this section.
We denote throughout a finite field of constant size by F.

Definition 5.2 (Locally Testable Codes (LTCs)). A code C : Fk → Fn is locally
testable, with respect to proximity parameter ε and error rate σ, if there exists a
probabilistic algorithm T that makes q queries to a purported codeword w such that:

1. If w = C(x) for some x ∈ Fk, then P [Tw = 1] ≥ 1− σ.

2. For every w that is ε-far from C, we have P [Tw = 0] ≥ 1− σ.
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Note that the algorithm T that an LTC admits is simply an ε-tester for the
property of being a valid codeword of C.

Definition 5.3 (Locally Decodable Codes (LDCs)). A code C : Fk → Fn is locally
decodable with decoding radius δ and error rate σ if there exists a probabilistic
algorithm D that given index i ∈ [k] makes q queries to a string w promised to be
δ-close to a codeword C(x), and satisfies

P[Dw(i) = xi] ≥ 1− σ.

Since the best known constructions of LDCs have superpolynomial blocklength,
we will make use of a relaxation of this type of code that allows for much more
efficient constructions and suffices for our purposes.

Definition 5.4 (Relaxed LDCs). A code C : Fk → Fn with relative distance δC is
a q-local relaxed LDC with success rate ρ and decoding radius δ ∈ (0, δC/2) if there
exists a randomised algorithm D, known as a relaxed decoder that, on input i ∈ [k],
makes at most q queries to an oracle w and satisfies the following conditions.

1. Completeness: For any i ∈ [k] and w = C(x), where x ∈ Fk,

P[Dw(i) = xi] ≥ 2/3.

2. Relaxed Decoding: For any i ∈ [k] and any w ∈ Fn that is δ-close to a (unique)
codeword C(x),

P[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

3. Success Rate: There exists a constant ρ > 0 such that, for any w ∈ Fn that is
δ-close to a codeword C(x), there exists a set Iw ⊆ [k] of size at least ρk such
that for every i ∈ Iw,

P[Dw(i) = xi] ≥ 2/3 .

As shown by [BGH+06, GGK19, CGS22, AS21], there exist linear codes of
only slightly superlinear blocklength that are both locally testable and relaxed locally
decodable:3

Theorem 5.3. For any constant γ > 0, there exist linear codes over F with blocklength
n = k1+γ that are relaxed locally decodable with O(1) queries with respect to decoding

3We note that while LTCs and RLDCs are usually defined with respect to binary alphabets,
they can be constructed over larger fields as well as fields of odd characteristic. The constructions
essentially rely on two components: a base (linear) code and a PCP of proximity, both of which
readily extend to larger alphabets.
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radius δ = Ω(1). Moreover, given any constant proximity parameter ε ∈ (0, δ], the
code is also locally testable with O(1) queries.

Moreover, the tester and local decoder for these codes are one-sided (i.e.,
always accept when given a valid codeword as input), and the blocklength cannot be
improved to linear (see Chapter 4).

Communication complexity. In the model of quantum communication complex-
ity, two parties with unbounded computational power aim to compute a joint predi-
cate by communicating the smallest number of qubits with each other. Alice knows
x ∈ {0, 1}k, Bob knows y ∈ {0, 1}k and both hold a function f : {0, 1}2k → {0, 1},
and, by communicating qubits with each other, they must compute f(x, y) with
bounded probability of error. The communication complexity of f is the worst-case
number qubits that need to be communicated in order to compute f(x, y) over all
x, y, minimised over all communication protocols.

We will make use of the well-known communication complexity problem of
disjointness.

Definition 5.5. Let x, y ∈ {0, 1}k and S, T ⊆ [k] be sets whose indicator vectors are
x and y, respectively; i.e., S = {i ∈ [k] : xi = 1} and T = {i ∈ [k] : yi = 1}. Then
disjk(x, y) = 1 if and only if S and T are disjoint, that is,

disjk(x, y) =

{
1 if S ∩ T = ∅
0 otherwise

=

{
1 if xi = 0 or yi = 0 for all i ∈ [k],

0 otherwise.

This problem is known to be hard for quantum communication protocols,
requiring Ω(

√
k) qubits of communication, as shown in [Raz03].

5.2.2 MAPs versus quantum testers

We now set out to prove Theorem 5.5, which shows a property ΠB that is efficiently
testable with a short classical proof (Lemma 5.1) but for which a quantum tester
must make a large number of queries (Lemma 5.2).

The property in question is defined as follows. First, consider a linear code
C : Fk → Fn with n = k1.001, over a field F of odd characteristic and size O(1), that
is both relaxed locally decodable with O(1) queries and decoding radius δ = Ω(1);
as well as locally testable with O(1) queries for any constant proximity parameter
ε ∈ (0, δ] (recall that Theorem 5.3 shows that codes with these parameters exist).
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The property ΠB is comprised of encodings of non-boolean messages, that is:

ΠB =
{
C(z) : z ∈ Fk \ {0, 1}k

}
.

We first show that the property ΠB is efficiently testable via a MAP protocol
with a short proof.

Lemma 5.1. For any constant ε ∈ (0, δ], ΠB ∈ MAP(ε, log n,O(1)).

Proof. The verifier will follow the following strategy to test ΠB: first, test whether
the input is ε-close to the code C (which can be accomplished with O(1) queries due
to the local testability of C). If the tester rejects, then not only is the input far from
ΠB, but from all of C, in which case it rejects.

Except with small probability, if the tester accepts the input is δ-close to C, so
we may locally decode any coordinate of the message (also with O(1) queries); using
the proof string to determine this location, the verifier then checks if the symbol at
that coordinate is boolean-valued.

This strategy is laid out in Algorithm 5.1.

Algorithm 5.1: MAP verifier for ΠB

Input: explicit access to a proximity parameter ε > 0 and a proof string
π ∈ {0, 1}logn, as well as oracle access to x ∈ Fn.

Step 1: Test if the input w is a valid codeword with proximity parameter ε.
Reject if the test rejects.

Step 2: Interpret the proof as an index i ∈ [k], locally decode zi and accept if
zi ∈ F \ {0, 1}. Otherwise, reject.

Note that the proof complexity is log n by definition, and, since both local
testing and local decoding have query complexity O(1), the verifier makes O(1)
queries in total (note that querying an element of F requires O(1) bit queries, so
the complexities of the tester and decoder are still constant in terms of bit queries).
Moreover, if w ∈ ΠB, then w = C(z) for some z ∈ Fk \ {0, 1}k, and local testing
succeeds with probability 1; and when the prover specifies a coordinate i such that
zi /∈ {0, 1}, local decoding also succeeds with probability 1, so completeness follows.

Now, if w is ε-far from ΠB, then either (1) the input w is ε-far from any
codeword of the code C; or (2) w is ε-close to some C(z) such that z ∈ {0, 1}k.

In the first case, local testing (and thus the verifier) will reject with probability
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2/3. In the second case, the testing step may not trigger a rejection, but the local
decoder then outputs, regardless of the proof i ∈ [k], either ⊥ or zi ∈ {0, 1} with
probability 2/3, any of which cause the verifier to reject.

The next lemma shows that, unlike MAPs, quantum testers cannot test ΠB

efficiently.

Lemma 5.2. Any quantum tester for the property ΠB with constant proximity
parameter ε ∈ [0, δ) must have query complexity Ω(n0.49).

Proof. Recall that in the disjointness problem, Alice is given as input x ∈ {0, 1}k,
Bob is given y ∈ {0, 1}k and they must compute disjk(x, y); and that ΠB is the
encoding of non-boolean strings of length k = n

1
1.001 by the code C.

To show that any quantum tester needs Ω(n0.49) queries to ε-test ΠB , we give a
reduction showing that a tester with query complexity q can be used to compute disjk

by communicating O(q log n) qubits. Since the quantum communication complexity
of disjk is Ω(

√
k) = Ω(n

1
2
· 1
1.001 ) = Ω(n0.499), the query complexity of the quantum

tester follows.
First, Alice and Bob use C to encode x and y, respectively. Now Alice holds

C(x) ∈ Fn and Bob holds C(y) ∈ Fn. Note that, defining z := x+ y ∈ Fk, we have
disj(x, y) = 0 ⇐⇒ z /∈ {0, 1}k ⇐⇒ C(z) ∈ ΠB (recall that the characteristic of
F is larger than 2, so that if xi = yi = 1, we have zi = 2 /∈ {0, 1}). Now, Alice
and Bob respectively set up the unitaries UA and UB shown below, where the first
register holds log n qubits and the second holds O(1) qubits (enough to specify a
single element of F).

∀i ∈ [n], α ∈ F, UA |i⟩ |α⟩ = |i⟩ |α+ C(x)i⟩

UB |i⟩ |α⟩ = |i⟩ |α+ C(y)i⟩ .

Alice then simulates the quantum tester and only communicates with Bob in
order to make a query to the oracle; if the tester accepts, Alice outputs 0, and she
outputs 1 otherwise.

More precisely, whenever the tester calls the oracle U , which acts as U |i⟩ |α⟩ =
|i⟩ |α+ C(z)i⟩ on a (log n+O(1))-bit quantum state ρ, Alice first applies UA to ρ,
then sends all qubits to Bob; Bob then applies UB on the qubits it receives and returns
them to Alice. This communicates a total of O(log n) qubits and implements the
same transformation as querying U , since UB · UA |i⟩ |j⟩ = |i⟩ |j + C(x)i + C(y)i⟩ =
|i⟩ |j + C(x+ y)i⟩ by the linearity of the code C and the fact that z = x+ y.
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Each query made by the tester entails O(log n) qubits of communication, so
that after q queries, Alice and Bob exchange O(q · log n) qubits in total. The tester
accepts with probability at least 2/3 when C(z) ∈ ΠB ⇐⇒ disj(x, y) = 0, in which
case Alice outputs 0. If disj(x, y) = 1, we have that C(z) is δ-far from ΠB (since the
relative distance of C is δ). Since ε ≤ δ, the ε-tester rejects with probability 2/3 and
Alice outputs 1 in this case.

Thus, Alice is able to compute disjk with O(q · log n) qubits of communication.
Since the quantum communication complexity of disjk is Ω(

√
k) [Raz03], we conclude

that the tester must make Ω(
√
k/ log n) = Ω(n0.499/ log n) = Ω(n0.49) queries.

Remark 5.4. Although we reduce disj to testing non-booleanity, a symmetric
argument shows the same lower bound for the (arguably more natural) property of
booleanity

{
C(z) : z ∈ {0, 1}k

}
. Often, one key step in PCP constructions is to check

that an encoding corresponds to a logical assignment, i.e., that it is the encoding of a
boolean message. Therefore, bounds on booleanity may have consequences for PCPs.

We conclude this section with the separation implied by Lemma 5.1 and
Lemma 5.2.

Theorem 5.5. ΠB belongs to MAP(ε, log n,O(1)) but not to QPT(ε, o(n0.49)), for
every constant ε ∈ (0, δ]. Therefore,

MAP(ε, log n,O(1)) ̸⊆ QPT(ε, o(n0.49)) .

5.2.3 Quantum testers versus MAPs

In this section, we will show the existence of a property that is easily testable with a
quantum tester, but for which a classical tester – even with additional access to a
proof – must make a number of queries that depends strongly on the length of the
input. More formally, we will show in Theorem 5.6 the existence of a property of
n-bit strings in QPT(ε,O(1/ε)) that is not in MAP(ε, p, q) when p · q = o(n1/4) and
ε is a small enough constant.

The property in question is derived from Forrelation, a problem that strongly
separates classical and quantum algorithms in the query model; in fact, the work that
proved such a separation already shows that it carries over to the property testing
setting [AA18], which we will extend to the setting of MAPs. Formally, we have

Lemma 5.3 ([AA18]). Define the property ΠF := {(f, g) : Φf,g ≤ 1/100}, where
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(f, g) are n/2-bit strings corresponding to pairs of log(n/2)-bit boolean functions and

Φf,g = (n/2)−3/2
∑

x,y∈{0,1}log(n/2)

f(x)(−1)x·yg(y).

Then, for any ε > 0 sufficiently small,

ΠF ∈ QPT(ε,O(1/ε)) and ΠF /∈ PT(ε, o(
√
n/ log n)).

Therefore, the property ΠF is easy for quantum testers and hard for their
classical counterparts. This section is thus devoted to showing that testing ΠF is
hard not only for property testers, but for MAPs as well: we will prove that a MAP
for ΠF requires proof length p and query complexity q satisfying pq = Ω(n1/4). We
first introduce relevant definitions and theorems, then describe the steps of the proof.

Recall that MA is the class of languages that are decidable in polynomial
time with a proof string (of polynomial size), the analogue of which is MAP in
the property-testing setting. By [HHT97], MA is contained in the class BPPpath of
languages decidable (with high probability) by a randomised Turing machine whose
computational paths are all equally likely.4 Lower bounds on the query complexity
of Forrelation (i.e., deciding whether |Φf,g| ≤ 1/100 or Φf,g > 3/5 for a pair (f, g) of
boolean functions) against the latter are known:

Proposition 5.1 ([Aar10, Che16]). Any BPPpath algorithm for Forrelation must
make Ω(n1/4) queries to its input.

We are now ready to describe the three steps taken in proving hardness of ΠF

for MAP: we (1) show that transforming an MA algorithm with proof complexity
p and query complexity q into a BPPpath one [HHT97] yields an algorithm with
query complexity O(pq); (2) show how a MAP for ΠF implies an MA algorithm with
the same parameters for Forrelation; and (3) conclude that pq = o(n1/4) implies a
BPPpath upper bound of O(pq) = o(n1/4) for the query complexity of Forrelation,
which contradicts Proposition 5.1.

The original proof of MA ⊆ BPPpath ([HHT97], Theorem 3.7) takes an MA
algorithm with proof complexity p and constant success probability, repeats the
execution O(p) times, amplifying the success probability to 1 − O(2−p), and then
defines a BPPpath machine as follows. The machine (non-deterministically) guesses a
proof string and simulates the MA algorithm with it, spawning “dummy” execution

4In BPP, the probability of following a computational path is a function of its length (which
coincides with the number of random coins flipped by the algorithm). BPPpath differs from BPP by
lifting this restriction.
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paths if the MA algorithm accepts. Inspecting this transformation in the query model,
we obtain a quadratic overhead: if the MA algorithm has query complexity q and proof
complexity p, the BPPpath machine thus obtained has query complexity O(pq) (the
O(p) repetitions of the MA algorithm increase its query complexity multiplicatively
by this amount, while the dummy paths make no queries).

The second step is formalised by the following lemma.

Lemma 5.4. A MAP protocol for ΠF with sufficiently small proximity parameter
ε > 0 implies an MA algorithm for Forrelation with the same query and proof
complexities as the MAP protocol.

Proof. We define an MA protocol for Forrelation (as a gap problem) the natural
way: the proofs and queries correspond to the proofs and queries of the MAP, and
the MA verifier accepts if and only if the MAP rejects.

To show correctness of this protocol, we follow the reduction of [AA18].
Specifically, [AA18, Lemma 40] shows that any (f ′, g′) such that f ′ is ε-close to f
and g′ is ε-close to g satisfies |⟨f ′, Hg′⟩ − ⟨f,Hg⟩| = O(

√
ε log(1/ε)). By choosing a

suitably small ε, the right-hand side is at most (say) 1/100. Thus any (f, g) such
that ⟨f,Hg⟩ > 3/5 is ε-far from Π, and it follows that the MAP protocol will accept
(with high probability) pairs (f, g) such that |⟨f,Hg⟩| ≤ 1/100 and will reject if
⟨f,Hg⟩ > 3/5. Therefore, the MA protocol is able to distinguish between the two
cases.

A simple argument now proves the separation.

Theorem 5.6. Let ε > 0 be a small enough constant. There exists a property
ΠF such that ΠF ∈ QPT(ε,O(1/ε)) and ΠF /∈ MAP(ε, p, q) for any p, q such that
p · q = o(n1/4).

Proof. Suppose, towards contradiction, that there existed a MAP for ΠF with any
proximity parameter ε, as well as proof complexity p and query complexity q satisfying
p · q = o(n1/4).

By Lemma 5.4, there exists an MA protocol for Forrelation with the same query
and proof complexities, which can then be transformed into a BPPpath algorithm
with query complexity O(p · q) = o(n1/4) for the same problem. But this contradicts
the Ω(n1/4) lower bound of Proposition 5.1.

We are finally ready to prove the main separation, by exhibiting a property Π

in QCMAP which is in neither MAP nor QPT.

Proof of Theorem 5.2. Recall that our goal is to show that the property Π = ΠB×ΠF

that is efficiently ε-testable by a QCMAP, but not by a quantum tester (without a
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proof) nor classically with a proof, for some small enough ε = Ω(1). To this end, we
invoke Theorem 5.5 and Theorem 5.6 and give the following verifier strategy explicitly.
Note that, while the strings in ΠB are over an alphabet F larger than {0, 1}, since
|F| = O(1) each symbol can be represented by O(1) bits (and the proof indicates the
first bit in such a block).

Algorithm 5.2: QCMAP verifier for ΠB ×ΠF

Input: explicit access to a proximity parameter ε′ = 2ε > 0 and a proof
i ∈ [n/2], as well as oracle access to a string z ∈ {0, 1}n.

Step 1: Interpret the input as a concatenation of n/2-bit strings x and y. Use
Algorithm 5.1 to verify, with O(1) queries and the proof i, whether
x ∈ ΠB with proximity ε := ε′/2.

Step 2: Use the quantum tester of Lemma 5.3 to test, with O(1) queries, if
y ∈ ΠF with proximity ε.

Step 3: If both of the previous tests accepted, then accept; otherwise, reject.

Completeness follows immediately from Lemma 5.1 and Lemma 5.3, since
the verifier for ΠB accepts with certainty and the and tester for ΠF accepts with
probability 2/3 when x ∈ ΠB and y ∈ ΠF . If, on the other hand, (x, y) is ε-far
from ΠB × ΠF , then either x is ε-far from ΠB or y is ε-far from ΠF , and either
the verifier for ΠB or the tester for ΠF will reject (with probability 2/3). Thus,
the QCMAP verifier for Π (executed with respect to proximity parameter ε′ = 2ε)
implies Π ∈ QCMAP(ε, log n,O(1)).

All that remains is to show Π = ΠB×ΠF does not admit an efficient quantum
tester nor a MAP. Assume, towards contradiction, that either Π ∈ QPT(ε, o(n0.49))

or Π ∈ MAP(ε, p, q) when p · q = o(n1/4). In the first case, applying the tester
for Π to ΠB × {y} for some fixed y ∈ ΠF shows that ΠB ∈ QPT(ε, o(n0.49)), a
contradiction with Lemma 5.2. In the second case, applying the MAP protocol for Π

to {x} ×ΠF , for some fixed x ∈ ΠB, shows that ΠF ∈ MAP(ε, p, q), a contradiction
with Theorem 5.6.

5.3 A hard class of problems for QMAPs

When introducing a new complexity class in the landscape of known classes, it is
important not only to exhibit problems it can solve, but also problems it cannot.

122



We set out to show a natural limitation on QMAPs in this section, by answering
(negatively) the following question: if a property “looks random” on any subset
of q coordinates, can a quantum proof be of any help to a verifier with query
complexity q? Intuitively, the answer should be no: if querying q coordinates provides
no information as to whether or not an input satisfies a property, then any proof
(quantum or otherwise) should not be able to offer more information in conjunction
with the queries than it does on its own.

We formalise this intuition in Theorem 5.8, which states the following: if a
property Π ⊂ {0, 1}n is k-wise independent and sparse (i.e., its size |Π| is sufficiently
small compared to the set of all 2n bit strings), then k is a lower bound on the
number of queries made by any randomised query algorithm that accepts all inputs
in Π with probability strictly greater than 1/2, and rejects with probability strictly
greater than 1/2 when run on any input that is far from Π. In other words, the
UPP query complexity of testing Π is at least k (recall that UPP is the query model
version of PP, which captures randomized computation with small bias). Note that
some assumption on the sparsity of Π is necessary for any non-trivial lower bound to
hold, if only to rule out, e.g., the trivially testable property Π = {0, 1}n.

Combining Theorem 5.8 with the well-known inclusion QMA ⊆ PP [MW05]
allows us to conclude the following: for any k-wise independent and sufficiently sparse
property Π, the product of proof and query complexities of a QMAP for verifying
membership in Π with constant proximity parameter ε is Ω(k) (see Corollary 5.1).

The proof of Theorem 5.8 works as follows. Our analysis shows that the
sparsity of Π ensures there exists a subset Π′ ⊂ {0, 1}n that is far from Π such that
Π′ is also k-wise independent (see Lemma 5.5). This means that any query algorithm
making fewer than k queries cannot distinguish a random input in Π from a random
input in Π′, as both sets “look random” when inspecting only k bits of a randomly
chosen input from the set. Yet since Π′ is far from Π, any testing procedure for Π

must distinguish Π from Π′. Hence, any tester for Π must make k queries (even if
it only outputs the correct answer on inputs in Π and Π′ with probability strictly
greater than 1/2).

We begin by recalling the definition of k-wise independence.

Definition 5.6. A set of strings S ⊆ {0, 1}n is called k-wise independent if, for any
fixed set of indices I ⊂ [n] of size k, the string x|I is uniformly random when x is
sampled uniformly from S. Equivalently, for every y ∈ {0, 1}k,

∣∣{x ∈ S : x|I = y
}∣∣ = |S|

2k
.
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We next show that, given any small enough set S of strings, there exists a
Ω(n)-wise independent set that is ε-far from S. In the following lemma, H denotes
the binary entropy function H(α) = −α logα− (1− α) log(1− α) (whose restriction
to [0, 1/2] is bijective).

Lemma 5.5. Let ε ∈ (0, H−1(1/5)) and S ⊆ {0, 1}n be such that |S| < 2(1/4−H(ε))n.
Then there exists a linear code C that is ε-far from S with dual distance Ω(n);
equivalently, C is Ω(n)-wise independent.

Proof. Let C : {0, 1}3n/4 → {0, 1}n be a random linear code (where each entry of its
generator matrix is a Bernoulli(1/2) random variable). Then, for every x ∈ {0, 1}3n/4,
the codeword C(x) is uniformly random in {0, 1}n (but not independent of other
codewords). Denoting by Nε(S) the ε-neighbourhood of S (i.e., the set of bit strings
at distance at most ε from S), we have:

P[C ∩Nε(S) ̸= ∅] ≤
∑

x∈{0,1}3n/4

P[C(x) ∈ Nε(S)] = 23n/4 · |Nε(S)|
2n

≤ |S| · 2
H(ε)n

2n/4
= o(1),

and, by the probabilistic method, there exists a code C ⊂ {0, 1}n of size 23n/4 that
is ε-far from S. Moreover, the dual code C⊥ : {0, 1}n/4 → {0, 1}n is a linear code
whose distance meets the Gilbert-Varshamov bound with high probability; that is,
the distance of this dual code is Ω(n) with probability 1−o(1), proving the claim.

The previous lemma, when applied to a “random-looking” set S (i.e., a k-
wise independent S, for k = o(n)), will ensure that S and the code C are hard to
distinguish. To make this precise, we first recall the definition of the threshold degree
of a (partial) function.

Definition 5.7. Let X ⊆ {1,−1}n and let f : X → {1,−1} be any function defined
on domain X ⊆ {1,−1}n.5 The threshold degree of f , denoted thrdeg(f), is the
minimal degree of an n-variate polynomial p that sign-represents f , i.e., such that
f(x) = sgn(p(x)) for all x ∈ X .6 Note that no constraints are placed on the behaviour
of p(x) at inputs in {1,−1}n \ X .

The threshold degree is a measure of complexity of boolean functions (in
particular), so that we expect functions with high threshold degree to also have high
query complexity. This intuition is validated by the following folklore result: the

5For notational convenience, we consider boolean functions with codomain {1,−1}, noting that
this is equivalent to the usual codomain {0, 1} by mapping 0 → 1, 1 → −1, and ⊕ to multiplication.

6Here, sgn(t) is defined to equal 1 if t > 0, −1 if t < 0, and 0 if t = 0.
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minimal query complexity of a UPP algorithm that computes f is exactly equal to
its threshold degree. We provide a proof of this fact for completeness, as, to the best
of our knowledge, it is not explicitly proven in the literature.

We write f ∈ UPP(q) when there exists a UPP algorithm with query com-
plexity q that computes f , and denote by q(f) the integer such that f ∈ UPP(q(f))

but f /∈ UPP(q(f)− 1).

Lemma 5.6. For any X ⊆ {1,−1}n and f : X → {1,−1}, it holds that thrdeg(f) =
q(f).

Proof. We prove both inequalities, starting with q(f) ≤ thrdeg(f) := d.
Let P (T1, . . . , Tn) =

∑
S⊂[n],|S|≤d αS

∏
i∈S Ti be a polynomial of degree d that

sign-represents f , i.e., such that f(x) = sgn(P (x)) for all x ∈ X . Consider the
algorithm A that queries the set of coordinates S with probability |αS |/

∑
|S′|≤d |αS′ |

and outputs sgn(αS) ·
∏

i∈S xi (note that its query complexity is d). Fix x ∈ X and
suppose, without loss of generality, that f(x) = 1. We thus have

E[Ax] =
1∑

|S|≤d |αS |
∑
|S|≤d

|αS | · sgn(αS) ·
∏
i∈S

xi =
P (x)∑
|S|≤d |αS |

> 0,

and, since Ax only outputs 1 or −1, we have P[Ax = −1] + P[Ax = 1] = 1 and thus
P[Ax = 1] > 1/2. It follows that A is a UPP algorithm for f with query complexity
d and thus q(f) ≤ thrdeg(f).

To prove the reverse inequality, consider a UPP algorithm A that computes
f with query complexity q := q(f), given by a distribution over decision trees of
depth at most q. To see that the function computed by each decision tree D can be
sign-represented by a polynomial of degree at most q (a standard fact), we follow
the exposition on leaf indicators in [GM21]. Denote by L the set of leaves of D,
and identify each ℓ ∈ L with its indicator function ℓ : {1,−1}n → {0, 1} such that
ℓ(x) = 1 if and only if ℓ is the unique leaf reached on input x in D.

Then, if cℓ ∈ {1,−1} is the output of the decision tree when an execution ends
at the leaf ℓ, the output of D on input x is

∑
ℓ∈L cℓ · ℓ(x). Thus, showing ℓ(·) can be

represented by a polynomial of degree at most q implies the same degree bound for the
computation of D. Fix ℓ ∈ L, let (i1, . . . , id) ∈ [n]q be the coordinates queried by the
root-to-leaf path that ends at ℓ, and let the sequence of bits (bℓ1, . . . , b

ℓ
d) ∈ {1,−1}q

correspond to the queried values that cause this path to be followed. Then,

ℓ(x1, . . . , xn) =

q∏
j=1

xij + bj

2bj
,
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so ℓ(·) coincides with the degree-q polynomial P (T1, . . . , Tn) = 2−q
∏q

j=1(Tij + bj)/bj .
Thus, the output of Ax when it selects this tree is

∑
ℓ∈L cℓ · ℓ(x), and E[Ax] is a

convex combination of such sums (which also has degree q). Since f(x) = sgn(E[Ax])

for all x ∈ X , we conclude that thrdeg(f) ≤ q(f) and the claim follows.

The final ingredient to show the lower bound is the next theorem, a special
case of the “Theorem of the Alternative” [OS10, ABFR94].

Theorem 5.7. Let X ⊆ {1,−1}n and let f : X → {1,−1} be any partial boolean
function defined over domain X . If there exists a distribution D on X such that
Ex←D[f(x) ·m(x)] = 0 for every monomial m of degree less than k, then the threshold
degree of f is at least k.

We are now ready to prove the main result of this section.

Theorem 5.8. Let Π ⊆ {1,−1}n be a k-wise independent property, with k = o(n),
such that |Π| < 2(1/4−H(ε))n. Then f /∈ UPP(k − 1), where f is the partial function
such that f(x) = −1 when x ∈ Π and f(x) = 1 when x is ε-far from Π (and f is
undefined otherwise).

Proof. First, apply Lemma 5.5 to obtain a k-wise independent code C ⊆ {0, 1}n that
is ε-far from Π. Let D be the distribution obtained by drawing a uniformly random
element of Π with probability 1/2 and drawing a uniformly random element of C
with probability 1/2. Then for every monomial m of degree less than k,

Ex←D[f(x)m(x)] =
Ex←Π[f(x)m(x)] + Ex←C [f(x)m(x)]

2

=
Ex←Π[m(x)]− Ex←C [m(x)]

2
= 0.

The final equality above holds by virtue of the k-wise independence of both Π and
C. Let X be the union of inputs in Π and inputs that are ε-far from Π. Define the
partial function f over domain X via:

f(x) =

{
−1 , if x ∈ Π

1 , if x ∈ X \Π.

By Theorem 5.7, the distribution D constructed above witnesses the fact that
thrdeg(f) ≥ k. Since the UPP query complexity of f is thrdeg(f) by Lemma 5.6, the
claim follows.

We conclude the section with a corollary that follows from the inclusion
QMA ⊆ PP. The proof of this inclusion (in the polynomial-time setting) proceeds in
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two steps: (1) reducing the error rate of a QMA algorithm to roughly 2−p, where
p is the length of the proof given to the verifier, by repeating the algorithm O(p)

times; and (2) running the verifier with the proof fixed to be the maximally mixed
state. This exhibits a gap of roughly 2−p between the acceptance probabilities of yes-
and no-inputs, which suffices to place the problem in PP [MW05, Wat09]. The same
transformation, carried out in the query model, implies that any sufficiently small
Π ∈ QMAP(ε, p, q) can be “ε-tested” by a UPP algorithm with query complexity
O(pq); that is, any function f as in the statement of Theorem 5.8 is such that
f ∈ UPP(O(pq)). Therefore,

Corollary 5.1. For any sufficiently constant small ε > 0 and k-wise independent
property Π ⊆ {0, 1}n such that |Π| < 2n/5, we have Π /∈ QMAP(ε, p, q) unless
pq = Ω(k).

5.4 Quantum speedups for proximity-oblivious MAPs

We now shift gears and move to our algorithmic results. We recall in this section the
technique of quantum amplitude amplification, and prove its consequences for the
classes of algorithms we consider in this section. Roughly speaking, given an algorithm
that finds, with probability γ, a preimage of 1 of a boolean function, amplitude
amplification allows us to repeat it O(1/

√
γ) times in order to find such a preimage

with high probability (as opposed to O(1/γ) repetitions classically). Formally, we
have:

Theorem 5.9 ([BHMT02]). Let v : S → {0, 1} be a boolean function (from an
arbitrary set S) and let A be a quantum algorithm that makes no intermediate
measurements (i.e., is a unitary transformation), such that measuring the state A |0⟩
yields as outcome s ∈ v−1(1) with probability γ > 0. Then there exists a quantum
algorithm B that uses O(1/√γ) applications of the unitaries A and A−1, such that
measuring B |0⟩ yields as outcome s ∈ v−1(1) with probability 2/3.

We note that the theorem applies to classical randomised algorithms as a
special case. An immediate corollary for promise problems in the query model (which
is the setting for property testers, MAPs and variations thereof) is the following.7

Corollary 5.2 (Amplitude amplification for promise problems in the query model).
Let Y,N ⊆ {0, 1}n with Y ∩N = ∅ define a promise problem on n-bit strings whose
yes- and no-inputs are Y and N , respectively. Let A be a randomised algorithm with

7While we could state amplitude amplification for testers directly, a subtle issue would arise:
MAPs are equivalent to a collection of partial testers, which are not “vanilla” testers but are still
promise problems.
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oracle access to a string x ∈ {0, 1}n that makes q queries, always accepts when x ∈ Y
and rejects with probability at least γ when x ∈ N . Then, there exists a quantum
algorithm B that makes O(q/

√
γ) queries to the unitary Ux |i⟩ |b⟩ = |i⟩ |b⊕ xi⟩, always

accepts when x ∈ Y and rejects with probability 2/3 when x ∈ N .

This follows from the observation that each x ∈ Y ∪ N induces a function
fx : {0, 1}r → {0, 1} where r is the number of random bits used by A. If Ax accepts
when the outcome of its random coin flips is s, we define fx(s) = 0, and if Ax rejects
when its random string is s, then fx(s) = 1. We then apply Theorem 5.9 to the
algorithm Ax, for each fixed x ∈ Y ∪N (or, more precisely, to the modified algorithm
that computes fx written as a reversible circuit and thus implements a query to
x as (i, b) 7→ (i, b ⊕ xi)), obtaining BUx (recall that Ux is the unitary mapping
|i⟩ |b⟩ 7→ |i⟩ |b⊕ xi⟩). Measuring BUx |0⟩, using the outcome as the random string for
an execution of Ax and outputting accordingly yields the claimed algorithm.

Note that Corollary 5.2 directly applies to one-sided proximity-oblivious testers,
which are testers that always accept n-bit strings in the property and reject strings
that are ε-far from it with detection probability ρ(ε, n). We prove the that the same
speedup can be obtained for MAPs; more precisely, properties that admit one-sided
proximity-oblivious MAPs allow for more efficient verification by a quantum algorithm
using the same proof string. Before, however, we formalise an observation made in
[FGL14], which shows an equivalence between MAPs and coverings by partial testers.

A partial tester T is a relaxation of the standard definition of a tester, that
accepts inputs inside a property Π1 and rejects inputs that are far from a larger
property Π2 that contains Π1 (standard testing is the case where Π2 = Π1).

Claim 5.1. A MAP verifier V for property Π ⊆ Γn with error rate σ and query
complexity q = q(n, ε), that receives a proof of length p, is equivalent to a collection
of partial testers {Tπ : π ∈ {0, 1}p}. Each Tπ(ε) accepts inputs in the property Ππ

and rejects inputs that are ε-far from Π, with the same query complexity q and error
rate σ as V . The properties Ππ satisfy Ππ ⊆ Bε(Π) and Π ⊆ ∪πΠπ.

Proof. Consider a MAP verifier V with parameters as in the statement, and define
Tπ(ε) := V (ε, π) for each purported proof π ∈ {0, 1}p. Clearly the query complexity
and error rate of Tπ match those of V , and these testers reject points that are ε-far
from Π. The property Ππ is, by definition, the set of inputs that Tπ accepts (with
probability at least 1− σ), which is contained in Bε(Π) (since elements of Bε(Π) are
rejected), and may possibly be empty. But since the definition of a MAP ensures
that, for each x ∈ Π, the tester T x

π accepts for some proof π (with probability 1− σ),
we have Π ⊆ ∪πΠπ.
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Consider, now, a collection of testers {Tπ : π ∈ {0, 1}p} as in the statement,
and define a MAP verifier V that simply selects the tester indexed by the received
proof string; i.e., V (ε, π) := Tπ(ε). Then, with probability at least 1− σ, the verifier
V rejects inputs that are ε-far from Π and accepts x ∈ Π when its proof string is
π ∈ {0, 1}p such that x ∈ Ππ.

We are now ready to prove the formal version of Theorem 8.

Theorem 5.10. Let Π be a property admitting a one-sided proximity-oblivious MAP
protocol, which receives a proof of length p = p(n), makes q = q(n) queries and rejects
strings ε-far from Π with probability at least ρ = ρ(ε, n). Then, for any ε ∈ (0, 1),

Π ∈ QCMAP

(
ε, p,

q
√
ρ

)
.

Proof. By Claim 5.1, a MAP verifier V can be equivalently described as a collection
of probabilistic algorithms {Tπ : π ∈ {0, 1}p} indexed by all proof strings π. By
definition, for every x ∈ Π there exists π ∈ {0, 1}p such that T x

π always accepts; and,
for every x that is ε-far from Π, every proof string π is such that T x

π rejects with
probability at least ρ. Therefore, Tπ solves the promise problem whose yes-inputs
comprise the subset of Π for which π is a valid proof, and whose no-inputs are the
strings ε-far from Π.

Let Wπ be the algorithm obtained from Tπ by Corollary 5.2. Then W x
π accepts

(with probability 1) when x ∈ Π and π is a valid proof for x, and W x
π rejects (with

probability 2/3) when x is ε-far from Π and π is any proof string; in other words,
the algorithm W that executes Wπ when it receives π as a proof string is a QCMAP
verifier for Π. Moreover, since the proof string is reused and W makes O(q/√ρ)
queries, the proof and query complexities are as stated.

We conclude with two applications of Theorem 5.10: to read-once branching
programs (ROBPs) and context-free languages (CFLs), which are shown to admit
proximity-oblivious MAPs in [GGR18] (see Remark 5.13 for details on these results).

Theorem 5.11 ([GGR18], Lemma 3.1). For every read-once branching program
on n variables of size s = s(n), let AB := {x ∈ {0, 1}n : B(x) = 1} be the set of
strings accepted by B. Then, for every k ≤ n, the property ΠB admits a one-sided
proximity-oblivious MAP with communication complexity O(k log s), query complexity
n/k and detection probability ρ(ε, n) = ε.

Theorem 5.12 ([GGR18], Lemma 4.5). For every k ≤ n, every context-free lan-
guage L admits a one-sided proximity-oblivious MAP with communication complexity
O(k log n), query complexity n/k and detection probability ρ(ε, n) = ε.
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Therefore, applying Theorem 5.10 to Theorems 5.11 and 5.12, we obtain:

Corollary 5.3. For every read-once branching program B on n variables of size
s = s(n), denote by AB := {x ∈ {0, 1}n : B(x) = 1} the set of strings accepted by B.
Then

AB ∈ QCMAP

(
ε,O(k log s), O

(
n

k
√
ε

))
for every k ≤ n and ε ∈ (0, 1).

Corollary 5.4. For every context-free language L,

L ∈ QCMAP

(
ε,O(k log n), O

(
n

k
√
ε

))
for every k ≤ n and ε ∈ (0, 1).

Interestingly, these corollaries make explicit a phenomenon in quantum proofs
of proximity that does not hold for their classical counterparts: it is possible to
test with proximity ε = 1/n, i.e., solve the exact decision problem of acceptance
by an ROBP and membership in a context-free language, with sublinear proof and
query complexity. In particular, taking k = n3/4, both complexities are O(n3/4).
Nonetheless, for the case of branching programs, we will show in Section 5.5.3 how
to lift the read-once restriction and improve on the parameters by directly exploiting
decomposability.

Remark 5.13. We note that a context-free language L is defined in terms of an
alphabet of terminals (which is generally larger than {0, 1}) as well as an alphabet of
variables. However, if both alphabets have constant size, we may represent symbols as
bit strings with a constant overhead per query; thus Corollary 5.4 holds for languages
over large (constant-size) alphabets.

Moreover, the results of [GGR18] corresponding to Corollaries 5.3 and 5.4 are
in fact stronger: both apply more generally to IPPs, and thus to MAPs as a special
case (see [GGR18, Section 3.2] for details). In addition, the detection probability
of the MAP for ROBPs is εn/n′ if the branching program has an accepting path of
length n′ ≤ n; and the MAP for context-free languages works for partial derivation
languages, a generalisation of CFLs whose strings may include variable symbols as
well as terminals.

5.5 Decomposable properties

In this section, we show how quantum speedups can be applied to proof of proximity
protocols for properties that can be broken up into sub-problems in a distance-
preserving manner. Roughly speaking, a property Π of n-bit strings is (k, s)-
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decomposable if, using an s-bit string y (which we call a specification), Π can be
mapped to k properties

{
Λ(i)

}
and the input string x can be mapped to a set of

k strings
{
x(i)
}

satisfying the following conditions: (1) when x ∈ Π, there exists a
specification such that x(i) ∈ Λ(i) for all i ∈ [k]; and (2) when x is ε-far from Π, then,
for some specification, x(i) is roughly ε-far from Λ(i) for an average i ∈ [k].

Definition 5.8 (Decomposable property). Let Π =
⋃
Πn be a property of bit

strings. For k = k(n), s = s(n), m1 = m1(n), . . . ,mk = mk(n), we say Π is
(k, s)-decomposable if there exists a mapping from S ⊆ {0, 1}s to (possibly dis-
tinct) subproperties Λ(1) ⊂ {0, 1}m1 , . . . ,Λ(k) ⊂ {0, 1}mk such that every x ∈ {0, 1}n

uniquely determines x(i) ∈ {0, 1}mi satisfying:8

1. If x ∈ Π, then there exists y ∈ S such that x(i) ∈ Λ(i) for all i ∈ [k]; and

2. If x is ε-far from Π, then, for all y ∈ S and i ∈ [k], the string x(i) is εi-far from
Λ(i) and Ei←D[εi] = Ω(ε), where D is the distribution over [k] with probability
mass mi/(

∑
j∈[k]mj) on i.

If s = O(k log n) we say Π is succinctlty k-decomposable. If the strings x(i) form a
partition of x, we say Π is (k, s)-partitionable.

Note that k-decompositions specified by O(k) coordinates of the input string
are succinct. All of our applications are to succinctly decomposable properties, and
often the

{
x(i)
}

form an equipartition of x (so each bit of x(i) depends on a single bit
of x) and D is thus the uniform distribution. However, note that if a decomposition is
significantly asymmetric, then D preserves (average) distance while uniform sampling
may deteriorate it to o(ε) (e.g., if mi = o(m1) when i > 1 and x(1) concentrates all
of the corruption).

While the second condition of Definition 5.8 requires the expectation lower
bound to hold for arbitrary ε, the definition is still meaningful when it holds only for
restricted values of ε. Indeed, we will make use of it for exact decision problems in
Section 5.5.3, where the only proximity parameter we consider is ε = 1/n; we call
such properties decomposable (or partitionable) with respect to exact decision.

As we will see in the next sections, decomposable properties enable the
construction of efficient proof of proximity protocols and generalise the notion of
“parameterised concatenation properties” introduced by [GR18].

8We remark that the mappings Π 7→ (Λ(1),Λ(2), . . . ,Λ(k)) and x 7→ (x(1), x(2), . . . , x(k)) are
functions of the specification y ∈ S of the decomposition. Although the notation x(i),y and Λ(i),y is
formally more accurate, the dependency on y will be clear from context and we omit it for ease of
notation.
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5.5.1 Boosting decompositions via amplitude amplification

As the next theorem shows, decomposable properties allow for quantum speedups
regardless of whether they admit proximity-oblivious MAPs.

Theorem 5.14. Let Π be a property that is (k, s)-decomposable into properties of
mi-bit strings, and set m = maxi∈[k] {mi}. Suppose each bit of x(i) can be determined
by reading b bits of the input string, and each Λ(i) admits a one-sided MAP with
proximity parameter ε, query complexity q = q(m, ε) = mα/εβ and proof complexity
p = p(m, ε). Then

Π ∈ QCMAP(ε, s+ kp, q′) ,

with

q′ =

Õ
(
b ·mα · ε−max( 1

2
,β)
)

if α > 0 and β ≥ 0

Õ
(
b ·min

{
m

1− 1
2β /
√
ε, m

1− 1
β /ε
})

if α = 0 and β ≥ 1,

where Õ hides polylogarithmic factors in 1/ε (but not m). Moreover, for exact
decision (i.e., testing with proximity ε = 1/n), a proof of length s and O(bm

√
k)

queries suffice.

Before proceeding to the proof, we note that if the MAP protocols for the
subproperties are proximity-oblivious, the query complexity can be improved (see
Remark 5.15). Let us also summarise the proof strategy of [GR18], which we build
upon and generalise.

Consider the special case where a property Π is k-partitionable and the strings
x(i) are simply the substrings of x of length m = n/k which, concatenated, form x.
Suppose, moreover, that the subproperties Λ(i) admit testers with query complexity
q = mα/εβ and that Π is the union of Λ(1) × Λ(2) × · · ·Λ(k) (over all strings in S).
Note that while, in general, a specification must show how to obtain Λ(i) from Π and
how to obtain x(i) from x, for an equipartition the latter is implicit.

A natural candidate for a (classical) MAP protocol for Π is to guess an index
i ∈ [k] and run the tester for Λ(i) on x(i). If x ∈ Π, then x(i) ∈ Λ(i) for i ∈ [k] and
the tester always accepts; while if x is ε-far from Π, then x(i) is εi-far from Λ(i) for
some εi satisfying 1

k

∑
i εi ≥ ε, regardless of the specification (recall that x is ε-far

from
⋃

y∈S Λ(1) × Λ(2) × · · ·Λ(k)).
We now proceed to the proof of the general case, where the decomposition

need not be a partition, and it suffices for the subproperties to admit a MAP (rather
than a tester). Moreover, we show that quantum algorithms enable a speedup via
amplitude amplification (but this requires the MAPs to be one-sided, unlike in the
classical case).
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Proof. Recall that we have a property Π that is (k, s)-decomposable by a collection
of strings S ⊆ {0, 1}s, where each y ∈ S determines k properties Λ(i) ⊆ {0, 1}mi

and a decomposition of x into k strings x(i) ∈ {0, 1}mi . Moreover, each Λ(i) admits
a MAP with proof complexity p and query complexity mα/εβ. The verifier for Π

executes Algorithm 5.3.
We note that a more naive strategy would succeed, albeit with a worse

dependence on ε: choosing i ∈ [k] with probability proportional to mi yields a
string x(i) which is ε/2-far from Λ(i) with probability at least ε/2, so that one
could execute the MAP verifier for Λ(i) with proximity parameter ε/2 (and use
amplitude amplification to achieve constant soundness by repeating this O(1/

√
ε)

times). However, the technique of precision sampling [Lev87] overcomes the issue of
not knowing the distances εi between x(i) and Λ(i) more economically: trying every
proximity parameter 2j with j ∈ [O(log 1/ε)], in the spirit of binary search, incurs a
merely logarithmic overhead.

Algorithm 5.3: QCMAP verifier for a (k, s)-decomposable property Π

Input: explicit access to a proximity parameter ε > 0 and a proof string
π ∈ {0, 1}s+kp, and oracle access to a string x ∈ {0, 1}n.

Step 1: Interpret the proof as a concatenation of a string y ∈ {0, 1}s with k strings
π1, . . . , πk ∈ {0, 1}p. If y /∈ S, i.e., y does not specify a decomposition,
then reject.

Step 2: For every j ∈ [⌈log 1/ε⌉+1], let Mj be the algorithm obtained from Corol-

lary 5.2 by performing O
(√

log 1/ε
2jε

)
rounds of amplitude amplification

to the following subroutine:

Sample i ∈ [k] with probability mi∑
j∈[k] mj

and run the MAP verifier for

Λ(i) on x(i), with proximity parameter 2−j , using πi as the proof string.
Reject if the MAP for Λ(i) rejects.

Step 3: Execute Mj for every j ∈ [O(log 1/ε)]. If any of them rejects, then reject;
otherwise, accept.

Completeness follows immediately: if x ∈ Π, then there exists a string y ∈ S
such that x determines x(i) ∈ Λ(i) for all i ∈ [k]. Since the properties Λ(i) admit
one-sided MAP protocols with proof complexity p, the subroutine in Step 2 always
accepts when given the proof string π = (y, π1, . . . , πk), where πi is a valid proof for
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x(i). Therefore, the verifier always accepts as well.
Now, suppose x is ε-far from Π and the proof string π = (y, π1, . . . , πn) is

such that y ∈ S (since otherwise the verifier rejects immediately). Then, since Π

is decomposable, x(i) is εi-far from Λ(i) and Ei←D[εi] = Ω(ε), where Λ(i) are the
subproperties defined by y and D is the distribution over [k] that samples i with
probability proportional to mi.

To show soundness, we will make use of the following (precision sampling)
lemma.

Lemma 5.7 ([Gol14, Fact A.1]). There exists j ∈
[⌈
log 1

ε

⌉
+ 1
]

such that

Pi←D[εi ≥ 2−j ] = Ω

(
2jε

log 1/ε

)
.

If the procedure in Step 2 samples i ∈ [k] such that εi ≥ 2−j , then it rejects
with probability 2/3 (since the MAP has soundness 2/3). With j as ensured by
Lemma 5.7, the probability it samples such an i ∈ [k] is Ω

(
2jε

log 1/ε

)
, so that the

probability it rejects is 2
3 · Ω

(
2jε

log 1/ε

)
= Ω

(
2jε

log 1/ε

)
; therefore, the algorithm Mj

obtained from Corollary 5.2 by O

(√
log 1/ε
2jε

)
rounds of amplitude amplification

rejects, causing the verifier to also reject, with probability 2/3.
We now prove the stated upper bounds on the query complexity. For every j,

each execution of the MAP verifier for Λ(i) makes q(m, 2−j) queries to x(i), which
translate into b · q(m, 2−j) queries to x (since each query to x(i) can be emulated
with b queries to x). The total query complexity is therefore

∑
j∈[⌈log 1/ε⌉+1]

√
log 1/ε

2jε
· b · q

(
m, 2−j

)
= Õ

 b√
ε

∑
j∈[⌈log 1/ε⌉+1]

q
(
m, 2−j

)
2j/2

 .

If q(m, ε) = mα/εβ with α > 0 and β ≥ 0, then

Õ

 b√
ε

∑
j∈[⌈log 1/ε⌉+1]

q
(
m, 2−j

)
2j/2

 = Õ

bmα

√
ε

∑
j∈[⌈log(1/ε)⌉+1]

2j(β−
1
2)


= Õ

(
bmαε−max(1/2,β)

)
.

If α = 0 and β > 0, we use the bound q(m, 2−j) ≤ m for all ε (from the trivial tester
that queries the entire input) to obtain two upper bounds for the query complexity:

134



the first is

Õ

 b√
ε

∑
j∈[⌈log(1/ε)⌉+1]

q
(
m, 2−j

)
2j/2

 = Õ

 b√
ε

∑
j∈[⌈log(1/ε)⌉+1]

min
{ m

2j/2
, 2j(β−

1
2)
}

= Õ

 b√
ε

∑
j∈[⌈log(1/ε)⌉+1]

m
1− 1

2β


= Õ

(
bm

1− 1
2β

√
ε

)
.

The second upper bound matches that obtained by the classical MAP, and is
tighter when m

1
2β ≥ 1/

√
ε. Since 2j/2 ≤ 4/

√
ε for all j in the sum above, we have

√
ε = O(2−j/2); therefore,

Õ

 b√
ε

∑
j∈[⌈log(1/ε)⌉+1]

q
(
m, 2−j

)
2j/2

 = Õ

b
ε

∑
j∈[⌈log(1/ε)⌉+1]

√
ε

2j/2
· q
(
m, 2−j

)
= Õ

b
ε

∑
j∈[⌈log(1/ε)⌉+1]

min
{m
2j
, 2j(β−1)

}
= Õ

b
ε

∑
j∈[⌈log(1/ε)⌉+1]

m
1− 1

β


= Õ

(
bm

1− 1
β

ε

)
.

Finally, observe that, for testing with ε = 1/n (i.e., deciding exactly), one
may take the MAPs for Λ(i) to be the trivial testers (with query complexity m and no
proof). Moreover, it is unnecessary to iterate over j and apply Lemma 5.7; sampling
i ∈ [k] uniformly and running the trivial tester requires bm queries to x and leads to
a rejection with probability at least 1/k, since 1

k

∑
i∈[k] εi > 0 implies x(i) /∈ Λ(i) for

at least one i ∈ [k]. Therefore, applying O(
√
k) rounds of amplitude amplification to

this procedure ensures rejection of an x that is ε-far from Π with constant probability
and yields query complexity O(bm

√
k).

Remark 5.15 (Additional speedup for proximity-oblivious MAPs). If the MAP
verifiers for the subproperties Λ(i) are proximity-oblivious, it is possible to improve
on the query complexity of Theorem 5.14 significantly. More precisely, suppose each
Λ(i) admits a proximity-oblivious MAP with query complexity O(1) and detection
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probability ρ(ε,m) = εβ/mα. Then, if an input is ε-far from Π, for some j ∈
[O(log 1/ε)] (as ensured by Lemma 5.7), the procedure of Step 2 samples i ∈ [k] such
that x(i) is εi-far from Λ(i) with εi = Ω̃(2jε).

The procedure rejects with probability Ω̃(2jε) · ρ(2−j ,m) = Ω̃(2j(1−β)ε/mα)

in this case. By applying Õ(mα/2/
√
2−j(β−1)ε) rounds of amplitude amplification for

each j (instead of Õ(1/
√
2jε) performed for MAPs that are not proximity-oblivious),

and, since 2−j = Ω(ε), the total query complexity becomes Õ(b
√
mα/εβ).

We finish this section with a corollary of Theorem 5.14 in the graph orientation
model. A directed graph is called Eulerian if the in-degree of each of its vertices
is equal to its out-degree. An orientation is a mapping from the edges to {0, 1},
representing whether each edge is oriented from i to j or from j to i, and the distance
between two orientations is the fraction of edges whose orientation must be changed
to transform one into the other. Let ΠE be the property consisting of all Eulerian
orientations of the complete bipartite graph K2,n−2, i.e., the graph with vertex set
[n] and edge set {{i, j} : i ≤ 2, j ≥ 3}.

A MAP protocol for ΠE parameterised by an integer k is constructed in
[GR18]; its proof and query complexities are O(k · log n) and Õ(n/(εk)), respectively.
That protocol is obtained by applying their (classical) version of Theorem 5.14 using
the trivial tester for each of the subproperties. Using the same proof (and thus the
same decomposition), and recalling that the trivial tester makes q(m, ε) = m queries
for a sub-property of length m, we obtain

Corollary 5.5. The property ΠE has a one-sided QCMAP, with respect to proximity
parameter ε, that uses a proof of length O(k ·log n) and has query complexity Õ

(
n

k
√
ε

)
.

Note that the query complexity of the classical MAP becomes linear with
ε = Ω(1/k), whereas the QCMAP is able to decide exactly (i.e. test with ε = 1/n)
with query complexity O(n3/2/k) (which is still sublinear whenever k = ω(

√
n)). In

particular, with k = n3/4, both query and communication complexities are Õ(n3/4);
see the Section 5.5.3 for further discussion and applications of Theorem 5.14 to exact
decision problems.

5.5.2 k-monotonicity

In this section, we show that a generalisation of monotonicity of boolean functions over
the line [n] is efficiently testable by QCMAP protocols. A function f : [n]→ {0, 1} is
k-monotone if any sequence of integers 1 ≤ x1 < x2 . . . < xℓ ≤ n such that f(x1) = 1

and f(xi) ̸= f(xi+1) for all i < ℓ has length ℓ ≤ k. This problem was studied in
[CGG+19], where one-sided ε-testers for k-monotonicity on the line are shown to
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require Ω(k/ε) queries, while two-sided testers can achieve query complexity Õ(1/ε7)

(which, although a far worse dependence on ε than the lower bound, is independent
of k).

In order to apply Theorem 5.14, we must only show that k-monotone functions
are decomposable. Define Πk,[n] as the set of k-monotone boolean functions on the
line [n].9 Then,

Theorem 5.16. For any k ∈ [n], the property Πk,[n] is succinctly k-decomposable.

Proof. Since a k-monotone function f has at most k − 1 critical points, where it
changes from nondecreasing to nonincreasing or vice-versa, specifying these points
yields a decomposition of f into (1-)monotone subfunctions.

More precisely, a string of length s ≤ (k− 1) log n determines a decomposition
of the input f by specifying ℓ ≤ k − 1 integers 1 < n1 < n2 < · · · < nℓ < n. Define
n0 = 1, nℓ+1 = n, mi := ni − ni−1 + 1 and the function fi : [mi] → {0, 1} by
fi(x) = f(x+ ni−1 − 1) for all i ∈ [ℓ+ 1]. Then, f ∈ Πk,[n] if and only if:

1. for i ∈ [ℓ+ 1] odd, fi ∈ Λ(i) := {g ∈ Π1,mi : g(1) = fi(1)}; and

2. for i ∈ [ℓ+ 1] even, fi ∈ Λ(i) := {1− g : g ∈ Π1,mi and g(1) = 1− fi(1)}.
It is clear that, when f ∈ Πk,[n], there exists a set of ℓ ≤ k−1 distinct integers

in [2, n− 1] that satisfies both conditions. When f is ε-far from Πk,[n], the sum of
absolute distances εimi from each fi to Λ(i) is

∑
i εimi ≥ εn. Therefore,

Ei←D[εi] ≥ ε ·
n∑

i∈[ℓ+1]mi
= ε · n

n+ ℓ
= Ω(ε) ,

where D is the distribution over [ℓ+ 1] that has probability mass mi/(
∑

j∈[ℓ+1]mj)

at point i.
Finally, while this ensures (ℓ+1)-decomposability for some ℓ ≤ k−1, one may

deterministically transform it into a k-decomposition (and, in fact, a K-decomposition
for any K ≥ ℓ) by, for example, iteratively finding the largest interval and dividing it
at its midpoint k− ℓ− 1 times (with the requirement that nonincreasing functions in
the large interval are monotone nonincreasing in both subintervals, and likewise for
the nondecreasing case).

Since monotonicity on the line [m] is ε-testable with q(m, ε) = O(1/ε) queries
[Gol17, Proposition 1.5], applying (the second case of) Theorem 5.14 yields a QCMAP
protocol for k-monotonicity with proof complexity O(k log n) and query complexity
Õ(1/ε). Formally,

9We consider the standard representation of a boolean function as the bit string obtained by
concatenating all function evaluations, i.e., f : [n] → {0, 1} is represented by x ∈ {0, 1}n with
xi = f(i).
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Corollary 5.6. Let Πk,[n] denote the set of k-monotone functions f : [n]→ {0, 1},
i.e., those which change from nondecreasing to nonincreasing and vice-versa at most
k − 1 times. For all ε ∈ (0, 1),

Πk,[n] ∈ QMAP

(
ε, k log n, Õ

(
1

ε

))
.

(The theorem also gives an upper bound of Õ(
√
n/ε), which is no better: Õ(1/ε) is

smaller up to ε ≈ 1/n, where the two bounds match.)
It is worth noting that the standard monotonicity tester on the line is not

proximity-oblivious, unlike, e.g., on the boolean hypercube, where both the “edge
tester” [GGL+00] and the state-of-the-art [KMS18] are proximity-oblivious; thus, one
could not directly apply amplitude amplification, and must exploit decomposability
via Theorem 5.14.

Note that the (one-sided) QCMAP for k-monotonicity is more efficient than any
one-sided tester, e.g., when k = Θ(log n) and ε = Θ(1/ log2 n): then the QCMAP’s
proof and query complexities are Õ(log2 n), whereas one-sided testers must make
Ω(log3 n) queries. Moreover, our QCMAP outperforms the best known two-sided
tester of [CGG+19], which makes Õ(1/ε7) queries, even with mild dependencies of
the proximity parameter ε on n. Indeed, when ε = o(1/ log1/7 n) and k = O(1), the
tester’s query complexity is superlogarithmic while the proof and query complexities
of the QCMAP are logarithmic.

We can also compare our one-sided QCMAP against one-sided MAPs obtained
by the transformation from two-sided testers to one-sided MAPs of [GR18]. The
aforementioned two-sided tester yields a MAP with proof complexity polylog n and
query complexity O(ε−7 polylog(n/ε)), so the QCMAP is more efficient except when
k and ε are large (e.g., k = ω(polylog n) and ε = Ω(1)).

5.5.3 Exact problems

To conclude the discussion of decomposability and its consequences, we shift focus to
a special case: that of testing n-bit strings with proximity parameter ε = 1/n. Since,
for any Π ⊆ {0, 1}n and x ∈ {0, 1}n \Π, the string x is at least 1/n-far from Π, this
is the task of exactly deciding membership in Π.

Observe that for classical MAPs, nontrivial properties require Ω(n) queries
in this case: even if a verifier receives as proof a claim x′ that is allegedly equal to
its input string, it requires O(1/ε) = Ω(n) queries to check the validity of the claim.
Remarkably, quantum algorithms are able to solve exact decision problems with
sublinear queries (as illustrated by Grover’s algorithm, which makes O(

√
n) queries).
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Thus, as we show next, insights arising from decomposability are applicable to this
setting. We begin by showing a nontrivial QCMA protocol for the parity of a bit
string in Section 5.5.3.1, and then extend it to branching programs in Section 5.5.3.2.

5.5.3.1 Parity

Consider the problem of deciding if an n-bit string has even parity. (Recall the
informal discussion in Section 3.2.2.) This is clearly maximally hard, requiring Ω(n)

queries even for interactive proofs with arbitrary communication, which we show next
for completeness.

Lemma 5.8. Any IP verifier that accepts strings of even parity and rejects strings
of odd parity with probability 2/3 must make at least n/3 queries to its input.

Proof. Let V and P be a verifier and an honest prover for an IP for parity, and
assume, towards contradiction, that the query complexity of V is less than n/3.

Fix an arbitrary input x ∈ {0, 1}n of even parity. Define Sx as the random
variable comprising all the coordinates queried by V in an execution ⟨V x, P (x)⟩ of
the protocol, and let I ∈ [n] be a uniform random variable independent from Sx.
Then, since |Sx| < n/3,

1

n

n∑
i=1

P[i ∈ Sx] =
n∑

i=1

P[I = i] · P[I ∈ Sx | I = i] = P[I ∈ Sx] <
1

3
,

so there exists i ∈ [n] such that

P[V x queries i in the execution ⟨V x, P (x)⟩] = P[i ∈ Sx] <
1

3
.

Now, consider the execution of a protocol on input y ∈ {0, 1}n obtained by flipping
the ith bit of x (i.e., such that yj = xj if j ̸= i and yi = 1 − xi otherwise). Let
P̃ be a (malicious) prover that executes on y exactly as P does on x; that is, set
P̃ (y) = P (x). We thus have

P[⟨V y, P̃ (y)⟩ rejects] = P[i ∈ Sy] · P[⟨V y, P̃ (y)⟩ rejects | i ∈ Sy]

+ P[i /∈ Sy] · P[⟨V y, P̃ (y)⟩ rejects | i /∈ Sy] ,

and, moreover, the following equalities between events hold:

[i /∈ Sy] = [i /∈ Sx] , and thus

[⟨V y, P̃ (y)⟩ rejects | i /∈ Sy] = [⟨V x, P (x)⟩ rejects | i /∈ Sx] .
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Therefore,

P[⟨V y, P̃ (y)⟩ rejects] <
1

3
+ P[i /∈ Sy] · P[⟨V y, P̃ (y)⟩ rejects | i /∈ Sy]

=
1

3
+ P[⟨V x, P (x)⟩ rejects and i /∈ Sx]

≤ 1

3
+ P[⟨V x, P (x)⟩ rejects] ≤ 2

3
,

contradicting the correctness of the protocol.

Rather surprisingly, however, there exists a quantum non-interactive protocol
that exploits amplitude amplification and achieves sublinear query and communication
complexities. This is a direct consequence of the following.

Proposition 5.2. For any k ≤ n, the property Π :=
{
x ∈ {0, 1}n :

⊕
j∈[n] xj = 0

}
is succinctly k-partitionable (with respect to exact decision).

Proof. The set of strings that specify decompositions is

S =

y ∈ {0, 1}k :
⊕
i∈[k]

yi = 0

 ,

i.e., the set of k-bit strings of even parity. A string y ∈ S specifies a decomposition
where, for each i ∈ [k], the ith subproperty is

Λ(i) =

x(i) ∈ {0, 1}n/k :
⊕

j∈[n/k]

x
(i)
j = yi


and x ∈ {0, 1}n induces x(i) as the substring of x consisting of the ith block of n/k
bits, i.e., x(i) =

(
x (i−1)n

k
+1
, x (i−1)n

k
+2
, . . . , x in

k

)
.

Note that the condition x(i) ∈ Λ(i) for all i ∈ [k] uniquely defines y ∈ {0, 1}k

by yi =
⊕

(i−1)n
k

<j≤ in
k

xj . Therefore, if x has even parity, there exists y ∈ S satisfying
the condition, while if x /∈ Π the only string that satisfies it is not in S. Thus x is
1/n-far from Π and, for all y ∈ S, there exists i ∈ [k] such that x(i) /∈ Λ(i), so that
the distances εj from x(j) to Λ(j) satisfy 1

k

∑
j∈[k] εj ≥

εi
k ≥

1
k·n

k
= 1/n.

Applying Theorem 5.14 with k = n2/3, we have:

Corollary 5.7. There exists a QCMA protocol for parity with O(n2/3) query and
communication complexities.
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5.5.3.2 Branching programs

First, recall the definition of a branching program on n variables: a directed acyclic
graph that has a unique source vertex v0 with in-degree 0 and (possibly) multiple
sink vertices with out-degree 0. Each sink vertex is labeled either with 0 (i.e., reject)
or 1 (i.e., accept). Each non-sink vertex is labeled by an index i ∈ [n] and has exactly
2 outgoing edges, which are labeled by 0 and 1. The output of the branching program
B on input x ∈ {0, 1}n , denoted B(x), is the label of the sink vertex reached by
taking a walk, starting at the source vertex v0, such that at every vertex labeled by
i ∈ [n], the step taken is on the edge labeled by xi.

A branching program is said to be read-once (or ROBP for short) if, along
every path from source to sink, every index i ∈ [n] appears at most once. The size of
a branching program B is the number of vertices in its graph.

A branching program is layered if its nodes can be partitioned into V0, V1,
. . . , Vℓ, where V0 only contains the source node, Vℓ are the sink nodes and every edge
is between Vi−1 and Vi for some i ∈ [ℓ]. The length of a layered branching program is
its number of (nontrivial) layers ℓ, and its width w is the maximum size of its layers,
i.e., maxi∈[ℓ] {|Vi|}.

Recall that Corollary 5.3 shows membership in the set of strings accepted
by read-once branching programs can be decided with O(n3/4) query and proof
complexities; thus, since parity is computed by an ROBP (of width 2), we obtain a
QCMA protocol with the same parameters. Observe, however, that this is significantly
worse than the O(n2/3) upper bound of the previous section, which directly exploits
decomposability. This suggests a similar improvement may be possible for branching
programs, which we now show to be indeed the case for layered branching programs.

Proposition 5.3. Let B be a layered branching program on n-bit strings of length
ℓ = ℓ(n) and width w = w(n). For any k ≤ ℓ, the set AB ⊆ {0, 1}n of strings accepted
by B is (k,O(k logw))-partitionable (with respect to exact decision).

Proof. Let V be the vertex set of the graph that defines the branching program B,
whose layers are V0 = {v0}, V1, . . . , Vℓ and whose set of accepting nodes is F ⊆ Vℓ.
Decompositions are specified by the set S =

{
(v1, . . . , vk) : vi ∈ Viℓ/k and vk ∈ F

}
(whose elements are the k logw-bit representations of the sequence of vertices). (Note
that |Vi| ≤ w implies logw bits suffice to identify each vertex in a given layer.) A
specification fixes k nodes that partition an alleged accepting path into paths of
length ℓ/k. Thus, Λ(i) is the set of strings accepted by the branching program that
is the subgraph of B with layers {vi−1} and Vj for (i−1)ℓ

k < j ≤ iℓ
k , source node vi−1

and accepting node vi. The string x(i) is the ith block of ℓ/k bits of the input x.
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If x ∈ AB, the path (v0, u1, . . . , uℓ) determined by the execution of B on
x is accepting. Therefore, y = (uℓ/k, u2ℓ/k, . . . , u(k−1)ℓ/k, uℓ) ∈ S is a specification
satisfying x(i) ∈ Λ(i) for all i ∈ [k]. If x /∈ AB , on the other hand, every specification is
such that at least one sub-path does not match the corresponding sub-path determined
by x (since otherwise x would be accepted by B), implying x(i) /∈ Λ(i) for some i.

Applying Theorem 5.14 with k = ℓ2/3, we conclude that width-w, length-ℓ
branching programs admit QCMAP protocols with proof complexity O(ℓ2/3 logw)
and query complexity O(ℓ/

√
k) = O(ℓ2/3). Formally,

Theorem 5.17. There exists a QCMA protocol for acceptance of n-bit strings by
layered branching programs of width w = w(n) and length ℓ = ℓ(n) with query
complexity O(ℓ2/3) and proof complexity O(ℓ2/3 logw).

Note that the Ω(n) classical complexity lower bound for parity implies the
same bound for width-2 branching programs of length n, and that the complexities
of the QCMA protocol are sublinear up to length o(n3/2/ logw); in particular, this
holds for width-2nα branching programs of length o(n

3
2
(1−α)) for every α ≥ 0. Thus,

besides lifting the read-once restriction, it improves on Corollary 5.3 for a wide range
of parameters.

5.6 Bipartiteness in bounded-degree graphs

In the bounded-degree graph model, an algorithm is given query access to the
adjacency list of a graph G whose vertices have their degree bounded by d = O(1).
More precisely, given a vertex v and an index i ∈ [d], the oracle corresponds to the
mapping (v, i) 7→ w, where w is the ith neighbour of v (if it exists) or w = ⊥ (if v
has fewer than i neighbours). The distance between two graphs is the fraction of
pairs (v, i) whose outputs differ between the adjacency list mappings.

Our goal in this section will be to construct a QMAP protocol for testing
whether a bounded-degree rapidly-mixing graph G (i.e., where the last vertex in a
random walk of sufficiently large length ℓ = O(log n) starting from any vertex is
distributed roughly uniformly), given as an adjacency list oracle, is bipartite or ε-far
from every (rapidly-mixing) bipartite graph. Note that this differs from the standard
testing setting on graphs by the additional restriction that both yes- and no-inputs
be rapidly mixing: whether G is bipartite or ε-far from bipartite, for any pair u, v of
vertices, the length-ℓ random walk starting from u ends at v with probability between
1/(2n) and 2/n.

Our QMAP protocol for bipartiteness builds on the MAP protocol of [GR18,
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Theorem 7.1], modifying it to take full advantage of quantum speedups. In the
strategy laid out in that work, the classical verifier receives as proof a set S of k
vertices that are allegedly on the same side of a bipartition. It repeatedly samples a
uniformly random vertex, takes many lazy random walks of length ℓ and,10 for each
of them, records if it stops at a vertex in S as well as the parity of the number of
non-lazy steps (where the walk moves to another vertex). If two walks starting from
the same vertex end in S with different parities, the verifier has found a witness to
the fact that the graph is not bipartite and rejects.

For any proximity parameter ε and k ≤ n/2, the MAP protocol of [GR18]
requires a proof of length k log n and makes O(ε−2 · n/k) queries. By making the
verifier quantum (but using the same classical proof), we obtain improvements in the
dependence on both n/k and ε:

Theorem 5.18. For every k ≤ n/2, there exists a one-sided QCMAP for deciding
whether an n-vertex bounded-degree graph G is bipartite or ε-far from being bipartite,
under the promise that G is rapidly-mixing, with proof complexity k · log n and query
complexity Õ((n/k)2/3 · ε−5/6).

Our strategy to obtain a quantum speedup uses the quantum collision-finding
algorithm [Amb07, ACL11] to a suitable modification of the verifier strategy outlined
above.11 We note that the function f to which we will apply the collision-finding
algorithm is not the adjacency list oracle, but one whose unitary representation can
be obtained by adjacency list queries and classical computation.

Theorem 5.19 (Quantum collision-finding [ACL11, Theorem 9]). Let f : X → Y be
a function given via a unitary oracle and R ⊆ Y × Y a symmetric binary relation.
There exists a quantum algorithm that makes O(|X|2/3 polylog |Y |) queries to f ,
accepts (with probability 1) if (x, x′) /∈ R for every distinct x, x′ ∈ X, and rejects with
probability 2/3 if there exist distinct x, x′ ∈ X such that (x, x′) ∈ R.

Returning to the aforementioned classical MAP, observe that the information
of each set of t random walks of length ℓ starting from a fixed vertex can be represented
by a function f : T → {0, 1}2, where T ⊂ {0, 1}ℓ′ is composed of t strings of length
ℓ′ = O(ℓ) (note that each step of the random walk can be performed with O(1) bits,
for a total of ℓ′ = O(ℓ) random coins per walk) and f(r) encodes whether the walk
reaches a vertex in S as well as its parity when its inner randomness corresponds

10A lazy random walk moves from a vertex v to a uniform random neighbour with probability dv
2d

and otherwise stays at v, where dv is the degree of v and d = O(1) is the graph’s degree bound.
11We remark that collision-finding here refers to a generalisation of the element distinctness

algorithm to symmetric relations beyond equality. In particular, it is not a quantum algorithm for
the “r-to-1 collision problem”, where (many) collisions are promised to exist.
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to the string r. Now, applying the collision-finding algorithm to this function for
each sampled vertex already yields a speedup [ACL11]; but it can be improved by
combining this strategy with amplitude amplification (which improves quadratically
the number of samples taken as the starting vertices of the random walks), as we
show next.

Proof of Theorem 5.18. We first consider the classical MAP outlined earlier when it
samples a single starting vertex for a random walk, and apply collision-finding to the
function f whose domain is T , a random (multi-)set of sequences of coin flips. The
proof specifies a subset S ⊆ L of size k, for some L (allegedly) defining a bipartition
V = L ∪R of G with |L| ≥ |R|. The resulting algorithm (which is not yet the final
QCMAP verifier), is shown in Algorithm 5.4.

Algorithm 5.4: Quantum algorithm for bipartiteness with low detection
probability

Input: oracle access to the adjacency list of an n-vertex graph G, as well as
explicit access to a proximity parameter ε > 0 and a proof string π ∈ {0, 1}k logn

(representing a set S ⊂ V (G) of size k).

Step 1: Sample a uniformly random vertex v ∈ V (G) and select a multi-set
T ⊂ {0, 1}ℓ′ , where ℓ′ = O(ℓ) and ℓ = O(log n), by sampling O

(
n
k ·

logn
ε

)
bit strings uniformly and independently.

Step 2: Let f : T → {0, 1}2 be the function computed by the following subroutine:

Let r ∈ T be the input. Take the (lazy) random walk of length ℓ starting
at v using r as the random bits. Let a ∈ {0, 1} be the indicator of
whether the walk stops at a vertex in S and b ∈ {0, 1} be the parity of
the walk (i.e., the number of non-lazy steps). Return (a, b).

Step 3: Execute the algorithm of Theorem 5.19 with respect to f to find t and
t′ such that f(t) = (a, b) and f(t′) = (a′, b′) with a = a′ = 1 and b ̸= b′.
Reject if such a pair is found, and accept otherwise.

First, note that the function f contains a collision with respect to the relation
R ⊂ {0, 1}4 that comprises all pairs of pairs of the type ((1, b), (1, 1− b)) if and only
if there are two random walks of length ℓ that start from v end at a vertex in S with
different parities.
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If G is bipartite with vertex set L ∪ R and S ⊆ L, every path with both
endpoints in S has even length. But the existence of two paths from the same vertex
into S with different parities implies the existence of a path of odd length with
both endpoints in S; therefore, since the function f does not contain a collision for
any starting vertex v, the verifier always accepts when G is bipartite and the proof
consists of k elements on the same side of a bipartition.

If G is ε-far from bipartite, then [GR18] (building on [GR99]) show the
following: defining a as the indicator of whether a random walk of length ℓ = O(log n)

starting from vertex v stops at a vertex in S, and b as the parity of this random walk,
then an Ω(ε/ log n) fraction of vertices in V (G) are such that both P[a = 1, b = 0] and
P[a = 1, b = 1] are Ω( kε

n logn). Therefore, with probability Ω(ε/ log n), the sampled
vertex v ∈ V (G) satisfies this condition. If such a vertex was sampled, with probability
Ω(1), in a sufficiently large number |T | = O(n logn

kε ) of random walks starting from
it there exists a pair of length-ℓ walks that end in S with different parities. Finally,
since the algorithm of Theorem 5.19 rejects with constant probability if the function
f contains a collision, Algorithm 5.4 rejects with probability Ω(ε/ log n).

The quantum collision-finding algorithm computesO(|T |2/3) times the function
f , each of which simulates a random walk of length ℓ = O(log n). Each step of the
random walk requires O(1) queries to the graph G, so that O(log n) queries are made
per walk. The query complexity of Algorithm 5.4 is therefore

O
(
|T |2/3 · ℓ

)
= Õ

(( n
kε

)2/3)
.

Finally, applying amplitude amplification (Theorem 5.9) to this algorithm
(rather, more precisely, to a reversible quantum algorithm that is obtained from
Algorithm 5.4 by deferring its measurements; see, e.g., [NC16]), we obtain a QCMAP
verifier for bipartiteness of bounded-degree graphs with query complexity

Õ

(( n
kε

)2/3)
·O

(√
log n

ε

)
= Õ

((n
k

)2/3
· 1

ε5/6

)
.

We remark that classically testing bipartiteness in the bounded-degree model
requires Ω(

√
n) queries even under the rapidly-mixing promise, as shown by Goldreich

and Ron [GR02]; therefore, for constant ε, a QCMAP with proof complexity Õ(n1/4)

is enough to overcome the testing lower bound, while the MAP of [GR18] requires a
proof of length Õ(

√
n). Of course, a fairer comparison would be to quantum testers,

for which Õ(n1/3) queries suffice [Amb07] but no nontrivial lower bound is known.
The quantum tester is sound without the rapidly-mixing promise, however, so even
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though a QCMAP with proof length Õ(
√
n) makes fewer queries than the best known

quantum tester, it is not clear how the two algorithms compare.

5.7 A QCMAP lower bound for testing unitaries

The known QMA versus QCMA (oracle) separation of Aaronson and Kuperberg
[AK07] is naturally cast as a testing problem, and thus yields a corresponding
separation between QMAP and QCMAP. More precisely, we consider the following
property of unitaries:

ΠAK =

{
U ∈ Cn×n :

UU † = U †U = I and ∃ |ψ⟩ such that U |ψ⟩ = − |ψ⟩
and U |φ⟩ = |φ⟩ when ⟨φ|ψ⟩ = 0

}
,

where the distance measure d(U, V ) =
√

1
n · Tr

(
(U − V )†(U − V )

)
is the one induced

by the normalised Hilbert-Schmidt norm. When measuring distance to the n × n
matrix I (for which any orthonormal basis is an eigenvector basis), each eigenvalue λ
of U is mapped to the eigenvalue (λ− 1)(λ−1 − 1) of (U − I)†(U − I). Therefore, for
every U ∈ ΠAK ,

d(U, I) =
2√
n
,

Then d(ΠAK , I) = 2/
√
n, so that distinguishing between a unitary in ΠAK and I

reduces to testing ΠAK with proximity parameter ε ≤ 2/
√
n. Formally,

Theorem 5.20. For any ε ≤ 2/
√
n, we have ΠAK ∈ QMAP(ε, log n, 1) and ΠAK /∈

QCMAP(ε, p, q) when √p · q = o(
√
n).

Proof. Without loss of generality, we assume query access to a controlled unitary
U ∈ ΠAK or to I. Note that, since the identity is ε-far from ΠAK , distinguishing
between U ∈ ΠAK and I is at least as hard as testing ΠAK .

A QMAP algorithm with logarithmic proof length and query complexity 1 is
as follows: given a log n-qubit quantum state |ψ⟩ as proof, apply the unitary to |ψ⟩,
accepting if and only if a phase flip is detected (by measuring and inspecting the
outcome of the control qubit). Clearly, the eigenstate with eigenvalue −1 is a proof
that causes the algorithm to accept with certainty if U ∈ ΠAK , while no quantum
state is accepted if U = I (also with certainty).

The lower bound is immediate from the one proven in [AK07], which can be
rephrased as follows: any QCMA algorithm that receives a proof of length p and
makes q = o(

√
n/p) oracle queries to U ∈ ΠAK or the identity operator either accepts

I or rejects some element of ΠAK with probability at least 1/2.

146



Remark 5.21. In the usual encoding of an oracle for an n-bit string x as a unitary
|i⟩ |b⟩ 7→ |i⟩ |b⊕ xi⟩, a Hamming distance of Θ(1) translates into Θ(1) distance in the
Hilbert-Schmidt metric. Therefore, Theorem 5.20 falls short of proving QMAP ̸⊆
QCMAP (where the omitted proof and query complexities are polylogarithmic, and
the proximity parameter is constant).

5.8 Interaction versus quantum proofs

In this section we compare the power of classical interactive proofs of proximity
(IPPs) and non-interactive quantum proofs of proximity (QMAPs), and show that
the rather well studied problem of permutation testing admits an efficient IPP but
no efficient QMAP. In fact, for permutation testing, even an Arthur-Merlin Proof
of Proximity is sufficient, as shown in [GLR21]. Informally, an Arthur-Merlin Proof
of Proximity (AMP) is a proof system with one round of communication where the
verifier sends the first message.

Let ΠP be the property (of functions f : [n]→ [n]) defined as

ΠP = {f : f is a bijection} ,

i.e., ΠP is the set of all permutations. We note that in an oracle query to f , an
algorithm sends x ∈ [n] and receives (the log n-bit string) f(x); accordingly, a
quantum query maps (2 log n-qubit states via) |x⟩ |y⟩ 7→ |x⟩ |y + f(x)⟩. Moreover,
distance is measured in terms of the fraction of inputs where functions disagree
(rather than with respect to their representations as bit strings), i.e., f and g are
ε-far when |{x ∈ [n] : f(x) ̸= g(x)}|/n ≥ ε.

The separation follows immediately from the two following theorems.

Theorem 5.22 ([GLR21, Lemma 4.2]). For every with ε > 0, There exists an
AMP for ε-testing ΠP with query complexity O(1/ε) and communication complexity
O(log n/ε), that communicates two messages: the first is sent from verifier to prover
and the second from prover to verifier. Therefore,

ΠP ∈ AMP(ε,O(log n/ε), O(1/ε), 2) .

Since AMP(ε, c, q, r) ⊆ IPP(ε, c, q, r + 1) (by initiating the protocol with a
“dummy” message by the prover), the following corollary is immediate.

Corollary 5.8. ΠP ∈ IPP(ε,O(log n/ε), O(1/ε), 3).

Having established that ΠP admits an efficient IPP, we must now show it is
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not efficiently testable by a QMAP:

Lemma 5.9 ([ST23, Theorem 1.2]). Any QMAP protocol for testing ΠP with respect
to proximity parameter ε = Ω(1), using a proof of length p and making q queries,
satisfies p · q3 = Ω(n); i.e.,

ΠP /∈ QMAP(ε, p, q) when p · q3 = o(n) .

Note that this implies that either p or q must be Ω(n1/4) in any QMAP
protocol for ΠP . Finally, Theorem 5.22 and Lemma 5.9 together imply the main
result of this section.

Theorem 5.23. Let ΠP ⊂ {f : [n]→ [n]} be the set of bijective functions from [n] to
[n], with the distance between functions f and g defined as |{x ∈ [n] : f(x) ̸= g(x)}|/n.
Then, for any ε = Ω(1),

ΠP ∈ IPP(ε,O(log n), O(1), 3) and

ΠP /∈ QMAP(ε, p, q) when p · q3 = o(n) .

In particular,

IPP(ε,O(log n), O(1), 3) ̸⊆ QMAP(ε, o(n1/4), o(n1/4)) .
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Chapter 6

Streaming zero-knowledge proofs

Overview

We initiate the study of zero-knowledge proofs for data streams. Streaming
interactive proofs (SIPs) are well-studied protocols whereby a space-bounded
algorithm with one-pass access to a massive stream of data communicates with
a powerful but untrusted prover to verify a computation that requires large
space.
We define the notion of zero-knowledge in the streaming setting and construct
zero-knowledge SIPs for the two main building blocks in the streaming interactive
proofs literature: the sumcheck and polynomial evaluation protocols. To the
best of our knowledge all known streaming interactive proofs are based on
either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs
for central streaming problems such as index, point and range queries, median,
frequency moments, and inner product. Our protocols are efficient in terms of
time and space, as well as communication: the space complexity is polylog(n)
and, after a non-interactive setup that uses a random string of near-linear
length, the remaining parameters are no(1).
En route, we develop a toolkit for designing zero-knowledge data stream proto-
cols, consisting of an algebraic streaming commitment protocol and a temporal
commitment protocol. The analysis of our protocols relies on delicate alge-
braic and information-theoretic arguments and reductions from average-case
communication complexity.

Organisation

This chapter is organised as follows. In Section 6.1, we formally define the notion
of streaming zero-knowledge and discuss key conceptual points. In Section 6.2 we
construct the two commitment protocols that comprise the main components for our
polynomial evaluation and sumcheck protocols. We construct the protocols, prove
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their zero-knowledge property and show applications for them in Sections 6.3 and 6.4,
respectively.

6.1 Zero-knowledge streaming interactive proofs

This section motivates and provides a definition of zero-knowledge proofs in the data
stream model. We start by discussing the differences between the streaming and the
traditional settings as well as establish necessary notation. We then we provide a
formal definition in Section 6.1.1.

The notion of zero-knowledge proofs in a computational model should capture
the intuition that, when engaged in an interactive protocol, a verifier algorithm V

should learn nothing but the truth of some hard-to-compute statement about its
input x (e.g., that x is in a language L). For consistency with the general notion we
define zero-knowledge for decision problems in the streaming model, but remark that
the definition extends to search problems in the standard way (i.e., the verifier V
learns nothing but a valid solution to the search problem).

In the traditional setting, V can easily store the entirety of x and make
polynomial-time computations without the assistance of a prover. This implies that
the sensitive information a zero-knowledge proof in this setting must not leak is
the result of a computation on x beyond the verifier’s reach, i.e., one that requires
superpolynomial time to obtain from the information available to V . In the streaming
setting, however, the notion of “hard-to-compute” changes dramatically: the model
puts space as the primary resource, so that computations within the reach of V are
those possible with a small amount of space and sequential one-pass access to the
input (but arbitrarily large time complexity). Knowledge then essentially corresponds
to all information that V cannot compute in low space complexity using its streaming
access. As a result, zero-knowledge streaming interactive proofs (zkSIPs) must satisfy
a much more stringent requirement: that they not leak any information about the
input x itself (which in the traditional setting is fully known to the verifier).

In order to capture such a stringent notion of sensitive information, we define
zkSIPs as protocols such that no streaming algorithm can distinguish a real transcript
of the protocol from one that is generated by a (streaming) simulator. To this end, we
first recall the formalisation of streaming interactive proofs (SIPs) [CTY11] without
any zero-knowledge requirement.

Definition 6.1. A streaming interactive proof (SIP) for a language L is an interactive
proof defined by a pair (P, V ) of algorithms: a computationally unbounded prover P
and streaming verifier V with space s = o(n). The verifier engages in an iteractive
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protocol with P and streams, at a predetermined step, the bit string x ∈ {0, 1}n, which
P also observes.1 At the end of the protocol, V outputs a binary decision ⟨P, V ⟩(x)
satisfying

• (completeness) if x ∈ L, then P[⟨P, V ⟩(x) = 1] ≥ 2/3; and

• (soundness) if x /∈ L, then then P[⟨P, V ⟩(x) = 1] ≤ 1/3.

We call s the space complexity (of the verifier). Note that, while the constant
1/3 is arbitrary, soundness amplification does not hold for streaming algorithms
due to the need to reread the input; nevertheless, many SIPs (including all those
considered in this chapter) allow for improving soundness by a desired factor with
a logarithmic increase to their space complexity (see Section 6.2.1). We stress that
Definition 6.1 constrains the verifier only in terms of space, which allows arbitrarily
large time complexities for both prover and verifier. (This is similar to other settings
such as communication complexity and property testing, where the primary resources
are communication and queries, respectively.)

Loosely speaking, we capture the notion of zero-knowledge in the data stream
model by saying that an SIP is zero-knowledge if there exists a streaming simulator
algorithm S, with roughly the same space as the verifier V , able to simulate a prover-
verifier interaction that is indistinguishable from a real one; that is, S generates a view
of the verifier (defined next) that no distinguisher algorithm with power comparable to
V (i.e., a streaming algorithm with roughly the same space) can tell apart from a real
interaction. We stress that while the distinguisher D is reminiscent of computational
zero-knowledge, the security of our protocols is information-theoretic and does not
rely on computational assumptions.

Definition 6.2. Let (P, V ) be an SIP with a space-s verifier, where P sends k1
messages to V before the verifier streams its input, and an additional k2 messages
afterwards. Denote the prover’s messages by y1 ∈ {0, 1}p1 , . . . , yk1+k2 ∈ {0, 1}pk1+k2 ;
the input by x; and the verifier’s and prover’s internal randomness by r and t,
respectively.

The view of the verifier Ṽ , denoted View
P,Ṽ

(x, r), is the random variable
defined as

View
P,Ṽ

(x, r; t) = (r, y1, . . . , yk1 , x, yk1+1, . . . , yk1+k2).
2

1The definition could allow for alternating between streaming parts of x and communicating with
the prover, as well as adaptively choosing the round(s) on which to read the input. Our protocols
do not require this flexibility, however, so we assume the entirety of x is read at a fixed step along
the communication protocol.

2We note that a more general definition allows the random bits r to be partially streamed
throughout the protocol, rather than only in the beginning. This simpler definition suffices to
capture the honest V in all of our protocols, but we assume the more general version when (a
malicious) Ṽ consumes more randomness than it can store.
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While Definition 6.2 is similar to its polynomial-time analogue, we highlight
an important distinction: to faithfully correspond to what Ṽ sees, the order in which
the view is streamed must be preserved. Indeed, a step-by-step execution of Ṽ in an
interaction with P corresponds exactly to its streaming View

P,Ṽ
(x, r) one symbol at

a time. Order preservation is also consistent with the input stream x being observed
by all parties simultaneously (which are, in a simulation, Ṽ , the simulator S and a
distinguisher D).

6.1.1 Definition

We now ready to give a formal definition of zero-knowledge streaming interactive
proofs.

Definition 6.3 (zkSIP). Let L be a language and (P, V, S) be a triplet where (P, V )

is an SIP with a space-s verifier V and S is a streaming poly(s)-space simulator with
white-box access to the verifier, streaming access to the input x and additional query
access to a random bit string t.

(P, V, S) forms a zero-knowledge streaming interactive proof (zkSIP) for
L that is secure against space-s′ adversaries if, for any space-s algorithm Ṽ and
x ∈ L, the random variables View

P,Ṽ
(x, r) and S(Ṽ , x, r) are indistinguishable by

any streaming space-s′ algorithm. That is, for every space-s′ streaming algorithm D,∣∣∣P [D(ViewP,Ṽ
(x, r)

)
accepts

]
− P

[
D
(
S(Ṽ , x, r)

)
accepts

]∣∣∣ = o(1).

We note that all our applications have s = polylog(n), and the protocols are
secure against adversaries with any space s′ = poly(s) (see Remark 6.9).

Remark 6.1. Recall that the analogue of Definition 6.3 in the polynomial-time
setting requires a much stronger notion of indistinguishability: negligible (i.e., sub-
inverse-polynomial), rather than o(1), bias. This is necessary for the notion to be
robust with respect to poly-time algorithms, as otherwise repeating polynomially
many executions of D would boost its success probability arbitrarily close to 1.

This raises a number of interesting questions on the achievable notions of
security for zkSIPs: can we obtain tighter bounds, such as 1/ poly(n) or negligible?
(Perhaps even in the statistical case?) An answer to each such question ensures
security against one type of adversary (i.e., distinguisher): we will study the natural
threat model where all parties are streaming algorithms and argue why o(1) is a
sufficient bound in this case. Before doing so, however, we briefly discuss an important
alternative.

As explained above, streaming verifiers secure against polynomial-time adver-

152



saries require negligible distinguishability. This has been previously studied, most
notably for zero-knowledge interactive proofs that reduce to evaluating low-degree
polynomials defined by the input and allow for it to be processed in a streaming
fashion, such as [GKR15]. (We stress, however, that such protocols rely on computa-
tional assumptions.) An interesting question that we leave to future work is whether
zkSIPs can simultaneously achieve security against different adversaries – e.g., with
negligible bias for poly-time distinguishers (under cryptographic assumptions) in
addition to subconstant bias for streaming distinguishers.

Recall that a key distinction between the poly-time and streaming settings
is the one-pass restriction of the latter, which prevents even a single repetition of
(a streaming) D – indeed, index trivialises with 2 passes (as do many fundamental
streaming problems). In other words, as the common technique of amplification is
unavailable in the streaming model, o(1) bias is a sufficiently robust requirement
that guarantees the probability of information leakage tends to 0. (We note that
the weaker requirement of arbitrarily small constant bias would also suffice, i.e., the
existence of (Pε, Vε, Sε) achieving ε bias for every ε > 0. We adopt the simpler and
stronger subconstant version, which our protocols satisfy.)

The streaming simulator. For technical reasons, the simulator is given white-box
access to the verifier and explicit access to a random string. We stress that this
auxiliary information is completely independent of the input. This can viewed as
allowing the verifier to obtain some computation about auxiliary information (about
its own strategy, or a uniformly chosen random string), but learn absolutely zero
information about the input stream x.

While white-box access gives the simulator S knowledge of any function of
the verifier’s strategy, we do not require such generality; indeed, we will only be
interested in questions about the most likely messages that Ṽ may send at a single
point of the protocol. As such, the weaker definition that follows is sufficient.

Definition 6.4. Let A be a space-s streaming algorithm that reads an n-bit string
y and outputs an m-bit string z. We define white-box access to A as oracle access
to a function W with two inputs, a snapshot b ∈ {0, 1}s and a candidate output
z ∈ {0, 1}m; the oracle returns the maximum probability over all inputs y with which
A, starting with memory state b, outputs z; that is,

W(b, z) = max
y∈{0,1}n

{P[A(y) outputs z when its initial snapshot is b]} .

Remark 6.2. While the honest verifier V does not use a large random string,
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malicious verifiers Ṽ with this additional resource can readily be simulated by S as
above. We assume hereafter that Ṽ has the same resources as the honest verifier, but
note that the simulations extend straightforwardly to verifiers with both white-box
access (to their strategies) and query access to a random string.

6.2 Algebraic and temporal commitments

A commitment protocol is a two-party protocol (or, more accurately, a pair of
protocols) that allows the transmission of a message from one party to another to be
split into two parts: a commitment, where the message is transmitted in a form that
cannot be interpreted by the recipient; followed, at some point in the future, by a
decommitment, where the sender transmits additional information with which the
recipient can read the message. (A useful analogy is that the commitment amounts
to sending a locked box containing the message, and the decommitment to sending
the key.)

In the standard setting [Blu83] we have two parties: a sender and a receiver,
which we will refer to as prover and verifier, respectively. The prover wishes to
communicate a symbol α, and does so by first choosing a random key k and sending
another string c = commit(α, k). Then, at some point in the future, prover and
verifier engage in a protocol at the end of which the receiver obtains α = decommit(c).
(We will refer to the streaming analogue as a commitment protocol, rather than
scheme, to avoid ambiguity with the polynomial-time analogue.)

Commitment protocols are extremely useful components for the construction of
interactive protocols, and should satisfy two properties: hiding, i.e., the commitment
alone should prevent the verifier from obtaining a non-negligible amount of information
about the message α; and binding, i.e., the prover should not be able to decommit to
a message that differs from the one it committed to. We will construct a commitment
protocol whose hiding property follows from the average-case hardness of search-

index for streaming algorithms, while binding follows from the soundness of the pep
protocol (which we introduce formally in Section 6.2.1).

We first formally define streaming commitment protocols. We note that while
the definition that follows can be generalised,3 it suffices to capture our constructions.

Definition 6.5. A streaming commitment protocol for alphabet Γ (with security
parameter p) and space bound s consists of a function commit : Γ×K → C, where

3A natural generalisation is to parameterise the bias in the hiding property as well as the
completeness and soundness in binding by εb, εc, εs ∈ (0, 1); our definition has εb, εs = o(1) and
εc = 0.
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K ⊆ {0, 1}p is the set of keys and C is the set of commitments, and a space-s SIP
(P, V ) which satisfy the following conditions.

• Hiding: Fix any pair of distinct messages α, β ∈ Γ and sample k ∼ K. Set
c = commit(α) = commit(α, k) and c′ = commit(β) = commit(β, k). Every
(streaming) space-s distinguisher D tells the two commitments apart with at most
subconstant bias (with respect to the parameter p); that is,

∣∣P[D(c) accepts]− P[D(c′) accepts]
∣∣ = o(1).

• Binding: Fix k ∈ K and α ∈ Γ. Then

P
[
⟨P, V ⟩

(
commit(α, k), α

)
= 1
]
= 1,

and for any β ̸= α,

P
[
⟨P, V ⟩

(
commit(α, k), β

)
= 1
]
= o(1).

Note that, with some abuse of notation, the binding condition corresponds to
(P, V ) being an SIP for the language L = {(commit(α, k), α) : α ∈ Γ, k ∈ K}.

The next sections introduce the commitment protocols we will use to build
our protocols. Section 6.2.1 begins by defining the concepts and tools we build upon:
low-degree extensions and the polynomial evaluation protocol (pep). In Section 6.2.2,
we use them to construct a basic scheme that allows for the communication of a
single symbol (which we use as a stepping stone), based on the hardness of index

(or, more accurately, search-index); in it, the keys are simply long strings paired
with a coordinate, i.e., K = Γp × [p], and commitments are keys appended with a
single extra symbol (i.e., C ⊂ Γp+1 × [p]).

Section 6.2.3 then extends the construction of Section 6.2.2 into an algebraic
commitment protocol, which allows for the commitment of low-degree polynomials.
In both the basic and algebraic schemes, hiding is achieved by overwhelming V with
“too much information”, and can only be broken if a malicious verifier is lucky enough
to retain a critical fragment of the information stream; indeed, as we will see, breaking
it amounts to solving index. Binding, on the other hand, relies on the pep protocol,
which we introduce in the next section.

While commitment protocols are not a prerequisite for a zero-knowledge
protocol, they also serve as inspiration for our second main component: Section 6.2.4
shows how the verifier can perform a temporal commitment to show its alleged
internal randomness is uncorrelated with its input, and thus that it is not behaving
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maliciously.

6.2.1 Low-degree extensions and polynomial evaluation

Fingerprinting is a technique that enables streaming algorithms to approximately
verify an arbitrary coordinate of a long string in small space. It exploits low-degree
extensions (LDEs), extremely useful objects in the design of interactive proofs more
broadly. (Recall Section 2.5.)

Given a data set x, viewed as a string of n elements in a finite field F = Fq, an
LDE is a low-degree polynomial that interpolates every data point. More precisely,
we may view x as a function x : [n] → F; given a dimension m and defining the
degree d as the smallest (positive) integer such that n ≤ (d+ 1)m, we can also view
x : [d+ 1]m → F by some canonical injection [n] ↪→ [d+ 1]m (padding with zeroes
if n < (d+ 1)m). Then, as long as q > d, we can also view (via another canonical
injection [d+ 1] ↪→ F) the data set as the restriction of a function from Fm to F.

Standard properties of polynomials imply that if this function is an m-variate
polynomial of individual degree d, then the extension is unique; we thus denote by
x̂ : Fm → F the unique degree-d polynomial whose restriction to [n] is equal to x.
Explicitly, with (i1, . . . , im) as the image of i by [n] ↪→ Fm,

x̂ =
n∑

i=1

xiχi =
∑

i1,...,im∈[d+1]

xi1,...,imχi1,...,im

where the χi are the Lagrange basis polynomials, given by

χi(α1, . . . , αm) :=
m∏
j=1

d+1∏
k=1
k ̸=ij

αj − k
ij − k

(viewing k ∈ [d + 1] as an element of F); equivalently, the Lagrange polynomials
are the unique m-variate degree-d polynomials satisfying χi(j) = 1[i = j] when
i, j ∈ [d + 1]. We note that LDEs and Lagrange polynomials can equivalently be
defined with an injection from {0} ∪ [d], rather than [d+ 1], to F; then they satisfy
the previous condition for all 0 ≤ i, j ≤ d. We will use the characterisation that is
most convenient, which will be clear from context (e.g., an LDE that involves the
evaluation of a polynomial at 0 is of the latter type).

We will also use χ(α) to denote the vector
(
χ1(α), . . . , χn(α)

)
of evaluations

of Lagrange polynomials; note that this allows us to write x̂(α) as the dot product
χ(α) · x of n-dimensional vectors.
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Now, given a string x ∈ Fn, a fingerprint is simply an evaluation of the
LDE of x at a random point, that is, x̂(ρ) with ρ ∼ Fm. The key property of
fingerprints is that they are extremely unlikely to match for two different strings
when the underlying field is large enough, as a consequence of the Schwartz-Zippel
lemma [Sch80, Rab81].

Lemma 6.1 (Schwartz-Zippel). If x, y ∈ Fn
q are distinct, then Pρ∼Fm

[
x̂(ρ) = ŷ(ρ)

]
≤

dm/q.

Importantly for streaming algorithms, fingerprints can be computed with
O(dm) time per entry of the input and O(m) field elements (thus O(m log q) bits) of
space [CTY11].

The polynomial evaluation protocol is an interactive proof that enables a
streaming verifier with a single random evaluation f(ρ) of a degree-d polynomial
f : Fm → F to evaluate f at any other point, assisted by a prover with knowledge of
f in its entirety. Note that the prover could help the verifier compute f at a point
(non-interactively) by simply sending an interpolating set of the polynomial; but any
such set has size (d + 1)m. The pep (polynomial evaluation) protocol, detailed in
Protocol 6.1, allows us to reduce the communication from O(dm log q) to O(dm log q)

by adding interaction.
In order to better compare the original pep protocol with the zero-knowledge

version that we will construct, we consider a general problem that the protocol is
able to solve (as in [CCM+19]). We use f as shorthand for a mapping x 7→ fx (or,
equivalently, a set f ⊆ {fx : x ∈ Fn}) where one evaluation fx(ρ) can be computed
by a space-bounded algorithm that streams x. The problem pep(f, α) is to decide
whether fx(β) = α when the input stream is x followed by an evaluation point
β ∈ Fm.

Protocol 6.1: pep(f, α)

Input: Explicit access to α ∈ F and a set f ⊆ {fx : x ∈ Fn} of m-variate
degree-d polynomials over F. Streaming access to (x,β) ∈ Fn × Fm.

V : Sample ρ ∼ Fm. Stream x and compute fx(ρ). Store β.

Compute the line L : F → Fm such that L(0) = β and L(ρ) = ρ with
ρ ∼ F, then send L to the prover.

P : Compute and send fx|L.4

V : Compute g(ρ), where g : F→ F is the degree-dm low-degree extension
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of the sequence of evaluations sent by P such that g(0) = α.5Accept if
g(ρ) = fx(ρ) and reject otherwise.

Assuming an evaluation of fx can be computed by streaming x with O(m log q)

space, Protocol 6.1 is a streaming interactive proof for pep(f, α) with communication
complexity O(dm log q) and verifier space complexity O(m log q). We note that
pep(f, α) can easily be modified into an algorithm for a search problem without a
candidate value α for fx(β), by having V output g(0) instead of accepting.

It is clear that V accepts in Protocol 6.1 when P is honest; the protocol’s
soundness relies on the fact that if the prover were to send an incorrect g ̸= fx|L, it
is highly unlikely that it will agree with the verifier’s evaluation at the (unknown)
location ρ.

In conjuction with the streaming nature of LDEs, (the search version of)
Protocol 6.1 yields a simple and efficient streaming interactive proof for search-index.
This SIP, introduced by [CCM+15], has O(log n log log n) space and communication
complexities for a stream (x, j) ∈ Fn × [n] where q = |F| = polylog(n) (and β ∈ Fm

is the identification of j); it is simply an instantiation of pep where d = 2, m = log n

and the function fx = x̂ is the m-variate (multilinear) LDE of x,6 an evaluation x̂(ρ)
of which can be computed incrementally as values of x are revealed in the stream.
Then x̂(ρ) = x̂|L(ρ) allows the verifier to check that the prover is being honest (i.e.,
that the polynomial it sent is x̂|L), as well as to learn xj = x̂(j) = x̂|L(0).

Observe that pep is not zero knowledge: the verifier learns all of fx|L, which it
is not be able to construct by virtue of only learning β (and thus L) after streaming x.
Note, however, that the honest verifier only inspects two evaluations of fx|L, namely,
at 0 and ρ. In the following sections we construct a commitment protocol that lets the
prover only reveal information about these two points, without sacrificing soundness.

6.2.2 A prover-to-verifier commitment protocol

Our commitment protocol, designed to allow an unbounded-space sender to commit to
a streaming receiver, directly uses the (average-case) hardness of the index problem.
By sending a message hidden at a random coordinate, we exploit the fact that any

4Recall that the line L and fx
|L are sent in a canonical form: L as the evaluation L(1) and fx

|L as
the vector

(
fx ◦ L(i) : i ∈ [dm]

)
. (There is no need to send L(0) = β or fx

|L(0) = fx(β) = α, as
they are known to V .)

5Note that the Lagrange polynomials in this case satisfy χi(j) = 1[i = j] for all 0 ≤ i, j ≤ dm.
6The space complexity can be reduced to O(logn) with the choice of parameters for q, d and m

in Corollary 6.1.
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streaming algorithm requires a linear amount of space to be able to recall a random
item from a string after it has been seen. We begin by formally defining (the search
and decision versions of) index in the one-way communication complexity model.

Definition 6.6. search-index, over alphabet Γ and with message length s, is the
one-way communication problem defined as follows: Alice receives a string x ∈ Γn

and sends Bob an s-bit message a = A(x). Bob receives, besides a ∈ {0, 1}s, an index
j ∈ [n], and outputs a symbol b = B(a, j) ∈ Γ. The execution succeeds if b = xj .

Definition 6.7. decision-index(α) (with alphabet Γ and message length s) is the
one-way communication problem defined as follows: Alice receives a string x ∈ Γn

and sends Bob an s-bit message a = A(x). Bob receives, besides Alice’s message, an
index j ∈ [n], and outputs a bit b = B(a, j) ∈ {0, 1}. The execution succeeds if b = 1

when xj = α, and b = 0 otherwise.

It is well known that index is extremely hard, even on average and in the
one-way communication model with shared randomness.

Proposition 6.1. Any one-way communication protocol (A,B) for search-index

that sends a message of length s satisfies

Px∼Γp

j∼[p]

[
B
(
A(x), j

)
= xj

]
=

1

|Γ|
+O

(√
s

p

)
.

In other words, the chance of correctly recalling a random symbol is at best
slightly better than uniform guessing if the string p is much longer than the message
length s of the protocol. We note that this bound was known for Γ = {0, 1} [RY20],
but it extends to larger alphabets; we now provide a proof of this fact for completeness.

Proof of Proposition 6.1. Define, for ease of notation, γ = |Γ|. We follow the strategy
used in [RY20] for the binary case. First, note that by the minimax theorem we
may assume Alice’s and Bob’s strategies are deterministic; i.e., that Alice sends
A(x) ∈ {0, 1}s and Bob outputs B(A(x), j) ∈ Γ for some functions A and B.

Let λ be the distribution of Alice’s message A = A(x) induced by the (uniform)
distribution of x, partitioning Γp into {Pa} where Pa = A−1(a) = {x ∈ Γp : A(x) = a}.
Note that the distribution of x conditioned on A = a is uniform over Pa, and that

159



PA∼λ[A = a] = |Pa|/γp. Then,

Px∼Γp

j∼[p]
[Bob outputs xj ] =

∑
a∈{0,1}s

Px∼Γp [A(x) = a] · Px∼Γp

j∼[p]

[
b(a, j) = xj

∣∣ A(x) = a
]

=
∑

a∈{0,1}s
PA∼λ[A = a] · Px∼Pa

j∼[p]

[
b(a, j) = xj

]
= EA∼λ

j∼[p]

[
Px∼PA

[
b(A, j) = xj

]]
≤ EA∼λ

j∼[p]

[
max
α∈Γ
{Px∼PA

[xj = α]}
]
, (6.1)

so that we only need to bound the latter expression; note that the inequality shows
Bob’s optimal strategy is to output the most frequent symbol at the jth coordinate
in PA.

Now, define µ as the uniform distribution over Γ and µi,a as the distribution
of xi when x ∼ Pa (i.e., the distribution of xi when x ∼ Γp conditioned on A(x) = a).
Then, by Pinsker’s inequality (Eq. 2.10), for all a ∈ ImA and i ∈ [p] we have

∥µi,a − µ∥2 ≤
KL
(
µi,a || µ

)
2 ln 2

(where we use ∥·∥ as shorthand for the 2-norm ∥·∥2). Since the inequality holds for
all a and i, then it also holds for the convex combination corresponding to taking
A ∼ λ and j ∼ [p] independently (i.e., whose coefficients are P[A = a, j = i] = |Pa|

γpp ).
Therefore,

EA∼λ
j∼[p]

[
∥µj,A − µ∥2

]
=

1

p

p∑
i=1

EA∼λ

[
∥µi,A − µ∥2

]
≤ 1

2p ln 2

p∑
i=1

EA∼λ [KL(µi,A || µ)]

=
1

2p ln 2

p∑
i=1

I(A : xi),

where the last equality follows by the definition of mutual information (Eq. 2.11). By
convexity of z 7→ z2, we have

EA∼λ
j∼[p]

[
∥µj,A − µ∥

]2 ≤ EA∼λ
j∼[p]

[
∥µj,A − µ∥2

]
≤ 1

2p ln 2

p∑
i=1

I(A : xi).
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Recall that µi,a(α) = Px∼Pa [xi = α]. Comparing this value with the average
mass 1/γ, we have

EA∼λ
j∼[p]

[
max
α∈Γ
{Px∼PA

[xj = α]}
]
− 1

γ
= EA∼λ

j∼[p]

[
max
α∈Γ

{
µj,A(α)−

1

γ

}]
≤ EA∼λ

j∼[p]

[
max
α∈Γ

{∣∣∣∣µj,A(α)− 1

γ

∣∣∣∣}]
≤ EA∼λ

j∼[p]

[
∥µj,A − µ∥

]
≤

√∑p
i=1 I(A : xi)

2p ln 2
,

so that using Eq. 6.1 and rearranging,

Px∼Γp

j∼[p]
[Bob outputs xj ] ≤

1

γ
+

√∑p
i=1 I(A : xi)

2p ln 2
.

The theorem thus reduces to showing
∑p

i=1 I(A : xi) ≤ s. By standard
information-theoretic equivalences and inequalities,

p∑
i=1

I(A : xi) =

p∑
i=1

(
H(xi)−H(xi|A)

)
(by Eq. 2.11)

= H(x)−
p∑

i=1

H(xj |A) (by Eq. 2.7)

≤ H(x)−
n∑

i=1

H(xi|x1, . . . , xi−1, A) (by Eq. 2.6)

= H(x)−H(x|A) (by Eq. 2.8)

= I(A : x) ≤ H(A) (by Eq. 2.11)

≤ s (by Eq. 2.5)

and the result follows.

The commitment phase of our scheme exploits this hardness result directly:
we take Γ ↪→ F where F is a large enough finite field (which will allow us to use
pep to decommit) and have P send the triple (y, α− yk, k) for random y and k as a
commitment to α. (In particular, the commitment key is a random string-coordinate
pair (y, k)). Loosely speaking, the protocol has the sender communicate a random
stream y with the message hidden at a random coordinate k, which is revealed after
y.
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The honest verifier keeps a (random) fingerprint of y, which it can use to
validate the message at yk (see Protocol 6.2), while the decommit stage simply
instantiates pep appropriately (see Protocol 6.3). We note that the inputs listed in
the description of the protocols are those available to the verifier.

Protocol 6.2: commit(α)

Input: explicit access to p, d,m, q ∈ N with p ≤ dm, q > d and F = Fq.
Streaming access to y ∼ Fp followed by a correction γ ∈ F and a coordinate
k ∼ [p].

V : Sample ρ ∼ Fm and compute ŷ(ρ) =
∑p

i=1 χi(ρ)yi while streaming y.

Store ρ, k, γ and ŷ(ρ).

Protocol 6.3: decommit(α, y, k)

Input: α ∈ F, as well as the (parameters and) values stored in the commit
stage: k, γ,ρ, ŷ(ρ).

V : Compute and send the line L : F→ Fm such that L(0) = k and L(ρ) = ρ

with ρ ∼ F.

P : Send ŷ|L.

V : Compute g(ρ) and g(0), where g : F→ F is the degree-dm extension of
the sequence of evaluations sent by P .

Accept if g(ρ) = ŷ(ρ) and g(0) + γ = α, rejecting otherwise.

Now, we show that Protocols 6.2 and 6.3 form a streaming commitment
protocol, i.e., they satisfy the hiding and binding properties of Definition 6.5 if p is
large enough; these follow from the hardness of search-index and the soundness of
pep, respectively.

Theorem 6.3. Protocols 6.2 and 6.3 form a streaming commitment protocol with
space complexity s = O(m log q) when p = q3 and dm = polylog(q). The protocol is
secure against poly(s)-space adversaries and communicates O(q3 log q) bits.

Proof. First, note that the communication complexity is dominated by the prover
sending p = q3 field elements in the commit step, for a total of O(q3 log q) bits.

The binding property is an immediate consequence of the completeness and
soundness of pep: if P is honest, i.e., sends the correction γ = α− yk in the commit
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stage and the polynomial ŷ|L in the decommit stage, then V accepts, as ŷ|L(ρ) = ŷ(ρ)

and ŷ|L(0) + γ = α. (Recall that the line L satisfies L(0) = k and L(ρ) = ρ.)
Now, suppose the prover replies with a polynomial g such that g(0) ̸= yk =

ŷ(k) = ŷ|L(0); then the Schwartz-Zippel lemma (Lemma 6.1) implies ŷ(ρ) = ŷ|L(ρ) ̸=
g(ρ) except with probability dm/q = o(1), in which case V rejects.7 Note that the
verifier only needs to store ρ ∈ Fm, k ∈ [p] and a constant number of additional field
elements, for a space complexity of O(m log q + log p) = O(m log q).

To show the hiding property, assume towards contradiction that there ex-
ists a streaming algorithm D with space poly(s) = polylog(q) that distinguishes
commitments between some α ∈ F and α′ ∈ F \ {α} with constant bias:8 that is,

Py∼Fp

k∼[p]

[
D(y, k, α− yk) accepts

]
− Py∼Fp

k∼[p]

[
D(y, k, α′ − yk) accepts

]
≥ ε

for some ε = Ω(1). Now consider the following algorithm A for search-index over
the alphabet F with input (x, j): simulate D on the stream (x, γ, j) where γ ∼ F;
output α−γ if D accepts, and otherwise output α′−γ. Note that A outputs correctly
exactly when γ = α− yk and D accepts, or γ = α′ − yk and D rejects; moreover, A
can simulate D with constant space overhead, so that its space complexity is also
polylog(q). We will now show that A solves search-index with a bias that is too
large, contradicting Proposition 6.1.

Px∼Fp

j∼[p]

[
A(x, j) = xj

]
=

1

q
· Px∼Fp

j∼[p]

[
D(x, j, α− xj) accepts

]
+

1

q
· Px∼Fp

j∼[p]

[
D(x, j, α′ − xj) rejects

]
=

1

q

(
1 + Px∼Fp

j∼[p]

[
D(x, j, α− xj) accepts

]
− Px∼Fp

j∼[p]

[
D(x, j, α′ − xj) accepts

])
≥ 1 + ε

q

=
1

q
+Ω

(
1

q

)
.

Since 1/q =
√
q/p = ω

(√
poly(s)/p

)
, owing to s = polylog(q), the result

follows.
7We remark that ρ need not be sampled from the entire field; the same result holds if ρ ∼ R ⊂ F

when R is large enough. This will be useful in proving that our protocols for pep and sumcheck
are zero-knowledge.

8Note that allowing poly(s) space for D will imply a space-robust indistinguishability property;
bounding it by, say, Õ(s) or O(s2) would prove a weaker but still nontrivial statement.
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Remark 6.4. Just as in pep, the verifier learns much more than than the message
ŷ|L(0) = α ∈ F: it learns all of ŷ|L. Crucially, however, the additional information
consists of random field elements uncorrelated with α. This enables the commitment
protocol laid out in this section to be proven zero-knowledge when the simulator has
read-only access to a large random string t, as in Definition 6.3. (More accurately,
such a simulator can perfectly generate the random variable that corresponds to the
view resulting from the commit followed by the decommit steps.)

Indeed, a simulator with space O(m log q) and query access to y ∼ Fp may
sample k ∼ [p] and send (y, α− yk, k) in the commit step; then, in decommit, after
receiving the line L, it computes and sends ŷ|L =

(
ŷ|L(i) : i ∈ {0} ∪ [dm]

)
by reading

the string y an additional dm+ 1 times, computing and sending one LDE evaluation
at a time.

However, this basic commitment protocol is not yet sufficient. As discussed
in Section 3.3.2, it allows P to commit (and decommit) to a single field element;
but the prover should be able to commit to a polynomial and decommit to a single
evaluation thereof. In the next section we show how to accomplish this, by modifying
our scheme to make it algebraic.

6.2.3 Making the commitment algebraic

In this section, we will show how to modify the commitment protocol laid out in
Section 6.2.2 so that the prover can commit to ℓ messages and decommit to a single
linear combination of the verifier’s choosing. As we shall see, this can in fact be
accomplished by adapting only the commitment step.

The idea behind this new protocol is simple, but has an important caveat. If
the prover P wishes to commit to the messages α = (α1,α2, . . . ,αℓ), the obvious
solution is to send (yi,αi − yiki , ki) for all i, a sequence of commitments to each αi.
However, the indices ki where each message is hidden are sampled independently, so
that even though taking low-degree extensions is a linear operation (i.e., the LDE of∑

i βiyi is
∑

βiŷi), a linear combination of the yi does not yield a commitment to
a linear combination of the αi: evaluating it at ki yields a sum where only the ith

summand is guaranteed to be correct.
We can fix this problem by hiding all the messages at the same coordinate k.

Then, setting γ =
(
αi − yik : i ∈ [ℓ]

)
and γ = β · γ =

∑
βiγi, we have

γ +
(∑

βiyi
)
k
=
∑

βi(yik + γi) = α · β;

so a linear combination of commitments yields a commitment to a linear combination
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of the messages. Therefore, the prover may send (y1, . . . , yℓ,γ, k) and the new protocol
will satisfy the binding property (a slightly stronger version of which, with respect to
a random β, will be necessary; we elaborate upon this later in the section).

More precisely, viewing y ∈ Fℓ×p as a matrix whose ith row is yi, the prover
may send y, say, column by column.9 The resulting string, appended with γ and k,
is a random index instance whose alphabet is Fℓ; and this enables us to show the
hiding property for algebraic-commit as we did for commit.

The result is Protocol 6.4, which enables a prover to commit to multiple
messages and decommit (via Protocol 6.3, using ŷ(ρ,β) as the fingerprint and β · γ
as the correction) to an arbitrary linear combination of them.

Theorem 6.5. Protocol 6.4 (algebraic-commit) and Protocol 6.3 (decommit) form a
streaming commitment protocol with space complexity s = O

(
(ℓ+m) log q

)
if p = q3ℓ

and dm = polylog(q). The scheme is secure against poly(s)-space adversaries and
communicates O(ℓq3ℓ log q) bits.

Furthermore, if each linear coefficient can be computed in O(m log q) space,
then s = O(m log q).

We omit the proof, as it is a straightforward extension of Theorem 6.3.

Protocol 6.4: algebraic-commit(α)

Input: explicit access to p,m, d, q ∈ N with p ≤ dm, q > d and F = Fq; as
well as linear coefficients β ∈ Fℓ. Streaming access to y ∈ Fℓ×p followed by
γ ∈ Fℓ and k ∈ [p].

V : Sample ρ ∼ Fm and compute ŷ(ρ,β) =
∑ℓ

i=1 βiŷi(ρ), a random linear
fingerprint of y with coefficients β, while streaming y.

Store ρ, k, ŷ(ρ,β) and the correction γ =
∑ℓ

i=1 βiγi.

We stress that the binding property of the linear commitment protocol has
an important caveat: it is with respect to the linear combination α · β, rather than
the entire tuple α. Therefore, if the prover has knowledge of the linear coefficients,
it can easily commit to a set of messages α′ ̸= α that nonetheless decommits to
the same linear combination α · β, and P has many choices indeed: the equation∑

βiα
′
i =

∑
βiαi is satisfied by all β in the hyperplane (of size qℓ−1) orthogonal to

9We remark that while sending y column by column naturally corresponds to an index instance
with a larger alphabet (where symbols are ℓ-tuples of field elements), since the hardness of index
holds for the stronger model of one-way communication protocols, the hiding property of the scheme
is preserved regardless of the order in which y is sent. This is important in our sumcheck protocol,
where a column cannot be sent all at once.
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α′ −α.
Since our applications require a stronger guarantee – that V should be able

to detect when P commits to α and a decommits according to α′ ̸= α – this binding
property is insufficient unless V chooses the coefficients β at random; then the
linear combination of α′ matches that of α only with probability 1/q. While in our
zero-knowledge protocol for pep the coefficients are not uniform, they are a random
evaluation of low-degree polynomials, and the same reasoning holds with a small loss
(see Theorem 6.7).

However, an important issue still remains: the exponential dependency of
Theorem 6.5 in the number ℓ of field elements that comprise the tuple P commits and
decommits to. Concretely, in our applications we have ℓ = ω(1) but can only afford to
communicate poly(q) bits. To circumvent this issue, we shall use the following efficient
reduction from index over bits to the problem of distinguishing a commitment to a
fixed element of Fℓ from a commitment to a random one.

Lemma 6.2. Let (A,B) be a one-way protocol with s-bit messages that distinguishes
between a length-p algebraic commitment to a fixed α ∈ Fℓ and a random commitment
with advantage ε; that is, such that∣∣∣∣∣∣∣∣∣

Py∼Fℓ×p

k∼[p]

[
B
(
A(y), (αi ⊕ yik : i ∈ [ℓ]), k

)
accepts

]
−Py∼Fℓ×p

k∼[p]
τ∼Fℓ

[
B(A(y), τ , k) accepts

]
∣∣∣∣∣∣∣∣∣ = ε.

Then there exists an average-case one-way communication protocol for (binary) in-

dex over p-bit strings that communicates O(ℓ2s log2 q/ε2) bits and succeeds with
probability 1− 1

e = 1
2 +Ω(1).

Proof. Define, for ease of notation, y(k) := (yik : i ∈ [ℓ]) (i.e., the kth column of y)
and

aτ := P
[
B
(
A(y), τ ⊕ y(k), k

)
accepts

]
= E

[
B
(
A(y), τ ⊕ y(k), k

)]
,

where we interpret Bob’s output as 1 (respectively 0) when he accepts (respectively
rejects). Define, also, ετ := aα − aτ .

We first argue that, without loss of generality, we can assume F = F2 = {0, 1}.
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Note that, with q = |F|,10

ε = aα −
1

qℓ

∑
τ∈Fℓ

aτ =
1

qℓ

∑
τ∈Fℓ

ετ .

Taking ℓ′ := ⌊ℓ log q⌋ and S ⊆ Fℓ as the set of size 2ℓ
′ containing α and the tuples τ

with the largest ετ , and viewing {0, 1}ℓ′ ⊆ Fℓ via a bijection between {0, 1}ℓ′ and S,
we have

ε′ :=
1

2ℓ′
∑

τ∈{0,1}ℓ′
ετ ≥

ε

3
,

owing to |S| ≥ qℓ/2 and ετ ≥ ετ ′ when τ ∈ S \ {α} and τ ′ ∈ Fℓ \ S. Therefore,
assuming F = F2 incurs at most a constant factor in ε and a log q factor in ℓ; we
shall use ε and ℓ (rather than ε′ and ℓ′) hereafter for simplicity of notation.

Finally, define, for each 0 ≤ i < ℓ,

εi :=
1

2ℓ−i

∑
τ∈{0,1}ℓ

∀i′≤i, τi′=αi′

ετ .

We divide the analysis into two cases: suppose, first, that εi ≥ εi−1 ·
(
1− 1

2ℓ

)
for all

i ∈ [ℓ− 1]. Then, by Bernoulli’s inequality (t ≤ −1 implies (1+ t)ℓ ≥ 1+ tℓ), we have

εℓ−1 =
1

2
(aα − aα⊕ℓ) ≥

(
1− 1

2ℓ

)ℓ

· ε ≥ ε

2
,

where α⊕i = (α1, . . . ,αi−1, 1−αi,αi+1, . . . ,αℓ). Consider the following one-way
protocol (with shared randomness) for an index instance (x, j) ∈ {0, 1}p × [p]: Alice
and Bob jointly sample 2/ε2 independent matrices y′ ∼ {0, 1}ℓ×p and permutations
σ ∼ Sp; Alice sets yi = y′i ⊕ 1[i = ℓ] · σ(x) (where σ(x)k := xσ(k)), simulates A(y)
and sends the resulting messages in a 2s/ε2-bit string to Bob.

With knowledge of j, Bob finishes the simulations B(A(y),γ, k), using coordi-
nate k = σ−1(j) and correction γ = α⊕ y′(k); he computes their empirical mean µ,
outputs αℓ if µ ≥ aα + ε/2, and outputs 1−αℓ otherwise.

Correctness follows from the observation that, if xj = σ(x)k = αℓ, then
γ = α⊕ y(k), so E[µ] = aα; since the (y, k) pairs are uniform and independent,

P
[
µ ≤ aα −

ε

2

]
≤ 1

e

10This assumes the acceptance probability of a commitment to α is larger than that of a random
commitment, which is without loss of generality (otherwise Bob can simply flip his output bit).
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by the Chernoff-Hoeffding bound (Lemma 2.1, with 2/ε2 samples and δ = ε/2).
Likewise, when xj = 1 we have α = α⊕ℓ ⊕ y(k); then E[µ] = aα⊕ℓ ≤ aα − ε and an
application of the Chernoff-Hoeffding bound (with the same parameters) yields the
same guarantee.

We now consider the second case: suppose εi < εi−1 ·
(
1− 1

2ℓ

)
for some

i ∈ [ℓ− 1]; we take, without loss of generality, the minimal such i. Then

1

2ℓ−i

∑
τ∈{0,1}ℓ

∀i′≤i, τi′=αi′

ετ⊕i =
1

2ℓ−i

∑
τ∈{0,1}ℓ

∀i′<i, τi′=αi′
τi=1−αi

ετ

= 2εi−1 − εi

> εi−1

(
1 +

1

2ℓ

)
,

and thus

1

2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′=αi′

(ετ⊕i − ετ )

 =
1

2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′=αi′

(aτ⊕i − aτ )


>
εi−1
ℓ

≥ ε

2ℓ
.

We will use a similar strategy to the previous case, although the expression
we must estimate involves many more terms (indeed, 2ℓ−i+1 of them). Consider the
following one-way protocol for an index instance (x, j) ∈ {0, 1}p × [p]: Alice and
Bob jointly sample 64ℓ2/ε2 independent matrices y′ ∼ {0, 1}ℓ×p and permutations
σ ∼ Sp; Alice sets yi′ = y′i′ ⊕1[i′ = i] ·σ(x), computes and sends all messages A(y) in
a 64ℓ2s/ε2-bit string to Bob.11 (Recall that assuming F = {0, 1} incurs constant and
logarithmic factors in ε and ℓ, respectively, so that Alice’s message is O(ℓ2s log2 q/ε2)

bits long.)
For each A(y) sent by Alice, Bob simulates B

(
A(y), τ ⊕ y′(k), k

)
with k =

σ−1(j) for all τ satisfying τi′ = αi′ when i′ ≤ i. He computes the empirical mean µ
11Note that the only difference in Alice’s strategy, as compared to the previous case, is the row

where she inserts σ(x) and the number of simulations of A.

168



of

1

2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′=αi′

(
B
(
A(y), τ⊕i ⊕ y′(k), k

)
−B

(
A(y), τ ⊕ y′(k), k

)) ,

outputs 0 if the result is non-negative, and outputs 1 otherwise.
To prove correctness, first note that

τ ⊕ y′(k) =

{
τ ⊕ y(k), when xj = 0

τ⊕i ⊕ y(k), when xj = 1,

so that, when xj = 0,

E[µ] =
1

2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′=αi′

(aτ⊕i − aτ )

 >
ε

2ℓ
,

and when xj = 1 we have E[µ] < −ε/2ℓ (since the order of each pair of terms in the
sum is flipped).

We conclude with an application of Hoeffding’s inequality (Lemma 2.3, with
a = −1, b = 1, δ = 1/2 and 64ℓ2/ε2 samples): in the xj = 0 case,

P
[
µ ≤ ε

4ℓ

]
≤ 1

e
;

and, likewise, in the xj = 1 case we have P
[
µ ≥ − ε

4ℓ

]
≤ 1

e .

6.2.4 A verifier-to-prover temporal commitment

The goal of this section is to construct the second main component towards our
streaming zero-knowledge protocols. While it is not formally a commitment protocol
(as per Definition 6.5), it is useful to conceptualise it as V committing to its internal
randomness before the input is streamed (hence temporal).

Roughly speaking, we would like to ensure that a malicious verifier cannot
choose the point ρ at which it (allegedly) computes its fingerprint after it sees the
input (x,β), as that would allow it to learn more than fx(β). (For example, in
the index case it could claim that ρ = j + 1 and learn x̂(j + 1) = xj+1.) We will
prove, in 3 steps, a lemma formalising the intuition that a space-s algorithm cannot
remember the positions of significantly more than s elements, which will later enable
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the construction of a simulator. As in the case of algebraic commitments, we will in
fact prove a stronger statement: that this holds not only in the case of streaming
algorithms, but in the stronger model of one-way communication protocols.

We first define two variants of search-index in the one-way communication
complexity model, which we call reconstruct and pair (see Definitions 6.8 and 6.9).
In reconstruct, Bob’s task is to output the symbols at every coordinate of the
input z (rather than receiving a single coordinate j and outputting only zj , as
in index); in other words, Bob should reconstruct the input as best he can. In
pair, as in search-index, Bob’s task is again to output the symbol at a single
coordinate; but rather than receiving the index as part of the input, Bob is free to
choose a coordinate-symbol pair (i, α) and succeeds if α = zi. (Note that in both
reconstruct and pair, Bob does not receive any additional input besides Alice’s
message.)

Our first two steps are as follows. We first study reconstruct and show, in
Lemma 6.3, that if Alice’s message has s bits, Bob cannot reconstruct significantly
more than s coordinates of the input. Then, in Lemma 6.4, we show how this bound
for reconstruct implies a related bound for pair; more precisely, we prove that
there exists a size-s set C of coordinates such that the probability Bob outputs a
correct coordinate-symbol pair (i, zi) where i /∈ C is arbitrarily small.

While Lemma 6.4 immediately implies an analogous statement for streaming
algorithms, it is not yet enough for our purposes. The reason is that our verifier
will read additional information, i.e., a fixed – but unknown – pep instance (x,β)

between reading a pair input and writing its output. While it is intuitively clear
that this should not help the verifier in any way (as the pep and pair instances are
uncorrelated), we still require a slight extension of Lemma 6.4.

To this end we define, for each fixed string x ∈ Γn, a variant of pair that we call
pair(x) (Definition 6.10). The only difference between this one-way communication
problem and pair is that Bob receives the string x in addition to Alice’s message a. In
Theorem 6.6, we show that the existence of a set capturing most of the correct outputs
of pair implies such a set C also exists for pair(x); crucially, C is determined by a
and does not depend on x. This last result then immediately implies an analogous
one for streaming algorithms.

Let us begin with the definitions:

Definition 6.8. reconstruct is the following one-way communication problem:
Alice receives a string z ∼ Γv and sends Bob an s-bit message a; after receiving a,
Bob outputs a string b ∈ Γv. The score of an execution is the number of matching
coordinates between z and b, i.e., |{i ∈ [v] : bi = zi}|.
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Definition 6.9. Let pair denote the following one-way communication problem:
Alice receives a string z ∼ Γv and sends Bob an s-bit message a; after receiving a,
Bob outputs a pair (α, i) ∈ Γ× [v]. The execution succeeds if α = zi.

Note that both are definitionally average-case problems, as z is sampled
uniformly. We now proceed to the first step towards the goal of this section: a
proof that, in our parameter settings of interest for |Γ| and s (as functions of v),
the expected score of any protocol for reconstruct is tightly constrained by the
message length s.

Lemma 6.3. Any one-way protocol for reconstruct with alphabet size |Γ| =
O(v/ log log v), |Γ| ≥ 32v/ log log v and message length s, where log v ≤ s =

polylog(v), achieves an expected score of at most s+ o(s).

Proof. By the minimax theorem, we may assume Alice’s and Bob’s strategies are both
deterministic, so that there exists a set of messages A ⊆ {0, 1}s that partitions the
set Γv of input strings by {Pa : a ∈ A}, where Bob outputs b = b(a) ∈ Γv whenever
z ∈ Pa.

Observe that Bob’s optimal strategy is to set bi as the most frequent symbol
at the ith coordinate among the strings of Pa; we can thus index the partition by
b ∈ B := {b(a) : a ∈ A}, setting Pb = Pb(a) = Pa. (Note that while {Pb : b ∈ B} may
be a smaller partition than {Pa : a ∈ A}, the expected scores of the protocols induced
by both partitions are the same.)

Define the random variableMb := {i ∈ [v] : zi = bi}. For simplicity of notation,
denote also γ := |Γ|. Note that the expected score of this one-way protocol is

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
=
∑
b∈B

P[z ∈ Pb] · Ez∼Pb
[|Mb|]

=
∑
b∈B

|Pb|≥ s
v
· γ

v

2s

P[z ∈ Pb] · Ez∼Pb
[|Mb|] +

∑
b∈B

|Pb|< s
v
· γ

v

2s

P[z ∈ Pb] · Ez∼Pb
[|Mb|] .

We bound the first term by the largest expectation, and the second by observing
that the union of sets Pb with |Pb| ≤ s

v ·
γv

2s contain at most an s/v fraction of all
length-v strings:
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Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
≤ max

b∈B
|Pb|≥ sγv

v·2s

Ez∼Pb
[|Mb|] +

∑
b∈B

|Pb|< sγv

v·2s

P[z ∈ Pb] · v

≤ max
b∈B

|Pb|≥ sγv

v·2s

Ez∼Pb
[|Mb|] + s.

Let δ ∈ (0, 1) be such that the volume of Hamming balls of radius δ is
V := sγv

v·2s ≤
sγv

v2
. (Recall that s ≥ log v.) For any b ∈ B, the set Pb that maximises

Ez∼Pb
[|Mb|] = |Pb|−1

∑
z∈Pb

|{i ∈ [v] : zi = bi}|

is Pb = B(b, δ′), the ball centered at b (whose radius δ′ is determined by the equality
|B(b, δ′)| = |Pb|). Since |Pb| ≥ V implies δ′ ≥ δ, we have

1

|Pb|
·
∑

z∈B(b,δ′)

|{i ∈ [v] : zi = bi}| ≤
1

V
·
∑

z∈B(b,δ)

|{i ∈ [v] : zi = bi}|,

so it suffices to bound the right-hand side. (The inequality follows from the observation
that the left-hand side is a weighted average between the right-hand side and the
expectation over z ∼ B(b, δ′) \B(b, δ), which is smaller.)

Define ε := 1 − δ. We aim to upper bound Ez∼Pb
[|Mb|], and set as an

intermediate goal to prove upper and lower bounds for ε. To this end, we will use
the following standard approximations (see, e.g., [GRS12]) for H = H2 when σ (or
1− σ) is small:

H(σ) = H(1− σ) ∈
[
σ log

1

σ
, σ

(
log

1

σ
+

2

ln 2

)]
(6.2)

We begin with the lower bound on ε, which uses the lower bound of Eq. 6.2
and follows by showing that the volume of a ball with radius 1− log γ

v log log γ is larger
than V; then δ < 1− log γ

v log log γ , or, equivalently, ε = 1− δ > log γ
v log log γ .
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We have

Hγ

(
1− log γ

v log log γ

)

=

(
1− log γ

v log log γ

)
log(γ − 1) +H

(
1− log γ

v log log γ

)
log γ

(Eq. 2.1)

=

(
1− log γ

v log log γ

)
log(γ − 1) +H

(
log γ

v log log γ

)
log γ

(Eq. 2.2)

≥

(
1− log γ

v log log γ

)(
log γ + log

(
1− 1

γ

))
log γ

+
log
(
v log log γ

log γ

)
v log log γ

(Eq. 6.2)

= 1 +

(
1

log γ
− 1

v log log γ

)
log

(
1− 1

γ

)
+

log v
γ + log log log γ

v log log γ
− 1

v

≥ 1− γ + 1

γ2 ln 2

(
1

log γ
− 1

v log log γ

)
+

log v
γ + log log log γ

v log log γ
− 1

v
(Eq. 2.3)

≥ 1− 1

γ ln 2

(
1 +

1

γ

)(
1

log γ
− 1

v log log γ

)
− 1

v

≥ 1− 3

2v
,

where the second-to-last inequality uses v ≥ γ; and the last uses γ = Θ
(

v
log log v

)
to bound the first negative term to order Θ

(
log log v
v log v

)
, so the 1/v term dominates.

Therefore,

γ
Hγ

(
1− log γ

v log log γ

)
v ≥ γv/γ3/2,

and thus, by Eq. 2.4, the volume of a ball (centered at any point b) of radius
1− log γ

v log log γ = 1− polylog(v)
v satisfies

∣∣∣∣B(b, 1− log γ

v log log γ

)∣∣∣∣ ≥ γ
Hγ

(
1− log γ

v log log γ

)
v

√
log v

≥ γv

2
3
2
log γ+ 1

2
log log v

≥ γv

2
7
4
log γ

.
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Then

|B(b, δ)| = V =
sγv

v · 2s

≤ γv polylog(v)

v2

≤ γv

2
15
8

log v

≤
∣∣∣∣B(b, 1− log γ

v log log γ

)∣∣∣∣,
and we conclude that ε = 1− δ > log γ

v log log γ .
We now proceed to the upper bound on ε, which will use the upper bound of

Eq. 6.2. Since γHγ(δ)v ≥ V = sγv

v·2s (Eq. 2.4), taking the logarithm of both sides and
using Eq. 2.1 yields

(1− ε) log(γ − 1) +H(1− ε)
log γ

= Hγ(1− ε) = Hγ(δ) ≥ 1−
s+ log v

s

v log γ
. (6.3)

Note that the right-hand side is 1− o(1) because s = o(v); then, δ is within
o(1) distance of the maximiser 1− 1/γ = 1− o(1) of Hγ , so that δ = 1− o(1) and
ε = o(1).

This allows us to bound H(ε) = H(1 − ε) from above via Eq. 6.2, which,
combined with Eq. 6.3 (multiplied by log γ), implies

(1− ε) log(γ − 1) + ε log
1

ε
+

2ε

ln 2
≥ log γ − s+ log v − log s

v
.

Rearranging yields

ε

(
log ε+ log γ + log

(
1− 1

γ

)
− 2

ln 2

)
≤ s+ log v − log s

v
+ log

(
1− 1

γ

)
.

The bounds − log(1− 1/γ) = O(1/γ) = O(log log v/v) (Eq. 2.3) and s ≥ log v

show that the right-hand side is O(s/v); and Eq. 2.3 along with log γ = log v −
log log log v +Θ(1) =

(
1− o(1)

)
log v implies the left-hand side is Ω

(
ε(log ε+ log v)

)
.

Therefore, the inequality above simplifies to

ε(log ε+ log v) = O
(s
v

)
.
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Now, if we had ε = Ω(s/v), then

ε(log ε+ log v) = ε
(
log s− log v + log v +Ω(1)

)
= Ω(ε log s) = ω(s/v),

a contradiction. We thus conclude that ε = o(s/v) (and, in particular, that ε is both
lower and upper bounded by polylog(v)/v).

Returning to the goal of bounding the expected score, we now show that most
of the volume of a Hamming ball of radius δ is close to its boundary. More precisely,
consider the volume V ′ of a ball of radius δ′ = 1− 2ε. As ε = v−1 polylog(v), Eq. 2.4
applies, giving V ′ ≤ γHγ(1−2ε) and

V = Ω

(
γHγ(1−ε)
√
εv

)
= Ω

(
γHγ(1−ε)
√
s

)
.

so that
V ′

V
= O

(√
s · γ−(Hγ(1−ε)−Hγ(1−2ε))v

)
.

We can bound the coefficient in the exponent as follows:

Hγ(1− ε)−Hγ(1− 2ε) =
ε log(γ − 1) +H(ε)−H(2ε)

log γ

≥ ε

log γ

(
log(γ − 1) + log

1

ε
− 2 log

1

2ε
− 4

ln 2

)
(by Eq. 6.2)

=
ε

log γ

(
log(εγ) + log

(
1− 1

γ

)
+ 2− 4

ln 2

)
≥ ε log log γ

log γ
,

where the last inequality follows from εγ > γ log γ
v log log γ = Θ

(
log γ

log2 log γ

)
when the constant

in Θ(·) is large enough (γ ≥ 32v/ log log v suffices, as log(1− 1/γ)+2−4/ ln 2 > −5).
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Therefore,

√
s · γ−(Hγ(1−ε)−Hγ(1−2ε))v ≤

√
s · γ−

εv log log γ
log γ

=
√
s · 2−εv log log γ

<
√
s · 2− log γ

=

√
s

γ

= Θ

(√
s log log v

v

)
= o(s/v),

where the last line is due to
√
s ≥
√
log v = ω(log log v) and the strict inequality to

ε > log γ
v log log γ . Therefore, V ′/V = o(s/v), showing that the volume of a ball of radius

1− ε is indeed concentrated in points of distance at least 1− 2ε.
Finally, we conclude that

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
≤ max

b∈B
|Pb|≥ sγv

v·2s

Ez∼Pb
[|Mb|] + s

≤ s+ 1

V
·
∑

z∈B(b,δ)

|{i ∈ [v] : zi = bi}|

≤ s+ V
′

V
· v +

(
1− V

′

V

)
· 2εv

= s+ o(s),

as desired.

At this stage, we have an upper bound on the expected score of any one-way
communication protocol for reconstruct. The next step is to show that it implies
a similar bound for the communication problem pair; indeed, it seems intuitively
clear that reconstruct is no harder than pair, as it allows Bob to output an
independent guess for each coordinate. We formalise this intuition in the following
lemma.

Lemma 6.4. Any one-way protocol for pair with alphabet size 32v
log log v ≤ |Γ| =

O
(

v
log log v

)
and message length s, where log v ≤ s = polylog(v), satisfies the follow-

ing: there exists an event E (depending only on z) with P[E] = 1− o(1) and a set C
of size s (depending only on Alice’s message) such that

P
[
Bob outputs (zi, i) with i /∈ C

∣∣E] = o(1).
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Proof. We will first show how to construct a protocol for reconstruct given one
for pair, and then use Lemma 6.3 to conclude; as in that lemma, we define {Pa}
as the partition induced by Alice’s messages a = a(z) ∈ A (we can assume Alice to
be deterministic, as before, by the minimax theorem; then a is a random variable
determined by z).

Recall that in a protocol for pair, Bob’s output is a random variable b(a) ∈
Γ× [v];12 our goal is to construct, from this random variable, an entire string y ∈ Γv

and apply the expected score bound to it. For ease of notation, when the message
a is fixed we write b = (b1, b2) = b(a); note that b is independent of the conditional
distribution z ∼ Pa of the input, since upon fixing a it is solely a function of Bob’s
internal randomness. We will denote its distribution by µ = µ(a), and the conditional
distribution of b2 when b1 = i by µi.

The (pair) protocol’s success probability, conditional on receiving a, is given
by

v∑
i=1

Pz∼Pa
b∼µ

[b = (zi, i)] =

v∑
i=1

Pb∼µ[b2 = i] · Pz∼Pa
b∼µ

[b1 = zi | b2 = i]

=

v∑
i=1

Pb∼µ[b2 = i] · P z∼Pa
b1∼µi

[b1 = zi].

Define y = y(a) ∈ Γv as the string whose ith coordinate is the most frequent
symbol at the ith coordinate in Pa (as before, y is the best attempt at reconstructing
the input z given to Alice). Now, consider the reconstruct protocol that outputs
the string whose ith coordinate is the random variable b1 ∼ µi. Since, for each i ∈ [v],
the symbol α ∈ Γ maximising Pz∼Pa [α = zi] is yi, the expected score of the resulting
protocol (conditioned on a) is

v∑
i=1

Pz∼Pa [b1 = zi | b2 = i] =
v∑

i=1

P z∼Pa
b1∼µi

[b1 = zi]

=
v∑

i=1

∑
α∈Γ

Pb1∼µi
[b1 = α] · Pz∼Pa [α = zi]

≤
v∑

i=1

Pz∼Pa [yi = zi]

= Ez∼Pa [|Ma|] ,

12Note that, in contrast with Alice, we cannot assume Bob is deterministic. We wish to bound
the number of points in the support of b that aggregate all but a subconstant amount of probability
weight in correct solutions to the problem. This is not a function of the value of b, but of its
distribution, so the minimax principle does not apply.
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where, as before, Ma = {i ∈ [v] : yi = zi}.
Recall that in Lemma 6.3 we showed that, as long as |Pa| ≥ s|Γ|v

v2s , the above
expectation is o(s). We now conclude with the following claim, whose proof follows
immediately afterwards.

Claim 6.1. Let p, q ∈ [0, 1]v be probability vectors and t ≤ v be an integer. There
exists a set C ⊆ [v] of size t such that

∑
i∈[v]\C piqi ≤ 1/t.

Note that while r ∈ [0, 1]v defined by ri = P[b1 = zi | b2 = i] is not a
probability vector, we may normalise it to obtain one: applying Claim 6.1 to p =(
P[b2 = i] : i ∈ [v]

)
, q = r/∥r∥1 and t = s, we obtain a set Ca ⊂ [v] of size s such

that

Pz∼Pa
b∼µ(a)

[
b = (zi, i) with i /∈ Ca] =

v∑
i/∈Ca

piri

= ∥r∥1
v∑

i/∈Ca

piqi

≤
∥r∥1
s

=

∑v
i=1 P[b1 = zi | b2 = i]

s

= o(1)

whenever |Pa| ≥ s|Γ|v
v2s . Finally, take Ca as given by the claim. Recall that the sets Pa

of size less than s|Γ|v
v2s cover at most a s/v = o(1) fraction of length-v strings, so that

the probability z ∼ Γv falls into the union of such sets is o(1). In the complement of
this event, we have

P
[
b(a) = (zi, i) with i /∈ Ca

∣∣∣∣ |Pa| ≥
s|Γ|v

v2s

]
=

1

Pz∼Γv

[
|Pa| ≥ s|Γ|v

v2s

] ∑
a∈A

|Pa|≥ s|Γ|v
v2s

Pz∼Γv [z ∈ Pa] · Pz∼Pa
b∼µ(a)

[b = (zi, i) with i /∈ Ca]

=
1

1− o(1)
· o(1) = o(1),

which concludes the proof.

The only step remaining to complete the proof of Lemma 6.4 is Claim 6.1,
which we provide below.

Proof of Claim 6.1. We reduce the claim to proving an upper bound on a cer-
tain optimisation problem. Namely, let ∆ = {x ∈ [0, 1]v :

∑
i xi = 1} and ∆′ =

178



∆ ∩ {x ∈ [0, 1]v : x1 ≥ · · · ≥ xv} be the v-dimensional simplex and the simplex with
ordered coordinates, respectively. Define the function f : ∆′ × ∆ → R+ by
f(p, q) =

∑v
i=1 ipiqi.

Under the assumption that f(p, q) ≤ 1 for all p ∈ ∆′ and q ∈ ∆, we conclude
as follows: since p1 ≥ p2 ≥ · · · ≥ pv without loss of generality (permuting the vectors
to satisfy the condition does not affect the truth of the claim), for any t ∈ [v]

1 ≥ f(p, q) =
v∑

i=1

 v∑
j=i

pjqj

 ≥ t∑
i=1

 v∑
j=i

pjqj


implies the existence of i ∈ [t] such that

∑v
j=i pjqj ≤ 1/t. Taking C = [i − 1]

completes the proof.
We now proceed to show f(p, q) ≤ 1. Since f is continuous with compact

domain, there exists a pair (p∗, q∗) that maximises f . Let ℓ ∈ [v] be the largest
nonzero coordinate of p∗. Then q∗i > 0 for all i ≤ ℓ, as otherwise moving the mass
p∗i onto p∗1 would contradict maximality; and q∗i = 0 for all i > ℓ, or moving q∗i onto
(say) q∗1 likewise leads to a contradiction.

Now, suppose (towards contradiction) ℓ > 1, take 1 < j ≤ ℓ and consider the
pair (p∗, q′) with q′1 = 0, q′i = q∗1+q

∗
i and q′j = q∗j otherwise. Then f(p∗, q′) ≤ f(p∗, q∗)

implies
ip∗i (q

∗
1 + q∗i ) ≤ p∗1q∗1 + ip∗i q

∗
i ,

and thus ip∗i ≤ p∗1 (since q∗1 ̸= 0). But then

f(p∗, q∗) =
ℓ∑

i=1

ip∗i q
∗
i ≤ p∗1

ℓ∑
i=1

q∗i = p∗1 < 1,

a contradiction, as the delta distributions at 1 achieve value 1.
We thus conclude that ℓ = 1, so the maximisers p∗, q∗ are the delta distributions

at 1 and f(p, q) ≤ f(p∗, q∗) = 1, as desired.

With the second step of our proof finished, we already have a nontrivial result
by the known implication from hardness for one-way communication complexity: any
streaming algorithm that streams a uniformly random string z ∈ Γv and immediately
outputs a pair (α, i) has a small set C ⊂ [v] capturing most of the probability that it
outputs correctly. However, the verifier in our zero-knowledge streaming protocol will
stream an index instance between streaming z and outputting a pair. To capture
this behaviour, we define a (slight) variant of pair and prove that the result of
Lemma 6.4 carries over to it.
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Definition 6.10. For each string x ∈ Γn, let pair(x) denote the following one-way
communication problem: Alice receives a string z ∼ Γv and sends Bob an s-bit message
a; Bob reads x and a and outputs a pair (α, i) ∈ Γ × [v]. The protocol succeeds if
α = zi.

We have now reached the end goal of this section:

Lemma 6.5. Fix a (single) one-way communication protocol for pair(x) for all
x ∈ Γn with alphabet size 32v/ log log v ≤ |Γ| = O(v/ log log v) and message length
log v ≤ s = polylog(v). Then, for any x ∈ Γn, there exists an event E (that depends
only on z) with P[E] = 1− o(1) and a set C of size s (that depends only on Alice’s
message) satisfying

P
[
b(a, x) = (zi, i) with i /∈ Ca

∣∣E] = o(1).

Proof. We will make a small adaptation in one of the steps of Lemma 6.4 to show
there is a size-s set C independent of x that captures most of the probability of Bob’s
correct outputs.

Following the notation of Lemma 6.4, {Pa} is the partition induced by Alice’s
messages and Bob’s output is a random variable b(a(z), x) = b(a, x) ∈ Γ× [v]. We
also denote the distribution of b = b(a, x) by µ(a, x) and the conditional distribution
of b1 when b2 = i by µi(a, x).

For every x and a, the protocol’s success probability conditioned on z ∈ Pa is

v∑
i=1

Pz∼Pa
b∼µ(a,x)

[b = (zi, i)] =

v∑
i=1

Pb∼µ(a,x)[b2 = i] · Pz∼Pa
b∼µ(a,x)

[b1 = zi | b2 = i]

=

v∑
i=1

Pb∼µ(a,x)[b2 = i] · P z∼Pa
b1∼µi(a,x)

[b1 = zi].

With y = y(a) ∈ Γv as the string whose ith coordinate is the most frequent
symbol at the ith coordinate in Pa, we know that Pz∼Pa [α = zi] is maximal when
α = yi. This holds also if α is a random variable (independent from z), so that, in
particular, with r ∈ [0, 1]v defined by

ri := max
x∈Γn

{
P z∼Pa
b1∼µi(a,x)

[b1 = zi]

}
≤ Pz∼Pa [yi = zi]

we have ∥r∥1 = o(s) when |Pa| is sufficiently large. Defining p ∈ [0, 1]v by pi =

Pb∼µ(a,x)[b2 = i], p′ ∈ [0, 1]v by qi = ri/∥r∥1 and using Claim 6.1, we obtain a set
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Ca ⊂ [v] of size s such that for every x ∈ Γn,

Pz∼Pa
b∼µ(a,x)

[
b = (zi, i) and i /∈ Ca] =

v∑
i=1

Pb∼µ(a,x)[b2 = i] · P z∼Pa
b1∼µi(a,x)

[b1 = zi]

≤ ∥r∥1
v∑

i/∈Ca

piqi = o(1),

and we conclude with same calculation of Lemma 6.4.

As an immediate corollary (by taking C to be a set of symbol-coordinate
pairs, rather than only coordinates; and setting, say, C = ∅ in the complement of
the event E), we have:

Theorem 6.6. Let Γ be an alphabet of size 32v/ log log v ≤ |Γ| = Θ(v/ log log v) and
fix x ∈ Γn. Let Ṽ be a streaming space-s algorithm with log v ≤ s = polylog(v) that
streams z ∼ Γv followed by x, and outputs a pair (α, i) ∈ Γ× [v].

There exists a set C ⊂ Γ× [v] of size s, determined by the snapshot of Ṽ at
the end of the stream z, such that

P
[
Ṽ (z, x) outputs (zi, i) /∈ C

]
= o(1).

The theorem above attains what we set out for in this section: since Ṽ cannot
remember many pairs (zi, i), we may prepend to any protocol a step where P sends
z to the verifier. Then, whenever Ṽ sends an allegedly random α ∈ Γ to the prover,
we ask that it also send the coordinate i such that α = zi as evidence that α was
indeed sampled in the past, i.e., before it finished streaming z. In other words, this
step provides a temporal commitment by means of which Ṽ can show that its internal
randomness is uncorrelated with the input.

6.3 A zero-knowledge SIP for polynomial evaluation

Our goal in this section will be to combine the components constructed in Sections 6.2.3
and 6.2.4 – algebraic and temporal commitment protocols – into a zero-knowledge
protocol for pep. It is useful to keep in mind that pep is a generalisation of index,
and thus a protocol for the former yields one for the latter; in other words, for
concreteness one may replace pep by index throughout this section. A formal
definition of pep follows.

Definition 6.11. Let α ∈ F and f = {fx : x ∈ Γn} be a mapping such that fx : Fm →
F is a degree-d polynomial. pep(f, α) is the language {(x,β) ∈ Γn × Fm : fx(β) = α}.
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We remark that the parameters of the problem generally increase as a function
of n; in particular, the field size is always assumed to satisfy q = |F| = ω(1).

6.3.1 The protocol

For any mapping f and field element α, Protocol 6.5 lays out zk-pep(f, α), our
zero-knowledge SIP for pep(f, α). Theorems 6.7 and 6.8 prove, respectively, the
correctness (i.e., completeness and soundness) and the zero-knowledge properties of
zk-pep.

The protocol uses commitment (sub)protocols to allow each party to only
reveal key information after the other party gives evidence that it is being honest;
this is achieved by interspersing the commit-decommit steps of one party with those
of the other. More precisely, in the setup (Step 0) the verifier performs its (temporal)
commitment; after the input is streamed (Step 1), the prover makes its (algebraic)
commitment in Step 2. Then follow decommitments in the same order: verifier and
prover decommit at Steps 3 and 4, respectively.

For ease of notation, we use F× to denote F \ {0}, the multiplicative group of
the field F. Recall, moreover, that for a matrix y, we use ŷ(ρ,θ) ∈ F to denote an
evaluation of the low-degree extension of the string θ · y over F (see Section 2.5), and
that χ(ρ) denotes a vector of Lagrange polynomials (see Section 6.2.1); in the following
protocol, the vector contains all but the first point of the interpolating set {0} ∪ [dm]

for a univariate degree-dm polynomial over F, i.e., χ(ρ) =
(
χi(ρ) : i ∈ [dm]

)
∈ Fdm.

Protocol 6.5: zk-pep(f, α)

Input: Explicit access to field F, element α ∈ F, degree d, dimension m and a
mapping x 7→ fx; streaming access to x ∈ Γn followed by β ∈ Fm.

Parameters:
Field size q = |F| satisfying dm = o(q);
Commitment lengths v = qm(logm+ log log q)/32 and p = m(dmq)3;

Step 0: Temporal commitment

P : Send a string z ∼
(
Fm
)v.

V : Sample ρ ∼ Fm and stream z. For each i ∈ [v], check if zi = ρ and
store ℓ = i if so.

Reject if ρ ̸= zi for all i ∈ [v].
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Step 1: Input streaming

V : Stream x and compute fx(ρ) ∈ F. Store β ∈ Fm.

If ρ = β, check that fx(ρ) = α, accepting if so and rejecting otherwise.

Step 2: Algebraic commitment

V : Sample ρ ∼ F× \ [dm] and send the line L : F→ Fm with L(0) = β and
L(ρ) = ρ.

P : Send an algebraic commitment (y,γ, k) to fx|L, i.e., (y, k) ∼ Fdm×p× [p]

and γ ∈ Fdm with γi = fx|L(i)− yik for all i ∈ [dm].

V : Sample σ ∼ Fm and, while streaming y, compute ŷ
(
σ,χ(ρ)

)
.

Compute the correction γ = χ(ρ) · γ and save (the identification of)
k ∈ Fm.

Step 3: Temporal decommitment

V : Send ρ and ℓ.

P : Check that zℓ = ρ ∈ L and ρ := L−1(ρ) /∈ {0} ∪ [dm], aborting
otherwise.

Step 4: Algebraic decommitment

V : Run decommit
(
fx(ρ)− χ0(ρ)α,χ(ρ) · y, k

)
, with correction γ and fin-

gerprint ŷ(σ,χ(ρ)). Accept if decommit accepts and reject otherwise.

6.3.2 Analysis of the protocol

We now show that zk-pep is a valid (i.e., complete and sound) streaming interactive
proof, as well as compute its space and communication complexities.

Theorem 6.7. Let f be such that an evaluation of the Fq-polynomial fx can be
computed by streaming x in O(m log q) space. Then, for any α ∈ Fq, Protocol 6.5
is an SIP for pep(f, α) with s = O(m log q) space complexity. Its communication
complexity is O(qmm log2 q) in the setup and O(d4m5q3 log q) in the interactive phase.

Proof. We will prove completeness then soundness, and compute the complexities
last.

Completeness. The verifier only aborts in Step 0 (the setup) if ρ is not among
the v > qm log log q random tuples sent by the prover, an event with probability
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(1− 1/qm)v ≤ e−v/qm = o(1). Otherwise, since the prover behaves honestly, in Step 2
(the algebraic commitment) we have

yik = fx|L(i)− γi

for all i ∈ [dm].
Let w = χ(ρ) · y =

∑dm
i=1 χi(ρ)yi ∈ Fp and ŵ : Fm → F be its m-variate

LDE. Recall that, in decommit
(
fx(ρ)− χ0(ρ)α,w, k

)
(Protocol 6.3), with correction

γ and fingerprint ŷ(σ,χ(ρ)), the verifier sends a line L′ : F → Fm with L′(0) = k,
L′(σ) = σ, receives ŵ|L′ and makes two checks: that ŵ|L′(σ) matches the fingerprint
and that ŵ(0) + γ = fx(ρ)− χ0(ρ)α. Since

ŵ|L′(σ) = ŵ(σ) =
dm∑
i=1

χi(ρ)ŷi(σ) = ŷ
(
σ,χ(ρ)

)
and

ŵ(0) + γ = wk + γ =
dm∑
i=1

χi(ρ)
(
yik + γi

)
=

dm∑
i=1

χi(ρ)f
x
|L(i)

= fx(ρ)− χ0(ρ)f
x(β)

= fx(ρ)− χ0(ρ)α,

the verifier accepts when P is honest except with probability o(1).

Soundness. First, note that if ρ /∈ {zi : i ∈ [v]}, the verifier rejects already in
Step 0. We can thus assume the tuple ρ equals some coordinate in z, and, since
the string and tuple are independent random variables, the distribution of ρ is still
uniform conditioned on this event. (We may also assume that ρ ̸= β, since otherwise
V also rejects regardless of the prover’s behaviour.)

The only other point where V may reject is Step 4 (the algebraic decom-
mitment). Once again, recall that V sends the prover a line L′ with L′(0) = k,
L′(σ) = σ where σ ∼ F and P replies with a degree-dm polynomial g : F→ F that
is allegedly ŵ|L′ . The verifier then checks that g(σ) = ŷ

(
σ,χ(ρ)

)
= ŵ|L′(σ) and

g(0) + γ = fx(ρ)− χ0(ρ)α, rejecting if either equality fails to hold.
We now analyse three cases: first, suppose that g = ŵ|L′ . Then the first check
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passes but

g(0) + γ = wk + γ

= fx(ρ)− χ0(ρ)f
x(β)

̸= fx(ρ)− χ0(ρ)α,

so the verifier rejects (with probability 1).
Suppose, now, that g(0) ̸= ŵ|L′(0). Then Lemma 6.1 (Schwartz-Zippel)

implies g(σ) ̸= ŵ|L′(σ), so the verifier rejects, except with probability dm/q = o(1).
Finally, suppose that g ̸= ŵ|L′ but g(0) = ŵ(0) =

∑dm
i=1 χi(ρ)yik. Then either

the first check fails, i.e., g(σ) ̸= ŷ
(
σ,χ(ρ)

)
, and V rejects; or g(σ) = ŷ

(
σ,χ(ρ)

)
, and

the second check passes if

g(0) + γ =
dm∑
i=1

χi(ρ)
(
yik + γi

)
is equal to

fx(ρ)− χ0(ρ)α = χ0(ρ)
(
fx(β)− α

)
+

dm∑
i=1

χi(ρ)f
x
|L(i).

Rearranging, the second check corresponds to the following equation:

χ0(ρ)
(
fx(β)− α

)
+

dm∑
i=1

χi(ρ)
(
fx|L(i)− γi − yik

)
= 0.

Now, consider the left-hand side of the equation as a polynomial in ρ: plugging
in 0 for the variable ρ evaluates to fx(β)− α ̸= 0, so that it is a nonzero polynomial;
and, crucially, ρ was sampled uniformly (from F× \ [dm]) and independently of the
communication (in particular, of y and γ) by V . By Lemma 6.1 lemma once again,
the equation is satisfied with probability at most dm/(q − dm − 1) = o(1) and
soundness follows.

Communication complexity. Most of the communication occurs in Steps 0 and 2
(the commitments), which communicate

O
(
qm(logm+ log log q)m log q

)
= O

(
qmm log2 q

)
and

O (pdm log q) = O
(
d4m5q3 log q

)
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bits, respectively. (The communication in other steps is significantly smaller: Step 1
has none, while Steps 3 and 4 communicate m log q + log v = O(m log q) and
O(dm log q) bits, respectively.)

Space complexity. Apart from a constant number of elements of F (requiring
O(log q) bits), the verifier stores ℓ ∈ [v], k ∈ [p] and ρ,σ ∈ Fm. Since v ≥ p, the space
complexity is dominated by ℓ and ρ,σ. Since storing ℓ requires log v = O(m log q)

bits (as does computing fx(ρ)) while ρ and σ require m log q bits each, the space
complexity follows.

6.3.3 Zero-knowledge

Having shown that zk-pep is a valid streaming interactive proof, we now show it is
also zero-knowledge.

Theorem 6.8. Protocol 6.5 is zero-knowledge, secure against distinguishers with
space dm2 polylog(q). The simulator runs in O

(
(d+m log q)m log q

)
= O

(
dm2 log2 q

)
space.

Proof. Recall that a space-s SIP is zero-knowledge against dm2 polylog(q)-space
distinguishers if there exists a streaming simulator S that satisfies the following.
For any space-s (honest or malicious) verifier Ṽ and input (x,β) where fx(β) = α,
given whitebox access to Ṽ the simulator S produces a view that is indistinguishable
to a dm2 polylog(q)-space (streaming) algorithm from the view generated by an
interaction of Ṽ with the honest prover. Note that Ṽ can be simulated in space
O(s), so the space complexity of the statement suffices to simulate the verifier of
Protocol 6.5 since s = O(m log q).

The simulator interprets its read-only random bit string as (z, y) with z ∼ Fv

and y ∼ Fdm×p (so that vm log q + pdm log q ≤ qm+8 bits suffice and an algorithm
with (m+8) log q space can address into this string). This pair will be used to simulate
prover messages, whereas the simulation of Ṽ will use a source of randomness that
cannot be reread (but has unbounded length). In the description that follows, as well
as the more succinct one in Algorithm 6.1, recall that Ṽ is assumed to only output a
decision at the end of the protocol (so that, if it decides to reject in the middle, it
continues the protocol with dummy messages); and likewise if S (or P ) aborts.

In the setup, Step 0 (the temporal commitment), S simulates Ṽ (z). Then,
using the snapshot of the verifier’s memory and its whitebox access to Ṽ , the simulator
finds the set C of s elements of Fm that Ṽ may successfully decommit to with the
largest probabilities. More precisely, S calls the whitebox oracleW (see Definition 6.4)
on the algorithm that corresponds to the verifier immediately before streaming x,
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with initial memory state equal to the current snapshot b ∈ {0, 1}s, and whose output
is a pair (ρ, ℓ) at Step 3 (ignoring L, the intermediate output at Step 2).

S initialises a sorted list of message-probability pairs in Fm × [v]× [0, 1], and,
for all ℓ ∈ [v], uses its oracle access to both z and W to find µℓ :=W

(
b, (zℓ, ℓ)

)
. If

the size of the list is smaller than s, or µℓ is larger than the smallest probability in it,
S adds (zℓ, ℓ, µℓ) to it (and removes the tuple with the smallest µℓ′ if the size of the
resulting would have exceeded s).

This yields the set C ⊂ Fm× [v] with the s most likely correct decommitments
of Ṽ . Since the string z is over the alphabet Fm, whose size satisfies

v

log log v
=

qm(logm+ log log q)

32 log
(
m log q + log(logm+ log log q)− 5

) ≤ qm

32
,

qm = Θ(v/ log log v) as well as s ≥ log p = Θ(log q) and s = polylog(p), Theorem 6.6
applies for this parameter setting. This ensures that, except with probability o(1),
the verifier Ṽ will output either (zℓ, ℓ) ∈ C or an incorrect (ρ, ℓ) with zℓ ̸= ρ in its
decommitment at Step 3.

Then S proceeds to Step 1, simulating Ṽ (x) and, with F := {zi : (zi, i) ∈ C},
computing fx(ρ) for every ρ ∈ F . At the start of Step 2 (the algebraic commitment),
Ṽ sends a line L. The simulator inspects the intersection of L (viewed as a set) with
the set of fingerprints F and computes a random degree-dm polynomial g subject
to the constraints g(β) = fx|L(β) = fx

(
L(β)

)
for all β ∈ L−1(F ).13 Note that the

description of g is comprised of O(dm) field elements.
S samples k ∼ [p] then simulates Ṽ streaming y followed by γi = g(i)− yik

for all i ∈ [dm] and k; note that S is able to compute all γi from the description of g
combined with its oracle access to y.

There is no prover-to-verifier communication in Step 3 (the temporal decom-
mitment), so S simulates Ṽ until the verifier sends a tuple ρ ∈ Fm and an index
ℓ ∈ [v]. The simulator then checks that zℓ = ρ ∈ L and ρ := L−1(ρ) ∈ F× \ [dm]; if
not, then S aborts (as P would).

Finally, in Step 4 (the algebraic decommitment), S simulates Ṽ until it sends
a line L′ : F → Fm. The only remaining part of the verifier’s view left to generate
are the evaluations of of the polynomial

∑
i∈[dm] χi(ρ)ŷi ◦ L′ for all points in [dm].

These are computed by S in a streaming fashion using its oracle access to y.
The space complexity of S is dominated by the description of the polynomial

g, which requires O(dm log q) bits, and by the set C of s = O(m log q) elements of
13Knowledge of fx(ρ) for all ρ ∈ F enables the simulator to sample from this distribution: F

fixes |L ∩ F | evaluations, and the simulator sets the dm− |L ∩ F | remaining ones uniformly.
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Fm × [v]. Since each element requires m log q + log v = O(m log q) bits, the total
space complexity is

O(dm log q + sm log q) = O ((d+m log q)m log q) = O(dm2 log2 q),

as claimed. (Apart from C, the simulator stores fx(ρ) ∈ F for every ρ ∈ C, which
requires s log q bits; and the lines L, L′ as well as k, which require O(log q) bits each.)

Algorithm 6.1: Simulator for Protocol 6.5

Input: Whitebox access to Ṽ ; oracle access to a length-qm+8 random bit string
interpreted as (z, y) ∈

(
Fm
)v × Fdm×p; streaming access to (x,β) ∈ Γn × Fm.

Output: View
(
z, x,β, y,γ, k, (h(i) : i ∈ [dm])

)
with k ∈ [p], γ ∈ Fdm and

h : F→ F.

Step 0: Temporal commitment

S: Send z.

Ṽ : Simulate until the end of this step and let b ∈ {0, 1}s be the resulting
snapshot of Ṽ . Use the whitebox oracle W to determine the set C ⊂
{(zi, i) : i ∈ [v]} of size s with the largest W(b, (zi, i)).

Step 1: Input streaming

Ṽ : Stream x, computing and storing fx(ρ) for every ρ ∈ {zi : (zi, i) ∈ C}
while simulating the verifier.

S: Store β.

Step 2: Algebraic commitment

Ṽ : Simulate until Ṽ sends a line L, aborting if L(0) ̸= β.

S: Sample a random polynomial g : F→ F of degree at most dm subject
to g(0) = α and g(β) = fx

(
L(β)

)
for all β such that (i, L(β)) ∈ C for

some i ∈ [v].

Send y followed by γ =
(
g(i)− yik : i ∈ [dm]

)
and k ∼ [p].

Ṽ : Simulate until the end of the step.

Step 3: Temporal decommitment
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Ṽ : Simulate until Ṽ sends ρ ∈ Fm and ℓ ∈ [v].

S: Check that zℓ = ρ ∈ L and ρ ∈ F× \ [dm], aborting if either check fails
or (ρ, ℓ) /∈ C.

Step 4: Algebraic decommitment

Ṽ : Simulate until Ṽ sends a line L′ : F→ Fm, aborting if L′(0) ̸= k.

S: Set ρ := L−1(ρ) and send
(∑dm

i=1 χi(ρ) · ŷi ◦ L′(j) : j ∈ [dm]
)
.

Now, all that remains is to prove indistinguishability by space-s′ streaming
algorithms between the output of S and a real transcript, for some s′ comparable to
the space complexities of the verifier and simulator. The following claim proves this
with s′ = dm2 polylog(q) (which is larger than both).

Claim 6.2. Fix α ∈ F and f as in the definition of pep, an input (x,β) ∈ Fn × Fm,
a bit string r of arbitrary length and a O(m log q)-space verifier algorithm Ṽ . Let D
be a streaming algorithm with space dm2 polylog(q) such that

P
[
D
(
View

P,Ṽ
(x, r)

)
accepts

]
− P

[
D
(
S
(
Ṽ , x, r

))
accepts

]
= ε,

with View
P,Ṽ

(x, r) a view of Protocol 6.5 and S
(
Ṽ , x, r

)
output by Algorithm 6.1.

Then ε = o(1).

Assume, towards contradiction, that there exist α, f , an input (x,β) ∈ Fn×Fm,
a streaming verifier Ṽ with O(m log q) space and a (streaming) distinguisher D with
dm2 polylog(q) space such that D distinguishes real transcripts of zk-pep(f, α) from
simulations with bias ε = Ω(1) when the input is (x,β).

Recall that we assume that Ṽ rejects only after receiving all messages from
P ; therefore, the algebraic commitment (y,γ, k) is always present in both real and
simulated views. Our goal is to show D implies a one-way protocol for index over
the binary alphabet with a small message and a large bias, using Lemma 6.2. We do
so by constructing, from D, a one-way communication protocol that distinguishes
algebraic commitments to a fixed message α ∈ Fℓ from algebraic commitments to a
random α′ ∈ Fℓ, where ℓ ≤ dm.

As both the real and simulated transcripts are identically distributed up to
(and including) the verifier’s message in Step 2, the expected distinguishing advantage
and probability of a simulation failure (i.e., of an abortion in Step 3 due to (ρ, ℓ) /∈ C)
are ε and o(1), respectively (over z and the bits of the verifier randomness r used
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until then). Therefore, there exists a fixed prefix of the transcript that retains
distinguishing advantage ε/2 and whose probability of a simulation failure is o(1);
indeed, at least an ε/2 fraction of prefixes retains advantage ε/2 and at most an o(1)
fraction yields simulation failures with Ω(1) probability, so an ε/2 − o(1) fraction
of prefixes work. We thus assume, in the one-way protocol we define next, not
only x and β to be fixed, but also the line L and z – and, consequently, the set
C ⊂ {(zi, i) : i ∈ [v]} (as well as the corresponding fx(zi)) that captures most of the
weight of correct tuples Ṽ may decommit to, as given by Theorem 6.6.

Viewing L as the set of pairs {(L(σ), σ) : σ ∈ F}, define ℓ := dm−|L ∩ C| and
assume,14 without loss of generality, that L ∩ C = [dm] \ [ℓ]. Consider the following
one-way communication protocol with shared randomness (for strings w of length
p) that distinguishes a commitment (w, k,η) to

(
fx(i) : i ∈ [ℓ]

)
from a commitment

to a random message: Alice uses S to simulate an interaction between P and Ṽ

with input (x,β) and verifier randomness r, executing D on the (partial and fixed)
transcript thus obtained, until Ṽ sends a line L : F→ Fm in Step 2.

Alice samples ρ′ ∼ F× \ [dm] and continues the simulation of D by feeding it
y ∈ Fdm×p defined as follows: yi := wi for i ∈ [ℓ], yi ∼ Fp for ℓ < i < dm and

ydm := χdm(ρ′)−1 ·

(
t−

dm−1∑
i=1

χi(ρ
′)yi

)
,

where yℓ+1, . . . , ydm−1 and t are random strings (in Fp) shared with Bob. Note that
ρ′ /∈ {0} ∪ [dm] implies χdm(ρ′) ̸= 0, so that ydm is well-defined. (See Figure 6.1 for
a diagram of the reduction.)

After simulating Ṽ , D and S in Step 2 with y, she sends Bob all three snapshots
as well as L and ρ′ in a dm2 polylog(q)-bit message.15 (The space complexities of Ṽ
and S are both dominated by the distinguisher’s.)

Bob, in turn, finishes the simulation of Step 2 with his (random) index k ∈ [p]

and the correction tuple γ defined as follows:16

γi =

{
ηi, if i ≤ ℓ
x̂(i)− yik, if ℓ < i < dm

14Note that when |L ∩ C| ≥ dm the simulator knows the entirety of fx
|L, in which case the

distinguishing bias is 0. Nonzero bias thus implies dm > |L ∩ C|.
15We assume Bob receives the tuple η and reads C along with the corresponding evaluations

from the simulator’s snapshot; alternatively, Alice could send this information in a message that is
asymptotically no larger.

16Recall that all yi for all ℓ < i < dm are contained in Alice and Bob’s shared randomness.
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Figure 6.1: Reduction from index to distinguishability of views when ℓ = 3 and
dm = 4. The instance w is inserted into the first 2 rows of y, while y3 is filled in with
joint randomness and y4 is the solution of the linear system shown in the diagram.

and

γdm := χdm(ρ′)−1

(
fx|L(ρ

′)− χ0(ρ
′)α− tk −

dm−1∑
i=1

χi(ρ
′)γi

)
.

Bob proceeds to simulate Steps 3 and 4, using S to generate the remainder of the
view. Note that in the former step (ρ, ℓ) /∈ C is the only case in which S aborts
when P would not, which identifies a simulated transcript with certainty; but this
is a small-probability event. When S fails (i.e., (ρ, ℓ) /∈ C) or the field element
ρ = L−1(ρ) is not equal to ρ′, Bob halts the simulations and accepts or rejects
uniformly; otherwise, he finishes the transcript by sending the low-degree polynomial
that comprises the last round. This is possible because, while Bob does not know all
ŷi, he does know the required linear combination:

dm∑
i=1

χi(ρ) · yi =
dm−1∑
i=1

χi(ρ) · yi + χdm(ρ) · χdm(ρ)−1

(
t−

dm−1∑
i=1

χi(ρ)yi

)
= t,

and since t is a (random) string known to both Alice and Bob, in particular he can
compute t̂L′ for any line L′ : Fm → F.

Finally, Bob inspects the output of D and chooses his output accordingly,
accepting if and only if D accepts. Note that this one-way protocol succeeds

• with probability 1/2 (and thus bias 0) either when S fails or when S succeeds
and ρ′ ̸= ρ;

• with bias ε/2 when S succeeds and ρ′ = ρ.

The latter follows from the fact that, if S succeeds and ρ′ = ρ, it produces a
full transcript where γ is a correction for the (unique) degree-dm polynomial g such
that g(0) = α, g(i) = ηi + yik for i ∈ [ℓ] and g(i) = fx(i) for i ∈ [dm] \ [ℓ] = L∩C.17

Therefore, if η =
(
fx(i) − yik : i ∈ [ℓ]

)
, then γ is a correction to fx; while if η is

random, then γ is a random degree-dm polynomial that matches fx in (0 and) L∩C.
17When L ∩ C ̸= [dm] \ [ℓ], the set still fixes |L ∩ C| values of g and leaves dm − |L ∩ C| to be

chosen randomly.
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Since D distinguishes between the two cases with bias ε/2, then so does the one-way
protocol. Therefore,

Pw∼Fℓ×p

k∼[p]

[
B
(
A(w),

(
fx(i)− wik : i ∈ [ℓ]

)
, k
)

accepts
]

− Pw∼Fℓ×p

k∼[p]
η∼Fℓ

[
B
(
A(w),η, k

)
accepts

]
= o(1) ·

(
1

2
− 1

2

)
+
(
1− o(1)

)
·
(
1− 1

q

)
·
(
1

2
− 1

2

)
+
(
1− o(1)

)
· 1
q
· ε
2

≥ ε

3q
.

Finally, applying Lemma 6.2, we obtain a one-way binary index protocol
for strings of length p = m(dmq)3 with messages of length dm2q2ℓ2 log2 q

ε2
polylog(q) ≤

d3m4q2.01 and constant bias, a contradiction with
√

d3m4q2.01

p = o(1).

6.3.4 Applications: index, point-query, range-count and selection

From the general zk-pep(f, α) protocol, we immediately obtain a zero-knowledge
streaming interactive proof for the decision-index(α) problem (Definition 6.7) as a
corollary:

Corollary 6.1. Fix δ ∈ (0, 1]. For any α ∈ Fq where q = Θ
(
log1+

2
δ n
)
, the

language decision-index(α) admits a zkSIP with space complexity O(log n) and
communication complexities O(n1+δ) and polylog(n) in the setup and interactive
stages, respectively. The protocol is secure against Õ

(
log2+

2
δ n
)
-space distinguishers.

Proof. Set d = log
2
δ n and m = δ log n/2 log log n, so that dm = n and dm/q = o(1).

Note, moreover, that decision-index(α) is the polynomial evaluation problem where
fx = x̂, the low-degree extension of x (which can be computed in O(m log q) space)
and β is the identification of a coordinate j ∈ [n]. Thus, applying Protocol 6.5 to
the mapping x 7→ x̂ with the aforementioned parameters, we obtain a protocol with
verifier space complexity

O(m log q) = O

(
log n

log log n
· log logn

)
= O(log n)
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and communication complexities

O(qmm log2 q) =
(
log1+

2
δ n
) δ logn

2 log logn
polylog(n)

= n1+
δ
2 polylog(n)

= O(n1+δ)

in the setup and O(d4m5q3 log q) = polylog(n) in the interactive stage; moreover, it
is secure against distinguishers with dm2 polylog(q) = Õ

(
log2+

2
δ n
)

space.

Remark 6.9. Inspecting the proof of Claim 6.2, we see that increasing the prover’s
commitment length allows us to achieve significantly stronger indistinguishability:
with p = logω(1) n, we have

√
s′q2ℓ2/p = o(1) for any s′ = polylog(n). This setting

of p increases only the communication complexity of the interactive phase (Steps 2
to 4) – which can still be bounded by no(1) – and makes the protocol secure against
polylog(n)-space distinguishers.

We now select a few applications of the zk-pep protocol to solve other streaming
problems; the remainder of this section follows reductions to pep due to [CCM+19].

In the point-query problem, the input is a stream of updates (u, i) ∈ Z× [ℓ]

to an ℓ-dimensional vector y initialised to zero, followed by an index j, and the task
is to output yj . A formal definition follows.18

Definition 6.12. Let ℓ,M ∈ N and t ∈ [−M,M ]∩Z. The language point-query(t)

is defined as
(
u1, k1, . . . , un, kn, j

)
:

∀i, ui ∈ [−M,M ] ∩ Z and ki, j ∈ [ℓ],

∀k,
∣∣∣∑i∈[n],ki=k ui

∣∣∣ ≤M and∑
i∈[n],ki=j ui = t

 .

Corollary 6.2. Fix δ ∈ (0, 1]. Let ℓ,M ∈ N with ℓ ∈ [n], M = poly(n) and
t ∈ [−M,M ] ∩ Z. There exists a zkSIP for point-query(t) with space complexity
O(log2 n) and communication complexities O(n1+δ) and polylog(n) in the setup and
interactive stages, respectively.

Proof. We first note that, by an application of the Chinese Remainder Theorem (see,
e.g., [GR15]), we may assume M = O(log n) at the cost of a logarithmic blowup to
the space complexity: the verifier runs Protocol 6.5 in parallel with O(log n) fields
Fq ⊃ Fp for distinct primes p = O(log n), so that any integer in [−M,M ] can be

18We remark that point-query is formally a promise problem: the condition that coordinatewise
sums are bounded by M is assumed to hold for no-instances of the language too. However, a
polynomial bound is often trivially true (as in the applications that follow).
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uniquely represented by logarithmically many field elements.
We set the same parameters as in Corollary 6.1: degree d = log

2
δ n and

m = δ log n/2 log log n, but also ensure q = Θ
(
log1+

2
δ n
)

is the power of a prime
larger than 2M + 1 (so that elements of [−M,M ]∩Z map to distinct field elements).

Viewing integers in [−M,M ] as elements of F, we define y ∈ Fℓ by

yk :=
∑
i∈[n]
ki=k

ui,

and the mapping x =
(
(ui, ki) : i ∈ [n]

)
7→ fx by fx := ŷ. Note that the verifier can

compute

ŷ(ρ) =
∑
k∈[ℓ]

 n∑
i=1
ki=k

ui

χk(ρ)

by recording the running sum of uiχki(ρ), a task for which O(m log q) = O(log n)

space suffices.
Applying Protocol 6.5 with the mapping and parameters above, we obtain a

zero-knowledge SIP with space complexity O(log2 n) (due to the aforementioned log-
arithmic overhead), communication complexity O(n1+δ) in the setup and polylog(n)

in the interactive stage.

With the protocol of Corollary 6.2, we obtain a zero-knowledge SIP for the
range-count problem, where the stream consists of a sequence x of elements in a
set [ℓ] followed by a subset R ⊆ [ℓ], and the task is to return the number of times an
element of R appeared in the stream. Formally,

Definition 6.13. Let R ⊆ 2[ℓ]. The language range-count(t) is defined as

{(x,R) ∈ [ℓ]n ×R : |{i ∈ [n] : xi ∈ R}| = t} .

Corollary 6.3. Fix δ ∈ (0, 1]. For every R ⊆ 2[ℓ] of size poly(n), the language
range-count(t) admits a zkSIP with space complexity O(log2 n) and communication
complexities O(n1+δ) and polylog(n) in the setup and interactive stages, respectively.

Proof sketch. We run the protocol for point-query (Corollary 6.2) on the stream
obtained by concatenating (R′ ∈ R : xi ∈ R′) for every i ∈ [n] (which the verifier can
simulate while streaming x), followed by R (viewed as an element of [|R|]). More
precisely, we redefine the mapping x 7→ fx as what would be obtained by processing
the derived stream, which avoids the length overhead (to n|R| = poly(n), rather
than n) incurred otherwise.
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Since M = n is an upper bound for the number of points in any subset of [ℓ],
we obtain a protocol with the complexities as claimed.

We conclude with an application of the range-count protocol to solve
selection (and median in particular). For x ∈ [ℓ]n and i ∈ [ℓ], we call φ(x) the
frequency vector of x, defined as φi(x) = |{j ∈ [n] : xj = i}| (see, also, Definition 6.16).
A word in the language selection consists of x along with a rank r ∈ [n] the integer
k ∈ [ℓ] with this rank and offsets ϕ ∈ [n], ϕ′ ∈ {0} ∪ [n]. (We remark that the
additional parameters take into account what the verifier learns in the search version
of the SIP: not only the element k with rank r, but the values of the cumulative
frequencies up to k − 1 and up to k.)

Definition 6.14. For ℓ ∈ [n], the language selection is defined as{
(x, k, r, ϕ, ϕ′) ∈ [ℓ]n+1 × [n]2 × {0} ∪ [n] :

∑k−1
i=1 φi(x) = r − ϕ and∑k
i=1 φi(x) = r + ϕ′

}
.

Corollary 6.4. Fix δ ∈ (0, 1]. There exists a zkSIP for selection with space
complexity O(log2 n) and communication complexities O(n1+δ) and polylog(n) in the
setup and interactive stages, respectively.

Proof sketch. We execute the protocol for range-count twice (by temporally com-
mitting and streaming x only once; this can be done by saving two independent
fingerprints for fx, and only running zk-pep twice from Step 2 onwards). The class
of ranges is R = {[n] \ [i] : 0 ≤ i ≤ n}, of size O(n), and the verifier checks that
the number of hits in the ranges [n] \ [k − 1] and [n] \ [k] are r − ϕ and r + ϕ′,
respectively.

6.4 A zero-knowledge sumcheck SIP

In the previous section we showed how Protocol 6.1, the polynomial evaluation
protocol of [CTY11], can be made zero-knowledge with the careful addition of algebraic
and temporal commitment protocols. Although pep is a foundational problem for
streaming algorithms – generalising index, for example – it is not immediately clear
whether the same techniques enable us to construct a zero-knowledge version of the
second widely used tool in SIPs: the sumcheck protocol. In this section, we prove
that they do: Protocol 6.7 leys out zk-sumcheck, a zkSIP for the sumcheck problem
(Definition 6.15) with the same components, namely, the algebraic and temporal
commitments that enabled zk-pep.

Sumcheck protocols are extremely useful building blocks for the construction
of interactive proofs; indeed, some of the most celebrated results of the last two
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decades rely on them, most notably the GKR [GKR15] and subsequent delegation-of-
computation protocols (e.g., [RVW13, RRR21, RR20b]). Roughly speaking, they allow
a verifier to check that the sum, over a subcube, of the evaluations of a polynomial
yields a prescribed field element; they save exponentially in the communication (and
time) complexity as compared to sending the entire description of the polynomial. In
particular, they enable the (exact) computation of frequency moments of a stream
via an interactive protocol in sublinear space [CCMT14], which is impossible without
interaction [AMS99].

More precisely, let f : Fm → F be a polynomial of (individual) degree d and
H ⊂ F be an evaluation domain. One obvious way to check that

∑
β∈Hm f(β) is

equal to some α ∈ F is via the description of f (say, as a list of sufficiently many
evaluations), from which the sum can be computed directly. This requires not only
the entire description of f , which has size (d+1)m; but also entails evaluating f over
|H|m many points, implying an even larger runtime.

The standard sumcheck protocol (Protocol 6.6) enables a verifier V to offload
this costly computation to a powerful prover P and check the claim by communicating
O(dm) field elements in O(|H|md) time steps, with a single random evaluation of
f .19

Protocol 6.6: sumcheck(f, α)

Input: Explicit access to F = Fq, evaluation domain H ⊂ F, degree d,
dimension m and α ∈ F as well as f(ρ) with ρ ∼ Fm, where f : Fm → F is a
degree-d polynomial.

Repeat, from i = 1 to m:

P : Send fi(T ) =
∑

βi+1,...,βm∈H f(ρ1, . . . ,ρi−1, T, βi+1, . . . , βm).

V : Send ρi.

V : Check that
∑

β1∈H f1(β1) = α, f(ρ) = fm(ρm) and the intermediate
polyomials satisfy

∑
βi∈H fi(βi) = fi−1(ρi−1) for all 2 ≤ i < m, accepting if

so and rejecting otherwise.

It is well known that the protocol above (always) accepts if
∑

β∈Hm f(β) = α,
and rejects with probability at least 1 − dm/q otherwise (see, e.g., [AB09]). As

19Protocol 6.6 is laid out in a somewhat non-standard (but equivalent) form, with checks deferred
to the end, that more closely resembles the streaming version we construct.
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sums of polynomials can be performed in a streaming fashion, the verifier only needs
O(m log q) bits of space.

6.4.1 The protocol

We now show that the techniques of Section 6.2 enable us to construct a streaming
zero-knowledge variant of sumcheck(f, α), which solves the problem defined next.

Definition 6.15. Let α ∈ F, H ⊆ F and f = {fx : x ∈ Γn} be a mapping such
that fx : Fm → F is a degree-d polynomial. sumcheck(f, α) is the language{
x ∈ Γn :

∑
β∈Hm fx(β) = α

}
.

The techniques need to be adapted, however, with one key distinction between
zk-sumcheck and zk-pep: the prover now must make many (algebraic) commitments,
each of which is used in a pair of decommitments; moreover, the commitments cannot
be sent in parallel anymore, owing to dependencies between messages in contiguous
rounds. Intuitively, neither of these should pose too great a challenge: computing
fingerprints of a set of messages whose commitment is sent sequentially should be
no easier than when they are sent in parallel (indeed, for one-way communication
protocols they are exactly equivalent); and if one algebraic decommitment does not
leak a significant amount of information, two should not do so either.

The protocol follows. We note that (differently from Section 6.3) χ(ρ) denotes
the vector of Lagrange polynomials over F for degree-d univariate polynomials with
interpolating set [d+ 1], i.e., χ(ρ) =

(
χi(ρ) : i ∈ [d+ 1]) ∈ Fd+1.

Protocol 6.7: zk-sumcheck(f, α)

Input: Explicit access to F, element α ∈ F, degree d, dimension m, evaluation
domain H ⊂ F and mapping x 7→ fx; streaming access to x ∈ Γn.

Parameters:
Field size q = |F| satisfying dm = o(q);
Commitment lengths v = qm(logm+ log log q)/96 and p = qlog log q.

Step 0: Temporal commitment

P : Send a string z ∼
(
(F \ [d+ 1])m

)v.
V : Sample ρ ∼ (F \ [d+ 1])m and stream z. Check if zi = ρ for each i,

storing ℓ = i if so.

Reject if ρ ̸= zi for all i ∈ [v].
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Step 1: Input streaming

V : Stream x and compute fx(ρ) ∈ F.

Step 2: Algebraic commitments

P : Compute f1(T ) =
∑

β2,...,βm∈H fx(T, β2 . . . , βm) and sample k ∼ [p].

V : Sample σ(1), . . . ,σ(m+1) ∼ Fm. Compute χ(ρ1) . . . ,χ(ρm) and the
linear coefficients θ such that

∑
β∈H g(β) =

∑
i θig(i) when g is a

degree-d univariate polynomial.

Repeat, from i = 1 to m:

P : Send y(i) ∼ F(d+1)×p and γ(i) =
(
fi(j)− y(i)jk : j ∈ [d+ 1]

)
.

V : Compute the fingerprints ŷ(i)
(
σ(i),χ(ρi)

)
and ŷ(i)

(
σ(i+1),θ

)
, as

well as the dot products χ(ρi) · γ(i) and θ · γ(i).
Send ρi.

P : Compute fi+1(T ) =
∑

βi+2,...,βm∈H fx(ρ1, . . . ,ρi, T, βi+2, . . . , βm) if
i < m.

P : Send k.

Step 3: Temporal decommitment

V : Send ℓ.

P : Check that zℓ = ρ ∈
(
F \ [d+ 1]

)m, aborting otherwise.

Step 4: Algebraic decommitments

V : For all 1 < i ≤ m, run

decommit
(
0,θ · y(i) − χ(ρi−1) · y(i−1), k

)
, with

fingerprint ŷ(i)
(
σ(i),θ

)
− ŷ(i−1)

(
σ(i),χ(ρi−1)

)
and correction θ ·γ(i)−

χ(ρi−1) · γ(i−1).

Run decommit
(
α,θ · y(1), k

)
with fingerprint ŷ(1)

(
σ(1),θ

)
and correc-

tion θ · γ(1).

Run decommit
(
fx(ρ),χ(ρm) · y(m), k

)
using ŷ(m)

(
σ(m+1),χ(ρm)

)
as

the fingerprint and χ(ρm) · γ(m) as the correction.

Accept if all decommitments accept, and reject otherwise.
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6.4.2 Analysis of the protocol

We now show that zk-sumcheck is a valid (i.e., complete and sound) streaming
interactive proof, and compute its space and communication complexities.

Theorem 6.10. Let f be such that an evaluation of the Fq-polynomial fx can be
computed by streaming x in O(m2 log q) space. For any α ∈ Fq, Protocol 6.7 is
an SIP for sumcheck(f, α) with space complexity s = O(m2 log q), communication
complexity O(qmm log2 q) in the setup and O(qlog log qdm log q) = qlog log q poly(q) in
the interactive phase.

Proof. As in Theorem 6.7, we first show completeness and soundness, then compute
the complexities.

Completeness. Recall that decommit(β,w, k) with correction γ accepts if (the
fingerprint matches the LDE of w and) γ + wk = β. Therefore, when P and V are
both honest, the first m− 1 decommitments of Step 4 accept, since

θ · γ(i) − χ(ρi−1) · γ(i−1) +
(
θ · y(i) − χ(ρi−1) · y(i−1)

)
k

=

d+1∑
j=1

(
θj
(
γ
(i)
j + y

(i)
jk

)
− χj(ρi−1)

(
γ
(i−1)
j + y

(i−1)
jk

))

=

d+1∑
j=1

θjfi(j)−
d+1∑
j=1

χj(ρi−1)fi−1(j)

=

∑
β∈H

fi(β)

− fi−1(ρi−1)

= 0.
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Likewise, the last two decommitments accept because

θ · γ(1) +
(
θ · y(1)

)
k
=

d+1∑
j=1

θj(γ
(1)
j + y

(1)
jk )

=
d+1∑
j=1

θjf1(j)

=
∑
β∈H

f1(β)

=
∑

β∈Hm

f(β)

= α

and

χ(ρm) · γ(m) +
(
χ(ρm) · y(m)

)
k
=

d+1∑
j=1

χj(ρm)(γ
(m)
j + y

(m)
jk )

=
d+1∑
j=1

χj(ρm)fm(j)

= fm(ρm)

= fx(ρ),

respectively. The verifier thus accepts unless ρ ̸= {zi : i ∈ [v]} in Step 0, an event
with probability(

1− 1

q − d− 1

)v

≤ e−v/(q−d−1)m ≤ e−v/qm = o(1).

Soundness. We divide the behaviour of a malicious prover into three cases. The first
(and simplest) is when P̃ commits to fi for all i and decommits with polynomials whose
evaluations at 0 yield the same values as the honest prover (i.e., in decommit(β,w, k)
with γ as the correction, P̃ replies with a polynomial g such that g(0) = wk + γ).
Then, since

∑
β∈Hm f(β) ̸= α, the verifier rejects in decommit

(
α,θ · y(1), k

)
with

probability 1.
The second case is when P̃ commits to a sequence of polynomials g1, . . . , gm

such that gi ≠ fi for some i, and decommits honestly. Then V accepts if and only if
the set {gi} leads the verifier in the standard sumcheck protocol to accept; by the
soundness of that protocol, V accepts with probability at most dm/(q−d−1) = o(1).
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The only remaining case is when P̃ commits to a sequence of polynomials
{gi} (which may or may not coincide with {fi}) and, in at least one decommitment
with respect to a string w where P̃ receives the line L, the prover replies with
a degree-dm polynomial g such that g(0) ̸= wk = ŵ|L(0). Then, since V has a
fingerprint ŵ(σ) with σ ∼ Fm and a field element σ ∼ F such that L(σ) = σ, we
have g(σ) ̸= ŵ(σ) = ŵ|L(σ) with probability dm/q = o(1) by Lemma 6.1 (Schwartz-
Zippel), and soundness follows.

Space and communication complexities. The communication of the setup
(Step 0, the temporal commitment) is qm(logm+ log log q)m log q = O(qmm log2 q)

bits. The communication of the interactive phase (Steps 2 to 4) is dominated by the
m algebraic commitments to elements of Fd+1 with length p = qlog log q each, for a
total of O(qlog log qdm log q) ≤ qlog log q+2 bits.

The verifier’s space complexity is dominated by computing fx(ρ) and storing
O(m) elements of Fm (i.e., ρ and σ(i) for i ∈ [m + 1]), so that it is bounded by
O(m2 log q).

6.4.3 Zero-knowledge

Having shown that zk-sumcheck is a valid streaming interactive proof, we now show
it is also zero-knowledge.

Theorem 6.11. Protocol 6.7 is zero-knowledge against poly(q)-space streaming
distinguishers. The simulator has space complexity poly(q).

Proof. We shall prove indistinguishability as we have done earlier: with the simulator
S shown in Algorithm 6.2, we assume towards contradiction that there exists α ∈ F,
an input x ∈ Fn, internal randomness r, a space-O(m2 log q) verifier Ṽ and a poly(q)-
space distinguisher D that accepts View

P,Ṽ
(x, r) with probability ε = Ω(1) above

that with which D accepts S
(
Ṽ , x, r

)
. Then, via Lemma 6.2, we construct a one-way

protocol for index with impossibly large success probability.
The space complexity of S is dominated by its storing of O(m2 log q) = poly(q)

elements of Fm × [v] and by the computation of the partial sums (gi : i ∈ [m]). Note
that the naive strategy of sampling g and computing the corresponding partial sums
requires Ω(dm) space; however, [BCF+17] constructs an algorithm that can sample
from the same distribution in poly(q) time, and thus space.20 Note, moreover, that
the alphabet over which z is taken has size

20More precisely, the algorithm of [BCF+17] allows us to sample from the distributions gi(β)
for any β and i under the uniform distribution of g satisfying a set of constraints. To sample
(g1, . . . , gm), we begin with the set of constraints induced by C and, after sampling gi(j), include
the corresponding constraint before the next sample.
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(q − d− 1)m = qm
(
1− d+ 1

q

)m

≥ qm
(
1− 1

m

)m

≥ qm

3

≥ 32v

log log v
,

so that Theorem 6.6 applies. (The conditions (q− d− 1)m = Θ
(

v
log log v

)
and

log q ≤ s = polylog(q) are also clearly satisfied.)

Algorithm 6.2: Simulator for Protocol 6.7

Input: Whitebox access to Ṽ ; oracle access to a random bit string of length
qm+log log q poly(q) interpreted as the concatenation of z ∈ (Fm)v and y(i) ∈
F(d+1)×p for all i ∈ [m].

Output: View
(
z, x,

(
y(i),γ(i) : i ∈ [m]

)
, k,
(
hi : i ∈ [m+ 1]

))
, where z ∈

(
(F\

[d+ 1])d
)v, y(i) ∈ F(d+1)×p, γ(i) ∈ Fd+1, k ∈ [p] and hi : F→ F has degree dm.

Step 0: Temporal commitment

S: Send z ∈
(
(F \ [d+ 1])m

)v.
Ṽ : Simulate until the end of this step and let b ∈ {0, 1}s be the resulting

snapshot of Ṽ . Use the whitebox oracle W to determine the set C ⊂
{(zi, i) : i ∈ [v]} of size s with the largest W(b, (zi, i)).

Step 1: Input streaming

Ṽ : Stream x, simulating the verifier while computing and storing fx(zi)
for all (zi, i) ∈ C.

Step 2: Algebraic commitments

S: Take g1 : F→ F of degree (at most) d under the distribution determined
by sampling g : Fm → F subject to the constraints

∑
β∈Hm g(β) =

α and g(zi) = fx(zi) for all (zi, i) ∈ C, then outputting g1(T ) =∑
β2,...,βm∈H g(T, β2 . . . , βm).

Sample k ∼ [p].
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Ṽ : Simulate until the end of the step.

Repeat, from i = 1 to m:

S: Send y(i) and γ(i) =
(
gi(j)− y(i)jk : j ∈ [d+ 1]

)
.

Ṽ : Simulate until ρi is sent (or until the end of the step when i = m).

S: If i < m, sample gi+1 under the distribution that samples g and
outputting gi+1(T ) =

∑
βi+2,...,βm∈H g(ρ1, . . . ,ρi, T, βi+2, . . . , βm).

S: Compute θ such that
∑

β∈H h(β) =
∑

i θih(i) when h is a degree-d
univariate polynomial, and send k.

Step 3: Temporal decommitment

Ṽ : Simulate until Ṽ sends ℓ ∈ [v].

S: Abort if zℓ ̸= ρ, ρ /∈
(
F \ [d+ 1]

)m or (ρ, ℓ) /∈ C.

Step 4: Algebraic decommitments

For all 1 < i ≤ m,

Ṽ : Simulate until Ṽ sends a line Li : F→ Fm.

S: Abort if Li(0) ̸= k, and otherwise send((
θ · ŷ(i) − χ(ρi) · ŷ(i−1)

)
◦ Li(j) : j ∈ [dm+ 1]

)
.

Ṽ : Simulate until Ṽ sends a line L1 : F→ Fm.

S: Abort if L1(0) ̸= k, and otherwise send((
θ · ŷ(1)

)
◦ L1(j) : j ∈ [dm+ 1]

)
.

Ṽ : Simulate until Ṽ sends a line Lm+1 : F→ Fm.

S: Abort if Lm+1(0) ̸= k, and otherwise send((
χ(ρm) · ŷ(m)

)
◦ Lm+1(j) : j ∈ [dm+ 1]

)
.

We fix a string z (and thus the set C of the verifier’s likely decommitments)
along with bits of the verifier’s random string r that ensure distinguishing bias at
least ε/2 and o(1) probability of simulation failure (recall that failure corresponds
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to the event (ρ, ℓ) /∈ C). Consider the following (linear) mapping between F-vector
spaces: from polynomials g : Fm → F of degree at most d that satisfy the s+1 linear
constraints of the fingerprints and subcube sum (i.e., g(ρ) = zi for all (zi, i) ∈ C
and

∑
β∈Hm g(β) = α) to the sequence of univariate (partial sum) polynomials∑

βi+1,...,βm∈H g(ρ1, . . . ,ρi−1, T, βi+1, . . . , βm) for all i ∈ [m] and evaluation points ρ

in C.
Let ℓ ≤ (d + 1)m be the dimension of the image of this mapping, and let

ξ = ξ(ρ) ∈ F(d+1)m×ℓ be the linear coefficients that map vectors in Fℓ to partial sums
(given by d+ 1 evaluations) with respect to ρ. We now proceed to Alice’s strategy,
who receives w ∈ Fℓ×p as input and uses a random y′(i) shared with Bob for each
commitment string y(i). She will also use t(i) for each pair y(i−1), y(i); additionally,
t(1) and t(m+1) will be used for y(1) and y(m), respectively. The t(i) will ensure Bob
knows the linear combination of every algebraic decommitment.

More precisely, Alice runs S (with the fixed string z and partially fixed r)
until the end of Step 0, determines the set C, samples ρ′ ∼ F = {zi : (zi, i) ∈ C} and
sets ξ = ξ(ρ′). For every (i, j) ∈ [m − 1] × [d] and (i, j) ∈ {m} × [d − 1], she sets
y
(i)
j = y

′(i)
j + (ξ · w)(i−1)d+j . She also sets the remaining rows (i.e., y(i)d+1 for all i as

well as y(m)
d ) to satisfy

θ · y(1) = t(1),

θ · y(i) − χ(ρ′i−1) · y(i−1) = t(i) for 1 < i ≤ m and

χ(ρ′m) · y(m) = t(m+1).

Note that these are m+1 linear constraints on m+1 row vectors of dimension
p, and since θd+1 and χd(ρ

′
m) are nonzero, there is at least one solution.21 (If some

constraint is not independent from the others, Alice replaces it with a “canonical”
constraint to ensure a unique solution, e.g., setting the linear coefficients for y(i)d+1

with the smallest bit representation that makes the constraint independent.) She
then simulates Step 1 and the part of Step 2 until Ṽ (and D) finish streaming the y(i),
sending the resulting snapshots of S, Ṽ and D to Bob along with ρ′ in a poly(q)-bit
message.

Bob reads his input (η, k) and sets the correction tuples γ(i) ∈ Fd+1 so
as to satisfy constraints with the same linear coefficients as y(i): he sets γ

(i)
j =

21The condition χd(ρ
′
m) ̸= 0 follows from choosing ρ′

m /∈ [d+ 1], and we assume the last entry of
θ is nonzero without loss of generality. Note that if θ is the zero vector the problem trivialises: in
this case the verifier does not need assistance from a prover (or even to stream x), accepting if and
only if α = 0.
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(ξ · η)(i−1)d+j − y
′(i)
jk for (i, j) ∈ [m− 1]× [d] and (i, j) ∈ {m} × [d− 1]; then sets the

coordinates i = d+ 1 and j ∈ [m] as well as (i, j) = (d,m) to satisfy

θ · γ(1) = α− t(1)k ,

θ · γ(i) − χ(ρ′i−1) · γ(i−1) = −t(i)k for 1 < i ≤ m and

χ(ρ′m) · γ(m) = fx(ρ′)− t(m+1)
k .

Bob then finishes the simulation of Step 2 with the coordinate k ∈ [p].
In Step 3, if ρ′ ̸= ρ or the simulation fails (i.e., zℓ = ρ but (ρ, ℓ) /∈ C), Bob

accepts or rejects uniformly at random. Otherwise, he simulates Step 4 until the
protocol terminates (which his access to the shared random strings t(i) enables him
to). At the end of the simulation, Bob accepts if and only if D accepts.

Note that, when η = τ − (wik : i ∈ [ℓ]) for a vector τ that maps to the
polynomials (gi : i ∈ [m]) via ξ = ξ(ρ), then γ

(i)
j satisfies

γ
(i)
j = (ξ · η)(i−1)d+j − y

′(i)
j

= gi(j)− (ξ · w)(i−1)d+j,k − y
′(i)
jk

= gi(j)− y(i)jk

for all i, j in [m− 1]× [d] and {m} × [d− 1] (equivalently, for all i, j such that y(i)j

includes a linear combination of the rows of w). Then the linear constraints satisfied
by the other m+1 pairs ensures the equality extends to all (i, j): for i ∈ [m], j = d+1

and (i, j) = (m, d), we have

θ · γ(1) = α− t(1)k

=
d+1∑
j=1

θjg(j)− t(1)k

=
d+1∑
j=1

θj

(
g(j)− y(1)jk

)
,

χ(ρm) · γ(m) = fx(ρ)− t(m+1)
k

= gm(ρm)− t(m+1)
k

=

d+1∑
j=1

χj(ρm)
(
gm(j)− y(m)

jk

)
,
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and, for 1 < i ≤ m,

θ · γ(i) − χ(ρi−1) · γ(i−1) = −t(i)k

=
d+1∑
j=1

(
χj(ρi−1)y

(i−1)
jk − θjy

(i)
jk

)

=
d+1∑
j=1

θj

(
gi(j)− y(i)jk

)
+

d+1∑
j=1

χj(ρi−1)
(
gi−1(j)− y(i−1)jk

)
.

That is, since the γ(i) satisfy the same linear constraints as the vectors(
gi(j) − y(i)jk : j ∈ [d + 1]

)
, it follows that they are equal. Therefore the resulting

view is distributed exactly as View
P,Ṽ

(x, r) when τ maps to the partial sums of fx

(and thus ξ(ρ) · τ maps to the partial sums with respect to ρ); and if η ∼ Fℓ, it is
distributed as S(Ṽ , x, r) (unless the simulation fails or ρ ̸= ρ′).

This one-way protocol achieves bias 0 when the simulation fails (an o(1)-
probability event) or the verifier’s temporal decommitment ρ is in C (i.e., the
simulation succeeds) but ρ ̸= ρ′, an event with conditional probability 1− 1

|C| = 1− 1
s .

Otherwise, it achieves a bias of ε/2. We thus have

Pw∼Fℓ×p

k∼[p]

[
B
(
A(w),

(
fx(i)− wik : i ∈ [ℓ]

)
, k
)

accepts
]

− Pw∼Fℓ×p

k∼[p]
η∼Fℓ

[B (A(w),η, k) accepts]

= o(1) · 0 +
(
1− o(1)

)
·
(
1− 1

s

)
· 0 +

(
1− o(1)

)
· 1
s
· ε
2

≥ ε

3s
.

Applying Lemma 6.2 yields a one-way binary index protocol for strings of
length p = qlog log q with messages of length s2ℓ2 log2 q

ε2
poly(q) = poly(q) and constant

bias, a contradicting Proposition 6.1’s upper bound of O
(√

poly(q)/p
)
= o(1).

6.4.4 Applications: frequency-moment and inner-product

We now proceed to applications of zk-sumcheck. The first is a zkSIP that (exactly)
computes frequency moments of order k > 1 (commonly denoted Fk) for a stream
over an alphabet of size ℓ, a problem known to require Ω(ℓ) space without a prover
[AMS99]. For the definition below, we set φi(x) := |{j ∈ [n] : xj = i}|.
Definition 6.16. Fix k ∈ N. For every ℓ ∈ [n] and t ∈ [nk], the language
frequency-momentk(t) is

{
x ∈ [ℓ]n :

∑
i∈[ℓ] φi(x)

k = t
}
.
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Corollary 6.5. Fix 1 < k ∈ N and δ ∈ (0, 1]. For every ℓ ∈ [n] and t ∈ [nk],
there exists a zero-knowledge SIP for frequency-momentk(t) with space complexity
O(log2 n/ log logn). The communication complexity is O(n1+δ) in the setup and
no(1) in the interactive phase, and the protocol is secure against polylog(n)-space
distinguishers.

Proof. We set the same parameters of Corollary 6.1: degree d = log
2
δ n, dimension

m = δ logn
2 log logn , and take a field F of size |F| = q = Θ

(
log1+

2
δ n
)
. The mapping

x 7→ fx is defined as follows: viewing [ℓ] ↪→ [d+1]m ↪→ Fm and defining the frequency
vector φ = φ(x) :=

(
φi(x) : i ∈ [ℓ]

)
, set fx(α) :=

∑
i∈[d+1] φ̂(i,α)

k for α ∈ Fm−1.
Note that fx is a (m− 1)-variate degree-dk polynomial.

Using O(dm log q) = O(m2 log q) bits of space, the verifier can compute all
the low-degree extensions φ̂(i,ρ) ∈ F (by adding χxj (i,ρ) to each running sum upon
reading xj); then, after the stream, V raises each LDE to the kth power and adds
the results to obtain fx(ρ).

Applying Protocol 6.7, the verifier checks whether∑
α∈[d+1]m−1

fx(α) =
∑

β∈[d+1]m

φ̂(β)k =
∑
i∈[ℓ]

φk
i

is equal to t. The space complexity is O(m2 log q) = O(log2 n/ log logn); the commu-
nication complexity of the setup step is of order

qmm log2 q = n1+
δ
2 polylog(n) = O

(
n1+δ

)
,

and qlog log q poly(q) = no(1) in the interactive phase. Lastly, the protocol is secure
against distinguishers with space poly(q) = polylog(n).

Our second and last last application is a small modification of the F2 protocol
that allows us to compute inner products.

Definition 6.17. For every ℓ ∈ [n], t ∈ [n2ℓ] and field F, inner-product(t) is
defined as

{
(x, y) ∈ Fn × Fn : φ(x) · φ(y) =

∑
i∈[ℓ] φi(x)φi(y) = t

}
.

Corollary 6.6. For every δ ∈ (0, 1], ℓ ∈ [n], t ∈ [n2ℓ] and field Fq with q =

Θ
(
log1+

2
δ n
)
, there exists a zkSIP for inner-product(t) with space complexity

O(log2 n/ log logn) and communication complexities O(n1+δ) and no(1) in the setup
and communication phases, respectively.

Proof. We use the same parameter settings as Corollary 6.5 and define

fx,y(α) =
∑

i∈[d+1]

φ̂(x)(i,α)φ̂(y)(i,α),
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a polynomial of degree 2d = 2 log
2
δ n whose evaluation the verifier computes by saving

φ̂(x)(i,ρ) and φ̂(y)(i,ρ) for i ∈ [d + 1]. Protocol 6.6 enables the verifier to check
that

∑
i∈[ℓ] φi(x)φi(y) equals t, as desired, with complexities of the same order as in

Corollary 6.5.

We remark that while one might reduce inner product to F2, by taking the
difference between the second moment of φ(x) + φ(y) and the second moments
of φ(x) and φ(y), the resulting protocol leaks these values, and is therefore not
zero-knowledge.
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