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Abstract—End-edge-cloud (EEC) collaborative computing is
regarded as one of the most promising technologies for the
Industrial Internet of Things (IIoT). It offers effective solutions
for managing computationally intensive and delay-sensitive tasks
efficiently. Indeed, achieving intelligent manufacturing in the
context of 6G networks requires the development of efficient
resource scheduling schemes. However, improving the quality
of service and resource management in the face of challenges
like time-varying physical operating environments of IIoT, task
heterogeneity, and the coupling of different resource types is
undoubtedly a complex task. In this work, we propose a digital
twin (DT) assisted EEC collaborative computing scheme, where
DT is utilized to monitor the physical operating environment in
real-time and determine the optimal strategy, and the potential
deviation between the real values and DT estimates is also
considered. We aim to minimize the system cost by optimizing
device association, offloading mode, bandwidth allocation, and
task split ratio. Our optimization is constrained by the maximum
tolerable latency of the task while considering both latency and
energy consumption. To solve the collaborative computation and
resource allocation (CCRA) problem in the EEC, we propose
an algorithm with DT based on Multi-Agent Deep Deterministic
Policy Gradient (MADDPG), where each user end (UE) in DT
operates as an independent agent to determine the optimum
offloading decision autonomously. Simulation results demonstrate
the effectiveness of the proposed scheme, which can significantly
improve the task success rate compared to benchmark schemes,
while reducing the latency and energy consumption of task
offloading with the assistance of DT.

Index Terms—Collaborative computing, digital twin, industrial
Internet of Things, resource allocation.

I. INTRODUCTION

THE worldwide rollout of 5G technology has given rise
to an unprecedented surge in intelligent devices and data

traffic [1]. As a result, we are witnessing the emergence of
groundbreaking applications and services like the Internet of
Vehicles (IoV), Virtual Reality (VR), and Expanded Reality
(ER) [2]. These advancements necessitate ultra-high data rates,
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ultra-low transmission latency, and seamless connectivity on a
massive scale [3]. In response to the pressing demands stem-
ming from these breakthroughs, both academia and industry
have begun efforts to delve deeper into next-generation net-
works (6G) [4], [5]. Envisioned as a cornerstone of the future
communications infrastructure, 6G is poised to play a crucial
role in the forthcoming decade and beyond. In the impending
era of 6G, a large number of Industrial Internet of Things
(IIoT) end devices will be connected to the network, while the
integration of artificial intelligence and 6G networks opens the
door to intelligent manufacturing. Nevertheless, end devices in
IIoT generate huge amounts of data during operation, but their
computational and storage capacities are limited [6], and how
to efficiently handle large-scale computationally intensive and
delay-sensitive tasks has become an imperative problem.

Fortunately, mobile edge computing (MEC) offers the ad-
vantage of proximity, allowing intelligent computing and data
processing capabilities to be deployed closer to the source
of computational tasks generated by end devices [7], [8].
Meanwhile, task offloading plays a pivotal role in End-edge-
cloud (EEC) systems. It facilitates the selective distribution
of computing tasks across multiple tiers [9], which include
user ends (UEs), edge servers (ESs), and cloud servers (CSs).
By optimizing the allocation of computational resources across
various tiers, latency is minimized and the overall performance
of the system is enhanced [10]. More importantly, recent
advancements in 6G have made it possible to orchestrate
offloading strategies. Delay-sensitive tasks can be offloaded to
ES to ensure real-time response, guaranteeing timely respon-
siveness. On the other hand, less delay-sensitive tasks can be
processed in the CS, making full use of its abundant computing
resources and maximizing efficiency. Despite the numerous
advantages of introducing MEC into communication networks,
designing efficient collaborative computing solutions remains
a tricky challenge given the heterogeneity of end devices
and ESs, the dynamic complexity of EEC networks, and the
coupling between resources in IIoT.

An excellent digitization solution for intelligent manufactur-
ing is provided by digital twin (DT), an emerging digital map-
ping technology [11]. DT empowers real-time monitoring of
physical entities and processes, serving as a foundation for es-
sential simulations, validations, predictions, and optimizations
[12], [13]. All types of devices, networks, and computational
processes in the IIoT can be digitally represented in the virtual
world, thereby paving the way for intelligent task offloading
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and resource allocation [14], [15]. By combining MEC and
DT, the overall network and resource information (such as
bandwidth occupation, computing resource utilization, cache
space, etc.) can be captured in a highly accurate and real-time
manner [16], [17]. This information can then be analyzed to
change the network configuration [18] and resource allocation
to maximize the protection of service quality. However, there
are still many open challenges in the integration of DT with
EEC collaboration.

A. Related Works and Motivation

Existing research in MEC focuses on designing efficient
offloading schemes [19] and resource management [20], [21],
aiming to reduce task latency [22] and improve energy ef-
ficiency [23]. Dai et al. proposed a cooperative offloading
solution for the IIoT, where computationally-intensive tasks
can be offloaded either to ES or to IIoT devices via D2D
links [19]. Li et al. researched the offloading optimization
problem for multi-user delay-sensitive tasks and set different
objectives for the cost and revenue of the tasks [22]. Malik
et al. presented an integrated approach to minimize energy
consumption by adjusting the transmitting power [23].

Additionally, resource allocation for EEC hierarchical [24]
computing offloading [25], [26] has drawn a lot of interest.
Chen et al. proposed a service placement and offloading
strategy based on game theory [27]. Wu et al. proposed
a blockchain-enabled edge cloud collaboration scheme [28],
which ensures secure task offloading while reducing latency
using Lyapunov optimization theory. However, multilayer task
offloading usually jointly optimizes communication and com-
putational resources and is quite difficult to solve for decisions.
Using traditional optimization methods, only approximate op-
timal solutions can be obtained. Furthermore, motivated by the
powerful modeling capabilities of Markov Decision Process
(MDP) for dynamic EEC [29], [30], a number of research
works have used Deep Reinforcement Learning (DRL) tech-
niques for task offloading and resource cheduling [31]–[36].
Hazra et al. designed a computational offloading framework
for industrial networks, which introduces a policy-based re-
inforcement learning (RL) technique to optimize the cost of
devices [31]. For the issue of scarce edge computing resources,
Sun et al. suggested a joint offloading technique based on
resource occupancy prediction [32]. Li et al. proposed a task
offloading strategy with the objective of maximizing long-term
offloading revenue, which jointly optimizes the transmission
power allocation and the computational resource allocation
[34]. Suzuki et al. formulated a task offloading problem in
multi-cloud and multi-edge networks. A method based on
Multi-agent deep reinforcement learning (MADRL) is also
proposed to address the performance of RL [35].

While these studies have delved into the realm of EEC
collaboration to enhance the quality of service, it is worth
noting that task offloading and communication scheduling are
intricately intertwined with resource management [37]. The
ever-changing nature of industrial environments, the hetero-
geneity of tasks, and the unpredictability of processing capa-
bility have presented unparalleled challenges to collaborative

computing in the IIoT. Numerous studies have demonstrated
the efficacy of DT in facilitating task offloading decisions.
By creating digital representations of physical systems, DT
enables optimized resource allocation, thereby bolstering net-
work performance [38]–[40], [43]–[48]. Huynh et al. proposed
a URLLC-based DT architecture which simultaneously con-
siders communication, computation, and storage resources.
The problem of optimizing latency/reliability in DT-enabled
virtual worlds was addressed [38]. Guo et al. presented a
D2D-assisted DT edge network architecture and employed
federated RL to train resource allocation policies, thereby en-
hancing network performance further [40]. Lin et al. proposed
an incentive-based congestion control scheme for addressing
stochastic demand in a DT edge network. The scheme effec-
tively avoids long-term service congestion and achieves near-
optimal revenue by providing incentives to users [44]. A DT
framework for IIoT networks is proposed where DT for UAVs
is constructed to support real-time offloading of tasks [47].
The above contributions have been dedicated to studying DT
for realizing joint computation and communication resources
allocation. However, the benefits of DT-aided cloud computing
have not been explored. Hou et al. presented a hierarchical task
offloading approach empowered by DT to cater to both delay-
tolerant and delay-sensitive tasks. Moreover, they leveraged
federated learning techniques to optimize the decision model
[41]. However, it is crucial to acknowledge that the disparity
between the digital realm and the physical world has not
been factored into their model. Consequently, this oversight
can potentially lead to significant deviations between system
predictions and actual values [42], hence adversely impacting
overall performance.

The current utilization of DT is limited to the end devices
and ES, failing to fully harness the capabilities offered by
cloud computing. Therefore, further investigation and research
are imperative to bridge this gap and maximize the potential of
EEC collaboration. In the realm of IIoT, there arises a pressing
demand for a comprehensive solution to integrate DT and EEC
for efficient resource allocation. Indeed, an optimal solution
necessitates a meticulous consideration of the distinctive at-
tributes and deviations that define the digital world. Equally
crucial is the comprehensive accommodation of the dynamic
and unpredictable nature inherent to IIoT environments. This
critical integration holds exceptional significance, particularly
in the context of 6G IIoT.

B. Contributions and Structure
Driven by the above background, we propose a joint

communication and computation offloading scheme in MC
networks with DT that takes into account all the above issues.
We aim to minimize the system cost of task offloading by
optimizing device associations, offloading mode, bandwidth
allocation, and task split while considering latency and energy
consumption. Furthermore, we propose DT-empowered algo-
rithms for collaborative computation and resource allocation
(CCRA), which are based on MADRL. The main contributions
of this paper are summarized as follows.

• We propose a DT-assisted cooperative computing frame-
work for task hierarchical offloading in EEC. The frame-
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Fig. 1. DT enabled End-Edge-Cloud collaborative system model in IIoT.

work consists of two layers that provide flexible offload-
ing modes and reduce the computational load on ESs.
One layer is the UEs, ESs, and CS in IIoT, and the
other layer is the digital representation of various entities.
These DTs interact with their physical counterparts in
real-time, allowing for seamless information exchange
and decision-making. Furthermore, we consider the de-
viation between the physical system and DT estimation,
and the regular pattern of change in the system due to
the deviation is summarized.

• We formulate the cost minimization problem in a coop-
erative EEC system, which combines task latency and
energy consumption, weighted according to their relative
importance while addressing the allocation of compu-
tational and communication resources. Specifically, we
achieve this by optimizing device association, offloading
mode, bandwidth allocation, and task split, adhering to
constraints imposed by task tolerance latency and the
availability of resources.

• We utilize the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm to solve intricate opti-
mization problems in CCRA. In particular, we deploy
an agent within the DT of each UE, which obtains
state information from the EEC for training. Notably,
we address the challenge of hybrid action space by
converting the discrete action of device association and
offloading mode into a continuous probability.

• For comparative analysis, we conducted extensive sim-
ulations to explore the impact of different parameters
on latency and energy consumption. The comprehensive
simulation results demonstrate the effectiveness of our
proposed scheme, as it significantly reduces system costs.

The remainder of this work is structured as follows. In
Section II, we provide a description of the EEC collaboration
model and present the problem formulation for DT-assisted

IIoT. Section III details our proposed MADDPG-based algo-
rithm, which addresses the CCRA problem while considering
communication and computational resource limitations. In
Section IV, we present numerical results and discussions of our
findings. Lastly, Section VI concludes the study and outlines
future plans.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

This paper builds an EEC collaborative computing model
with the assistance of DT in the 6G-oriented IIoT. Based
on this, in this section, we describe the system model, the
communication model, and the computing model specifically.
Finally, the objective problem is mathematically formulated in
this section. The system parameters are illustrated in Table I.

A. System Model

As shown in Fig. 1, we propose an EEC collaborative
computing system model containing DTs into two layers.
The first layer is the physical layer, which represents the
real physical entity devices, and the other layer is the DT
layer, where the DT layer is a digital mapping of the physical
devices.

The physical layer consists of M UEs, K ESs, and a CS
c. The M UEs and K ESs are denoted by the sets M =
{1, 2, ...,M} and K = {1, 2, ...,K}, respectively.

The construction of DT layer necessitates the access to real-
time global state information, including the operational status
and requirements of the UEs, the available transmission and
computation resources on the ESs and the CS, etc. DT of the
global device is constructed on the edge side, denoted as [16]:
DT =

{
M̃, K̃, c̃

}
At the DT layer, task offloading options and offloading

ratios are analyzed and estimated, and the DT serves as a
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decision maker to make offloading decisions by considering
the system cost globally. Meanwhile, the DT also plays the
role of a controller, delivering decisions to the physical layer
and controlling the tasks to be carried out in the physical layer,
so as to complete the computation and resource allocation in
the physical layer. The DT layer continuously interacts with
the physical layer to transfer information, including the global
status of the physical layer and decisions by the DT layer.
Through the construction of the DT, it realizes the collection
of global information and the control of equipment operation
states, and better utilization of global resources.

It is assumed that a computationally intensive task Sm =
{Dm, Cm} is generated at UE m, where Dm denotes the data
volume of the task and Cm denotes the total number of CPU
cycles required to execute this task independently. Due to the
limited computing capabilities of the UEs to carry out the
computation task, it is necessary to offload part of the task
to an optional ES k or the CS c at a certain ratio, of which
this paper will be divided into two parts: the task split and the
offloading decisions.

In the task split section, we assume that the task is divided
into two non-intersecting parts at a certain ratio, and the
task processed locally on the UE m is defined as Sm,l =
{Dm,l, Cm,l}, where Dm,l denotes the amount of locally
processed task data and Cm,l denotes the total number of CPU
cycles locally required to execute this task independently. The
part of the task that needs to be offloaded to the ES k or
the CS c is represented as γmDm, by where γm is defined
as the task splitting ratio, which satisfies 0 ≤ γm ≤ 1 and
Dm,l = (1− γm)Dm.

In the offloading decisions section, we consider it in two
steps:

1) Device association: The task is either handled by ES or
CS. If the ES k has enough computing resources to handle the
part of the task that needs to be offloaded by the UE m, the ES
k is allowed to receive the computational task from the UE m,
and define the binary variable for device association ξm,k = 1,
otherwise ξm,k = 0. Each UE could only be associated with
one ES at a time for task offloading,i.e.,∑

k∈K

ξm,k ≤ 1,∀m ∈ M. (1)

2) Offloading mode selection: If the computing resources
of the current ES k are insufficient for processing, the ES k
can be regarded as a relay to continue offloading the task to
the CS c, and define the binary variable for offloading target
selection ξm,c = 1 at this time, otherwise ξm,c = 0.

In summary, we denote the two offloading modes as:
UE to ES offloading: ξm,k = 1, ξm,c = 0. UE to CS

offloading: ξm,k = 1, ξm,c = 1.

B. Communication Model

The communication process is usually divided into uplink
communication and downlink communication. The uplink
communication delay mainly includes the wireless commu-
nication delay from the UE to the ES and the wired com-
munication delay from the ES to the CS. The downlink

TABLE I
THE ILLUSTRATION OF MAIN NOTATIONS.

Notations Discriptions

M,K Set of UEs and ESs

M̃, K̃, c̃ The DT of the UEs, the ESs and the CS

Sm Task generated at UE m

Dm Data size of the task Sm

Dm,l, Dm,k, Dm,c
Data size of the task processed locally, by the
ES and by the CS

Cm
Total number of CPU cycles required to exe-
cute the task Sm

γm Task offloading ratio factor

ξm,k, ξm,c
Binary variable for device association and
offloading target selection

B Total bandwidth of all the servers

λm,k Bandwidth allocation ratio

Rup Maximum communication rate of uplink
wireless communication

P t Transmission power

gm,k Channel gain

σk
2 The Gaussian white noise power

T com Communication delay

Ecom Communication energy consumption

f̃m,l, f̃m,k, f̃m,c

Estimated CPU computing frequency avail-
able to the UE m by the UE m, the ES k
and by the CS c in DT

∆fm,l,∆fm,k,∆fm,c

CPU computing frequency deviation between
the estimation and reality by the the UE m,
the ES k and by the CS c

qm
Effective switching capacitance of the local
computing chip

ek
Energy consumption of ES k processing one
CPU cycle

T cmp Computing delay

Ecmp Computingn energy consumption

T total
m Total latency of UE m

Etotal
m Total energy consumption of UE m

ω1, ω2
Latency weight factor and energy consump-
tion weight factor

Qsystem System cost

Tmax
m Maximum tolerable time for the UE m

generally transmits small return data, so that the downlink
communication delay is usually considered to be negligible.

1) UE to ES offloading: Multiple UEs share the same
channel resource and offload to the ES k at the same time.
The set of UEs associated with the ES k to be Mk =
{1, 2, ...,Mk} ,Mk ∈ M. When the UE m offloads a task
Dm,k = γmDm to the ES k, the bandwidth allocated to the
UE m by the ES k is Bm, i.e.,

Bm = λm,kB (2)

where B is the total channel bandwidth of the ES k and
λm,k is the bandwidth allocation ratio. ESs operate in different
frequency bands and there is no interference between ESs as
well as between UEs [54]. The maximum communication rate
of uplink wireless communication from the UE m to the ES
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k can be expressed as

Rup
m,k = Bmlog2

(
1 +

P t
mgm,k

σk
2

)
(3)

where P t
m is the transmission power of the UE, gm,k is the

channel gain, and σk
2 is the Gaussian white noise power. The

task uplink communication delay of the UE m is expressed
as:

T com
m,k =

Dm,k

Rup
m,k

. (4)

Hence, the communication energy consumption of the UE
m is computed as

Ecom
m,k = P t

mT com
m,k . (5)

2) UE to CS offloading: In this case, the uplink communi-
cation delay contains the wireless communication delay and
wired communication delay. The wired communication delay
can be approximated simply as:

T com
k,c =

Dm,c

ν
(6)

where Dm,c is the task which is offloaded from the UE m to
the CS c via the ES k and ν is the wired transmission rate
between the ES k and the CS c [42]. It is worth noting that ν
is set as a constant, and the links between each ES and CS are
independent of each other, without mutual interference. The
delay T com

k,c only depends on the size of the data.
As a result, the communication delay required for UE m to

offload tasks to the CS c is given by

T com
m,c = T com

m,k + T com
k,c . (7)

Hence, the transmission energy consumption of the ES k
can be expressed as

Ecom
k,c = P t

kT
com
k,c . (8)

The total communication energy consumption is given by

Ecom
m = Eup

m,k + ξm,cE
up
k,c. (9)

C. Computing Model

1) Local computation: The estimated computing latency for
local processing of the UE m can be written as

T̃ cmp
m,l =

(1− γm)Cm

f̃m,l

(10)

where f̃m,l is the estimated CPU computing frequency avail-
able to the UE m in the DT. Assuming that the difference
between the real computing resources of the UE m in the
physical entity and the estimated computing resources of the
UE m in the DT has been obtained in advance, and defining
the difference as ∆fm,l, the computing delay deviation is given
as follows [49]

∆T cmp
m,l =

∆fm,l (1− γm)Cm

f̃m,l

(
f̃m,l −∆fm,l

) . (11)

Then the real local computing delay [35] can be expressed
as

T cmp
m,l = T̃ cmp

m,l +∆T cmp
m,l . (12)

The energy consumption for locally processing the comput-
ing task is given by:

Ecmp
m,l = (1− γm) qmCm

(
f̃m,l −∆fm,l

)2

(13)

where qm is the effective switching capacitance of the local
computing chip [51].

2) ES computation: The estimated computing delay at the
ES k is given as

T̃ cmp
m,k =

γmCm

f̃m,k

(14)

where f̃m,k is the estimated CPU computing frequency as-
signed to the UE m̃ by the ES k̃ in the DT. Similarly, the
difference is ∆fm,k. Then the computational delay deviation
can be expressed as

∆T cmp
m,k =

∆fm,kγmCm

f̃m,k

(
f̃m,k −∆fm,k

) . (15)

The real computing delay of the ES k is written as

T cmp
m,k = T̃ cmp

m,k +∆T cmp
m,k . (16)

The energy consumption of the ES k for processing the
computing tasks can be expressed as

Ecmp
m,k = γmekCm

(
f̃m,k −∆fm,k

)2

(17)

where ek represents the energy consumption of ES k process-
ing one CPU cycle [50].

3) CS computation: The estimated computing delay at the
CS c is expressed as:

T̃ cmp
m,c =

γmCm

f̃m,c

(18)

where f̃m,c is the estimated CPU computing frequency as-
signed to the UE m̃ by the CS c̃ in the DT. Similarly, the
difference is ∆fm,c. Then the computational delay deviation
is given by

∆T cmp
m,c =

∆fm,cγmCm

f̃m,c

(
f̃m,c −∆fm,c

) . (19)

The real computing delay of the CS c can be expressed as

T cmp
m,c = T̃ cmp

m,c +∆T cmp
m,c . (20)

CS c doesn’t require any consideration of computational
energy consumption [52] due to the assumption of unlimited
storage resources.

Therefore, the total computing energy consumption of the
UE m is given by.

Ecmp
m = Ecmp

m,l + (1− ξm,c)E
cmp
m,k . (21)

In this paper, we define the offloading latency as the
maximum value that depends on the sum of the computation
and communication delays of each part of the task due to the
parallelism of computation and communication, which can be
denoted as

T total
m,l = T cmp

m,l

T total
m,k = T com

m,k + (1− ξm,c)T
cmp
m,k

T total
m,c = ξm,c

(
T com
m,c + T cmp

m,c

) (22)
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T total
m = max

{
T total
m,l , T total

m,k , T total
m,c

}
. (23)

The offloading energy consumption is expressed as

Etotal
m = Ecom

m + Ecmp
m . (24)

D. Problem Formulation
In this paper, we define the system cost as:

Qsystem(T total
m , Etotal

m ) =

M∑
m=1

(
ω1T

total
m + ω2E

total
m

)
(25)

where ω1, ω2 are the latency weight factor and the energy
consumption weight factor, respectively, which satisfy 0 ≤
ω1 ≤ 1,0 ≤ ω2 ≤ 1 and ω1 + ω2 = 1.

An optimization problem in this paper is formulated to com-
plete the problem optimization while satisfying the minimum
cost of the task system. The problem is formulated as follows:

P1 : min
γm,λm

ξm,k,ξm,c

Qsystem
(
T total
m , Etotal

m

)
(26)

s.t. T total
m ≤ Tmax

m ,∀m ∈ M (26a)
0 ≤ γm ≤ 1,∀m ∈ M (26b)∑
k∈K

ξm,k ≤ 1,∀m ∈ M (26c)

0 ≤ λm ≤ 1,∀m ∈ Mk (26d)∑
m∈Mk

λm = 1 (26e)

where Tmax
m is the maximum tolerable time for the UE m

to yield a task, and if this time value is exceeded, the task
is labeled as a failure. Constraint (26a) indicates that the
total latency for completing the task must be within the
tolerable range. Constraint (26b) describes the task splitting
ratio requirement. Constraint (26c) denotes that the UE can
only be associated with one ES for task offloading. Constraint
(26d) depicts the bandwidth split ratio requirement.

The problem P1 consists of continuous decisions about
the task split ratio γm, bandwidth allocation λm and discrete
decisions about device association ξm,k and offloading mode
selection ξm,c. Meanwhile, the states of UE, ES, and CS are
highly dynamic and dependent so some uncertain variables
(i.e., task size and channel conditions) can have an impact on
energy consumption and latency. Additionally, given the large
solution space for decision making, it is a great challenge for
traditional optimization methods to obtain the optimal policy.
In the next section, we will propose a MADRL-based approach
to deal with hybrid actions in collaborative computing to
output CCRA strategies in an online learning manner.

III. MADDPG-BASED ALGORITHM FOR CCRA WITH DT
In this section, we transform the optimization problem,

P1, into a multi-agent MDP. Subsequently, we put forward
a MADDPG-based CCRA algorithm to tackle the problem.
We improve upon the MADDPG algorithm to make it more
suitable for solving DT-assisted CCRA problems. This is
because the MADDPG algorithm is applicable for solving
problems with multiple interacting agents, where each agent
can share experience information while learning, which helps
to learn the globally optimal policy.

A. MDP Model of CCRA

In RL, agents optimize their strategies automatically through
interaction with the environment. By employing deep neural
networks (DNN) to train learning models, faster learning
speeds and improved performance can be achieved. DRL has
found widespread applications in solving various complex
sequential decision-making problems in task offloading. How-
ever, traditional single-agent approaches suffer from scalability
issues, given the heterogeneous multidimensional resources
and dynamic environments. Moreover, there is a risk of a
system-wide breakdown in the event of a central failure.

To address the aforementioned challenges, we propose a
solution that leverages DT for MADRL. Within the DT
layer, different types of DTs can interact with one another,
exchanging valuable information. Each DT of UE (DT-UE)
serves as an independent agent, utilizing global information
to decide strategies for collaboration and resource alloca-
tion. By leveraging this approach, UEs are able to transcend
the limitations imposed by restricted computing resources in
the physical layer, thus enabling to achieve of autonomous
decision-making.

In DT-assisted EEC system, the DT-UE takes the respon-
sibility of making a series of decisions. These decisions
encompass critical factors, such as determining the optimal
device association, offloading mode, bandwidth allocations,
and task split ratios, with the primary objective of minimizing
the total system cost. It is important to acknowledge that the
decisions made by the DT-UE hold a profound influence over
the state of the environment within the system. As a result, the
overall system cost not only depends on the current state of the
system environment but also on the collaborative actions taken
by all DT-UEs. Moreover, it should be noted that the state of
the system environment and the actions taken by the DT-UEs
in the previous time slot can trigger a transition to a new state.
Indeed, in order to effectively represent the decision-making
process of CCRA, we transform the optimization problem into
a multi-agent MDP.

Each DT-UE acts as an agent to learn its strategy and collec-
tively they obtain the minimum total system cost. The MDP of
M agents can be represented by a tuple (S,A,R,P), where
S describes the state of the environment. Taking advantage
of the deployment of agents in the DT layer, information
exchange can be facilitated among UEs, ESs, and CS. Each
agent’s observation contributes to the composition of the state
space. A is the set of all agent execution actions. R is the set
of individual agent reward functions, defined as the revenue
from executing the action in the current state. P is denoted as
the probability of transferring from the current state to the next
state. In the following, we describe the key elements in MDP,
including the state space, action space, and reward function.

1) State Space S: In DTs, the environment is fully observed
and hence the state of the environment consists of observations
of individual agents. The set of states in time slot t is described
as

s(t) = {o1(t), ..., om(t), ..., oM (t)} (27)

where om(t) denotes the observation of agent m, which
includes
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Fig. 2. MADDPG-Based algorithm for CCRA with DT.

• The current UE m generates tasks Sm = {Dm, Cm},
from real-time interactions with the physical layer.

• The computational power of ES and CS, and the deviation
in DT, respectively, f̃m,∆fm, f̃m,k,∆fm,k.

• The previous bandwidth allocation λm(t−1) is available.
• The number of UEs connected to each ES Mk(t − 1),

this is fed back by the DT of ES.

2) Action Space A: As in Eq. (26), the decisions made
by the agent include the device association, offloading mode,
bandwidth allocations, and task split ratios, then the action of
the DT-UE m is described as

am(t) = {γm(t), λm(t), ξm,k(t), ξm,c(t)} (28)

According to the constraints, the values of the four variables
range from γm(t) ∈ [0, 1], λm(t) ∈ [0, 1] , ξm,k(t) ∈ {0, 1},
ξm,k(t) ∈ {0, 1}. In addition, the size of the action increases
with the growing number of UEs and ESs.

3) Reward Function R: The agent takes actions based
on the current system state, and after performing an action,
it receives a reward. The reward reflects the desirability or
quality of the action taken in that particular state. Agents
should collaboratively minimize the total system cost while
accomplishing the computational task. Hence, the reward func-
tion includes the negative value of cost

(
ω1T

total
m + ω2E

total
m

)
for each DT-UE as a component. Additionally, if a task is
not completed within the designated time, a penalty η is

incorporated into the reward function. The reward for the agent
m can be expressed as

Rm(t) =

{
−
(
ω1T

total
m + ω2E

total
m

)
, tasks completed;

−
(
ω1T

total
m + ω2E

total
m

)
+ η, otherwise.

(29)

B. MADDPG-Based Algorithm

To solve the above multi-agent MDP, we propose a
MADDPG-based approach considering the high-dimensional
hybrid action space of the task offloading optimization prob-
lem, shown in Fig. 2. The DDPG algorithm [52] is deployed on
each DT-UE, which consists of an actor network µm(om; θµm)
with weight θµm and a critic network Qm(o,a; θQm) with
weight θQm. The actor network receives the local observa-
tion om as input and generates the corresponding action
am(t) = µm(om(t)). The critic network is able to access the
observations and actions of all the agents during the training
phase in order to calculate the Q-value Qm(s(t),a(t)), which
is used to evaluate the performance of the actor network’s
output. Both the actor and critic networks in the DT-UE utilize
target networks, denoted as µ

′

m(om; θµ
′

m ) and Q
′

m(o, a; θQ
′

m ),
to update parameters θµm and θQm, respectively. This technique
enhances training stability and convergence by periodically
updating the target networks with the parameters from the
actor and critic networks.
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It is worth noting that actions γm(t) and λm(t) are con-
tinuous, while actions ξm,k(t) and ξm,c(t) are discrete val-
ues. Traditional DRL algorithms can only handle problems
where actions are either continuous or discrete, but they
cannot handle the hybrid action space. Ding et al. have
demonstrated the feasibility of converting the discrete action
space into a probability distribution [53]. We define the
actor network as µ̂m(om; θ̂µm), the output action âm(t) ={
γm(t), λm(t), ξ̂m,k(t), ξ̂m,c(t)

}
, where ξ̂m,k(t), ξ̂m,c(t) are

the probability distributions of the two discrete actions respec-
tively. This means that we can use DDPG to solve single-agent
MDP with discrete action spaces. Since MADDPG is a multi-
agent extension of DDPG, it is effective for solving hybrid
action space problems.

In the MADDPG algorithm, an experience replay mech-
anism is employed, allowing each agent to store the current
experience tuple (â(t),R(t), s(t), s(t+1)) in the replay buffer
B at each time step. For each DT-UE, we can sample a random
mini-batch of (âj , rj , sj , s

′

j) from B. Random sampling in
the training process breaks the correlation between sample
data and reduces training oscillations. Afterward, the sampled
experiences sj is fed into the actor network, and the weights
of the actor network are updated using the policy gradient
strategy, i.e.,

∇θµ
m
J(µm)

=
1

Nb

Nb∑
j=1

[
∇θµ

m
µm(sj)∇amQm(sj , â1, ..., âM )|âm=µm(sj)

]
(30)

where Nb is the size of the mini-batch, the actor network can
be updated by minimizing the loss as below:

L (θµm) = − 1

Nb

Nb∑
i=1

Qm(sj , a1, ..., am, ..., aM ; θQm). (31)

Moreover, the critical network updates the parameters by
minimizing the loss of the target Q-values,

L
(
θQm

)
=

1

Nb

Nb∑
i=1

[
ym(j)−Qm(sj , â1, ..., âM ; θQm

]2
(32)

where the update target ym(j) is calculated as,

ym(j) = rj+εQ
′

m

[
s
′

j , µ
′

1

(
s
′

j ; θ
Q

′

1

)
, ..., µ

′

M

(
s
′

j ; θ
Q

′

M

)
; θQ

′

m

]
(33)

where ε is the discount factor.
The DT-assisted MADDPG method for CCRA is summa-

rized in Algorithm 1. First, we initialize the parameters of
the four neural networks and replay buffer. In each episode,
DT-UE obtains the observation om(t), which is then input to
the actor network, and the output consists of the bandwidth
allocation ratio γm(t), the task split ratio λm(t), and the
probability distributions of the device association ξ̂m,k(t) and
the offloading mode ξ̂m,c(t). Sampling ξ̂m,k(t) and ξ̂m,c(t),
the current probabilities and decisions are mapped as,

ξm,k(t) =

{
1, ξ̂m,k(t) ∈ (0.5, 1]

0, ξ̂m,k(t) ∈ [0, 0.5]
(34)

Algorithm 1 MADDPG-Based Algorithm for CCRA with DT.
1: Initialize replay buffer B for each DT-UE
2: Initialize actor network {θµ′

m}m={1,...,M} and target actor
network {θµm}m={1,...,M} for each DT-UE, respectively

3: Initialize critic network {θQm}m={1,...,M} and target critic

network {θQ
′

m }m={1,...M} for each DT-UE, respectively
4: for each episode do
5: Observe initial state s0
6: for each time t do
7: for each DT-UE m do
8: DT-UE m observing environment and get om(t)
9: DT-UE m select action âm(t) = µ̂m(om; θ̂µm)

10: Sampling based on probability distribution
11: Obtain reward Rt and next environment state st+1

by st and at

12: end for
13: if Replay buffer has space then
14: Store experience (at,Rt, st, st+1) in replay buffer
15: else if Replay buffer is full then
16: Replacing the earliest set of experiences in the re-

play buffer with (at,Rt, st, st+1) in replay buffer
17: end if
18: end for
19: for each DT-UE m do
20: Sample several random mini-batches of Nb experi-

ence tuples from replay buffer B.
21: Update the critic network by minimizing critic loss

L
(
θQm

)
= 1

Nb

Nb∑
i=1

[
ym(j)−Qm(sj , â1, ..., âM ; θQm

]2
22: Update the actor network by minimizing critic loss

L (θµm) = − 1
Nb

Nb∑
i=1

Qm(sj , a1, ..., aM ; θQm)

23: Soft updates for actor target network and critic target
network respectively:

24: θµ
′

m = τθµm + (1− τ)θµ
′

m

25: θQ
′

m = τθQm + (1− τ)θQ
′

m

26: end for
27: end for

ξm,c(t) =

{
1, ξ̂m,c(t) ∈ (0.5, 1]

0, ξ̂m,c(t) ∈ [0, 0.5]
(35)

After the execution of the action, the environment will
transition to the next state s(t + 1), and all DT-UEs will
get a reward R(t) accordingly and new observation o(t).
For those agents who do not complete the task, they will
receive a penalty. If the replay buffer is not full, the experience
(a(t),R(t), s(t), s(t+1)) of that phase will be stored directly,
otherwise the earliest batch of experience will be replaced.
Subsequently, DT-UE will use mini-batch sampling in the
replay buffer to update the parameters of the neural network.
The parameters of the actor network and the critical network
are updated by minimizing the loss function. In addition, the
parameters of the two target networks are updated using soft
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updating, which are defined as,

θµ
′

m = τθµm + (1− τ)θµ
′

m

θQ
′

m = τθQm + (1− τ)θQ
′

m

(36)

where τ is the update rate.
After the training is completed, the critic network is not

needed and the decisions of the DT-UE will act on the
real environment. The agent m makes decisions based on
observation am and real-time transmits the three actions am of
device association, offloading mode, and task split to IID and
other DTs in the DT layer. The DT of ES transmits the action
instruction of bandwidth allocation to the corresponding ES
in the physical layer. Then the changes in the physical layer
will be fed back to the DT-UE in real time to enter the next
state.

Algorithm 2 Execution Phase Algorithm at Each DT-UE.
1: for each episode do
2: for each time t do
3: Observe initial state om
4: DT-UE m select action âm(t) = µ̂m(om; θ̂µm)
5: Sampling based on probability distribution
6: Sending commands to the physical layer
7: Real-time feedback of environmental changes to the

DT layer and the rest of the DTs
8: end for
9: end for

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
scheme by extensive simulations. Firstly, we present the details
of the simulation environment and algorithm parameters. Sec-
ondly, to demonstrate the superiority of the proposed scheme,
we carry out a comparative analysis with several benchmark
schemes. Finally, we analyze the influence of the deviation
between the real values and estimations on the system perfor-
mance.

A. Simulation Settings

We consider an IIoT scenario based on EEC. The parame-
terization of the system is based on the work [42], [50].

We distribute all the UEs and ESs uniformly across the
region, and we assume that one CS and multiple ESs pro-
vide computation services to several UEs. In the system,
the bandwidth of each ES is set as B = 20MHz, and the
transmission rate between ES and CS is set to v = 100Mbps.
For UE m, the transmission power P t

m = 0.5W, the channel
gain gm,k = −20dB, and the Gaussian white noise power
σk

2 = 2 × 10−12W. The effective switching capacitance of
the local computing is set as qm = 10−27, and the estimated
CPU computing frequency of UE m is f̃m = 0.1GHz. The
parameters for ES k, the estimated CPU computing frequency
f̃m,k = 5GHz, and the energy consumption for processing one
CPU cycle is set to ek = 10−9. For CS, the estimated CPU
computing frequency is set as f̃m,c = 100GHz. We consider

TABLE II
ALGORITHM PARAMETERS

Parameters Value

Soft update rate τ 0.0003

Mini-batch Nb 64

Discount factor ε 0.99

Replay buffer size B 10000

Penalty η 10

that both latency and energy consumption are significant
factors in IIoT, so the weights ω1 = ω2 = 0.5. Both the
simulation environment and the algorithm are executed on
Ubuntu 20.04.5, using Python 3.8.13 and PyTorch 1.12.1.
In our proposed algorithm framework, the Actor and Critic
networks include two hidden layers, both of size 400, and the
parameter settings of the algorithm are summarized in Table
II.

B. Performance Evaluation of Proposed Scheme

In this subsection, we aim to substantiate the advantages
of the cooperative EEC framework and the MADDPG-Based
Algorithm with DT, we compare our proposed solution with
the following five benchmark solutions as follows:

• Double deep Q-Learning (DDQN): We implemented a
DDQN-based offloading method for collaborative EEC
systems. The bandwidth allocation and task splitting
ratios were discretized into 32 levels. The settings of the
algorithm parameters, such as the discount factor and the
size of the replay buffer, are the same as in this paper.

• No DT: In this scheme, DT is not utilized. As a result,
without considering the system state, UEs randomly
assign a portion of their tasks to ESs or CS that they can
establish a connection. Moreover, due to the absence of
essential information exchanges, UEs use greedy strate-
gies to compete with one another for the limited system
bandwidth.

• Local Computing: All tasks are executed locally at the
UE, and algorithms are no longer needed to output
decisions on task split and resource allocation.

• Edge-End (EE) only: In this approach, we exclude the in-
volvement of CSs. Instead, all tasks within the system are
collaboratively computed by the UEs and ESs using the
MADDPG-based algorithm. Notably, the discrete action
space primarily focuses on device associations, while the
continuous actions encompass bandwidth allocation and
task segmentation.

• Cloud Computing: ESs in this scheme solely act as relay
nodes and lack computational capability. All tasks are
executed by UEs and one CS.

Fig. 3 shows the convergence performance of the pro-
posed DT-assisted scheme, DDQN algorithm, and benchmark
schemes in terms of average system cost. The MADDPG-
based algorithm for CCRA with DT proposed by us requires
the agents to continuously make decisions and interact with
the environment in each epoch, and update the network model
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Fig. 3. The average system cost decreases with the increase of training epoch.

based on environmental feedback. It can be seen that the
average system cost of our proposed algorithm and the DDQN
algorithm continuously decreases with the increase in training
epochs. The proposed algorithm starts to converge after 230
episodes, while the DDQN algorithm starts to converge after
600 epochs and eventually becomes stable. Therefore, our
proposed algorithm converges faster than the DDQN method.
In addition, the final average cost of our proposed solution is
lower than the DDQN algorithm and other solutions, which
validates the effectiveness of our approach.
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Fig. 4. Impact of number of UEs on system cost. There are 3 ESs.

Fig. 4 depicts the correlation between the system cost and
the number of UEs, while keeping the number of ESs fixed at
4. It is evident that as the number of UEs rises, the system cost
escalates across the six schemes to varying extents. This can be
attributed to the increased computational tasks, consequently
necessitating higher consumption of computational and com-
munication resources. Notably, our proposed scheme exhibits
the most cost-effective solution, being 33.7% lower than the
average cost of the other benchmark schemes at a device count
of 28. Conversely, Local Computing showcases the highest
system cost due to the inherent limitations of its computational

resources. Local Computing incurs the highest system cost
due to its limited computing resources. In contrast, ’EE
only’ offers reduced communication and computation delay
compared to both Local Computing and Cloud Computing.
However, beyond a threshold of 20 UEs, the system cost
of ’EE only’ surpasses that of Cloud Computing. This can
be attributed to certain ESs being overloaded with excessive
computational tasks, thereby resulting in prolonged processing
delays, consequently driving up the overall system cost.
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Fig. 5. Impact of task size on system cost. There are 20 UEs and 3 ESs
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Fig. 6. Comparison of system cost with different bandwidths of each ES.
There are 3 ESs.

The relationship between task size and system cost is
depicted in Fig. 5. It is evident that the system cost of the
other five benchmark schemes, excluding Local Computing,
experiences a significant increase as the task size escalates.
This can be attributed to the rise in both communication
latency and energy consumption, along with a gradual surge in
computational costs. In contrast, Local Computing, leveraging
a mere 20 UEs for computation, does not necessitate data
transmission. As the ’NO DT’ scheme fails to harness global
information, it fails to fully capitalize on the advantages
of EEC, resulting in an average system cost that is 45.3%
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higher when compared to our proposed scheme with DT. Our
proposed scheme offers the flexibility to choose the offloading
mode and achieves the lowest system cost through the joint
optimization of computing and communication resources. In
contrast, Cloud Computing has the highest system cost among
all the schemes due to its excessive transmission delay.

Fig. 6 presents a comparison of the system cost under vary-
ing ES bandwidths, exhibiting a continuous decrease as the
bandwidth increases. As outlined in (2) and (3), the bandwidth
is directly related to the transmission rate of the wireless link,
thereby leading to a substantial reduction in transmission de-
lay. While centralized decision-based DDQN outputs encom-
pass bandwidth allocation among different actions, attaining
global optimality through centralized decision-making proves
challenging. In contrast, the distributed decision-making ap-
proach employed in our proposed scheme, where each DT-UE
makes decisions based on the current system state, enables
effective bandwidth allocation and maximizes the utilization of
limited communication resources. The proposed EEC collabo-
ration scheme outperforms ’EE only’ in terms of performance
due to the abundant computational resources available in the
CS. The ’EE only’ approach falls short in computational delay
due to the limited computational resources it relies on.
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Fig. 7. Comparison of task success ratio with different numbers of UEs.
There are 3 ESs with 20MHz bandwidth each.

Fig. 7 plots the task success ratio for each scheme at
different numbers of UEs. The task success rate is defined
as the ratio of the number of successful tasks to the total
number of tasks, which measures the overall performance of
the system in handling computational tasks. We can observe
a decreasing trend in the task success rate as the number of
UEs increases. This is primarily because the computational
task size grows, leading to a higher demand for computational
resources. However, the total bandwidth of the ES remains
fixed, and since the UEs need to share limited communi-
cation resources among themselves, the communication rate
decreases, ultimately resulting in task failures. In contrast, our
proposed scheme effectively addresses this issue by utilizing
the combined capabilities of end, edge, and cloud to split the

task size. As a result, we are able to significantly increase the
average task success rate by 43.9% compared to the bench-
mark schemes. It is worth noting that Local Computing and
Cloud Computing exhibit some fluctuation. This is because
the task completion rate for local computing depends entirely
on the UE’s computation and the size of the generated tasks,
which is time-varying. For Cloud Computing, computational
resources are sufficient but limited by the bandwidth of the
wireless link.

C. Performance Evaluation of Deviation

As shown in Fig. 8, it is observed that the task success
rate exhibits a decreasing trend as the task size increases.
Specifically, when the task size is 10MB, both the ’EE only’
and our proposed scheme show a similar task success ratio,
with nearly all tasks being completed within the specified
time. However, as the task size increases to 60MB, the ’EE
only’ becomes overwhelmed, resulting in a decline in the task
success ratio to 82%. On the other hand, our proposed scheme
efficiently divides the tasks and facilitates effective collab-
oration between the cloud and edge. This division of tasks
allows us to make optimal use of computational resources,
resulting in a task success ratio of over 90% even with the
largest task size. It is worth noting that the absence of the DT
significantly impacts the task success ratio, especially when
the task size increases. The random division of tasks in ’No
DT’ fails to fully utilize the computational resources of the
cloud. In contrast, our proposed scheme, with the assistance
of DT, ensures a more efficient allocation of resources, thus
maintaining a high success ratio even with larger task sizes.
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Fig. 8. Comparison of success ratio with different task size. There are 20
UEs and 3 ESs with 20M bandwidth each.

As shown in Fig. 9, we compare the variation of system cost
for different bandwidths and deviations, which are present in
all elements within the system, including CS, ESs, and UEs.
When the deviations are constant, we observe that increasing
the bandwidth of the ESs leads to a decrease in the corre-
sponding system cost. This can be attributed to the fact that
the UEs have obtained a larger bandwidth and selected ESs
with better quality of service to offload tasks. Alternatively,
when the ESs bandwidth remains constant, the system cost
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Fig. 9. Comparison of system cost with different deviations.

shows a positive correlation with the deviation. This can be
explained by (11), (15), and (19), where a positive deviation
implies that the estimated value is worse than the actual value,
resulting in a larger actual delay compared to the estimated
value.
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Fig. 10. Comparison of system cost with deviations of UEs, ESs, CS. Using
our proposed scheme.

Fig. 10 illustrates the influence of deviations on the system
cost under different bandwidth conditions. We consider scenar-
ios with deviations for UEs, ESs, and CSs within our proposed
EEC framework. The figure demonstrates that the system
cost without deviations consistently outperforms other settings
under the same bandwidth condition, while the deviation
exhibits a positive correlation with the computation delay. On
the other hand, CS possesses greater computational power
compared to ESs, yet the impact of deviation is relatively
smaller. The reason for this is that computational tasks are
primarily executed in ESs to mitigate excessive latency.

As shown in Fig. 11, the variation of system cost with the
number of UEs and available ESs K is depicted. It is evident
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Fig. 11. Comparison of the system cost with the varying deviations and
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from the figure that with a constant number of UEs, a higher
number of available candidate ESs results in a reduction in
system cost. This is attributed to the careful consideration
of the dynamic characteristics of ESs during selection, as
they are chosen from a larger candidate set. Furthermore, the
figure also demonstrates an increase in the system cost as the
number of UEs in the simulation area. This cost escalation
is primarily due to the energy consumption associated with
transmission and computation. The presence of deviations in
ES introduces delays in task completion and increases the
energy consumption. These factors contribute to inefficiencies
in the system, which translate into costs incurred.

V. CONCLUSION

In this paper, we have investigated the problem of CCRA
within the DT paradigm for EEC-based IIoT. Our study
takes into account various factors relating to communication
and computation, with particular emphasis on the deviation
between real values and estimations. To tackle the highly
dynamic and hybrid action space, we have proposed an algo-
rithm based on DT-assisted MADDPG, aiming to minimize
the overall system cost which includes latency and energy
consumption. The algorithm optimizes the association poli-
cies, offloading mode, bandwidth allocation, and task split
of UEs. To provide a comparison, we also present other
benchmarking schemes separately. Extensive simulations have
been conducted to analyze the impact of system parameters
and deviations on the system cost. The obtained numerical
results validate the effectiveness of our proposed solutions.
Moving forward, we intend to further explore the modeling of
DT in IIoT, including data transfer and instruction delivery.
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