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information, promote consistency of testing and 
reporting, and encourage convergence of methods for 
FST. It is intended to aid practitioners and guide the 
formulation of FST protocols, with a view to future 
standardisation.
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Introduction

The full-field stimulus test (FST) was developed by 
Roman and colleagues for the assessment of vision in 
patients with severe vision loss. Roman et al. 2005 [1] 
used a modified perimeter to introduce the concept of 

Abstract The full-field stimulus test (FST) is a 
psychophysical technique designed for the measure-
ment of visual function in low vision. The method 
involves the use of a ganzfeld stimulator, as used in 
routine full-field electroretinography, to deliver full-
field flashes of light. This guideline was developed 
jointly by the International Society for Clinical Elec-
trophysiology of Vision (ISCEV) and Imaging and 
Perimetry Society (IPS) in order to provide technical 
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perception with full-field flash stimuli using manufac-
turer’s software. Subsequently, Roman and colleagues 
used a ganzfeld stimulator, as used for full-field elec-
troretinography (ERG), to extend the dynamic range 
of available stimuli, with custom software to drive the 
system [2]. For a pre-defined stimulus and adapta-
tion state, FST is used to provide a measure of visual 
function originating from any location in the retina 
and is presumed to originate from the most sensitive 
photoreceptors [1, 3–5].

The technique has been used increasingly in clini-
cal trials for novel therapies, particularly gene ther-
apy, to assess the restoration or preservation of retinal 
function [6]. FST is especially useful for detecting 
residual vision in patients with severe vision loss, 
including those with undetectable or severely abnor-
mal full-field ERGs, or when poor fixation or nystag-
mus makes visual field tests difficult or impossible to 
perform.

The International Society for Clinical Electro-
physiology of Vision (ISCEV, www. iscev. org) pub-
lishes standards, guidelines and extended protocols 
for electrophysiological methods including the full-
field ERG [7–21]; the Imaging and Perimetry Society 

(IPS, www. perim etry. org) publishes guidelines for 
psychophysical tests such as perimetry [22]. The FST 
and full-field ERG require diffuse flashes of light and 
are frequently performed using the same ganzfeld 
flash stimulator. This document is a collaboration 
between the ISCEV and the IPS and is a guideline 
for FST testing, informed by methods that have been 
published and graded for quality. It is intended to aid 
practitioners and  guide the formulation of FST proto-
cols, to promote conformity and to facilitate meaning-
ful inter-laboratory and inter-study comparisons, with 
a view to future standardization of routinely used FST 
methods.

It is highlighted that the term “FST” has been 
given a number of definitions historically in the litera-
ture and that this guideline defines FST as full-field 
stimulus test. Online Appendix 1 provides definitions 
of other relevant terminology.

Scope and applications

The FST has value to test and monitor disease pro-
gression and/or treatment efficacy of therapeutic 
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interventions, notably in natural history studies of ret-
inal dystrophies, or in clinical trials aimed at arresting 
retinal degeneration or restoring retinal function [23]. 
An advantage over more traditional methods is that 
relatively small decreases or improvements in retinal 
function may be established, reflecting activity driven 
by the most sensitive retinal photoreceptors [24]. In 
contrast, methods such as full-field ERG normally 
depend on the response of millions of photoreceptors 
to suprathreshold stimuli, and small changes in retinal 
function may be undetected, especially in the pres-
ence of severe global retinal dysfunction.

Adult patients and older children may undertake 
FST, likely as potential candidates for clinical trials 
aimed at monitoring or restoring retinal function, or 
to monitor safety of therapeutic interventions. Age is 
an important consideration and may preclude or limit 
applicability (Sect. "Reduced protocol").

Technical considerations

In order to inform this protocol data were sourced 
from recent reviews and a systematic review (Online 
Appendix 2A) (PROSPERO ID 453200) available on 
https:// www. crd. york. ac. uk/ PROSP ERO/, in which 
papers were graded for quality according to the 
methodology of a modified Newcastle grading proto-
col shown in Online Appendix 2B [25]. The papers 
included in the final review are listed in Table 2 [1, 2, 
5, 24, 26–48]. For further details see Online Appen-
dix 3.

The FST is a psychophysical testing method that 
uses a range of physically well-defined light stimuli 
to determine visual detection thresholds, i.e. the flash 
strength corresponding to the stimulus being seen 
approximately half the time. The spectral and tempo-
ral properties of the stimulus, the algorithm used to 
present sequential stimuli, audible cues, and response 
choices can contribute strongly to the resulting FST 
threshold. These and other considerations are out-
lined below.

Stimulus parameters

Colour

The simplest form of FST uses a white (achro-
matic) stimulus which provides no information to 

differentiate between light sensitivity originating 
from rods or cones or both. More commonly, two or 
more spectrally distinct short- and long-wavelength 
stimuli (blue and red) are used to obtain informa-
tion regarding different photoreceptor types. Other 
colours such as green (513  nm) have been used 
rarely [49]. A white stimulus is produced by using 
a broadband white light with a colour temperature 
of 6500 K [29, 31, 36]. Short wavelength (blue) and 
long wavelength (including red) stimuli can be pro-
duced using a range of LEDs [1, 2, 5, 27, 30, 34, 
35, 50]. Short wavelength LEDs with wavelengths 
between 444 and 470  nm and longer wavelength 
LEDs with wavelengths between 538 and 670  nm 
have been used.

Temporal stimulus characteristics

Stimulus duration and  temporal envelope Stimulus 
duration (presentation time) is the time between stim-
ulus onset and offset. For clinical visual psychophysi-
cal testing, presentation times are usually selected to 
exceed a critical duration (defined by Bloch’s law) of 
around 100  ms, which defines the stimulus duration 
beyond which temporal summation no longer influ-
ences threshold [51]. In classic (standard automated) 
perimetry, stimulus durations are usually between 
100 ms (Octopus perimeters, Haag-Streit) and 200 ms 
(Humphrey Field Analyser, Carl Zeiss Meditec), 
which also is shorter than the typical time taken to 
execute a saccadic eye movement. With a few excep-
tions (frequency-doubling technology, flicker perim-
etry) the temporal envelope of stimuli in perimetry is 
assumed to be a square-wave [52]. Classic brief dura-
tion visual stimuli were produced with a shutter hav-
ing a sudden onset and offset. Modern FST stimuli are 
produced with LEDs driven with pulse-width modula-
tion where the current is cycled on and off faster than 
visual perception. The duration of the LED light stim-
ulus defines both the stimulus strength as well as the 
duration. Stimulus durations for FSTs reported in the 
literature range from short variable duration ≤ 4  ms 
stimuli to longer fixed duration stimuli of 200 ms [2, 
29]. Longer stimulus durations allow for greater dis-
ease severities to be measured by extending the range 
to stronger lights, whereas shorter stimuli allow meas-
urement close to normal dark-adapted absolute thresh-
olds by extending the range to dimmer lights.

https://www.crd.york.ac.uk/PROSPERO/
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Interstimulus interval The interstimulus interval 
(ISI) is the time between the onset of successive 
stimuli. In conventional perimetry, it is typically 
around 1400  ms. Many modern thresholding tests 
use adaptive timing in which the pace of the test is 
interactively adapted to the speed of the patients’ 
responses [52], providing for a faster and more 
engaging test. In the context of FST, particularly 
when dark-adapted, a longer ISI would minimise the 
influences of sequential stimulus presentations on 
threshold due to changes in adaptation state. Typi-
cally, the FST uses an ISI of less than 2.5 s but as 
long as 5  s has been reported [30, 39]. However, 
there is a difference when using a one button versus 
a two button response system (see Sect. "Response 
button"). When two buttons are used, the time stops 
when either button is pressed so the full ISI time 
window is rarely used. In a system with only one 
button, the ISI time will be utilised in full when no 
stimulus is seen and no button pressed, so in this 
scenario it is important to have the shorter period to 
avoid unnecessary prolongation of the test.

Response window The response window is the time, 
relative to stimulus onset, during which responses are 
accepted as “valid”. This window is typically around 
800 to 1000 ms for single button testing. Responses 
that occur implausibly early, e.g.  < 100  ms after 
stimulus onset, may be rejected as likely false posi-
tive responses [52]. However, it can be difficult to 
distinguish “anticipatory” false-positive responses 
from delayed responses to a previous stimulus for sin-
gle button testing paradigm. The response window is 
more flexible for two button yes–no testing paradigm.

Clinical protocol

Pupillary dilation

The FST is a measure of maximum sensitivity which 
depends on the retinal illuminance, the latter being 
directly proportional to pupil area (Online Appendix 
1). FST is thought to require mydriasis (pupil dila-
tion) to help standardise retinal illumination. Mydri-
asis may reduce inter-subject and inter-session vari-
ability, which is of particular relevance in monitoring 
studies, and has been specified in most of the major 
studies [1, 2, 5, 26, 27, 29–31, 34–38, 47, 48, 50].

Adaptation

FST can be conducted in both light and/or dark-
adapted conditions. Both conditions must be con-
trolled, prior to the start of testing, as the baseline 
level of retinal light or dark adaptation can influence 
final thresholds and the test outcome.

Widely different periods of adaptation have been 
used, ranging from no adaptation to 2 h, [1, 2, 26, 27, 
29–32, 34, 36–40, 47, 48, 50] with a median time of 
approximately 45 min for dark-adapted testing. In dis-
orders characterised by predominant rod dysfunction 
where dark adaptation may be impaired or delayed, a 
longer fixed period of dark adaptation may be needed 
to enable measurement of maximum sensitivity [53]. 
The second eye tested usually undergoes a longer 
period of dark adaptation compared to the first eye. 
Optimising the dark adaptation period for the disease 
process or considering randomising the order of test-
ing should inform interpretation.

Auditory signal

The use of auditory signals to enhance responses 
to psychophysical testing has been reported in the 
perimetry literature [54, 55]. During FST, an audi-
tory prompt signals to the subject when they should 
respond “yes” (seen) or “no” (not seen) for two but-
ton testing paradigm [5, 24, 26, 27, 29, 31, 33, 34, 36, 
41–43]. An auditory signal is generally not relevant 
for one button testing paradigm [32].

Fixation

As the FST is a global response, fixation is not con-
sidered important and is rarely reported.

Learning effect

Typically, in psychophysical testing, there is a signifi-
cant learning effect as individuals adjust to the testing 
procedure. This has been investigated extensively in 
perimetry with recommendations to disregard the first 
three test results in Humphrey field testing [56] and 
first test for fundus-tracked perimetry [57]. Learning 
effect has not been formally investigated in FST.
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Test–retest variability

Knowledge of test–retest variability is essential to 
define a significant change following treatment. 
Roman et al. reported intervisit repeatability of 0.39 
log for inherited retinal degeneration patients [1]. 
Dimopolous et  al. reported an intervisit repeatabil-
ity of 0.27 log and 0.23 log for blue and red stimuli, 
respectively [5]. Similar test–retest values have been 
reported for control and patient groups, as well as for 
all colours. Repeatability should reflect the units of 
measurement such as log10 units for thresholds meas-
ured in log10 units.

Repeat testing

Common practice is to conduct multiple assess-
ments and take the average as the final result. Based 
on the within-subject standard deviation for white 
(achromatic stimuli), it has been estimated that four 
repeats are optimal [1]. A power calculation using 
a 2-sample, 2-sided t test to detect FST changes of 
5  dB or more between the means of two sessions 
using 6 samples each would yield a power of 98% at 
a significance level of 5% [32]. However, it is impor-
tant to avoid extended test sessions that may affect 
results due to subject fatigue. The majority of studies 
reviewed took an average of 3 measurements [5, 26, 
27, 29, 36, 44–46, 50].

Psychometric function and thresholding paradigms

Historically, there have been various methods of per-
forming measurements of visual threshold: (A) the 
method of adjustment, where the observer varies the 
strength of a stimulus until it is just detectable, (B) 
the method of limits, where the observer determines 
the transition from seeing to non-seeing or vice versa 
by observing a sequence of ascending or descend-
ing light steps until the transition point is reached, 
(C) the method of constant stimuli in which a series 
of presentations are provided that are assumed to be 
above and below the presumed threshold to define a 
frequency of seeing curve that provides detection per-
formance, and (D) a staircase procedure, in which the 
stimulus strength is increased and decreased to deter-
mine a series of reversals (seeing to non-seeing and 
vice versa) to identify average detection sensitivity. 
Each of these procedures has certain advantages and 

limitations, and the amount of time to perform the 
measurements varies considerably [58].

The most comprehensive description of stimu-
lus–response relationships in psychophysical data is 
the psychometric function. This sigmoidal (s-shaped) 
function describes visual performance (e.g. % of 
seen) over a wide range of stimulus strengths. Weak 
stimuli are associated with a low probability of being 
seen and strong stimuli with a high response probabil-
ity. Classically, psychometric functions are measured 
through the “method of constant stimuli”, in which a 
stimulus is repeatedly shown in order to establish how 
often it is seen at each stimulus level tested, according 
to a pre-determined probability criterion.

For most clinical applications, extreme perfor-
mance levels (close to 0 or 100%) may not be greatly 
informative. In these situations, a single point esti-
mate of threshold (or sensitivity) may be a more 
parsimonious descriptor of performance. The term 
“threshold” refers to the stimulus strength associated 
with a particular level of performance, typically 50%, 
but other values are possible. Sensitivity is the inverse 
of threshold, but both terms tend to be used inter-
changeably in the clinical literature.

Thresholds can be derived by statistical modelling 
(probit, maximum-likelihood, etc.) from frequency-
of-seeing type data, or more directly through psycho-
physical techniques such as staircase, bracketing, or 
adaptive procedures which depend on the responses 
during testing [59]. Bayesian thresholding techniques 
(e.g. Zippy Estimation for Sequential Testing, ZEST) 
can be constructed to use “prior information” (e.g. the 
distribution of thresholds in a population), yielding 
greater efficiency.

The strategies chosen for FST balance speed and 
accessibility. A majority of studies report a 4–2 stair-
case thresholding [1, 2, 24, 29, 31, 35, 42, 43], though 
the number of reversals or steps to final thresholding 
vary in the literature. Those that report the methodol-
ogy in the literature may be unaware of commercial 
proprietary implementation of the thresholding algo-
rithm and may be reporting the previously published 
method of a 4–2 staircase which may not the method 
implemented in proprietary software. Perimetry has 
seen an evolution of thresholding algorithms and FST 
methods are also changing. Current methods include 
an abbreviated method of constant stimuli with 
pseudo-random expansion to detect the endpoints 
of the range along the slope of the psychometric 
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function. Some manufacturers report using an 8–4-
2–1 threshold staircase. As with perimetry, careful 
patient instruction will increase reliability [32].

The most commonly used function for the FST is 
the two-parameter modified Weibull fit, estimating 
the stimulus strength associated with 50% probability 
of detection based on staircase responses (Fig. 1) [5, 
26–30, 33, 34, 36–40, 44–48, 50]. The equation of the 
Weibull function utilised is specified below, though 
all details of the modifications are not in the public 
domain and remain proprietary.

where P = probability, e = exponential distribution, 
strength is measured in cd∙s∙m−2, threshold measured 
in cd∙s∙m−2.

Response button

FST can be performed with a single button response 
where the patient reports only seen stimuli, or 
two button response where the patient is typically 
prompted with an audible cue and reports whether the 
stimulus is seen or not seen by pressing one of two 
buttons [32]. In general, single button response offers 
the advantage of simplicity and patients may be more 
familiar with the process from previous perimetric 
testing. Two button testing allows for quantification 
of both seen and unseen response times, of potential 
value in quality of data metrics.

Analysis

In visual psychophysics, patient responses reflect not 
only the underlying sensory capability but also extra-
sensory influences such as response criteria, atten-
tiveness, and fatigue [60].

Historically, the patients’ response criteria are 
assessed by interspersing a small number of catch tri-
als in the stimulus sequence. For example, responses 
to blank trials during which no stimulus was present 
are interpreted as false positives and may suggest 
either the patient has a low criterion for responding or 
experiences photopsias. False positives may also be 
logged when the patient provides a delayed response 
to a preceding stimulus that is implausibly early 
after the next stimulus. False negatives are assessed 
by the failure to respond to strong stimuli previously 

P(seen) = 1 − e
−

(

strength

threshold

)slope

seen [29]. False negatives require an estimate of the 
threshold and may have limited utility in patients 
with severe vision loss approaching the limits of the 
equipment.

The reproducibility of test results can be assessed 
in terms of test–retest variability via Bland–Altman 
analyses [61]. A potential limitation arises when 
variability is markedly non-uniform across the 
dynamic range of the technique (heteroscedasticity, 
as in clinical perimetry). In these situations, empirical 
test–retest intervals can be estimated as an alternative.

Protocol specification

Recommendations are based on a combination of 
best practice theory and published protocol parameter 
derived from the systematic review.

Stimulus parameters

Colour

This guideline specifies the use of LEDs with centre 
wavelengths for the short wavelength (blue) stimulus 
of between 444 and 470 nm and for long wavelengths 
(red) between 620 and 670 nm. Once tested, the dif-
ference between the red and blue responses should 
be calculated (see Sect.  "Photoreceptor mediation"). 
White colour temperature should be 6500 K.

Auditory signal

An auditory cue is recommended for the two button 
seen–not seen testing paradigm; it is not necessary for 
single button testing. It is acknowledged that auditory 
cues may not be appropriate in patients with severe 
hearing loss and tactile cues may have to be used.

Stimulus duration and interstimulus interval

The stimulus duration must be defined. Literature to 
date has reported either brief (≤ 4 ms) or longer dura-
tion (200 ms) stimuli. Interstimulus interval must be 
defined. Previous studies have specified an interstim-
ulus interval of approximately 1  s for single button 
paradigms, or up to 5 s for two button paradigms [29, 
47].
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Fig. 1  Examples of seen–unseen two button responses with 
corresponding modified Weibull function fitted to the data. 
(A) Top panel shows data collection following 45-min dark 
adaptation to a white (6500 k) stimulus with a variable dura-
tion of less than 4  ms presented in a ganzfeld (reference 
0  dB = 0.01  cd∙s∙m−2). A proprietary presentation order of 
stimuli is demonstrated on the left panel, in this instance with 
8 catch trials. A two button response indicates whether the 
stimulus is seen or unseen within a 5 s response window after 
an audible cue. The right panel shows probability or percent-
age of seen stimuli plotted against stimulus strength (“inten-
sity”) and fitted by a modified Weibull function to the data 
combined from individual trials, which provides a 50% seeing 
mean estimate of 48 dB [− 6.8 log cd∙s∙m−2]. (B)The bottom 
panel displays six consecutive measurements using 4–2 stair-

case method with 2 reversals in each case. Blue (465 nm) and 
red (637  nm) flash stimuli with a fixed duration of 200  ms 
were presented following 45-min dark adaptation in a ganzfeld 
stimulator (reference 0 dB = 3.7 cd∙m−2). A single button press 
indicates seen. Plotted stimuli seen are indicated by open sym-
bols, not seen by filled symbols. Triangles and circles for blue 
and red stimuli, respectively. The stimulus strength of the last 
seen is taken as the threshold, marked with a horizontal line. 
This process is repeated 6 times for each stimulus and an aver-
age of thresholds and standard deviation taken. The corre-
sponding plotted threshold and modified Weibull functions are 
shown in the panel on the right, to provide an alternative, but 
similar, estimates of the 50% seen thresholds of 57 dB blue and 
35 dB red, with a blue-red difference of 22 dB
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Break periods should be provided between bouts 
of testing to allow re-adaptation to the dark and to 
reduce fatigue. The length of these should be defined, 
ideally > 3 min.

Clinical protocol

Dilation

Pupil dilation is a requirement of this guideline for 
clinical trials and research. Pupil diameters should 
be measured and recorded. If mydriasis is contraindi-
cated, this must be acknowledged as a departure from 
the guideline and the likely influence on thresholds 
and interpretation of results considered.

Adaptation

For light-adapted testing, a minimum light adapta-
tion period of 5 min is recommended. Prior to dark-
adapted testing, a period of 45-min dark adaptation 
is recommended, subject to consideration of the 
patient’s diagnosis. This can be assessed by check-
ing the dark adaptation characteristics in a sample 
of disease patients prior to finalising the protocol. In 
retinal disorders characterised by severely delayed 
dark adaptation, a longer fixed period of dark adap-
tation may be used, if necessary to obtain detectable 
or robust responses, although care must be taken 
to ensure consistency between patients and serial 
assessments.

Response button

Whether a one button or two button box is used and 
the manner in which it is used should be specified, 
such as alternative choice with an auditory cue.

Patching

Adequate patching of the contralateral eye to prevent 
light stimulus “leakage” is essential and may require 
use of additional patching to provide blackout condi-
tions. It is highlighted that the sensitivity of one eye 
may be orders of magnitude higher than the fellow, 
e.g. in uniocular gene-based treatment trials. The 
order of eye testing should be reported as the second 
tested eye may have longer dark adaptation.

Psychometric function and thresholding paradigms

Thresholding algorithm

The algorithm for sequential presentation of stimuli 
should be specified [1, 2, 24, 29, 31, 35, 42, 43]. The 
observer or patient should be instructed clearly to 
optimise compliance and reliability of measurements. 
FST is a psychophysical test and patient instruction 
has a profound impact on the reliability of testing and 
final threshold obtained. On this basis, an example 
of good practice instructions is provided in Online 
Appendix 4.

Starting stimulus

Under dark-adapted testing, longer wavelength (red) 
stimuli should be presented first followed by shorter 
wavelength (blue) stimuli, to minimise the disruption 
of the dark-adapted state of the retina.

It can be helpful to commence testing closer to the 
expected final threshold where possible, to reduce test 
time.

Threshold

Threshold should be defined as the stimulus strength 
associated with 50% probability of detection, based 
on the psychometric function, e.g. two-parameter 
modified Weibull fit.

Analysis, interpretation, and reporting

Learning effect

Observers should perform several trial runs for train-
ing, e.g. one to two minutes, immediately prior to 
testing. More are recommended if needed to optimise 
patient comfort and compliance.

Catch trials

False positive catch trials should be included in the 
test in order to provide some indication of perfor-
mance reliability during testing. False negative catch 
trials if recorded should be interpreted with caution 
as they are a suprathreshold presentation and have the 
potential to disrupt the dark adaptive state.
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Test–retest variability

Data analysis requires an appreciation of test–retest 
variability and this should be examined for the system 
and stimuli being used, and for the population being 
studied.

Repeat testing

If the first three tests are consistent, then three are suf-
ficient to comply with this guideline. In cases of high 
intra-subject variability, attempts should be made 
to encourage better compliance and further repeats 
obtained to optimise consistency. This applies sepa-
rately to each test condition used.

Units of measurement

Threshold results should be reported in units of log 
cd·s·m−2 for brief stimuli, or in units of log cd·m−2 
with longer duration stimuli together with the stimu-
lus duration. Considering the use of chromatic stimuli 
under dark- and light-adapted conditions, units must 
be specified in photopic or scotopic units (phot-cd or 
scot-cd) as appropriate to the application. Decibels 
units (dB =  10log10) should not be used, as although 
widely employed in psychophysical techniques such 
as perimetry, it is a relative scale dependent on the 
0 dB point (reference stimulus strength).

Photoreceptor mediation

In two-colour chromatic FST testing, the difference in 
thresholds between short- and long-wavelength tests 
can provide an estimate of the photoreceptors con-
tributing to each response. The precise difference will 
partly depend on the radiometric properties of the 
LED stimuli, and the equipment used must therefore 
be specified [2].

Reference ranges

Establishing reference (“normative”) values involves 
recruiting and testing sufficient reference subjects per 
clinically relevant partition, and establishing labora-
tory-specific reference limits is generally considered 
the optimal process. If external or published reference 
data (e.g. [62]) are to be used they must be verified 
as appropriate for the local methods and equipment, 

with an understanding of possible limitations and 
how reference limits were defined.

Quality control

The quality and consistency of measurements should 
be monitored and reported. This could be in the 
form of monitoring the quality of the responses as 
they were collected and repeating if required and/or 
excluding unreliable or low-quality tests, although if 
necessary this should be clearly acknowledged. The 
consistency of data and shape of the psychometric 
function fitted to the measurements should be exam-
ined to assess the reliability of the responses (Online 
Appendix 5). If a disproportionate number of points 
are located around the 0% and 100% locations com-
pared to intermediate values along the probability 
curve, this may indicate a skew in the response char-
acteristics and impair curve fitting.

Reporting recommendations checklist

In order to facilitate comparison between reports, the 
following minimum information should be specified 
in all FST reports:

 1. Adherence to this guidance should be stated, 
and any departures acknowledged and justified.

 2. Equipment used and full details of test paradigm 
employed.

 3. For proprietary software, if full details are not 
available, it is essential to specify the version 
number, settings and protocol.

 4. Stimulus duration and interstimulus interval.
 5. Stimulus colour including the peak wavelength 

of LEDs used.
 6. Pupil sizes after mydriasis.
 7. Duration of light and dark adaptation including 

periods of re-adaptation.
 8. The quality assessments employed.
 9. The number of tests completed for each stimulus 

condition.
 10. The eye tested and order of eyes tested.
 11. The response method (e.g. use of a one or two 

button box and test paradigm) and thresholding 
algorithm.

 12. Thresholds provided in log cd·s·m−2 for brief 
flash durations under 4 ms, and in log cd·m−2 for 
longer durations.
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Reduced protocol

When comprehensive FST is not possible, such as for 
young children, those with special needs, and adults 
unable to comply with routine testing, a reduced pro-
tocol may be considered. Modifications may have a 
negative impact on reliability and sensitivity, but 
there remains potential to yield meaningful and clini-
cally useful results, providing the core principles of 
FST are retained.

It is well recognised that paediatric psychometric 
testing of vision can be challenging, depending on the 
age, capability and compliance of the child. Maturity 
and compliance can vary significantly between chil-
dren of the same age and across ages requiring exam-
iner’s judgement [63]. It has been reported that chil-
dren older than 8  years are able to reliably perform 
perimetry [64]. Published FST data suggest children 
over 6  years without physical or neurodevelopmen-
tal impairment may successfully complete the FST. 
Those under 6 years, or older children/adults unable 
to understand the requirements of the test, or unable 
to physically comply with a button press may need 
support or adaptations.

Any test modification may impact the reliability 
and sensitivity of a test and adaptations must be docu-
mented carefully so that the test protocol can be rep-
licated for monitoring. Compliance must be detailed 
and recorded to inform data interpretation. At this 
time, there are no evidence-based age-related modi-
fications for children and this is an area that requires 
further research. This guidance is based on guidance 
from other psychophysical testing.

Shortened protocols will usually involve chang-
ing at least one of several parameters. Ways of 
making the test into a game, involving the child’s 
carer or an older sibling, and allowing breaks for 
drinks and snacks between tests may be helpful. 
The period of dark adaptation may be shortened, or 
testing performed without mydriasis. There may be 
fewer types of stimuli per test session such as pri-
oritising white over colour stimuli, depending upon 
the clinical priority, with shorter but more frequent 
test sessions. Simultaneous rather than sequential 
testing of both eyes and simpler response protocols 
may be considered, e.g. using one button rather than 
two or allowing verbal or tactile responses that a 
carer reports back. This may require a longer ISI to 
provide time for the feedback and the carer must be 

counselled not to bias responses. Balancing quality 
control measures, such as decreasing the number of 
catch trials, with test duration is also important.
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