Faculty of Science and Engineering

School of Engineering, Computing and Mathematics

2024-01-25

Quality assessment of life cycle inventory data for composites

Summerscales, J

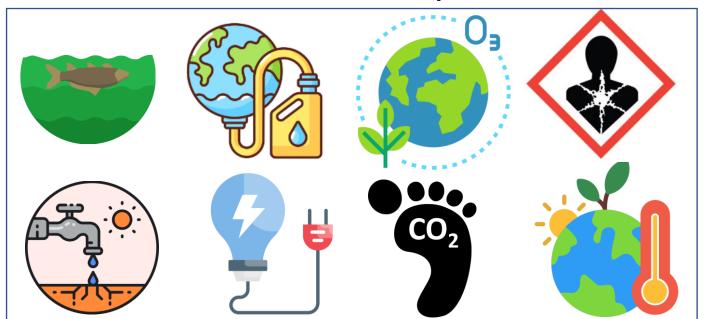
https://pearl.plymouth.ac.uk/handle/10026.1/21970

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Quality assessment of life cycle inventory data for Composites

Chair: Prof. John Summerscales

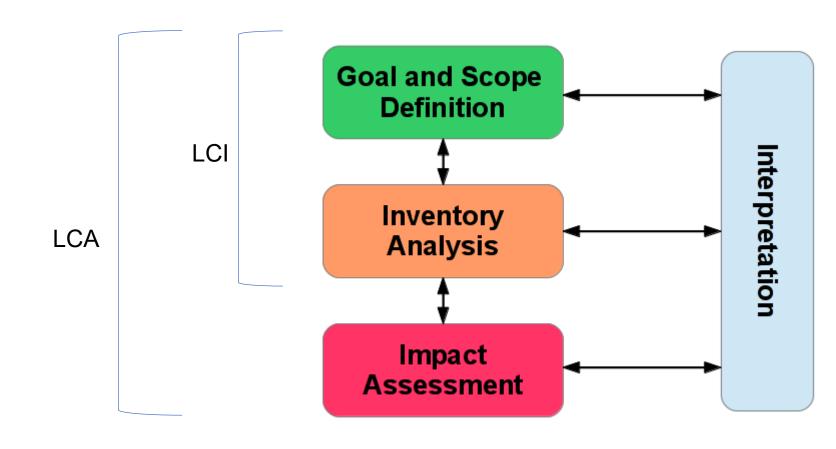
Presenter: Badr Moutik


Jasper Graham-Jones, and Richard Pemberton

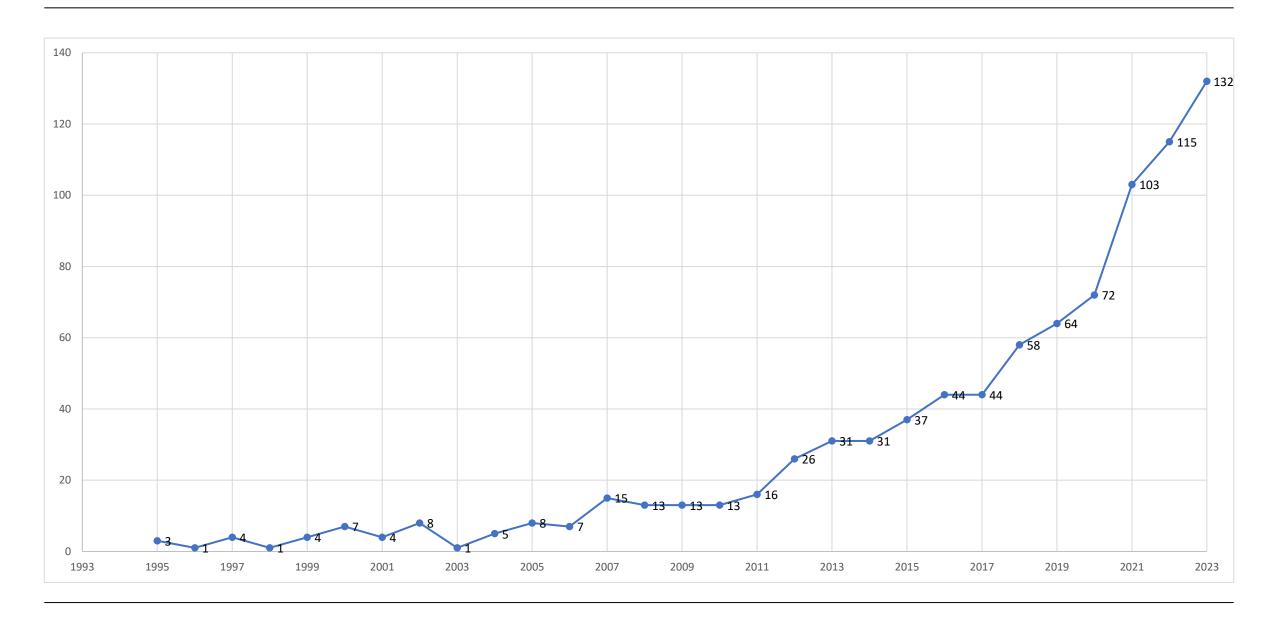

WHAT IS LIFE CYCLE ASSESSMENT (LCA)?

LCA is the "compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO, 2006)

Environmental impacts



Product Life Cycle



LIFE CYCLE INVENTORY ANALYSIS (LCI)

LCI is a phase of life cycle assessment involving the compilation and quantification of inputs and outputs for a product throughout its life cycle (ISO, 2006)

BACKGROUND: EVOLUTIONARY TREND OF LCA RESEARCH PUBLICATIONS IN COMPOSITE

BACKGROUND: REGULATORY CONTEXT: THE FRAMEWORKS SHAPING SUSTAINABILITY

Brussels, 22.3.2023 COM(2023) 166 final

2023/0085 (COD)

Proposal for a

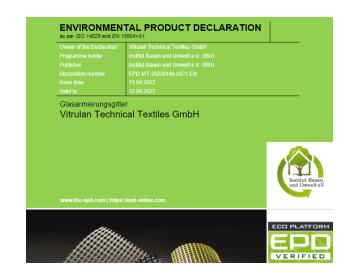
DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

on substantiation and communication of explicit environmental claims (Green Claims Directive)

BACKGROUND: ENVIRONMENTAL PRODUCT DECLARATIONS AND REPORTS

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for


Glassfiber Reinforced Plastic (GRP) Pipes

from Subor Boru San. ve Tic. A.Ş.

Eco Report

Date: 9/27/2021

General Information

Functional unit

This Eco Report gives insights into the environmental impact of 1 Dura Composites Moulded Product of 1 kg.

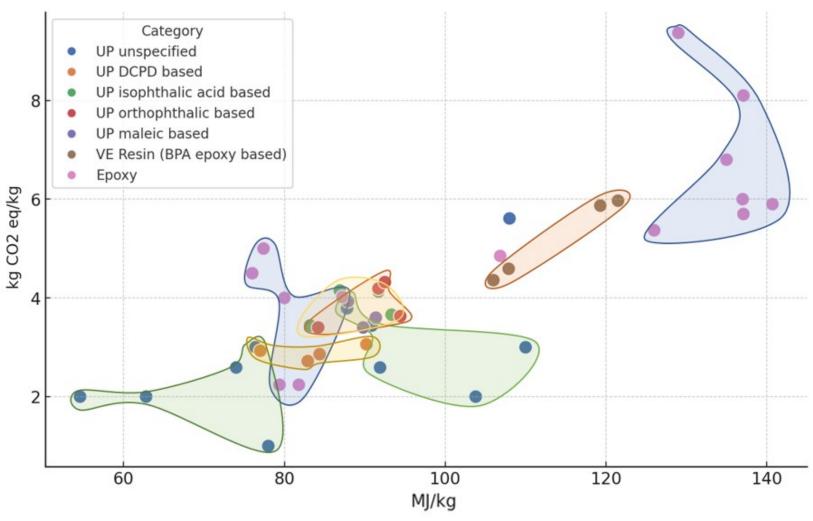
Content declaration

The LCA that has resulted in this Eco Report entails a cradle-to-gate analysis. Listed are

Eco Report

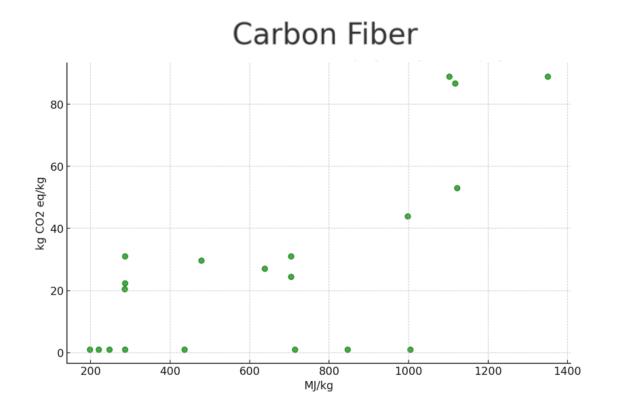
Product: UD Plank Date: 6/24/2021

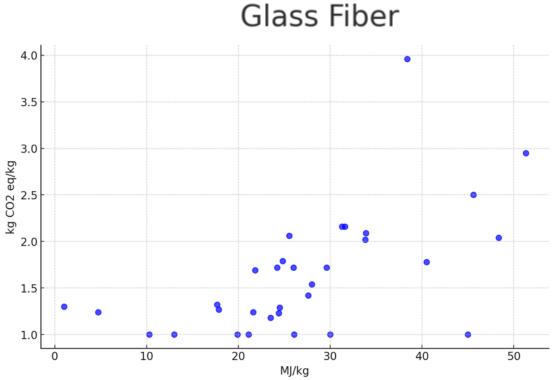
General Information


Functional unit

This Eco Report gives insights into the environmental impact of 1 UD Plank of 12.9 kg.

Content declaration

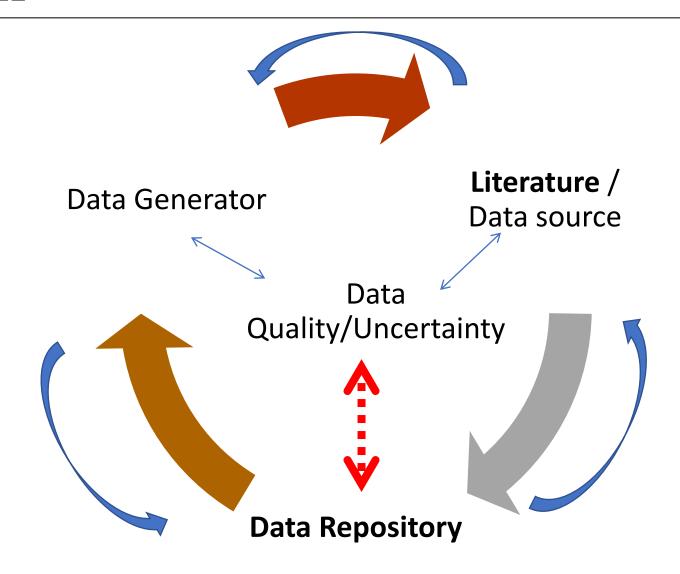

The LCA that has resulted in this Eco Report entails a cradle-to-gate analysis. Listed are materials representing more than 1% mass of the product. This factsheet is valid for the year 2021. For a full report about the used materials, please visit


BACKGROUND: LIFE CYCLE GHG EMISSIONS AND CUMULATIVE ENERGY DEMAND VALUES: RESINS

^{*} GHG: Greenhouse gases emissions

BACKGROUND: LIFE CYCLE GHG EMISSIONS AND CUMULATIVE ENERGY DEMAND: CARBON FIBER AND GLASS FIBER

Kg CO2 eq: One kg of CO2 equivalent – Global Warming Potential


MJ: Megajoules - Cumulative Energy Demand

* The LCA data presented in this graph includes all moduli of glass-reinforced plastic (GRP) and carbon-reinforced plastic (CF) combined

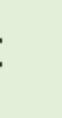
DATA QUALITY ASSESSMENT

"You can't manage what you can't measure."

LCA DATA LIFECYCLE

Major LCI data sources

softwares


databases

sector platforms

literature

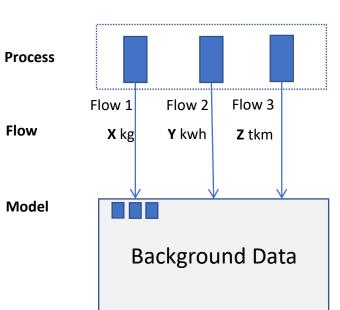
FEDERAL

COMMONS

DATA QUALITY IN LCA

- "The characteristics of data that relate to their ability to satisfy stated requirements"
- "Data Quality requirements
 shall be specified to enable
 the goal and scope of the LCA to be met"

LCA DATA QUALITY REQUIREMENTS


"where a study is intended to be used in comparative assertions intended to be disclosed to the public, the [following] data quality requirements" shall be addressed, (ISO,2006)

Time-related Geographical Technology Precision coverage coverage coverage Completeness Reproducibility Representativeness Consistency Sources of the data Uncertainty

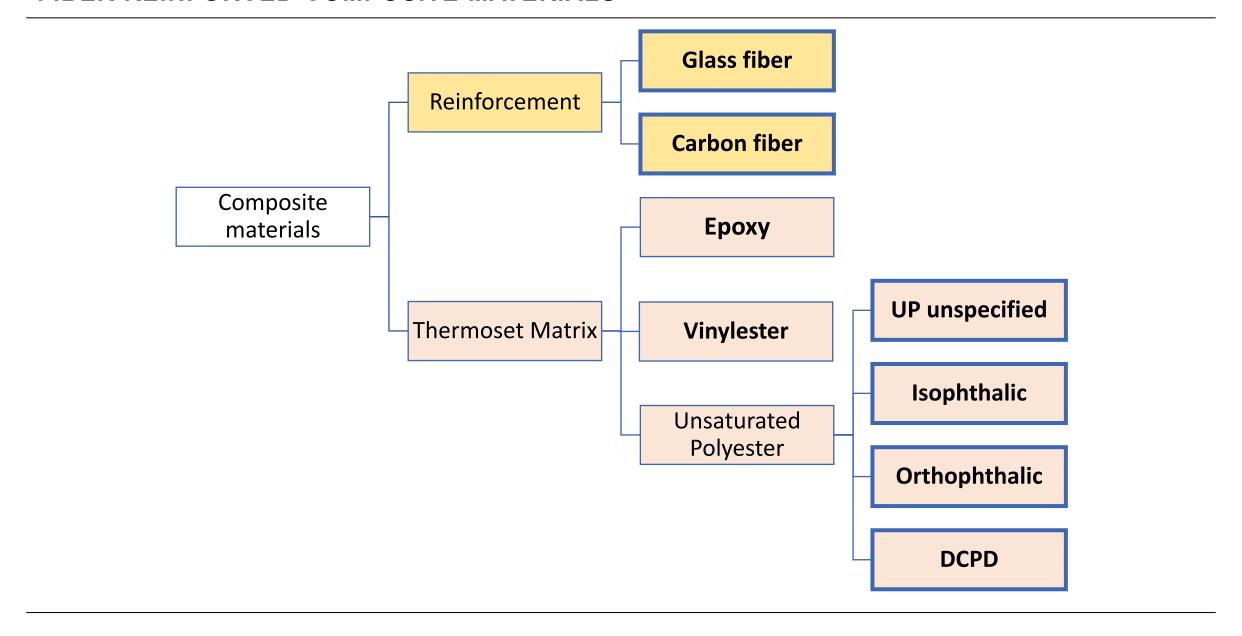
DATA QUALITY IN LCA

- Flexibility in determining the approach for addressing DQA-specific areas
- It does not specify to which component, or level, data quality analysis should be applied

METHODOLOGIES FOR LCI DATA QUALITY ASSESSMENT (DQA)

General guide for Life Cycle Assessment
- Detailed guidance

Pedigree Matrix


Indicator score	1	2	3	4	5 (default)
Reliability	Verified ³ data based on measurements ⁴	Verified data partly based on assumptions or non-verified data based on measure- ments	Non-verified data partly based on quali- fied estimates	Qualified estimate (e.g. by industrial ex- pert)	Non-qualified estimate
Completeness	Representative data from all sites relevant for the market consid- ered, over an ade- quate period to even out normal fluctuations	Representative data from >50% of the sites relevant for the market considered, over an adequate period to even out normal fluc- tuations	Representative data from only some sites (<<50%) relevant for the market considered or>50% of sites but from shorter periods	Representative data from only one site relevant for the market considered or some sites but from shorter periods	Representativeness unknown or data from a small number of sites <i>and</i> from shorte periods
Temporal cor- relation	Less than 3 years of difference to the time period of the dataset	Less than 6 years of difference to the time period of the dataset	Less than 10 years of difference to the time period of the dataset	Less than 15 years of difference to the time period of the dataset	Age of data unknown or more than 15 year of difference to the time period of the dataset
Geographical correlation	Data from area under study	Average data from larger area in which the area under study is included	Data from area with similar production conditions	Data from area with slightly similar produc- tion conditions	Data from unknown of distinctly different are (North America in- stead of Middle East, OECD-Europe instead of Russia)
Further tech- nological cor- relation	Data from enterprises, processes and mate- rials under study	Data from processes and materials under study (i.e. identical technology) but from different enterprises	Data from processes and materials under study but from differ- ent technology	Data on related proc- esses or materials	Data on related proc- esses on laboratory scale or from different technology

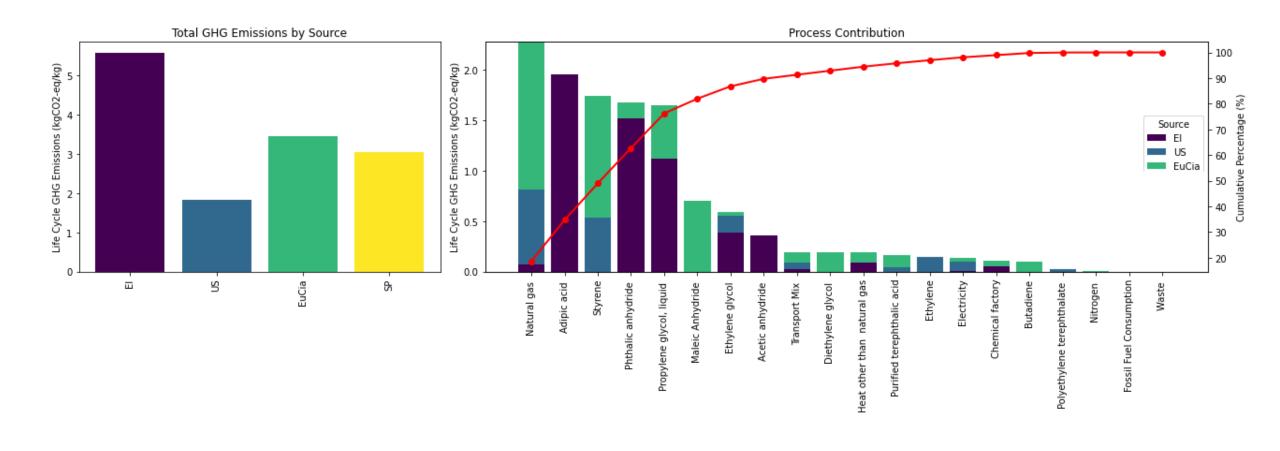
U.S Life Cycle Inventory Database

Fiber Reinforced Composite Materials

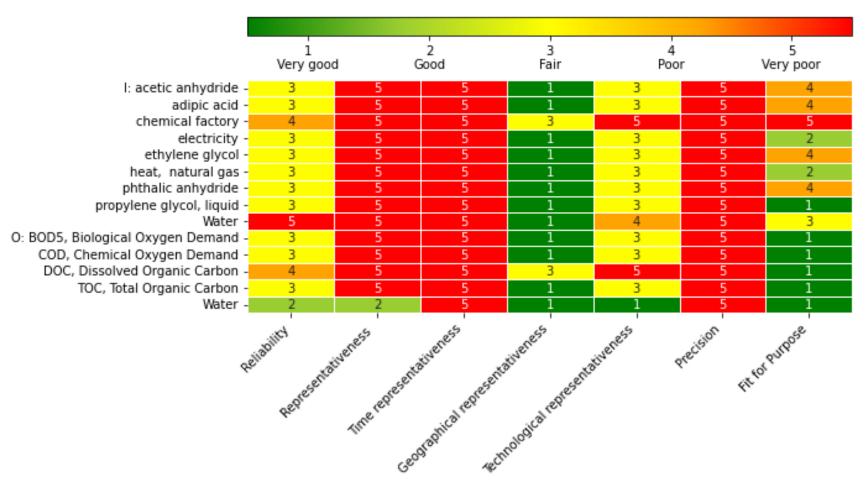
FIBER REINFORCED COMPOSITE MATERIALS

UNSATURATED POLYESTER RESIN INPUT PROCESS DATA SET

Source UP unspecified	EI	USL CI	SP	Eu Cia		
Input from Technosphere: Materials Resources						
Acetic anhydride						
Adipic acid						
Butadiene						
ethylene glycol						
ethylene at plant						
Maleic anhydride						
Neo pentyl glycol						
Phthalic anhydride						
Polyethylene terephthalate						
Purified terephthalic acid						
Propylene glycol, liquid						
Terephthalic acid						
Di ethylene glycol						
Ethylene						
Tetrabromophthalic acid						
Styrene						
Catalyst						
Nitrogen						
chemical factory, organics						

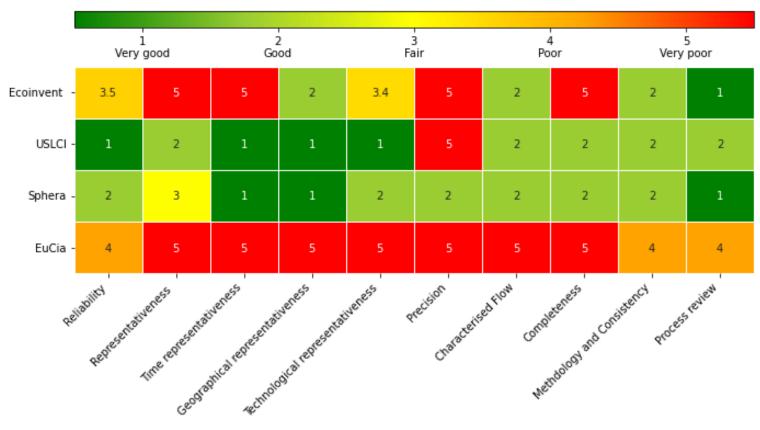

Input from environment							
Water for cooling							
Water							
Input from Technosphere: Energy							
electricity, medium voltage							
heat natural gas							
Heat Fuel							
Heat Diesel							
Steam							
Input from technosphere: Transport		-					
Transport combined							
Transport , Train, Diesel Powered							

UNSATURATED POLYESTER RESIN OUTPUT PROCESS DATA SET


Output				
Source UP unspecified	EI	US	SP	Eu Cia
1-Butanol				
Carbon dioxide, fossil				
Carbon monoxide				
Dicyclopentadiene				
Ethylene glycol				
Heat, waste				
Hydrocarbons, unspecified				
Maleic anhydride				
Methane				
Methyl methacrylate				
Nitrogen oxides				
Hydrocarbons, unspecified				
Particulates, > 2.5 um, and < 10um				
Particulates, < 2.5 um				
Particulates, unspecified				
O-phthalic acid				
Styrene				
Sulfur oxides				
Toluene, vinyl				
NMVOC, non-methane volatile organic compounds				
Xylene				
Emissions to water				

Aluminium			
BOD5 (Biological Oxygen Demand)			
Cadmium			
Chromium			
COD (Chemical Oxygen Demand)			
Cyanide			
Suspended solids, unspecified			
Lead			
Nickel			
Oils, unspecified			
Suspended solids, unspecified			
DOC, Dissolved Organic Carbon			
TOC, Total Organic Carbon			
Water, RER			
Zinc			
Unsaturated Polyester resin scrap			
Outputs to technosphere: Waste	•	-	
Disposal solid waste to municipal incineration			
Disposal solid waste to waste energy			
Disposal solid waste to sanitary landfill			
Hazardous waste incineration			
Wastewater			

LIFE CYCLE GHG EMISSIONS: CONTRIBUTION ANALYSIS



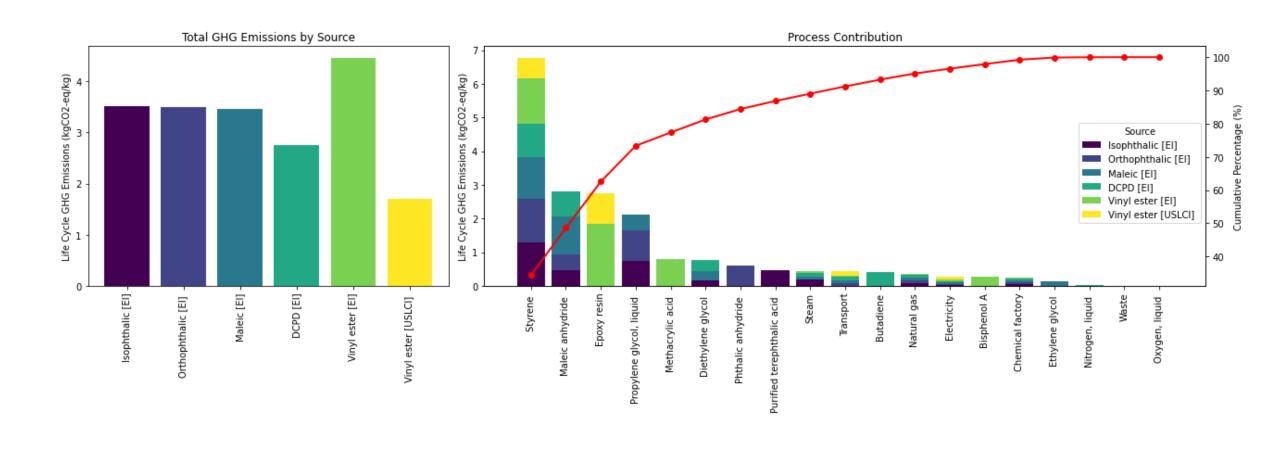
DATA QUALITY ASSESSMENT @ FLOW LEVEL: UNSATURATED POLYESTER RESIN

- Ecoinvent
- Polyester resin production, unsaturated – RER (Europe)
- Period: 1995-01-01 to 2021-12-31

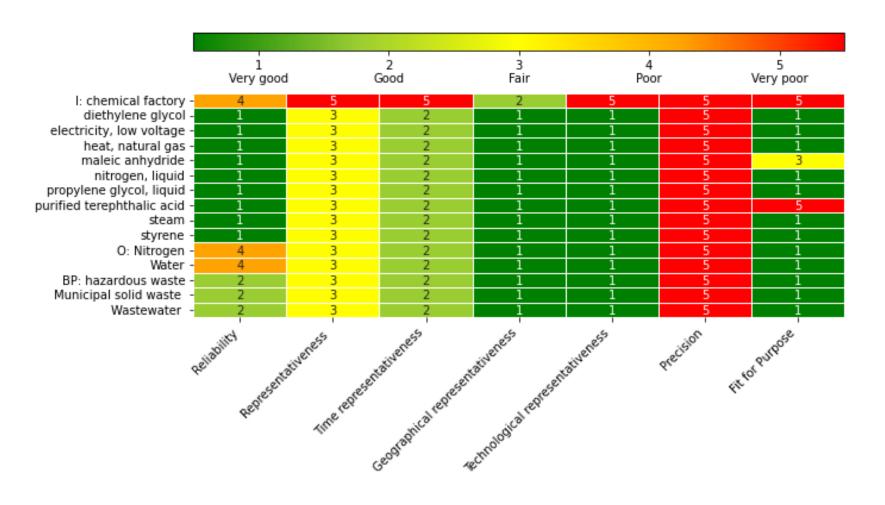
DATA QUALITY ASSESSMENT @ PROCESS LEVEL: UNSATURATED POLYESTER RESIN

Source	Location	Period
Ecoinvent	RER	1995 - 2021
USLCI	US	2010 - 2011
Sphera	DE	2019 - 2022
EuCia	RER	2015 - 2022

UNSATURATED POLYESTER RESINS INPUT PROCESS DATA SET


Source	ISO	Orh tho	DCP D	Vin yl	Vin yl US	
Input from technosphere: Materials Resources						
Bisphenol A, powder						
Acrylic acid						
Ероху						
Diethylene glycol						
Maleic anhydride						
Methacrylic acid						
Butadiene						
Propylene glycol						
Purified terephthalic acid						
Styrene						
Oxygen, liquid						
Nitrogen, liquid						
Chemical factory						

Phthalic anhydride						
Silica Sand						
Electricity, low voltage						
Electricity, renewable energy						
Heat						
Steam, in chemical industry						
Input from technosphere: Transport						
Transport combined truck						
Transport , Train, Diesel Powered						
Transport ocean freighter						
Input from environment						
Water						
·						


UNSATURATED POLYESTER RESINS OUTPUT PROCESS DATA SET

Source		Orht ho	DCP D	Vinyl	Vinyl US
		"0			03
Nitrogen, atmospheric					
NMVOC, non-methane volatile organic					
compounds					
Methyl methacrylate					
Particulate matter					
Emissions to water					
Water/m3					
Hazardous waste, for incineration					
Municipal solid waste					
Wastewater					
Municipal solid waste to landfill					
Solid waste to incineration with energy					
recovery					
Solid waste to incineration without					
energy recovery					
Recycling Solid waste					

LIFE CYCLE GHG EMISSIONS: UNSATURATED POLYESTER RESINS

DATA QUALITY ASSESSMENT @ FLOW LEVEL: ISOPHTHALIC UNSATURATED POLYESTER RESIN

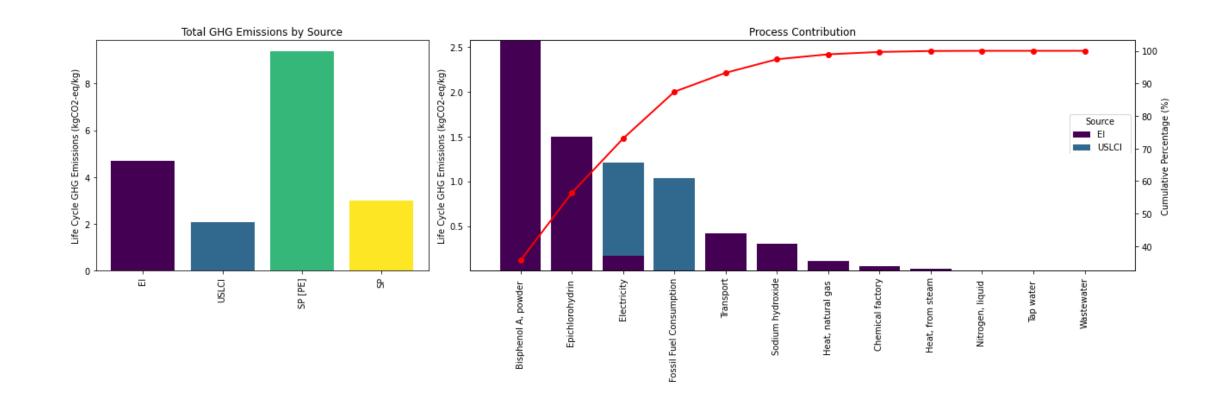
- Ecoinvent/EuCia
- isophthalic acid based unsaturated polyester resin production – RER
- Period: 2013 to 2022

DATA QUALITY ASSESSMENT @ PROCESS LEVEL: UNSATURATED POLYESTER RESINS

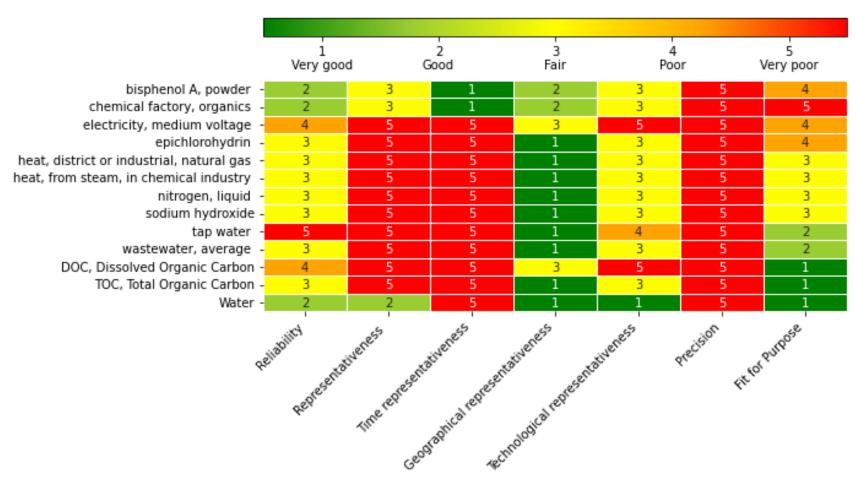
	Very	L good	Go	2 od	3 Fa	3 iir	Po	l or	Very	5 poor
Isophthalic -	1.8	3.1	2.2	1.1	1.3	5	2	5	2	4
Orthophtalic -	1.9	3.1	2.2	1.1	1.3	5	2	5	2	4
DCPC -	1.9	3.1	2.2	1.1	1.3	5	2	5	2	4
Vinylester [EI] -	1.6	3.1	2.2	1.1	1.3	5	2	5	2	4
Vinylester [USLCI] -		3	1	1	1	5	2	1	2	4
Reliability Replete British R										

Source	Location	Period
Ecoinvent	RER	2013 - 2022
USLCI	US	2021 - 2022

EPOXY INPUT PROCESS DATA SET

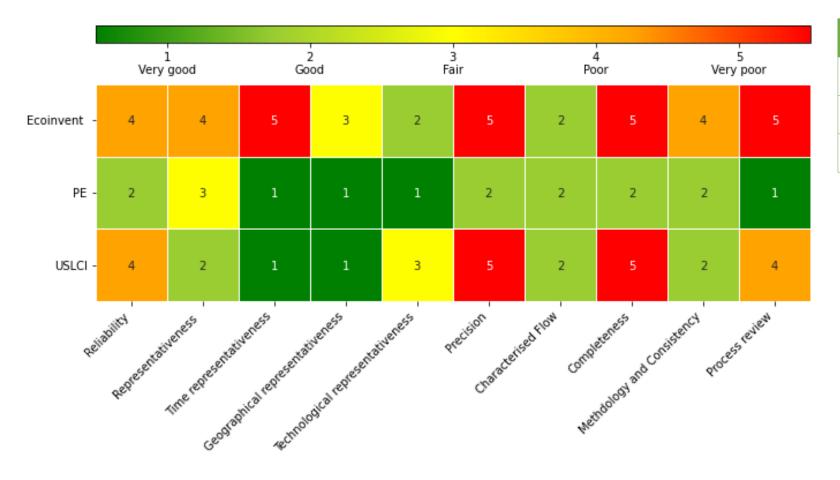

Source Epoxy	EI	PE	US	Sph era
Bisphenol A, powder				
Epichlorohydrin				
Nitrogen				
Sodium hydroxide, without water				
Isopropanol				
Hydraulic Acid				
Catalyst				
Styrene				
Oxygen, liquid				
Nitrogen, liquid				
Chemical factory				
Crude oil				
Electricity, low voltage				
Heat				
Steam, in chemical industry				
Electricity Mix				
Water, cooling, unspecified natural origin				
Water, river				
Water, well, in ground				
Deonised Water				

Deionised water						
Quartz sand						
Packaging						
Electricity, medium voltage						
Heat, district or industrial, natural gas						
Propane						
Light fuel oil						
Heavy fuel oil						
Oxygen						
Input from Technosphere: Transport						
Transport						
River transport						
Rail transport						
Road transport						


EPOXY OUTPUT PROCESS DATA SET

Waste				
Waste mineral oil				
Waste mineral wool, for final disposal				
Waste mineral wool, for final disposal				
Waste paint				
Wastewater from glass production				

LIFE CYCLE GHG EMISSIONS: EPOXY RESIN



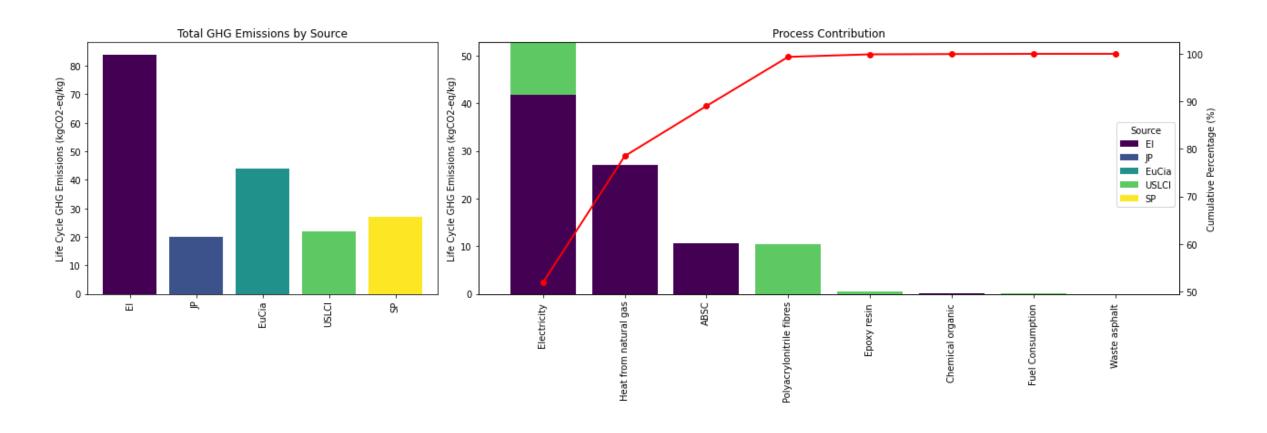
DATA QUALITY ASSESSMENT @ FLOW LEVEL: EPOXY RESIN

- Ecoinvent
- Epoxy resin production, liquid - RER
- Period: 2015 to 2021

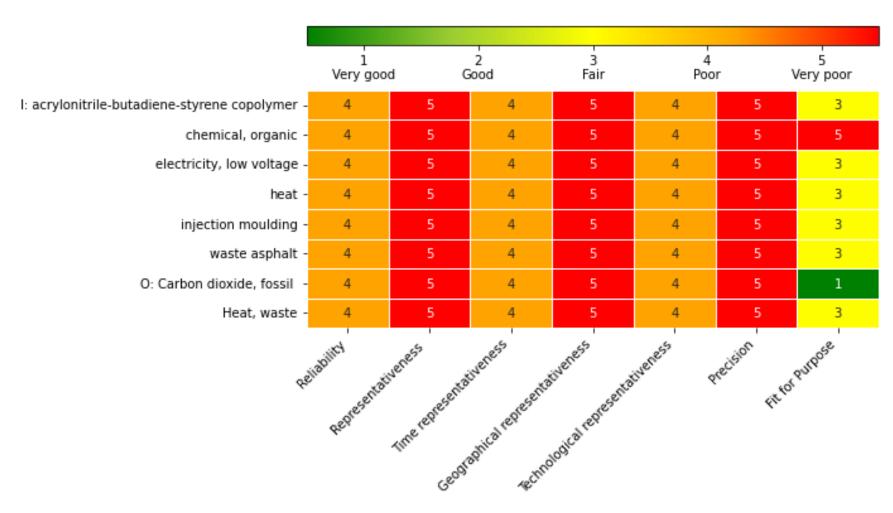
DATA QUALITY ASSESSMENT @ PROCESS LEVEL: EPOXY RESIN

Source	Location	Period
Ecoinvent	RER	2015 - 2022
USLCI	US	2019
PE	RER	2005

CARBON FIBRE INPUT PROCESS DATA SET

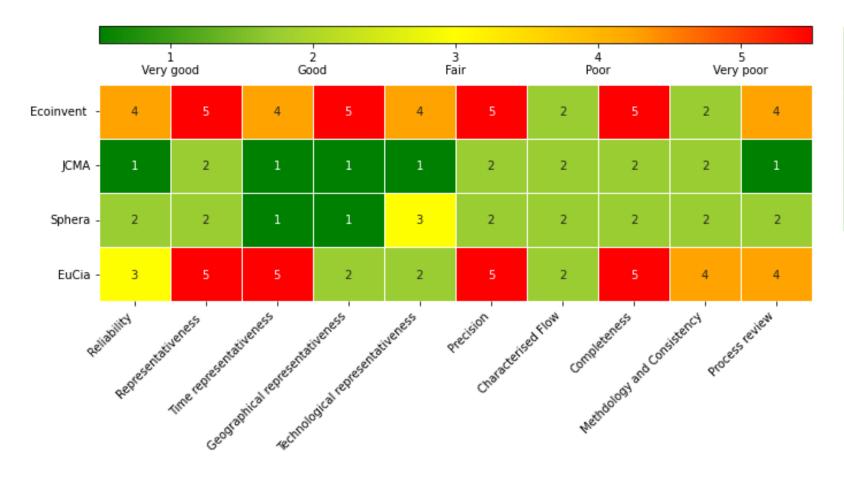

Source	SP	EI	EuC ia	US	JP	
Inputs from technosphere						
Polyacrylonitrile fibres						
Acrylonitrile butadiene styrene						
copolymer						
Acrylonitrile						
Comonomer						
Polymerization catalyst						
Solvent						
PAN fiber oil						
Chemical organic						
Injection moulding						
Carbon fiber sizing agent						
Electrolyte (sulfuric acid)						
Outer packaging material						
Epoxy resin						
Hexamethylene diamine (HMDA) from						
acrylonitrile via adiponitrile						
Potassium permanganate						
ammonium bicarbonite						
Sulfuric Acid						
Polydimethylsiloxane						
Nitrogen (gaseous)						
Ammonia Hydrogen carbonate						

Energy/heat					
Electricity					
Heat from natural gas					
Carbonization HT primary gas					
Carbonization HT primary electricity					
Carbonization LT primary gas					
Carbonization LT primary electricity					
Washing primary electricity use					
Washing primary gas					
Drying-I primary electricity use					
Drying-I primary gas use					
Avivage primary electricty					
Avivage primary gas use					
Drying-II primary electricity					
Drying-II primary gas use					
Spooling primary electricity					
Spooling primary gas					
Steam Consumption					
Fuel Consumption					


CARBON FIBRE OUTPUT PROCESS DATA SET

Source	SP	EI	EuC ia	US	JP
Carbon dioxide, fossil					
Heat, Waste					
Nitrogen oxide (NOx)					
Emissions to water					
Water					
Waste					
Waste asphalt					
Solid waste					
Exhaust gas treatment					
Elektrolysis					
Transport					
Transport Mix					

LIFE CYCLE GHG EMISSIONS: CARBON FIBRE



DATA QUALITY ASSESSMENT @ FLOW LEVEL: CARBON FIBRE

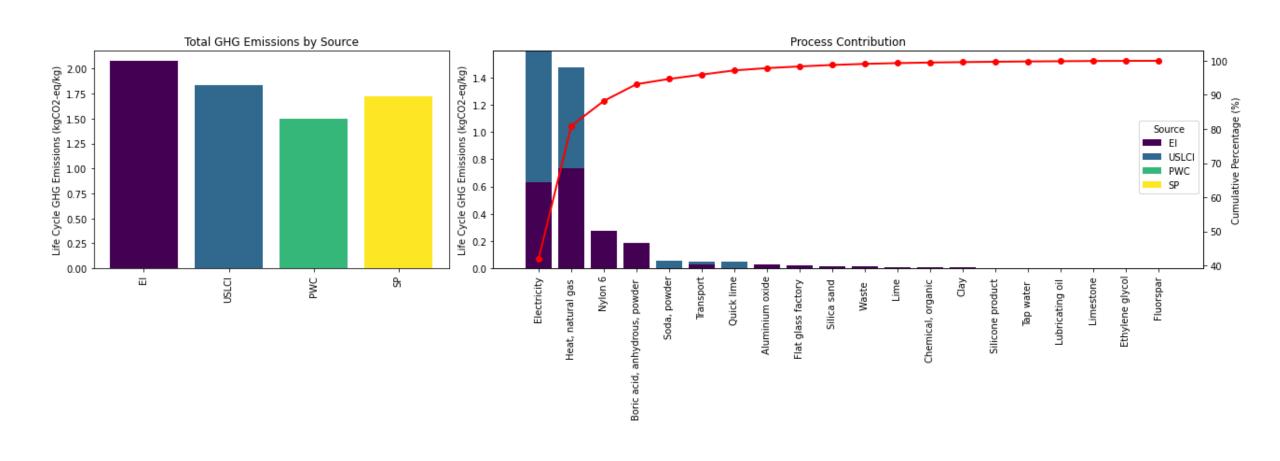
- Ecoinvent
- Carbon fibre reinforced plastic, injection moulded – GLO
- Period: 2016 to 2021

DATA QUALITY ASSESSMENT @ PROCESS LEVEL: CARBON FIBRE

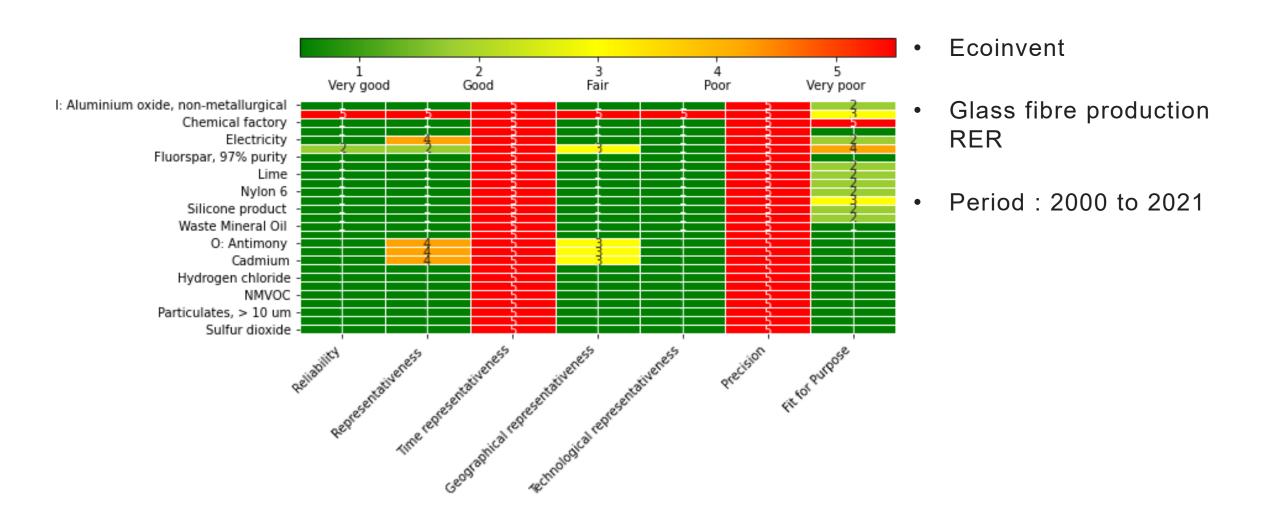
Source	Location	Period
Ecoinvent	RER	1995 - 2021
JCMA	JP	2010 - 2011
Sphera	DE	2019 - 2022
EuCia	RER	2015 - 2022

GLASS REINFORCED PLASTIC (GRP) INPUT PROCESS DATA SET

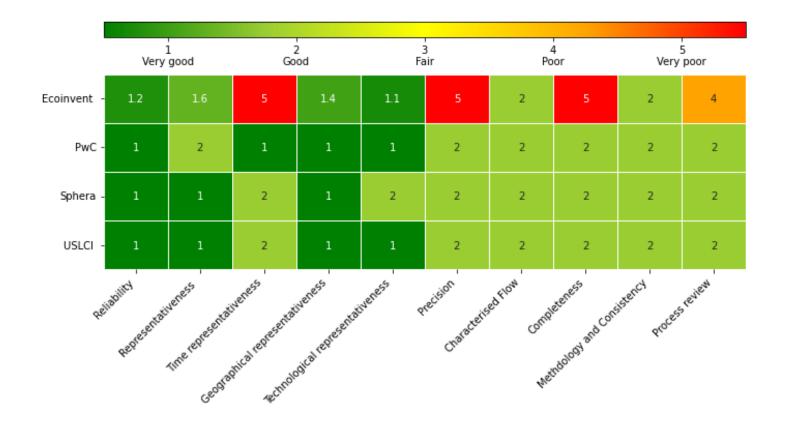
Source	EI	PwC	SP	US	
Input from Technosphere: Materials Resources					
Aluminium oxide, non-metallurgical					
Boric acid, anhydrous, powder					
Boric oxide					
Borax anhydrous					
Burnt dolomite					
Chemical, organic					
Calcium borat					
Colemanite					
Ethylene glycol					
Epoxy resin					
Feldspar					
Kaolin					
Clay					
Dolomite					
Gypsum					
Polyvinyl acetate					
Flat glass factory					
Filmformer					
Fluorspar, 97% purity					
Phenolic resin					
Lime					
Quicklime					
Limestone					
Magnesium oxide					
Hydrated Lime					
PH-modifier					
Lubricating oil					


Phthalic anhydride					
Silica Sand					
Electricity, low voltage					
Electricity, renewable energy					
Heat					
Steam, in chemical industry					
Input from technosphere: Transport					
Transport combined truck					
Transport , Train, Diesel Powered					
Transport ocean freighter					
Input from environment					
Water					

GLASS REINFORCED PLASTIC (GRP) OUTPUT PROCESS DATA SET


Source	EI	PwC	SP	US	
Output: Emission to Air					
Antimony					
Arsenic					
Cadmium					
Carbon dioxide, fossil					
Hydrogen chloride					
Hydrofluoric acid					
Hydrogen fluoride					
Nitrogen oxides					
NMVOC, non-methane volatile organic					
compounds					
Volatile organic compounds					
Methanol					
Particulates, < 2.5 um					
Particulates, > 10 um					
Particulates, > 2.5 um, and < 10um					
Sulfur dioxide					
Xylene					
Styrene					

Emissions to Water					
Water/m3					
Water, RER					
Waste					
Waste mineral oil					
Waste mineral wool, for final disposal					
Waste paint					
Wastewater from glass production					


LIFE CYCLE GHG EMISSIONS: GLASS REINFORCED PLASTIC (GRP)

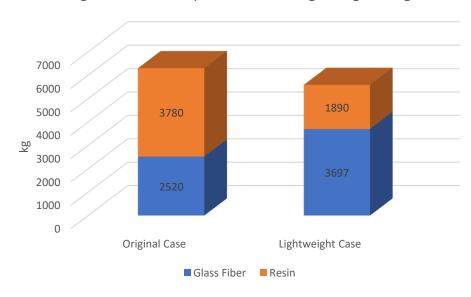
DATA QUALITY ASSESSMENT @ FLOW LEVEL: GLASS FIBRE

DATA QUALITY ASSESSMENT @ PROCESS LEVEL: GLASS FIBRE

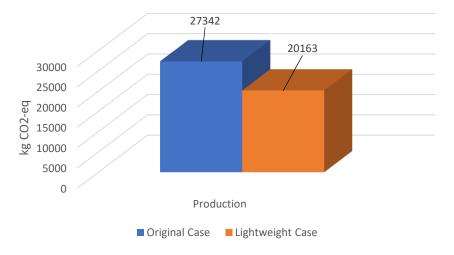
Source	location	Period
Ecoinvent	RER	2000 - 2021
PwC	RER	2022 - 2023
Sphera	DE	2019 - 2022
USLCI	US	2010 - 2011

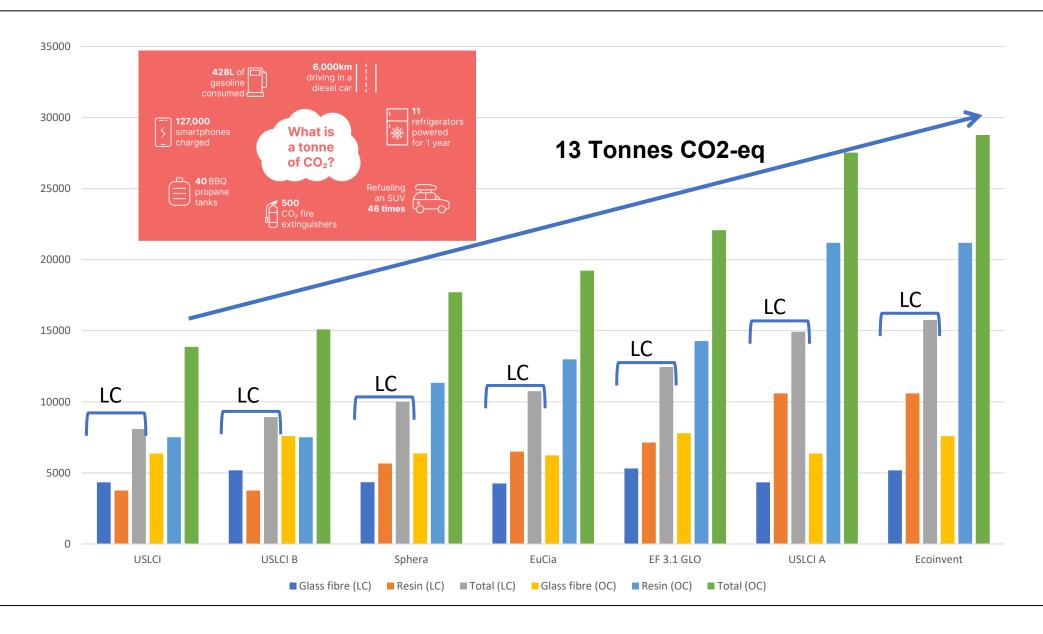
ILLUSTRATIVE CASE STUDY

한국정밀공학회지 제 36 권 제 9호 pp. 875-881 J. Korean Soc. Precis. Eng., Vol. 36, No. 9, pp. 875-881


September 2019 / 875 https://doi.org/10.7736/KSPE.2019.36.9.875

Environmental Impact Evaluation on Lightweight Structure Design of a Composite Ship by LCA (Life Cycle Assessment)


(Daekyun Oh et al, 2019)


Weight variation composite materials lightweight design

Variation for GWP indicator with lightweight for production phase

ILLUSTRATIVE CASE STUDY

UP resin unspecified	Ortho/ISO/DCPD/ Vinyl ester	Epoxy resin	Glass fiber	Carbon fiber
	••	••	••	
		••		••
			••	••
	••	•••		
		unspecified Vinyl ester	unspecified Vinyl ester	unspecified Vinyl ester I Glass liber I Glass li

RECOMMENDATIONS

For LCA Practitioner:

Select proxy data and data sources carefully

Compare Data from different sources especially for high contributing process elements

Assess the data quality and uncertainty

Communicate the data quality and availability issues

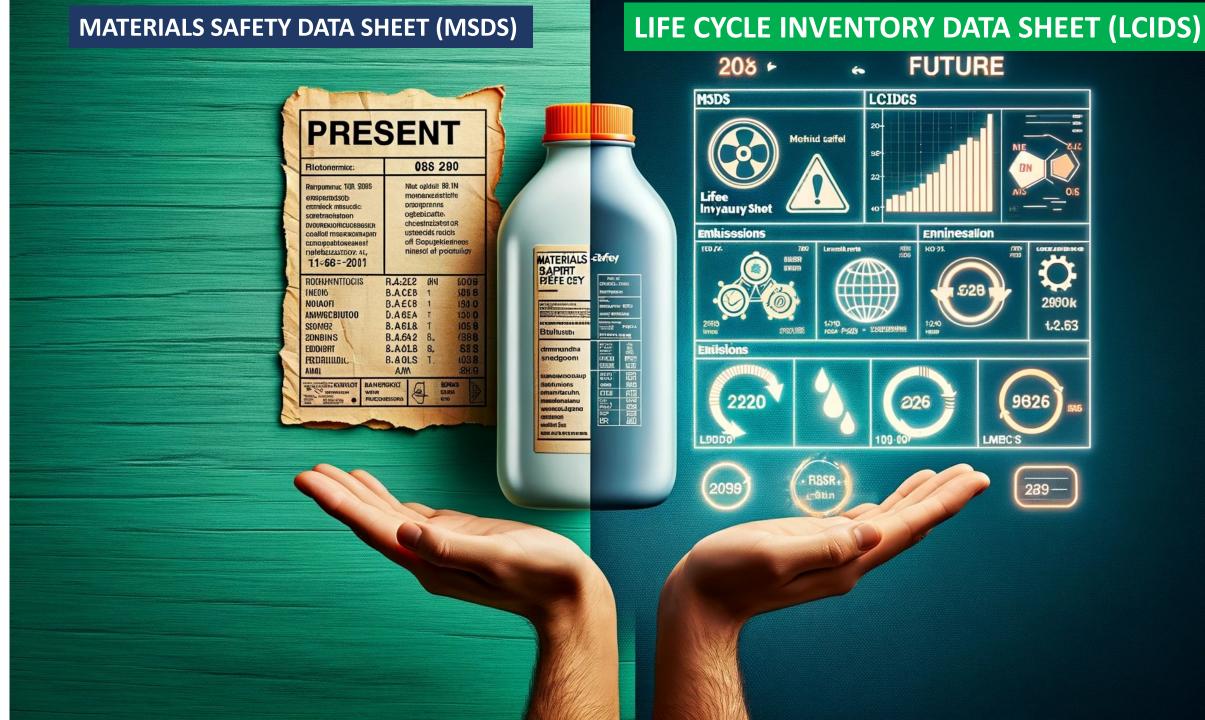
Interpret the influence of data quality and data gaps on the LCA results

RECOMMENDATIONS

For Databases, Sector Platforms, Composite Industry:

Guidelines: Create industry-specific LCI data collection and analysis guidelines

Harmonisation: Standardise data quality assessment methods across the sector.


Criteria: Define acceptable data quality levels for composites LCI datasets.

Communication: Ensure transparency about data quality and availability.

Centralisation: Establish a central LCI database for composites.

Automation: Introduce an automated system for visualising data quality in relation to process contributions.

Focus Areas: Focus on data completeness, precision, and thorough process review.

