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Abstract

Recent studies have established that the circadian clock influences onset, progression
and therapeutic outcomes in a number of diseases including cancer and heart diseases.
Therefore, there is a need for tools to measure the functional state of the molecular
circadian clock and its downstream targets in patients. Moreover, the clock is a
multi-dimensional stochastic oscillator and there are few tools for analysing it as a
noisy multigene dynamical system. In this paper we consider the methodology behind
TimeTeller, a machine learning tool that analyses the clock as a noisy multigene
dynamical system and aims to estimate circadian clock function from a single
transcriptome by modelling the multi-dimensional state of the clock. We demonstrate
its potential for clock systems assessment by applying it to mouse, baboon and human
microarray and RNA-seq data and show how to visualise and quantify the global
structure of the clock, quantitatively stratify individual transcriptomic samples by
clock dysfunction and globally compare clocks across individuals, conditions and
tissues thus highlighting its potential relevance for advancing circadian medicine.

Author summary

The cellular circadian clock consists of an interacting set of genes that through their
interactions oscillate throughout the day. This oscillator also responds to external cues
so that the genes oscillate in phase with external environmental rhythms. A cell
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therefore uses its circadian clock to provide its genes with information about the
external time. In this way it can coordinate many of the processes taking place in the
cell and allocate some of these processes to specific times of the day. It is becoming
increasingly clear that the quality of this timing information influences onset
progression and outcome in a number of chronic diseases such as cancer. Our aim is
therefore to develop a machine-learning tool that can assess how well the clock is
working. We want to use this with patients and therefore, for clinical utility, it needs
to work with only a single clinical sample and to produce reproducible results that can
be clearly interpreted and easily compared.

Introduction 1

The mammalian cell-endogenous circadian clock temporally regulates tissue-specific 2

gene expression driving rhythmic daily variation in metabolic, endocrine, and 3

behavioural functions. Indeed, up to half of all mammalian genes are expressed with a 4

circadian rhythm in at least one tissue [1, 2] and approximately 50% of all current 5

drugs target the product of a circadian gene [1]. Moreover, recent studies 6

demonstrated that the circadian clock influences therapeutic outcomes in a number of 7

diseases including heart disease and cancer [3–9], and that disruption of the normal 8

circadian rhythm and sleep (e.g., through shift work) is associated with a higher risk of 9

obesity, hypertension, diabetes, chronic heart disease, stroke and cancer [10–13]. There 10

is therefore a rapidly growing interest in developing circadian medicine tools that aid 11

the incorporation of time in order to provide safer and more efficacious therapeutics. 12

As a result a number of phase-estimation algorithms have been designed to 13

estimate the molecular clock phase of the circadian clock, i.e., its “internal time”, from 14

the measured levels of rhythmic gene expression [14–22]. If the sample collection time 15

(SCT) is known, then divergence between the estimated timing T and the SCT 16

indicate the possible presence of clock dysfunction and, indeed, this internal phase T 17

has been proposed as a clinically actionable biomarker [23]. There are problems with 18

such an approach, the most obvious of which is that this internal time may well 19

depend substantially upon genotype or environment (as we show below) and the 20

consequent deviations are unlikely to be related to dysfunction. A different attempt 21

at a systemic approach to define molecular clock disruption has used pair-wise 22

correlations between clock genes across large transcriptomic datasets [27]. At the 23

population level, this showed greater dysfunction in solid tumours compared to 24

healthy tissue. However, this approach compared datasets of cohorts with each other 25

and, as the authors pointed out, does not lend itself to assessing clock function in 26

single samples. A similar approach using clock correlation matrices together with 27

CYCLOPS ordering [18] and a measure called nCV [28] that correlates positively with 28

clock amplitude was used to address clock dysfunction in pancreatic cancer cells [29]. 29

The core mammalian circadian clock involves more than a dozen genes [24] and 30

therefore the regulatory system is a high dimensional stochastic dynamical system. 31

Since emergent systems properties such as oscillation, synchronisation, entrainment, 32

phase-locking, robustness, flexibility and temperature compensation are critical for the 33

functioning of the clock, tools that enable the analysis of the circadian clock’s systems 34

properties are very much needed. Moreover, a substantial amount of data is becoming 35

available including whole transcriptome time-series that should facilitate such systems 36

analysis using mathematical modelling, statistics and machine learning. However, 37

probing the global behaviour of such a system is a highly non-trivial task and almost 38

all analysis of clock data focuses on individual components and connections. This is 39

not the case for the phase estimation algorithms mentioned above but they adopt a 40

model-blind machine-learning approach. While such approaches can be effective it is 41
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difficult to see how to quantify clock functionality independently in individual samples 42

without taking advantage of the clock’s structure as a stochastic dynamical system 43

because it is this that determines the well-defined probabilistic structure describing 44

the relationship between time and multidimensional gene state that, via statistical 45

theory, can be linked to functionality. 46

To effectively quantify functionality in individual transcriptomic samples such as 47

those from patients requires reproducibility, comparability and interpretability. 48

Therefore, the results on a given test sample should be independent of those on other 49

test samples and should not depend upon the particular test dataset being considered. 50

Even for timing estimation alone this does not seem possible with the 51

phase-estimation algorithms mentioned above apart from TimeSignature [19] which 52

requires two samples. However, the key point differentiating TimeTeller from 53

TimeSignature and the other algorithms is that, apart from identifying timing 54

deviations, these do not provide any other assessments of clock functionality or other 55

quality controls on the individual timing assessments. This is essentially also true for 56

ZeitZeiger [15] but with the caveat that it, like TimeTeller, uses a likelihood curve that 57

it might be considered could be used in a similar way to TimeTeller’s to assess 58

functionality. However, although differences in ZeitZeiger’s likelihood between 59

WT/control and perturbed clocks in controlled experimental situations has been 60

discussed [15], it has not been proposed or statistically analysed as a measure of 61

dysfunction and has not been used as such when ZeitZeiger has been employed to 62

analyse timing variation in populations [23,25,26]. Moreover, analysis by ZeitZeiger of 63

new data as described in [15] involves renormalizing and batch-correcting this data 64

with the training data and then retraining, resulting in a different predictive model 65

every time and therefore potentially sacrificing the reproducibility, comparability and 66

interpretability discussed above. 67

Our aim is to develop a tool that (i) provides a multidimensional picture of the 68

clock’s dynamics and structure that integrates the behaviour of multiple genes, (ii) 69

provides a quantitative analysis at the systems level of clock data, (iii) enables a 70

quantitative comparison of different clocks and (iv) enables a quantitative assessment 71

of clock dysfunction both in the core clock and in downstream target genes. We are 72

aiming for a tool that can determine the presence of a dysfunction causing 73

perturbation from just one sample and that can stratify individuals based on clock 74

functionality, and, thus, might be useful to develop as a clinically actionable 75

biomarker. For example, we show that such a stratification can enable the 76

identification of differentially expressed genes between samples that have better and 77

worse clocks. Finally, we consider new methods for comparing clocks across different 78

individuals, tissues and conditions, identifying a “molecular chronotype” associated 79

with these, and uncovering the effect of clock perturbations on downstream genes. 80

It is important to understand the limits on what we regard as dysfunction in our 81

discussion. TimeTeller’s view of functionality is based on statistical analysis of gene 82

expression and not on timing of physiological processes. The probability structure of 83

the dynamical system behind a circadian clock is primarily described by the joint 84

probability distribution P (t, g) of the external time t and the expression state g of the 85

core clock genes or some representative function or subset of them. This distribution 86

determines the conditional distributions P (t|g) and P (g|t). These distributions tell us 87

respectively the distribution of g when the time is t and the probability distribution of 88

times t that are found when the gene expression state of the clock is g. The 89

distribution P (t|g) is a critical quantity because the cell has to use some function of 90

the state of the gene products as a surrogate for t and the variance of P (t|g) tells us 91

how well cells can tell the time by just seeing the clock gene state. If g comes from a 92

test sample taken from a well aligned clock with internal time T (possibly distant from 93
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the SCT) then we would expect that P (g|T ) would be relatively large and, as a 94

function of time t, P (t|g) would be sharply peaked at t = T . From the point of view of 95

TimeTeller if either of these breaks down then the sample’s clock is regarded as 96

dysfunctional to some extent. We quantify this breakdown by a measure ML of the 97

probability that g∗ is drawn from the training clock and another that combines a 98

measure of the variance of the clock’s estimate of the time and a quantity related to 99

the existence of multiple peaks in P (t|g∗). 100

It is also important to stress here that with the currently available data we will 101

have to make and justify some assumptions on the cross-validity of data from different 102

tissues in order to combine the data. For example, in order to estimate the probability 103

model for a particular tissue we would ideally like to use training data that is only 104

from that tissue. In particular, this is not possible for the mouse and baboon datasets 105

as adequate amounts are not currently available and we therefore have to pool data 106

from several tissues. To do this we choose an appropriate rhythmic gene panel based 107

on good cross-tissue synchronicity and, after validation of this, use normalisation to 108

overcome tissue differences in the way explained below and in the SI Fig S1. For our 109

human datasets we pool across individuals rather than tissues. Another potential 110

limitation comes from the fact that our current RNA-seq training data is only available 111

at a few training time points around the day. Nevertheless, even with these handicaps 112

we obtain very informative results and provide plenty of evidence that the approaches 113

adopted work well. As more data becomes available this situation can only improve. 114

Results 115

Training with genetically homogeneous and heterogeneous data 116

The broad range of transcriptomes from microarray and RNA-seq data that we use is 117

detailed in SI Note S1, as are the methods used to prepare the data for use with 118

TimeTeller. The data that is used to prepare TimeTeller’s probability model is 119

referred to as the training data. The data that is then analysed using this probability 120

model is called test data. In this paper we use four different training datasets and 121

more details about these are in SI Note S1. 122

Choice of a clock representative gene panel 123

For a given training dataset we firstly choose the panel of G rhythmic genes that 124

TimeTeller will use. This is called the rhythmic expression profile (REP). For a given 125

transcriptomics sample the expression levels gk, k = 1, . . . , G, of these genes are 126

collected into a vector g = (g1, . . . , gG) which we will call the rhythmic expression 127

vector (REV). The user is free to choose the genes in the REP and may have a 128

particular reason to include or leave out a particular gene. However, in this study we 129

first carry out an analysis of both the rhythmicity and synchronicity across tissues or 130

individuals in our datasets to guide our choice. This analysis, which is detailed in SI 131

Fig S7, is important to choose a panel of genes with good circadian rhythmicity 132

combined with minimal variation across the relevant tissues or individuals and to try 133

to ensure it provides a faithful representation (SI Note S2) of the clock state even 134

though it might not contain all core clock genes. 135

Timecourse and intergene normalisation 136

When combining training data from multiple tissues, for each gene in the REP we 137

study the variation across the tissues in that gene’s expression time-series. This 138

analysis (SI Fig S7) shows that for RNA-seq data this variation is significantly greater 139
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than that found, for example, in the Affymetrix MoGene 1.0 ST and GeneChip 140

Human Genome U133 Plus 2.0 microarray platforms that we have analysed. 141

Therefore, for the RNA-seq training data, it is usually necessary if we are combining 142

data from multiple tissues to carry out what we call timecourse normalisation. 143

Each of our training data sets is organised into time series for each gene in the 144

REP with times tk, k = 1, . . . ,K, that are usually independent of the particular gene. 145

We can normalise the data by replacing each of these time series by a normalised 146

version which has mean expression zero and standard deviation 1. We call this 147

approach timecourse normalisation. Following such normalisation of a training 148

dataset, if we wish to test an independent test sample REV from a given tissue and 149

gene we will have to normalise the REV using the offsets and scalings that were used 150

in the timecourse normalisation of the training data for this tissue and gene. Such 151

normalisation of test data is called timecourse-matched. 152

There is, however, a cost in using timecourse-matched normalisation because the 153

test data from a particular tissue has to be normalised using the adjustments 154

calculated for that tissue in the training data. This means that one can only use test 155

data for tissues where we have a training time-series. Moreover, when using 156

timecourse-matched normalisation on test data it is crucial that the training data are 157

produced by the same transcriptomics platform. 158

Intergene normalisation avoids this. When timecourse normalisation is unnecessary 159

or impossible because we do not have a training data set for the test data tissue, the 160

data is normalised using intergene normalisation where, if g = (gi) is a REV, the 161

normalised levels are given by ĝi = (gi − µ)/σ where µ and σ2 are the mean and 162

variance of the entries gi. Essentially, this maps the REV onto its shape as a vector. It 163

is also possible to usefully combine timecourse and intergene normalisation (see Table 164

1). Though the use of timecourse normalisation typically improves timing 165

performance, we will show that intergene normalisation can also be remarkably 166

effective (e.g., see Table 1). 167

We can also apply such timecourse normalisation to test data when this contains a 168

time series; as several experimental model datasets do. However, any difference in 169

amplitude between the training and test dataseries is then removed. On the other 170

hand analysis using timecourse-matched normalisation for the test data maintains 171

such a change in amplitude. 172

Similar considerations to the above apply when combining data across individuals 173

instead of tissues as we do with the Bjarnason et al. human data. Timecourse 174

normalisation can also be very useful when analysing microarray data and we have 175

found it necessary when the training and test data come from different microarray 176

platforms (e.g., as in SI Figs S2 and S11). SI Table S1 summarises the normalisations 177

that were used for all the analyses shown in the Figs. 1-5. 178

Estimating the clock statistical structure of the training data 179

We mentioned above that the joint distribution P (t, g) of time t and clock gene state g 180

or some representative of it characterises the statistical structure of a clock. This 181

distribution is always associated with the training data and test data is analysed using 182

it. In fact, rather than P (t, g) we will mainly be interested in the two conditionalfor 183

all times distributions P (g|t) and P (t|g) associated with it. TimeTeller aims to use the 184

training data to estimate P (g|t) for all times t across the day as explained in Methods, 185

SI Fig S4 and SI Note S4. Moreover, P (g|t) and P (t|g) are related by Bayes’ law (SI 186

Note S3) and in the case of clocks this boils down to the fact (since times t are equally 187

probable) that, as functions of time t, P (t|g) is approximately proportional to P (g|t). 188

Therefore, for any clock gene state g from training or test data, we can use knowledge 189

of P (g|t) to determine the temporal shape of P (t|g). Furthermore, as we explain in SI 190

November 16, 2023 5/30



Note S3, the variance of P (t|g) depends crucially on the covariance structure of the 191

clock genes, i.e. the covariance matrix of P (g|t). Our tool is constructed to use this 192

understanding. Finally, we note that the stochastic dynamics of the system around its 193

periodic attractor modified by measurement noise sets the nontrivial structure of this 194

covariance matrix. From theoretical considerations [32], if the measurement noise is 195

not too large, we can expect that the covariance matrix has rapidly decaying 196

eigenvalues, an observation that will justify our dimension reduction from G to less 197

dimensions that is discussed below (also see SI Fig S3). 198

Multidimensional visualisation provides important information 199

about phenotype 200
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Fig 1

When constructing the probability model, the TimeTeller algorithm projects the 201

G-dimension REVs into fewer dimensions using a local version of principal component 202

analysis (Methods, SI Note S6 and SI Figs S3 & S4) This gives a different projection 203

for each time in the dataset and the algorithm extends this to all times around the day. 204

If for the G-dimensional data the distributions P (g|t) are approximately multivariate 205

normal (MVN) then the corresponding distributions of the projected data optimise the 206

capture of the dominant gene-gene correlations after projection (see Methods). We 207

find that for our datasets d = 3 is sufficient for this (e.g., see SI Fig. S3) and the 208

resulting 3-dimensional model of the clock provides a very informative visualisation. 209

Figs. 1A shows such a visualisation for the mouse multi-organ microarray training 210

data from Zhang et al. [1] when timecourse normalisation has been applied. 211

TimeTeller actually produces such a local projection visualisation for each time in the 212

training dataset as shown in SI Fig. S5 but normally inspection of just one of these is 213

adequate and we only show one in Fig. 1. With each such visualisation we also show 214

the curve given by the means of the estimated distributions P (g|t) as t varies over the 215

day. Also in such plots we often provide for a sample of times t an ellipsoid showing 216

the covariance structure of the estimated distribution P (g|t) (see caption of Fig. 1). 217

We color the training data points and mean curve by time with a color coding as given 218

in the legend of Fig. 1 using the sample time for the data points. The same color 219

coding is used throughout the paper. 220

Fig. 1B plots microarray test data from Fang et al. [33] comparing it with the 221

Zhang et al. microarray training data in Fig. 1A. This test data compares liver 222

samples of Nr1d1 (Rev-erbα) knock-out (KO) and wild-type (WT) mice entrained to 223

light-dark (LD)12:12 cycles. The gene Nr1d1 is a core clock gene of the mammalian 224

circadian clock important in one of the interlocked feedback loops and a key link to 225

metabolism [34]. Knocking it out leaves a functional but perturbed clock when 226

compared to WT mice [33]. Since Nr1d1 is a member of the default REP it would not 227

be surprising that TimeTeller could distinguish Nr1d1 KO mice from WT mice, and 228

indeed this is the case. Therefore, for this validation, we exclude Nr1d1 from the REP 229

genes. The visualisation shows that while the WT data appears to fit well with the 230
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Fig 1. The color of data points etc (when not black) corresponds to the time when the data
was sampled. This coloring is used in a consistent way across all figures. A-C. Using local
PCA projection to visualise data. The identity of each data point can be read from the
legends to the right of each example. Only one projection for each example is shown but the
differently timed projections have a similar quality. Examples showing all of the projections
are in the SI Figs S4 & S5. A. The CT18 local PCs of the Zhang et al. microarray data but
using timecourse normalisation. B. A detail from a projection of the the Fang et al. test data
together with the Zhang et al. training data as in A showing coherence of the Fang et al. WT
data and the gap between this and the KO data. Intergene normalisation is used. C. The
Kinouchi et al. RNA-seq skeletal muscle test data for FED and FAST mice plotted against
the Zhang et al. RNA-seq training data. Timecourse and timecourse matched normalisation
is used. The ellipsoids shown are of the form (x− µ)T Σ−1(x− µ) = ε where µ is the mean of
the estimated P (g|t) and Σ is its estimated covariance with ε chosen so that the ellipsoid
should contain 97.3% of the training data (i.e. 3 standard deviations). This enables
visualisation of the variation and covariation in the data.

training data, the KO data has a consistent substantial difference. TimeTeller is able 231

to detect this apparent difference in each of the four KO samples and shows a coherent 232

difference from WT. This suggests that the Nr1d1 KO mice have a significantly 233

perturbed clock when compared to WT mice (Fig. 1B). However, it is still somewhat 234

functional as it gives approximately correct timing and the level of sample variation 235

between WT and KO is similar. We investigate this further below. 236

The other test data we visualise (Fig. 1C) in this figure is from Kinouchi et al. [35]. 237

This contains samples analysed by RNA-seq from mouse skeletal muscle taken around 238

the clock in LD 12:12 [35], and compares mice that had been fed ad libitum (FED) 239

with mice that had been starved for exactly 24 hrs prior to point of sampling (FAST). 240

On the one hand, while FED samples align with the RNA-seq training data, the FAST 241

samples are substantially perturbed (Fig. 1E). On the other hand, the FAST samples 242

show consistency in that for a given sample time they tend to cluster together. A 243

similar visualisation for the liver samples from [35] is given in SI Note S8. It should be 244

noted that the test samples from Kinouchi et al. have been collected in LD whereas 245

the training dataset was collected on the first three days in constant conditions. 246

Interestingly, there is little difference between FED (control) and training dataset 247

mice, which might be due to the fact that the free-running period of these WT 248

C57Bl/6 mice is around 23.8 hours. 249

Other examples demonstrating the utility of such visualisation are discussed below. 250

Analysis of single test samples 251

TimeTeller’s estimate of P (t|g) from the training data is used to analyse test data. 252

For a normalised test data REV g our estimate Lg(t) of P (t|g), which we regard as a 253

function of t, is referred to as the likelihood curve (LC) for the corresponding 254

transcriptomics sample. The quantities for functionality assessment are associated 255

with this LC. For example, we define the internal phase T of a test REV g as the time 256

at which the estimated likelihood function Lg(t) ≈ P (t|g) is maximal i.e., the 257

maximum likelihood estimate. Given T , we define the likelihood ratio function (LRF) 258

as Rg(t) = Lg(t)/Lg(T ), i.e. it is the LC but normalised so that the value at the 259

maximum is 1. The internal phase can be compared with the SCT but, as noted 260

above, there may be consistent phenotypic deviations of T from the SCT in genetically 261

heterogeneous populations. 262

It is important to emphasise that when we analyse test data the results for any test 263

data sample are independent of the results for any other test data sample. This is 264

because the calculation of the likelihood curve of a test data sample only involves the 265
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probability model and the test data sample and has nothing to do with the other test 266

samples. Therefore, the result for any test sample will be exactly the same as if it were 267

the only sample in the test dataset. 268

Fig. 2A shows the estimated LRFs for the Zhang et al. microarray data. Each 269

LRF’s highest peak is centered at 12noon to enable visual comparison of many LRFs, 270

a plotting technique used throughout the figures. Many examples of estimated LCs 271

and LRFs can be seen in Figs. 1-5 and the SI. The resulting predicted timing plotted 272

against the sample time is shown in Fig. 2A together with the times corrected to allow 273

for the chronotype explained in the section below on timing. LCs for the Bjarnason et 274

al. human training data are shown in Figs. 2C and SI Fig S6. 275

These show the general form of the LCs and demonstrate that one can clearly 276

observe qualitative differences between one individual’s LC and those of the others. 277

Apparent timing errors and timing deviations in the training data 278

For each training dataset we used an appropriate leave-one-out cross-validation 279

approach to compare the sample collection time Ta with the estimated time T and 280

evaluated the apparent timing errors T − Ta for each sample. The mean and median 281

absolute timing errors (MAEs) for the training datasets are shown in Table 1. 282

A. Zhang et al. 2014 Microarray, mouse
normalisation mean median corr. mean corr. median
intergene 1.39h 0.93h 1.35h 0.94h
timecourse (2h) 0.89h 0.70h 0.77h 0.52h
timecourse (6h) 0.78h 0.63h 0.61h 0.53h
both 0.90h 0.60h 0.84h 0.59h

B. Zhang et al. 2014 RNA-seq mouse
intergene 1.60h 0.80h 1.51h 0.82h
timecourse 0.68h 0.46h 0.58h 0.59h
both 0.64h 0.27h 0.66h 0.56h

C. Bjarnason et al. human
intergene 1.52h 0.73h 0.95h 0.75h
timecourse 1.14h 0.86h 0.70h 0.62h
both 1.06h 0.48h 0.67h 0.48h

D. Mure et al. trained on central 18 tissues, baboon
intergene 2.43h 1.87h 2.27h 1.51h
timecourse 1.49h 1.11h 1.21h 0.90h
both 1.49h 0.90h 1.23h 0.86h

E. Mure et al. trained on all 33 tissues, , baboon
intergene 2.53h 1.84h 2.36h 1.65h
timecourse 1.53h 1.13h 1.24h 0.88h
both 1.53h 0.94h 1.27h 0.92h
F. Test: Zhang et al. RNA-seq. Training: Zhang et al. microarray
timecourse 0.83h 0.51h – –
G. Test: Zhang et al. microarray. Training: Zhang et al. RNA-seq
timecourse 0.86h 0.67h – –

Table 1. Mean and median absolute timing errors for the training datasets.
Column 1 shows the normalisation used. Columns 2 and 3 show respectively the mean
and median absolute timing error. Columns 5 and 6 show the mean and median
absolute timing error after a correction is made using the timing displacement for the
tissues or individuals as relevant. A-E. The apparent timing errors for the training
datasets when a leave-one-out cross-validation approach was used. For the Zhang et
al. microarray data we compare using all the data (2h resolution) to only a subset
giving 6h resolution. F. Timing results for Zhang et al. RNA-seq test data when
Zhang et al. microarray is used as training data. G. As F. but with datasets swapped.

We then analysed how the mean timing error varies with tissue, individual or 283

condition to see if there is a consistent timing deviation for any of these. When these 284

deviations are clear and statistically significant we call the mean of them the timing 285

displacement of the tissue, individual or condition. We show below that for the mouse 286

and human training datasets the observed timing displacement is associated with 287
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coherent phase changes in the genes. Therefore, in assessing the performance of 288

TimeTeller the apparent timing errors should be corrected to take account of this. The 289

timing displacements of the different mouse tissue in the Zhang et al. data are 290

relatively small (SI Fig S5G)) but, for the more genetically heterogeneous human 291

population of the Bjarnason et al. data, we found significant and consistent timing 292

displacements on the individual level (Fig. 2E and SI Fig 14). When the apparent 293

errors are adjusted for this they are often substantially reduced (Fig. 2D and Table 1). 294

For the Bjarnason et al. human data this reduction is of the order of 50%. Table 1 295

shows that timecourse and timecourse then intergene (both) normalisations are 296

performing significantly better than intergene alone. 297

It is difficult to compare performance with that of the published algorithms 298

mentioned above as they have been used on different datasets collected under different 299

conditions and there has been relatively little work on time-stamped genetically 300

heterogeneous data. The Zhang et al. microarray dataset was also analysed by 301

ZeitZeiger and the mean absolute errors on cross-validation were between 0.6h and 302

1.1h [15]. On these tissues the results for timecourse normalisation with TimeTeller 303

are very similar to those of ZeitZeiger (SI Table S2). Moreover, TimeTeller’s apparent 304

timing errors for the genetically heterogeneous human data compare well with those 305

found in other studies which typically have a median absolute error (MdAE) greater 306

than 1.4h. For example, in the study [23] the 1-sample method had a MdAE of 1.6h 307

and the 2-sample method had a MdAE of 1.4h-1.7h and when CYCLOPS was 308

validated against pre-frontal cortex biopsies with annotated time in [18] the MdAE 309

was 1.69h. In an impressive application to data from four distinct human studies 310

TimeSignature [19] reported MdAEs between 1.21h and 1.49h although this requires 311

two samples for each individual. While TimeTeller’s timecourse normalised results for 312

the genetically heterogeneous Bjarnason et al. and Mure et al. data (Table 1) compare 313

favourably with these results we do not wish to claim timing superiority as there is 314

great heterogeneity in the studies giving rise to the data that was analysed and in the 315

transcriptomics platforms employed. 316

Maximum likelihood ML 317

Given a test sample REV g, the value of ML = Lg(T ) (i.e. the maximum likelihood of 318

g) is a key diagnostic as, if M denotes the maximum value of the distribution P (·|T ), 319

we can regard λ = log(ML/M) as a likelihood ratio test statistic for a pure significance 320

test of the hypothesis that g is drawn from the training clock. Thus, a low value of 321

ML relative to the values obtained by training or control data is indicative of the fact 322

that g comes from a clock that is substantially different. We refer to dysfunction of 323

this kind as low ML (lowML). An initial evaluations of the ML values for both 324

training and test data is a key first step of an analysis using TimeTeller. 325

Dysfunction metric Θ 326

Statistical theory tells us how to estimate the confidence interval for the maximum 327

likelihood estimator T of internal timing for any given degree of confidence using the 328

LRF (Methods and SI Note S3). The variance of T arises because g is a random 329

sample from the clock at time t and we want to know how T will vary with other such 330

samples because high variance implies imprecise timing. We call such dysfunction high 331

variance timing (highTvar). The Cramér-Rao Theorem [36] gives a lower bound for 332

variance in terms that can be related to the LRF (SI Note S3). Our metric Θ is the 333

proportion of time in the day that the LRF spends above the curve C(t|T ) defined in 334

Methods and is associated with the length of such a confidence interval (SI Note S3) 335
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and therefore Θ gives an assessment of this sort of dysfunction and higher Θ is 336

associated with higher dysfunction. 337

However, our likelihood curves often contain structures that are relevant to 338

assessing dysfunction but which are not covered by this aspect of statistical theory. 339

One important case is where when g has significant dysfunction of type lowML and 340

the other is where the LC and LRF contain significant secondary peaks that have a 341

lower likelihood than that at T . Complex data sets from diseases such as cancer can 342

contain all of these dysfunction signatures with some samples displaying a single type 343

and others a mixture of more than one. As well as seeking to characterise the type of 344

dysfunction, we attempt to construct a statistic that integrates the different types into 345

a single measure. This is our dysfunction metric Θ. As defined by us (see Methods) 346

this metric will contain a contribution from all of these aspects that are present and 347

therefore ML and Θ are not independent. We discuss this further in the following 348

sections after discussing the values of Θ and ML in training data. 349

Θ and ML for training data 350

To continue the evaluation of TimeTeller’s LCs, and the corresponding dysfunction 351

metrics Θ and ML we first tested it on the Zhang et al. and Bjarnason et al. training 352

datasets using the appropriate leave-one-out cross-validation approach. The results 353

showed consistently low Θ values and relatively high maximum likelihoods across 354

tissues for the genetically homogeneous mouse datasets and genetically inhomogeneous 355

individuals for the human data (SI Figs S5, S6 & S13). 356

Multiple tools for assessing functionality in test data 357

Importantly, this consistency of good apparent timing errors, high ML and low Θ was 358

also observed in the analysis of the various WT/control components of the test data 359

sets considered. For example, using the Zhang et al. microarray data for training and 360

intergene normalisation our analysis of the microarray timecourse control dataset 361

created by LeMartelot et al. ( [38] and SI Note S1) produced a mean absolute error for 362

time estimation of less than one hour and Θ values similar to those found in the 363

training data. Similar results were found for the Acosta-Rodŕıguez et al. data [39] for 364

ad libitum fed mice using the Zhang et al. RNA-seq data for training and 365

timecourse-matched normalisation (Fig. 5), and for liver microarray test data from 366

Hughes et al. [40] after training with the Zhang et al. microarray data (SI Fig S2). For 367

the latter we used timecourse normalisation for the training and test data as the 368

microarray platforms are different, demonstrating good results across different 369

platforms. 370

To further test the use of TimeTeller across different transcriptomics platforms we 371

carried out a cross-validation experiment where we trained TimeTeller on the Zhang et 372

al. microarray data and used this to test the Zhang et al. RNA-seq data and 373

vice-versa (Fig. 1A & SI Fig S11). This not only tests the robustness of our approach 374

but also examines the effectiveness of timecourse normalisation in allowing us to work 375

across different transcriptomics technologies. The timing results are given in Table 376

1F,G with small mean and median errors of a size compatible with the within-dataset 377

leave-one-out analysis. As well as the relatively small timing errors we observe 378

informative visualisation and consistent Θ values. 379

Across the various datasets we consider, this good timing, high ML and low Θ for 380

WT/control test data almost always differed from that found for the perturbed test 381

data. For example, in Fig. 2H-O we consider the timing, ML and Θ diagnostics for the 382

Fang et al. and Kinouchi et al. test data discussed above and use them to illustrate 383

how to gain more insight into dysfunction. In such an analysis one should start with 384
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Fig 2

an assessment of the MLs and an inspection of the LRFs for training, control and test 385

data. 386

From this one can choose an initial value for the important parameter lthresh using 387

the approach described in Methods and SI Note S4. This parameter truncates the 388

likelihood curves so they do not go below exp(lthresh) and this plays an important role 389

in ensuring that the incorporation of the local likelihoods into a global one (see 390

Methods) is not wrecked by inaccurate and uninformative exceptionally low local 391

likelihoods. 392

For the Fang et al. data and the Kinouchi et al. skeletal muscle test data we see 393

that the ML values for the perturbed test data are significantly lower than those for 394

the control test data (Fig. 2J,N) suggesting that dysfunction of the lowML type is 395

present in the perturbed systems. For the test data from Fang et al. we also observe 396

significant differences between the WT and Nr1d1 KO samples for the timing and Θ 397

diagnostics (Fig. 2H-K). The timing T of the KO observations is significantly further 398
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Fig 2. A. The centred LRFs for the Zhang et al. mouse microarray data using a
leave-one-out analysis. They are centred in that the maximum of the curve is moved to noon.
This makes the shapes of the curves clearer and more comparable. The black curve is the
curve C(t|T ) for T = 12 (Methods) that is used in the calculation of Θ. B,C. A
Leave-one-out analysis of the Bjarnason et al. oral mucosa data. B. Examples of the
likelihood curves. C. Boxplots showing the apparent timing errors found for each individual
ordered by their means. This shows the substantial timing displacements of some individuals.
D. Showing how Θ is calculated using the LRF and the curve C(t|T ). Θ is the proportion of
time the LRF spends above C(t|T ) i.e. the proportion of the time in the horizontal red curves.
This is contributed to by the LRF around the highest peak, and by any secondary peaks or
flat regions that go above C(t|T ). E-H. Analysis of the Fang et al. Rev-erb-α KO data.
Uses lthresh = −5. E. Plots of the Θ value against the estimated time T . The vertical lines
show the true time with colours indicating the sampling time. WT timings are close to the
true sample times and the KO times deviate from them. F & G. Boxplots of the maximum
likelihood and Θ values showing significant differences between the WT and KO groups with
p-values from the Wilcoxon rank sum test calculated using the Matlab ranksum function.
Note that the smallest MLs are around e−4 which is why lthresh was taken to be -5. Taking
lthresh = −4 gives entirely similar results. H. The centred LRFs for the WT and KO samples.
I-L Analysis of the Kinouchi et al. FED/FAST skeletal muscle data. This analysis
used a logthresh of −12. The plots J-L are as for F-H but for the Kinouchi et al. data. I-L
Analysis of the Koronowski et al. data. comparing WT, Arntl KO and Liver-RE data
using lthresh = −12. I The signed error boxplots show the timing dysfunction in the KO data
as well as good recovery in the reconstituted Liver-RE clock but with a clear phase advance.
J,K,L Boxplots of ML and Θ values, and centred LRFs for the three genotypes.

from the true timing (Fig. 2H). Analysis as in Methods and SI Note S4 suggests 399

setting lthresh around -5 but the results are very similar for any value between -4 and 400

-7. However, the centred LRCs also indicate that there is a significant amount of 401

highTvar dysfunction in the KO sample because of the second peaks and increased 402

width of the LRCs near the maximum. 403

For the Kinouchi et al. skeletal muscle data the FED samples show uniformly small 404

errors in timing T (MAE 0.44h) and uniformly low Θ values (Fig. 2L,M). In contrast, 405

the timings T of the FAST samples are clustered around ZT 18-24 reflecting the tight 406

clustering seen in the visualisation (Fig. 1E) and the MAE is significantly greater at 407

4.04h. So far as dysfunction is concerned, the situation is somewhat different from the 408

Fang et al. data since, although there are also significant differences in ML and Θ 409

values between FED and FAST (Fig. 2I-L), there are no second peaks in the centred 410

LRFs contributing to Θ (Fig. 2L). Consequently, the primary difference between the 411

FED and FAST samples is due to the significant difference in the MLs. Thus, only 412

substantial lowML type dysfunction is present. The stratification by Θ in Fig. 2K 413

reflects this. 414

The Kinouchi et al. data provides a very informative example of how the choice of 415

the parameter lthresh works because the maximum likelihoods ML for both the FED 416

and FAST liver data are significantly higher than that for the skeletal muscle data 417

discussed above and this means that different values of lthresh are appropriate. The 418

discussion in SI Notes S4 and Fig S8 shows that the value for the liver data should be 419

substantially larger at -6 or -7 rather than -12. When this value is chosen the results 420

for the Kinouchi et al. liver data are similar to those above for the skeletal muscle data 421

(Fig. 2I-L). 422

In order to understand the effect of fasting on the amplitude of core clock 423

components Kinouchi et al. [35] needed to treat the data as though the FAST samples 424

belonged to a continuous time series even though each timepoint was proceeded by 24 425

hours of starvation. This underlines a significant extra advantage of TimeTeller 426

because the FAST test samples can be considered independently from one another. 427
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Koronowski et al [41] compared the liver transcriptomes of wild-type (WT) with 428

whole body Arntl deficient mice (KO) or Arntl KO mice with liver-specific Arntl 429

reconstitution (Liver-RE). Their data enables us to test TimeTeller’s sensitivity to not 430

only the substantial KO perturbation but also the much subtler one of the Liver-RE. 431

Our analysis shows statistically significant differences in timing between WT, KO and 432

Liver-RE including the phase advancement noted in [41] of the Liver-RE clock relative 433

to WT (Fig. 2M-P). The MLs (resp. Θs) for the KO data are significantly smaller 434

(resp. larger) than for both the WT and Liver-RE data with no significant difference 435

between WT and Liver-RE (Fig. 2N,O). However, the LRFs (Fig. 2P) suggest a clear 436

difference between WT and Liver-RE data in that, unlike WT, about half of the 437

Liver-RE samples have a significant extra peak suggesting a contribution of highTvar 438

type disruption and a hypothesis that this is causing the observed timing change in 439

the Liver-RE data. Significant second peaks are also observed in about a half of the 440

the KO data suggesting a combination of some highTvar dysfunction combined with 441

the significant lowML dysfunction. 442

Analysing stopped clocks 443

In the SI Fig S9 we discuss an analysis of two studies (Weger et al. [42] and Yeung et 444

al. [43]) where the clock is disrupted by either Arntl (Bmal1 ) or Cr1/Cry2 deletion. 445

As well as confirming the observation in Hughey et al. [15] that the resulting data 446

show clustering to a narrow range of apparent times for the KO samples, the 447

TimeTeller Θ and maximum likelihood values provide quantitative evidence about the 448

dysfunction caused. This is similar for the two Arntl KO datasets but different to that 449

of the Cry1/Cry2 KO dataset. The two Arntl datasets the KO samples have 450

significantly reduced ML values and significantly increased Θ values and inspection of 451

the centred LRFs show that almost all the contribution to Θ in the KO samples comes 452

from flat regions in the LRFs. It follows that the dysfunction is primarily of lowML 453

type with the KO data having moved away from the training clock in a way that gives 454

consistently wrong times. In contrast, the Cry1/Cry2 KO samples though having 455

similar radically wrong timing, had similar high ML and low Θ values to the control 456

data (SI Fig S9I,L,O). This confirms the visualisation showing that the KO data sits 457

remarkably close to the mean trajectory of the training clock in a way that indicates 458

that its dysfunction is just in the timing. We therefore hypothesise that the 459

Cry1/Cry2 KO clock is “frozen” in a particular state very close to a wild-type clock 460

state because it has undergone a SNIC bifurcation (see below). This is an extreme 461

example of where there is significant timing dysfunction where the clock reliably gives 462

the same wrong time but no dysfunction of the lowML or highTvar types. We call this 463

dysfunction type reliable wrong timing (relTwrong). We will see other examples of this 464

below where the clock is not stopped. 465

In a deterministic dynamical system, when a parameter is changed slowly there are 466

only two generic ways that oscillations are killed: the Hopf bifurcation where the 467

amplitude declines to zero, and the saddle-node SNIC bifurcation where, until the 468

bifurcation occurs, the amplitude of the oscillation is maintained but at the 469

bifurcation the system stops at a point on the system’s limit cycle [44]. This insight 470

and the quantification results from TimeTeller suggest our hypothesis that mice 471

deficient in Cr1/Cry2 have undergone a SNIC bifurcation in the liver clock. 472

The potential for the use of the Θ stratification to identify 473

differential effects in patients 474

It is particularly interesting and important to apply TimeTeller to genetically 475

heterogeneous human data because it allows us to test the idea that it can uncover 476
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corresponding heterogeneity in the “clock” phenotype or effects on individuals such as 477

patients. 478
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Fig 3

We firstly consider data from a study of the effects of cigarette smoke on the 479

human oral mucosal transcriptome, In this study (Boyle et al. [45]) transcriptomes 480

from buccal biopsies of 39 current smokers (≥ 15 pack-year exposure) and 40 age- and 481

sex-matched never smokers (< 100 cigarettes per lifetime) were analysed and 482

compared. The authors found that smoking altered the expression of numerous genes 483

but none of those found were core clock genes nor did they consider the effect of 484

smoking on the circadian clock. They found smokers had increased expression of genes 485

involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine 486

signalling and cell adhesion and decreases were observed in the genes CCL18, SOX9, 487

IGF2BP3 and LEPR. It has been reported elsewhere that smoking has an impact on 488

multiple sleep parameters and significantly lowers sleep quality [46–48] and this was 489

confirmed in an experimental study which also correlates poor sleep to 490

inflammation [49] while inflammation has been linked to clock disruption. Moreover, 491

CS exposure has been shown to cause circadian disruption in the lungs of WT mice 492

and this is exaggerated in the Nr1d1 knockouts [50] and has a connection to Arntl [51]. 493
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Fig 3. A-C. Analysis of the Boyle et al. data. A. Boxplots of the Θ values for the
smoker and never smoker individuals showing a statistically significant difference in the
distributions. There is no statistically significant (Wilcoxon test) difference for the maximum
likelihoods (SI Fig S10). B. The centred likelihood curves for the smokers and never smokers.
C. The black, orange and light blue curves are estimates of the probability prand for random
choices of the bad clock group of different sizes as in the legend. The red curve is for pΘ(m).
There were 5000 iterations for each curve shown. which gave a similar result to 10,000. The
number of DE genes was decided using the BH adjustment method with p < 0.05 without
any restriction on the minimum log fold change. The inset shows a blow up of these curves
for m ≤ 10. From the blue curve (pΘ(m) for 30 ≤ m ≤ 40) we see that for this range of m
(unlike 8 ≤ m ≤ 20) it is very likely that only a very small number of DEGs are found. For
the 66% of cases where a DEG is found there is a 99% chance that PER3 is among them and
a 68% chance of NR1D2 being present. D-I. Analysis of the Feng et al. data. D.
Boxplots of the Θ values for the samples from individuals in the normal, cancer and dysplasia
subgroups. These show a statistically significant (Wilcoxon test) difference in the
distributions between the normal and cancer groups and the cancer and combined normal
and dysplasia subgroups. E. Boxplots showing the predicted timing of the samples. F.
Boxplots showing the predicted timing when all samples timed as before 7am and with a
second peak are given the timing of the second peak. Of the 108 such samples 93 have
moved. This suggests that the mistimed samples are primarily so because the wrong peak has
a higher likelihood. G. Centred LRFs for the three subgroups. H. A study of differential
effects between between those n individuals with the worse clocks according to the Θ
stratification and those with better clocks. The black, orange and light blue curves are
estimates of the probability prand as in C above but for the Feng et al. data. The red curve is
for pΘ(m). I. Scatter plot of the projection g̃ of each REV in the Feng et al. data with
12 < T < 16 (after using the second peaks if the first gives T < 7) against timing T . The red
curve is a kernel smoothed estimate of the mean of P (T |g̃). J. Distribution of the deviations
in H. For each data point this is the horizontal difference between the data point and the red
curve. A simple analysis shows that this is largely independent of g̃ and hence its standard
deviation can be used as an upper bound for that of P (T |g).

Interestingly, when analysed by TimeTeller (Fig. 3A-C) we see a clear and 494

statistically significant difference between the Θ values of the never smoked and 495

smoking individuals (Fig. 3A) which is reflected in the 3D visualisation (SI Fig S10A). 496

Inspection of the LRFs show that the variations in Θ come mainly from second peaks 497

rather than low ML (Fig. 3B). Indeed, the ML values for smokers and non-smokers 498

were not significantly different although the smokers had more observations with a 499

very small ML (SI Fig S10A-C). The lowest values were around e−11 suggesting that a 500

lthresh of about -12 would be appropriate. 501

A significant proportion of the smokers had Θ values similar to those of the 502

never-smokers but many had much higher values (Fig. 3A). Therefore, we asked if we 503

could identify differentially expressed genes (DEGs) between the individuals with high 504

Θ versus those with lower Θ. To do this we tested for differential gene expression 505

between the n worst clocks (defined as the bad clock group (BCG)) and the others 506

(good clock group (GCG)) adjusting the p-value appropriately to allow for the multiple 507

testing. For a fixed lthresh in the range from 11 to 13 with n between 8 and 20 we 508

found many differentially expressed genes (DEGs) at the appropriately adjusted 509

p = 0.05 level including some clock genes (SI Fig S10D,E). However, the particular 510

genes found were sensitive to changing the value of lthresh among the suggested values 511

of -11, -12 or -13 and changing the group size n. 512

We calculated that the probability of finding such numbers of DEGs by chance is 513

extremely low (SIFig S10H) and we noticed significant differences between the 514

behaviour when the BCG size was in the range 8 to 20 from that when it was 30 to 40. 515

Therefore, we estimated by simulation the probability prand(m) of finding m or more 516
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DEGs by chance when we choose a random group of n individuals for our BCG and 517

compared this to the probability pΘ(m) of finding m or more DEGs when the 518

stratification by Θ is used to choose the BCG and lthresh and n are chosen randomly in 519

the ranges -11 to -13 and 8 to 20. We find that uniformly in m, pΘ(m)/prand(m) > 100 520

(Fig. 3C). We get an interestingly different result if we instead let the group size n 521

range between 30 and 40. The probability prand(m) behaves in approximately the 522

same way but pΘ(m) does not (Fig. 3C(inset)). For m very small pΘ(m) is high but as 523

m increases pΘ(m) rapidly decreases to values much smaller than those for prand(m). 524

There is a 34.26% chance of getting no DEGs but when this is not the case there is a 525

more than 99% chance of getting the gene PER3 and a 68% chance of getting NR1D2. 526

Thus, this analysis identifies two interesting groups of individuals with a nontrivial 527

transcriptional phenotype that distinguishes them from the individuals with good 528

clocks. One of these groups appears to be associated with differential expression of 529

PER3 and NR1D2, genes not identified in the original paper where all non-smokers 530

and smokers were compared. 531

In conclusion, any link between smoking and clock dysfunction is likely to be 532

complex, but these results suggest that in a genetically heterogeneous population 533

where the effects of a perturbation such as smoking are likely to be diverse, 534

TimeTeller’s Θ stratification can help identify individuals or groups where the 535

smoking effect is significant. 536

As a final example of this section we consider the distribution of Θ values by 537

disease state for the transcriptomic data of healthy or dysplastic oral mucosa and oral 538

squamous cell carcinoma (OSCC) from Feng et al. [52]. Since the lowest ML values 539

were around e−11 a lthresh of -12 was used. The ML values for normals and cancer 540

were not significantly different although the cancer group had more observations with 541

a very small ML (SI Fig S10). However, there is a highly significant difference in 542

median Θ values between the cancer group (167 individuals) and the the normal 543

mucosa group (45 individuals) (p < 0.002) (Fig. 3D). Moreover, there appears to be 544

significant dysfunction in terms of timing estimation (Fig. 3E) that can be 545

significantly ameliorated if the second peaks in the LRF is used for timing when the 546

first peak is clearly misleading (Fig. 3F, details below). Inspection of the LRCs (Fig. 547

3G) shows that, as for the Boyle et al. data, the variations in Θ come mainly from 548

second peaks rather than low ML. 549

As for the Boyle et al. data we asked if there are DEGs between the worst clocks in 550

the cancer group (high Θ) and the best clocks within the same group and carried out 551

a similar analysis. For genes in general and BCG sizes n between 12 and 40 we find 552

similar results with pΘ(m)/prand(m) > 100 for the number m of DEGs between 2 and 553

1200 (Fig. 3H). Many of these DEGs are associated with gene signatures such as DNA 554

repair, E2F targets, G2M checkpoint and the mitotic spindle. However, we do not find 555

any groups like that for the Boyle et al. data (with n between 30 and 40) that have 556

very low numbers of specific DEGs. 557

A study of the estimated timing T for this data (Fig. 3E) was very informative. 558

The estimates for the normal data are generally between 7 am and 3 pm. A large 559

number of cancer samples have unlikely times well outside the normal working day 560

and the median is clearly much too early. Interestingly, it appears that the mistimed 561

samples are primarily so because the likelihood curve has a second peak (Fig. 3G) and 562

the peak giving an unreasonable timing estimate is slightly higher than one giving the 563

best estimate. In fact, there are 109 samples whose timing T is before 7am and 93 of 564

these have a second peak. if we replace the timing by that given by the second highest 565

peak, the great majority moved to a time firmly in the early afternoon between 12noon 566

and 4pm (Fig. 3F). As a result 74% of all samples then fall in this time slot and only 567

7% remain before 7am. The analysis in the next section indicates that this corrected 568
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timing is likely to be the correct time of sampling to within approximately 0.4h. 569

TimeTeller’s precision on non time-stamped cancer data 570

The only method currently utilised to estimate the precision of timing/phase 571

algorithms is to use time-stamped data and compare the algorithm’s predicted times 572

T with the SCT time stamps t. However, such a measure of precision is problematic 573

when the individuals, tissues or conditions have a nontrivial molecular chronotype as 574

is the case with the human data considered here and cannot be done if the data is not 575

time-stamped. A related test which avoids these problems is instead to determine the 576

variance or standard deviation of the distribution P (T |g) where T is the predicted 577

time and g is the relevant REV (SI Note S5). This addresses the question of how well 578

the estimated timing T is determined by the REV g. Interestingly, we can calculate 579

this precision measure even in some cases where we have no timing data and where 580

there is dysfunction and the Feng et al. data gives a very informative example of this. 581

To illustrate this we study the 77% (176 samples) of that data for which the 582

estimated timing T after adjustment by second peaks is between 12 noon and 4pm 583

(Fig. 3F). We ask if within this data we can see coherent timing structure or not. We 584

can estimate the required standard deviation by carrying out a principal component 585

(PC) analysis of the expression data (see SI Note S5) and plotting the projection of 586

these data onto the first PC against the predicted time T (Fig. 3I). An upper bound 587

for the standard deviation of P (T |g) can be estimated from this (SI Note S5) and we 588

obtain an estimate of less than 0.4 hours. If we consider all the deviations from the 589

mean for the timings T (given by the horizontal deviation of the relevant data point 590

from the red curve in Fig. 3I) across all of the REVs in this data we obtain the 591

distribution shown in Fig. 3J. Remarkably, although the data is not timestamped and 592

has significant dysfunction giving rise to significant second peaks, TimeTeller is able to 593

accurately measure the internal phase T of the clock as a function of the REV g. 594

We carried out a similar analysis (see SI Note S5) and found similar results but a 595

bigger standard deviation of 0.83h for the large breast cancer dataset analysed in [37]. 596

In this case there is no need for adjustment for second peaks as 86% of the data has its 597

predicted time T between 10am and 8pm (SI Note S5). We believe this approach gives 598

a new simple method to assess timing performance. 599

Comparing clocks across individuals, conditions and tissues 600

Current analyses comparing the circadian clock across individuals, tissues and 601

conditions such as the three studies we consider below proceed by analysing the 602

behaviour of the individual interesting genes separately. Such analyses tend to focus 603

on the level of expression and do not take into account correlations between related 604

genes. We asked whether using TimeTeller such an analysis could be done in a more 605

integrated way treating the clock as a noisy multigene dynamical system (and hence 606

using correlations) and whether such an approach uncovers some aspects that are hard 607

to see when done gene by gene. The key results here are that it enables us to identify 608

coherent differences in timing across individuals, conditions and tissues and that using 609

these we can determine in a quantifiable way if the timing differences come from a 610

more or less coordinated change in gene phases. 611

Using TimeTeller to identify a molecular chronotype 612

The human training data that we consider involves genetically heterogeneous 613

individuals and therefore we also asked to what extent in this analysis of time-series 614
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data we could differentiate systematic variation of timing in an individual or tissue 615

due, for example, to genetic and/or environmental factors, i.e., a molecular chronotype. 616

We observed above that for the Bjarnason human data, while the Θ and maximum 617

likelihood values are reasonably consistent across individuals, the apparent timing 618

error was not. For some individuals there were substantial timing displacements 619

arising from intra-individually consistent deviations of the estimated time from the 620

sampling time (Fig. 2D). For example, the individuals labelled as 1 and 6 in Fig. 2D 621

have substantial statistically significant (p < 0.003) timing displacements in opposite 622

directions. To further understand this, we hypothesised that the timing displacement 623

of an individual might be largely a result of well-coordinated phase changes in the core 624

clock genes. 625
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Fig 4. Examples of PCP plots for the Bjarnason et al. data. These (full set in SI
Fig S14) show the strong linear relationship between the REP gene phases and the timing
deviations in the Bjarnason et al. data. Each point corresponds to an individual. The
regression was carried out using Matlab’s fit function and Cosinor [53] was used to estimate
the gene phases from the time series of each individual. The p-values test the hypothesis the
the slope of the line is non-zero and are given by the F-test using the Matlab functions
coefTest and fitlm.

If this is the case there should be a definite relation between TimeTeller’s timing 626

deviations and the phase of the genes. Moreover, since this relationship is local in that 627

the timing displacements are small compared to 24 hours, it is reasonable to suspect 628

that it might be approximately linear. Therefore, we tested for a linear relation 629

between the phase variation of the genes in our panel and timing displacement. 630

In this analysis, we regressed the timing displacement against the phase of each of 631

the genes in the REP (Fig. 4) using Cosinor [53] to measure gene expression phase. For 632

all the probes used we observed an approximately linear relationship between timing 633

displacement and the variation in the gene phase with a positive slope (Fig. 4 and SI 634

Fig S14). For all genes the non-zero slope is statistically significant and the r2 value is 635

greater than 0.7, and for many genes it is greater than 0.9. The latter measures the 636

proportion of the variation in the gene phase that is predictable from the TimeTeller 637

displacement using the linear relationship. Thus TimeTeller is able to clearly identify 638

coherent and substantial phase variation in the clock genes for each individual across 639

all genes in the rhythmic expression profile. It identifies a clear “chronotype” for each 640

individual and a quantifiable phase difference. Moreover, the strong coherence between 641

the time estimations and the gene phases are further validation of TimeTeller’s time 642

estimation. These results suggest that if the sample collection time is known, by 643

combining the observation of a Θ suggesting good clock function with an advanced or 644

retarded time prediction, TimeTeller can help identify substantial coherent phase 645

variation in an individual’s clock genes from a single sample. 646

We will utilise such regression plots in the analyses below where we attempt to 647

characterise the nature of the change in the clock caused by different conditions or in 648
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different tissues. We call such plots phase displacement plots (PDPs). 649

Timing divergences and clock comparisons for time-restricted feeding in 650

ageing mice 651

Recently, Acosta-Rodŕıguez et al. [39] studied the synergistic effects of various 652

time-restricted feeding protocols with caloric restriction (CR) on the prolongation of 653

life span in mice, focusing on the liver which is a major metabolic target of the 654

circadian clock. After 6 weeks of baseline ab libitum (AL) food access, C57BL/6J male 655

mice were subjected to 30% CR. Mice were fed nine to ten 300mg food pellets 656

containing 9.72 to 10.8 kcal every 24 h starting at the beginning of the day 657

(CR-day-2h) or night (CR-night-2h) constrained to consume their food within 2h. 658

Two additional CR groups were fed a single 300mg pellet delivered every 90 min to 659

distribute the food intake over a 12-h window either during the day (CR-day-12h) or 660

during the night (CR-night-12h). A fifth CR group was fed a single 300mg pellet every 661

160 min continuously spread out over 24 h (CR-spread). Liver gene expression was 662

profiled using RNA-seq in all six feeding conditions at 6 and 19 months of age. Livers 663

were collected in constant darkness at 12 time points every 4 hours for 48 hours across 664

two circadian cycles. We treat the data from time t and t+ 24 as replicates of a 24h 665

cycle. 666

Together with a young and old group where feeding was ad libitum (AL) this 667

results in 12 feeding conditions. We used TimeTeller to analyse this data asking if it 668

could identify the nature of systemic changes in the core clock between the different 669

feeding×age conditions. We used the Zhang et al. RNA-seq data as training data. 670

Thus, all feeding conditions of [39] are regarded as test data. We analysed this using 671

both time-course and timecourse-matched normalisation for the test data. The results 672

are very similar and we give the timecourse-matched results here. 673

Visualisation showed that the test data fell nicely within the trained distribution 674

close to the mean cycle. Analysis as in SI Note S4 points to using a lthresh of -8. The 675

results on the predicted times T showed a substantial timing displacement (Fig. 5A) 676

for eight of the conditions with CR-day-2h being the most extreme. Only 12 of the 677

possible 66 comparisons have p ≥ 0.05 (not shown). Moreover, there is a striking 678

apparent age-related difference for the CR-day-2h feeding conditions in that the timing 679

displacements of the 6 month and 19 month mice differ by over 4 hours (p < 0.0001). 680

There are some statistically significant differences between the Θ and ML values 681

found for the different conditions (Fig. 5B,C). This is also noticeable from the centred 682

LRFs (Fig. 5D). For example CR-spread-19m has significantly higher ML values than 683

all other conditions and lower Θ values than most, and CR-night-2h-6m has 684

significantly lower ML values and higher Θ values than all but CR-night-2h-19m (Fig. 685

5). However, overall the ML values are relatively high and therefore confirm the 686

observation that, although the timing can be displaced, the test data is close in data 687

space to the training clock. This is compatible with the hypothesis that the different 688

feeding condition induce a simple phase change in the clock. 689

Given these timing displacements, we carried out a comparison of the clocks under 690

the different conditions by analysis using PDP plots where we regressed the phases of 691

the genes against the timing displacements of the various conditions to try and 692

quantify the extent to which the observed timing differences are the result of a 693

coherent phase adjustment of each gene (Fig. 5F). For the feeding×age conditions the 694

situation is very clear for the core clock genes considered because the r2 values for 695

them (Fig. 5F) are typically close to 1 implying the linear model almost completely 696

explains the data. From this analysis, we conclude that it is likely that the different 697

feeding×age conditions cause a change in the core clock that is primarily a simple 698

phase change and that for some of the conditions such as CR-day-2h this is substantial. 699
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In summary, for this data, TimeTeller has enabled the discovery of substantial and 700

coherent differences of the core clock systems state associated to the feeding conditions 701

and provided quantified evidence that the core clocks corresponding to the different 702

conditions differ by a simple phase change. This benefitted from a systems approach. 703

Finally, note that although there is time series data in this instance, since our results 704

on the test data samples are independent of each other having a time series is not 705

necessary and also one could reduce the number of mice involved. This opens the 706

possibility to use TimeTeller as a tool to determine a clock parameter in available 707

QTL studies for longevity and other parameters [55]. 708

Timing divergences and clock comparisons for the Mure et al. baboon data 709

We found a different result when we compared the clocks in the different tissues 710

studied in Mure et al. [2]. In this paper, the transcriptomes of 64 tissues of the diurnal 711

primate Papio anubis (baboon) were analysed from one animal every 2 hours for 24 712

hours. The results of [2] demonstrate that many ubiquitously expressed genes that 713

participate in essential cellular functions show a tissue-specific rhythmic pattern, and 714

confirmed a shifted temporal organization of central and peripheral tissues between 715

diurnal and nocturnal mammals. Since this RNA-seq dataset involves a genetically 716

heterogeneous population and multiple transcriptionally heterogeneous tissues, we 717

were keen to assess how well TimeTeller was able to analyse it. 718

We studied 33 of the tissues leaving out those from the brain and some others with 719

missing data. An initial leave-one-tissue-out analysis gave reasonably accurate timing 720

(MdAE around 1.23h, Fig. 5G, Table 1) and indicated that many tissues had a 721

substantial timing displacement (Fig. 5H,J) ranging from approximately -3.5h to 722

+2.5h compared to the time the samples were taken. The standard deviation of the 723

individual sample apparent timing errors around the timing displacement from a given 724

tissue was generally much smaller than the 6h range of the timing displacements (Fig. 725

5H). Moreover, the null hypothesis that the mth most advanced tissue has the same 726

timing displacement as the mth most retarded is rejected at the p = 0.01 level for all 727

m < 7 (Wilcoxon-Mann-Whitney test). 728

Given many tissues had large absolute timing displacements, we then used only the 729

18 tissues with the smallest for the training data. This gives slightly better timing 730

results than using all 33 tissues as can be seen in Table 1. Correcting the TimeTeller 731

time predictions by adjusting them using the phase displacements of the tissues 732

resulted in a substantial improvement of about half an hour in the timing accuracy 733

(Fig. 5G & Table 1). Given the heterogeneities in the data this results in a very 734

reasonable performance with a mean absolute error of just over one hour. 735

The analysis of the variation of the core clock across the 64 tissues in Mure et 736

al. [2] is mainly concerned with the overall transcript abundance and rhythmicity of 737

expression of the individual core clock genes. The authors note that the heterogeneity 738

of this implies different composition of core activators, repressors, and modulators in 739

different tissues. They do not mention the timing divergences we find in the data 740

using TimeTeller. Using these timing divergences, for the limited set of 33 tissues, we 741

can study this in a different and more integrated way. 742

As above, we considered a comparison of the clocks in the different tissues by using 743

a PDP plot (Fig. 5K). For this dataset we see that the observed differences between 744

them are not due to a simple coherent phase adjustment in the genes but involves a 745

more complex interaction. This is because the r2 values, which measure of the 746

proportion of total variation of outcomes explained by the linear model, are very low 747

and much lower than those for the Bjarnason et al. and Acosta-Rodŕıguez et al. data. 748

This suggests that the adjustment of the clock from tissue to tissue is more complex 749

than a simple phase shift in the core clock genes. On the other hand, the relatively 750
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Fig 5

low p-values suggest that there is a definite correlation between gene phase and timing 751

displacement suggesting that an appreciable component of the changes in the genes is 752

a phase change. 753
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Fig 5. A-E. Analysis of the Acosta-Rodŕıguez et al. data [39]. This data is
analysed as test data using timecourse-matched normalisation and timecourse
normalised Zhang et al. RNA-seq data for training. We use lthresh = −8. The timing,
Θ and ML for each sample point shown is a suitably averaged value for the two
replicates with the same feeding condition and age. A. Box plots of the apparent
timing error for the different conditions and ages. The mean value of each box plot
gives the timing displacement for the condition and age. Only 12 of the 66
comparisions are not significant at the p = 0.05 level using the Wilcoxon test. B. Box
plots of the ML for the different conditions and ages. C. Box plots of the Θ value for
each condition and age. See SI Table S4 for statistical analysis of the differences. D.
Centred LRFs for each condition and age. E. Legend. F. PDP plots for the genes in
the REP, some cell cycle genes and some of the genes highlighted in [39]. See SI Fig
S12 for more information. The gene phases were measured by Cosinor [53]. G-K.
Analysis of the Mure et al. data. In each plot the color corresponds to the tissue
as shown in I. The data from the central tissues is used for training. G. TimeTeller
predicted time T vs the sample time using leave-one-out analysis for each sample from
the 33 tissues. H. Box plots of the signed apparent errors for the samples for each of
the 33 tissues in order of increasing timing displacement. Each of the 7 leftmost
boxplots is significantly different from each of the 7 rightmost boxplots at the
p = 0.005 level. I. Legend for G-K. J. Timing displacements for each tissue. K. Some
examples showing PDP plots of the gene phases and the TimeTeller timing
displacement for all 33 tissues from Mure et al. . The p-value and r2 values for the
other genes are in SI Table S3. Note that the r2s for core clock genes are much smaller
than those for the Bjarnason et al. human data (Fig. 4) and the Acosta-Rodŕıguez et
al. data in F.

Again this analysis benefitted from a systems approach which enables us to identify 754

coherent differences between tissues and relate this to changes in the core clock. 755

Probing the effect of changes in the core clock on downstream 756

genes 757

Changes in the core clock will affect the regulation of rhythmic genes that are 758

downstream of it. Current methods allow one to check whether these genes remain 759

rhythmic when the clock is perturbed in some way but TimeTeller also allows 760

examination of the extent to which they maintain their relationship with the clock in a 761

coherent fashion. The way in which the different conditions of the Acosta-Rodŕıguez et 762

al. mouse data [39] changed the phase of the core clock provides a very interesting 763

example where we can demonstrate such an analysis. 764

Firstly, we noted that for the genes in the REP, all clock genes displayed 765

approximately linear phase changes while for the other genes (Hlf, Wee1 and Cys1 ) 766

this was not the case for Cys1. We then used this analysis to look at the effect of the 767

clock phase changes upon some other genes that are rhythmic in the liver of AL fed 768

mice. In particular, we inspected the plots for some cell cycle genes and also a number 769

of the genes identified in Acosta-Rodŕıguez et al. [39] as affected by the CR conditions 770

or ageing. We find that inspection of the PDP plot for these genes gives clear and 771

significant insight into the level of this coherence which we quantify by the p-value and 772

r2 of the PDP plot. 773

Of the cell cycle genes Wee1, p21, P53, Timeless, CyclinA, CHK2, CyclinB1, 774

CyclinE2 and ATM, it appears that only Wee1, p21 and CyclinE2 are rhythmic in 775

the liver in the AL conditions. These three genes maintain coherence with the clock 776

under the other conditions with Wee1 doing so strongly (r2 = 0.96) followed closely by 777
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p21 (r2 = 0.92). The coherence of CyclinE2 seemed somewhat weaker (r2 = 0.59). All 778

of the other genes had r2 < 0.4 and appeared incoherent (not shown). There is a very 779

strong correlation between the maintenance or absence of coherence and rhythmicity 780

or non-rhythmicity. 781

In Acosta-Rodŕıguez et al. [39] a number of genes that were affected by ageing or 782

the CR conditions were highlighted and sorted these into four categories: those 783

susceptible to ageing-related changes under any condition tested, those related to 784

fasting conditions, timing related genes and genes associated with effects on circadian 785

cycling such as rhythmic damping. Our analysis using PDP plots for these genes 786

clearly identifies which of them move coherently with the core clock under the different 787

feeding conditions. None of the timing related genes stayed coherent and, amongst the 788

fasting genes, only Hal1 (r2 = 0.66) was. Several ageing genes show some level of 789

coherence (SI Fig S12) Serpine1 (r2 = 0.66) Adora1 (r2 = 0.68) Got1 (r2 = 0.65) Lepr 790

(r2 = 0.68) Pfkfb5 (r2 = 0.88). For the genes affecting circadian cycling. while Gys1 791

(r2 = 0.15) and Per1 were incoherent, the rest were coherent: Arntl (r2 = 0.99), 792

Nr1d1 (r2 = 0.70), Per1 (r2 = 0.69), Per2 (r2 = 0.97) and Pck1 (r2 = 0.60). For a 793

significant number of the genes affected by ageing or the CR conditions, while the gene 794

is not coherent under all conditions it is coherent under a significant number of the 795

conditions with the less extreme timing deviations. This can be seen from the PCPs 796

and was the case for Per1 which seems coherent under all conditions except the four 797

CR-day conditions. 798

These results demonstrate that such an analysis can give a novel overview of gene 799

response and whether a given gene maintains coherence with the clock when the clock 800

timing changes. Such coherence is associated with genes that show good linearity with 801

a significant slope in the PDP plots. Consequently, TimeTeller can be used to 802

investigate function and dysfunction in genes controlled by the circadian clock when 803

the clock is perturbed. 804

Methods 805

Probability model constructed from training data 806

The training data will have been collected at sample times ti, i = 1, . . . , Nt. In the 807

training data used here the number Ns of samples at each time point is the same. 808

Therefore, if the samples are indexed by j, the G-dimensional REVs with sample time 809

ti can be labelled by i and j and denoted ḡij . 810

In three of the training datasets the instances j correspond to different tissues 811

(with replicates in one case) and in the other (Bjarnason et al. ) to different 812

individuals. Each gij is then normalised using timecourse and/or intergene 813

normalisation as described in Methods and SI Fig S1 resulting in vectors gnorm
ij that 814

will be used to train TimeTeller. The issue of batch effects is considered in SI Note S1. 815

To construct the probability model we firstly construct one for each timepoint ti in 816

the training data by using the local statistical structure of the data at that timepoint 817

and then we combine these. Associated with this time ti is the set Di of Ns 818

G-dimensional vectors gnorm
ij , j = 1, . . . , Ns. We calculate the principal components 819

Ui,k of this dataset and then use the first d of these to define a projection Pi of the 820

normalised training data into Rd (SI Note S6) i.e. Pi(g) = UT
d · g where Ud is the 821

matrix made up from the column vectors Ui,k for k = 1, . . . , d. We then fit a 822

multivariate normal distribution (MVN) Pi,j to the points Pi(Dj). The dimensionality 823

d is chosen so that there are enough vectors in Pi(Dj) to fit a d-dimensional 824

multivariate Gaussian (using the MATLAB function fitgmdist) while ensuring that 825

most of the variance in the data is captured by the d-dimensional projection (e.g. see 826
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SI Fig S3). In our case we take d = 3. 827

Now we fix a time ti and consider the means µj and covariance matrices Σj of the 828

distributions Pi,j . We fit a periodic piecewise cubic hermite interpolating polynomial 829

spline through the µj and each of the d(d+ 1)/2 entries that determine Σj so as to 830

extend µj and Σj to all times t between the time points checking that the Σj are 831

positive definite and moving them to the nearest positive definite matrix if this is not 832

the case. We thus obtain µi(t) and Σi(t) and thus the associated family of 833

d-dimensional MVN distributions Pi,t for all times t between the first and last data 834

times. For these splines we use the MATLAB function perpchip as this respects the 835

periodicity in t. Our implementation offers some alternatives to perpchip but these are 836

not used here. This family of MVN distributions indexed by time is what we refer to 837

as the probability model. 838

The likelihood curve Lg(t) and the log threshold lthresh 839

Now we define the likelihood curve Lg(t) where g is a REV from either training or test 840

data. Having calculated the probability model, for a given REV g, for each of the time 841

indices i we define the likelihood curve associated with the ith timepoint using the 842

probability given by the MVNs Pi,t i.e. Lg,i(t) = Pi,t(g
norm) where gnorm is the vector 843

obtained after normalising g with the relevant normalisation. 844

The idea is to obtain logLg(t) by averaging these individual log likelihoods logLg,i, 845

i = 1, . . . , Nt but some modification is needed. We will need to fix a lower threshold 846

lthresh < 0 and replace each logLg,i by max{logLg,i, lthresh} in the sum so that Lg(t) is 847

defined by logLg(t) = N−1
t

∑Nt

i=1 max{logLg,i, lthresh}. 848

This truncation is necessary to ensure that this sum is not wrecked by inaccurate 849

exceptionally low values of one Lg,i affecting robust high values of another at the same 850

t. A curve Lg,i may take on very low values away from its maximum and the exact 851

values of these very low probabilities may well be unreliable and inaccurate. If this 852

happens at a t value for which another such curve Lg,j has a high accurate value then 853

this may badly affect the estimate of Lg(t). The way to choose the value of lthresh is 854

discussed in SI Note S4. 855

Definition of Θ 856

The clock dysfunction metric Θ is defined to be the proportion of time t where the 857

LRF is greater than C(t|T ) = η(1 + ε+ cos 2π(t− T )/24) which is a scaled cosine 858

function phase shifted so that the maximum is at T (Fig. 2D). The parameters must 859

satisfy 0 < ηε < η(2 + ε) < 1. Although we have experimented with changes, the effect 860

on Θ of changing η and ε is clear (see Fig. 2D) and we have seen no reason for 861

changing them from the values we have used here. 862

Choice of parameter lthresh 863

The key considerations underlying the choice of lthresh are that it should be as large as 864

possible subject to the conditions that (i) very few training and control samples have 865

flat regions that significantly intersect C(t|T ) so that they contribute significantly to 866

Θ, and (ii) as many as possible of the test data samples should have MLs above 867

exp(lthresh). 868

There are two reasons we do not want lthresh to be decreased further than 869

necessary. Firstly, the considerations above about the need to protect against 870

inaccurate exceptionally low values of some Lg,i and, secondly, because if lthresh is 871

reduced too far structure in the LRF at times that are away from the time T is likely 872

to be removed. This happens because, if the Lg,i have their maxima not too far from 873
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T then decreasing lthresh causes a much bigger decrease in the likelihood Lg(t) for t 874

away from T than near to T and therefore decreases the LRF away from T while 875

maintaining the peak structure near T . If the dysfunction is mainly manifested by low 876

ML then decreasing lthresh by too much moves all the flat regions in the LRFs down 877

below C(t|T ) while if it manifested by structures such as second peaks then these are 878

also decreased below C(t|T ). In both cases this results in a decrease in Θ. These 879

phenomena are illustrated in SI Note S4 and Fig S8. 880

If the maximum value log ML of logLg(t) is only just above lthresh, then it and the 881

corresponding likelihood ratio curve will have intervals on which they are flat. If this 882

is the case then the length of these flat intervals above the minimum of the curve 883

C(t|T ) can contribute to Θ. This contribution has interesting information in it 884

because it is related to how low the maximum value ML of Lg(t) is. 885

If the criterion (ii) results in too small a value so that too much structure has been 886

removed, it is then generally acceptable to set lthresh at a higher value provided that 887

the number of training samples violating (i) does not get too large. It so also desirable 888

that the the number of test samples violating (ii) is not too large as otherwise many 889

samples have Θ = 1 meaning that these samples do not have a non-trivial 890

stratification even though they will be distinguished as having higher dysfunction than 891

other samples. 892

Discussion 893

What we hope stands out is the way TimeTeller can be used to study single samples of 894

external test data in ways that reach beyond the information provided by current 895

algorithms. The main aim of this study was to indicate the different ways that 896

TimeTeller can be used to visualise and probe the circadian clock as a system. 897

Understanding internal timing T is important because, for example, a patient’s 898

phase shift is critical for guiding personalised timing of chronotherapy but our 899

fundamental assertion is that the TimeTeller likelihood curve contains more 900

information about clock dysfunction than just timing. We believe that the examples 901

we discuss bring this out. The algorithm’s output is not just limited to the timing 902

estimate alone but also comes with an estimate of Θ, ML and the likelihood curve. 903

Thus, one has much more information with which to assess both dysfunction and the 904

assessment’s quality. 905

We give many examples where the dysfunction metrics Θ and ML that we 906

introduce take statistically significant different values in perturbed conditions 907

compared to WT/control. An important aspect of this analytical approach is that Θ 908

can provide a stratification of individual transcriptomes by measured dysfunction. 909

This is important because it enables the possibility of associating clock dysfunction 910

with other aspects of disease on the level of the individual. This is illustrated most 911

clearly by our analysis of the Boyle et al. data on the effects of smoking on the 912

transcriptome of the human oral mucosa and that of Feng et al. data on oral 913

squamous cell carcinoma. This analysis showed significant differences between the 914

smokers and non-smokers in the Boyle et al. data and between normal and cancer for 915

the Feng et al. data and in both cases enabled the identification of a “bad clock” 916

group with a significant number of differentially expressed genes compared to other 917

individuals of the same cohort (smoker or cancerous tissue). 918

When analysing the cancer data samples from Feng et al. and Cadenas et al. we 919

were able to validate the quality of timing estimates without using any time stamps. 920

This means that we were able to identify a large number of patients with significant 921

dysfunction in the clock but still identify the sample time which for the Feng et al. 922

data often involved the second peak in the LRF. Moreover, this method of analysis 923
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gives a new way to estimate the precision of timing/phase algorithms on large data 924

sets even if they are not time-stamped and even if they contain significant dysfunction 925

as is the case with the Feng et al. data. In a future paper we expect to apply 926

TimeTeller to study other cancer datasets. 927

TimeTeller offers other new possibilities for the analysis of timeseries data as 928

shown by the analysis of the Bjarnason et al. , Acosta-Rodŕıguez et al. and Mure et al. 929

data. Firstly, TimeTeller allowed us to identify significant timing displacements for the 930

individuals, conditions or tissues that had not been observed and it was not necessary 931

for these data to be in time-series. Secondly, when these are in time series, by 932

identifying the timing displacements and then regressing the gene phases against 933

them, we were able to compare the clock in different individuals, conditions or tissues 934

and attempt to assess whether the difference is largely a phase shift or a more complex 935

adjustment. Moreover, we show how to analyse genes downstream of the clock in a 936

similar way. For example, using the Acosta-Rodŕıguez et al. mouse data we were able 937

to see which genes maintained their rhythmicity and coherence with the clock in all 938

the temporally restricted feeding conditions and which did not. 939

Because TimeTeller’s results on test data samples are independent of each other 940

having a test time series is not necessary and this suggests that use of TimeTeller 941

might facilitate a reduction in the number of animals involved. 942

An important insight of the study of Wittenbrink et al. [23] is the need to develop 943

optimised high-quality data that is cheap to collect. This will also be important for 944

the use of TimeTeller. While it is clear that the sort of data we discuss in this paper 945

will become increasingly abundant and much cheaper to generate, other data types 946

such as Nanostring’s nCounter platform [54] might be more suitable to clinical 947

workflows and may be used to provide cheaper purpose-designed datasets that can be 948

used with TimeTeller. This will also bring the opportunity to improve TimeTeller 949

because timecourse normalisation will be less necessary and the training will be 950

improved by having more training data at more time points around the day. 951

The algorithm is very customisable and flexible and relatively fast. For example, 952

on a Macbook Pro (2021) with an 8-core M1 chip and 16Gb of memory, calculation of 953

the probability models takes between 3 and 5 seconds and the leave-one-out analysis of 954

the training datasets take an average of between 0.71 and 0.76 seconds for test data 955

analysis of a sample. The user is free to choose the genes employed by TimeTeller and 956

experiment with the parameters lthresh, η and ε. Although we have experimented with 957

changes, the effect of changing η and ε is clear from Fig. 2A,D and we have seen no 958

reason for changing them from the values we have used here. Keeping them constant 959

means that Θ values can be compared across datasets. 960

On the other hand, lthresh needs to be chosen using the data for the reasons 961

explained in Methods and SI Note S4. While the value of lthresh will vary with different 962

transcriptomic platforms and experimental protocols in a situation where new test 963

data is arriving in multiple batches it should not be the case that lthresh is constantly 964

being reassessed. A consensus value should quickly be arrived at. we believe that in its 965

use, for example, with individuals in a clinical context it will be possible to settle on a 966

platform and protocol and value of lthresh that can be used across all test data. 967
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