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Abstract—Decoding complex patterns associated with task-
specific activities embedded within magnetoencephalography
(MEG) signals is pivotal for understanding brain functions and
developing applications such as brain-computer interfacing. It
is widely recognized that machine learning algorithms rely on
feature extraction before undertaking decoding tasks. In this
work, we introduce MEGNet, aiming to enhance the single-trial
decoding framework of a compact deep neural network inspired
by EEGNet, a model widely utilized in electroencephalography
(EEG) studies. MEGNet accepts raw MEG signals, evoked
responses and frequency spectrum as input. For validation, the
MEG dataset containing motor and cognitive imagery tasks
was used for classification. We performed pair-wise decoding of
cognitive and motor tasks. Classification accuracy was evaluated
using metric scores and benchmarked against ShallowConvNet
and DeepConvNet. Our findings demonstrate that MEGNet
can successfully decode between cognitive and mental imagery
tasks. This MEGNet model surpasses existing feature extraction
techniques, exhibiting consistent and stable mean accuracy of
64.76% ± 3% across tasks and subjects. All codes are available
at our GitHub repository: https://github.com/Charliebond125/
MEGNet.git.

Index Terms—Magnetoencephalography, Convolutional Neural
Network, Deep Learning, Cognitive and Motor Imagery.

I. INTRODUCTION

In recent years, the convergence of neuroscience and arti-
ficial intelligence has been a driving force behind the explo-
ration of innovative techniques for understanding human brain
activity. MEG harnesses high-resolution spatiotemporal data
to decode real-time neural dynamics non-invasively [1], facil-
itating advanced deep learning methodologies. Spatiotemporal
elements refer to the combination of spatial and temporal in-
formation in a dataset. In the context of MEG data, spatiotem-
poral elements represent the patterns of brain activity over
both space and time. MEG data provides information about the
timing and location of brain activity. The capacity to decode
MEG signals on a trial-by-trial basis has enormous potential in
a variety of fields, including cognitive neuroscience [1], brain-
computer interfaces (BCIs) [2], and clinical applications [3].
The study of visual perception in neuroscience is intriguing,
particularly due to the common neural foundation that has
been identified between visual perception and mental imagery
processes. It has been reported that both the perception of
visual stimuli and the ability to generate mental images
activate similar regions of the brain and cognitive processes
[4]. However, despite this shared neural foundation, a crucial

distinction exists between cognitive and motor imagery (MI).
Cognitive imagery (CI) encapsulates the mental processes
involved in visualizing scenarios, concepts, or objects, while
MI pertains to the mental simulation of movement without
actual physical execution. Exploration of CI and MI is sig-
nificant because it provides insights into various aspects of
human cognition and behaviour. Studies have shown that MI
involves the generation, maintenance, manipulation, and tem-
poral sequencing of motor images [5]. Additionally, cognitive
and psychological measures have been found to impact the
performance of MI brain-computer interfaces (MI-BCIs), with
factors such as vividness of visual imagery, personality traits,
and motivation playing a role [6]. CI and MI classification,
within the context of this study, pertains to the discernment
and categorization of distinct mental states and intentions
through brain activity patterns. Remarkably, researchers have
made a significant stride in categorically classifying visual
and CI from MEG signal data [7], [8]. A large number
of existing research studies have predominantly focused on
decoding visual and motor intentions, often bypassing the
complex interplay between cognitive processes and motor
responses. This noticeable gap in research highlights the need
for a comprehensive investigation into the neural correlates of
cognitive and MI, and how these can be accurately classified
using deep learning approaches.

Traditional methods for CI and MI classification have pri-
marily relied on hand-engineered features extracted from neu-
rophysiological signals. However, the intricate and dynamic
nature of brain activity patterns poses challenges for conven-
tional feature engineering approaches. Many approaches were
presented to classify brain activities by segmenting MEG sig-
nal data into epochs and statistical features [9], [10]. Although
the majority of research still relies on the use of hand-crafted
features, many recent studies have explored the potential of
deep learning approaches. Particularly convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), offer
a promising solution. These architectures excel in automatic
feature learning from raw data, thereby bypassing the need
for explicit feature extraction which refers to transforming
raw data into a set of meaningful and representative features
that can be used as input for a machine learning model.
This process typically involves selecting or creating a subset
of relevant features from the original data, which can be
time-consuming and require domain expertise. The success of



machine learning and deep learning algorithms in a variety of
domains has inspired researchers to apply similar techniques to
neuroimaging data processing including MEG and EEG signal
classification.

Craik and team [11] provided a detailed assessment of
several deep learning algorithms used in EEG classification
tasks, providing insights into potential modifications for MEG
data interpretation. EEGNet, a small CNN particularly built
for EEG-based BCIs, was introduced by [12], and captures
important characteristics from EEG data effectively, making
it an appealing choice for adaption into MEGNet for single-
trial classification. In this study, we intend to suggest a fresh
approach: converting EEGNet into MEGNet. We hypothe-
sise that MEGNet’s compact design, which was inspired by
EEGNet’s success in EEG-based BCIs, will efficiently capture
significant spatiotemporal elements from MEG data, boosting
single-trial classification accuracy. We used publicly accessi-
ble MEG datasets which include a wide range of cognitive
activities and motor imaging paradigms. These tasks include
hand imagery, feet imagery, subtraction imagery, and word
generation imagery. The MEG signals underwent advanced
artefact removal techniques and filtering processes. In addition,
we will compare MEGNet’s performance to that of other
state-of-the-art existing models such as ShallowConvNet and
DeepConvNet [13].

The rest of the paper is organized as follows: Materials and
methods are presented, including dataset, data pre-processing
and model training in Section 2, the performance analysis and
results are described in Section 3, the study is discussed in
Section 4, and the conclusions are summarized in Section 5.

II. MATERIALS AND METHODS

A. Dataset

This study uses the magnetoencephalography (MEG)
dataset, specifically designed for motor and cognitive imagery-
based brain-computer interface (BCI) applications[10]. It con-
sists of MEG signals recorded during four mental imagery
tasks using a typical BCI imagery paradigm. The four tasks
were:

1) Hand imagery- Participants were asked to imagine open-
ing and closing their right hand.

2) Feet imagery- Participants were asked to imagine mov-
ing their toes up and down.

3) Subtraction imagery- Participants were asked to subtract
7 from a given number and imagine the result.

4) Word generation imagery- Participants were asked to
imagine generating words starting with a given letter.

The dataset used in this study involved the recruitment
of 20 healthy participants. Three subjects are not included
due to noisy data present within the recordings The final
dataset (N= 17, 14 Males (82.35%), 3 Females (17.64%),
with a mean age of 28. The minimum age is 22, with the
highest age being 40) Data was acquired using an Elekta
Neuromag™ system [10], recorded with 306-channels (102
magnetometers and 204 planar gradiometers), including the

use of MaxShield™. Each participant underwent two recording
sessions on different days. Each session consists of two data
runs due to session breaks. For better handling of the data,
the authors have merged the sessions. The dataset includes
1,134 minutes of MEG recordings and a total of 6,800 imaging
trials. By containing many MEG recordings and imaging trials,
this dataset provides a valuable resource for investigating
and developing brain-computer interface systems based on
motor and cognitive imagery. The single trial classification
was performed by [10] using a linear classifier i.e., a Support
Vector Machine (SVM) classifier to estimate accuracies for the
six binary tasks i.e. hand versus feet (H-F), hand versus word
generation (H-W), hand versus subtraction (H-S), feet versus
word generation (F-W), feet versus subtraction (F-S), and word
generation versus subtraction (W-S). The SVM classifier was
trained using the feature set of Session 1 data and evaluated
on the feature set of Session 2 data. This study also compares
the findings with the previous results presented by the authors
of the dataset. The block diagram of the proposed system is
illustrated in Fig. 1.

B. Data Pre-processing

MEG data was processed offline using the MNE Python [14]
library. Bad channel detection, correction, jump artifacts, and
head movements were corrected for, by the implementation
of Signal Space Projection (SSS) and Maxwell Filtering. In
the MNE Python Library, SSS and Maxwell Filtering are
performed using one function to deal with environmental
noise and artefacts. We implemented the inbuilt spatiotemporal
Signal Space Separation method (tSSS) [15] which is activated
by passing in a time value as an argument to the function. By
incorporating the use of the Shannon-Nyquist Theorem, taking
half the sampling frequency and dividing this by the duration
to create evenly spaced temporal windows and passing this
as an argument into the required function. Following this, the
MEG data was then down-sampled to 500Hz. A Signal Space
Projection method was used to remove and suppress the effects
of eye blinks (EOG) and Electrocardiogram (ECG) artefacts
from MEG Data. Notch filtering was performed using a power-
line frequency of 50Hz, accounting for the 3rd harmonic. Data
was then bandpass filtered, using a double forward-backwards
pass using second-order sectioning, and filtered between 1-
40Hz. The data was baseline corrected in a window of -200ms
to 0 ms, which was then epoched into segments using the time
window of 2000ms at the window start, concluding at 6000ms
for the window end, from the trial onset. It emerged that one
of the subject’s channels did not align between session 1 and
session 2, as a result, this had to be discarded.

C. Model Architecture and Configuration

1) MEGNet: The study utilized the MEGNet architecture,
inspired by the compact EEGNet model [12]. The MEGNet
architecture is illustrated in Fig 2. EEGNet’s effectiveness
has been demonstrated across four BCI paradigms, including
P300 visual-evoked potentials, ERN, MRCP, and SMR [12].
MEGNet integrates a conventional 2D convolutional layer,



Fig. 1: MEG data analysis and deep learning classification implementation, with sample data from one participant as it goes
through the classification pipeline. A. Loading of raw MEG signals of both sessions. B. Pre-processing pipeline of raw MEG
signal data. C. Data Preparation of the pre-processed MEG data to meet the input requirements of the models. D. Model
Training pipeline to find best parameters. E. Storing the best parameters along with accuracy score

depth-wise convolution, and a separable convolution— the
latter combining depth-wise followed by point-wise convo-
lution. This separation reduces parameters, minimizing over-
fitting risks. The model’s adaptability allows for the extraction
of spatial and temporal EEG features, a capability supported
by [16], [17], and [18]. The tailored model for MEG data,
detailed in Table I, was crucial for precise event classification
from pre-processed MEG data. Hyper-parameters like kernel
length and dropout rate were fine-tuned for optimal results,
with the model compiled using categorical cross-entropy loss,
the Adam optimizer, and an accuracy metric.

2) Shallow Convolutional Network and Deep Convolutional
Network: The Shallow and Deep Convolutional Network
serves as a foundational architecture for EEG and MEG event
classification. Shallow Convolutional Networks (SCNN) and
Deep Convolutional Networks (DCNN) have been used in
EEG signal classification. SCNN has been proposed for motor
imagery (MI) classification, achieving an accuracy of 68.77%
on the BCI Competition IV-2a dataset [16]. On the other hand,
DCNN has been used for alcoholism classification, achieving
an average accuracy of 98% on the UCI-ML EEG dataset [19].

The models underwent a rigorous configuration and train-
ing process to achieve reliable performance. The meticulous
configuration process involved the tuning of hyperparameters,
including filter size, stride length, and activation functions, to
optimize feature extraction. The model’s compilation encom-
passed categorical cross-entropy loss, a stochastic gradient de-
scent optimizer, and accuracy as the primary evaluation metric.
The implementation of both Deep and Shallow ConvNets was

TABLE I: MEGNet modal Summary, where F1 = number
of temporal filters, D = depth multiplier (number of spatial
filters), F2 = number of pointwise filters, and N = number of
classes, respectively.

Layer (Type) Output Shape Param #
InputLayer (None, Channels, Samples, F1) 0
Conv2D (None, Channels, Samples, F1) 64
BatchNormalization (None, Channels, Samples, F1) 32
DepthwiseConv2D (None, 1, Samples, F1 * D) 3264
BatchNormalization (None, 1, Samples, F1 * D) 64
Activation (None, 1, Samples, F1 * D) 0
AveragePooling2D (None, 1, DownSampled, F1 * D) 0
Dropout (None, 1, DownSampled, F1 * D) 0
SeparableConv2D (None, 1, DownSampled, F2) 512
BatchNormalization (None, 1, DownSampled, F2) 64
Activation (None, 1, DownSampled, F2) 0
AveragePooling2D (None, 1, DownSampled // N, F2) 0
Dropout (None, 1, DownSampled // N, F2) 0
Flatten (None, F2) 0
Dense (None, Classes) 1986
Activation (None, Classes) 0

accomplished through the utilization of the source code found
in [12] with few modified parameters.

D. Model Compilation and Training

The pre-processed magnetoencephalography (MEG) data
underwent further refinement to meet the input requirements
of the MEGNet, Deep and Shallow ConvNets. To ensure that
the model focuses on relevant spatiotemporal information,
reducing computational complexity but still capturing the



Fig. 2: The visualization of the MEGNet architecture, taken in its entirety, is a comprehensive representation of the convolutional
kernel connectivity between inputs and outputs. The network initiates with a temporal convolution which is the first part of
Block 1, to acquire knowledge of frequency filters. It then proceeds to utilize a depthwise convolution, located in the second
part of Block 1, which is connected to each feature map individually, to learn frequency-specific spatial filters. The separable
convolution (Block 2), is a combination of a depthwise convolution that learns a temporal summary for each feature map
individually, and a pointwise convolution that learns how to optimally mix the feature maps together.

distinct neural activity, gradiometer channels were specifically
chosen to capture the changes in the magnetic field gradient.

In consideration of the research objective, distinct event
pairs were defined as the foundation for binary classification
tasks. Subsequently, the dataset corresponding to each event-
pair was extracted from the pre-processed datasets. Min-max
scaling was utilized for data normalization, which mapped the
values to the range of -1 to 1. This normalization process
was implemented to prevent variations in data magnitudes
from impacting the model’s performance. The data was also
reshaped to conform to the input format of the models,
which includes dimensions denoting trials, channels, and time
samples. Moreover, an additional dimension representing the
number of MEG electrodes (channels) was included to ensure
compatibility with the MEGNet, Deep and Shallow ConvNets
architecture.

For the intra-subject learning, the epochs from both ses-
sions were combined to create a comprehensive dataset for
each subject. This merging process aimed to maximize data
utilization as the amount of available data is limited in our
case; we have 200 trials in each session and capture a broader
range of variability. For each subject, the combined epochs
were initially split in the ratio of approximately 95% training

and 5% testing subsets. Within the training subset, a further
subdivision was made to create a validation set.

To address the potential issue of class imbalance when
creating the splits, a stratification sampling[20] technique is
used to ensure that each class or category is represented
proportionally in the sample. It involves dividing the dataset
into subgroups based on the classes and then sampling from
each stratum in a way that maintains the original class
distribution, thereby reducing bias in the model assessment.
This approach facilitates a more accurate representation of the
model’s performance.

The EEGNet model used the filter size of the first convo-
lutional block as half of the sampling frequency rate. In this
study, a grid search implementation was employed with vari-
ous combinations of kernel length and dropout. By attaining
the maximum training epochs or through the implementation
of the early stopping strategy, the optimal weights of the
network were recorded. The utilization of model checkpoints
was to preserve the superior performing model as determined
by the validation accuracy, while concurrently achieving an
equilibrium between bias and variance. This feat was accom-
plished through a comprehensive evaluation process through
assiduous experimentation and scrupulous analysis.

Several experiments were conducted to compare the neural



networks from the EEGNet family (Shallow ConvNet, Deep
ConvNet and E/MEGNet) [21][8][12],[22]. For experimental
subjects who partook in various experiments on different days,
the information was managed as though distinct subjects had
taken part instead, which is referred to as an independent
days configuration. We aimed to rank the neural networks;
therefore, to evaluate the model‘s capacity to classify various
event pairs, the accuracy score is calculated from the model‘s
ability to correctly classify binary pair-wise configuration.

E. Significance investigation of data

The significance of the data variance was investigated. Two
subjects were randomly selected to employ the t-test and
compute the p-value to scrutinize the divergence between
them. The resulting t-statistic value of -0.023 and the asso-
ciated p-value of 0.982 provide insight into our assessment.
The t-statistic measures the level of differentiation between
groups, and in this study, a value near zero indicates limited
distinction. On the other hand, the p-value represents the
probability of observing such a discrepancy by chance. In
this case, the high p-value suggests that the observed variance
among subjects falls within the range of random fluctuations,
indicating a lack of statistically significant differentiation.

III. RESULTS

In pursuit of understanding and harnessing the capabilities
of MEGNet, we embarked on a comprehensive comparison of
three distinct networks MEGNet (derived from EEGNet), Shal-
lowConvNet, and DeepConvNet. To comprehend the strengths
and limitations of these networks in the context of event
prediction using MEG data. Our investigation delved into the
nuanced differences between EEGNet (MEGNet), Shallow-
ConvNet, and DeepConvNet. These networks, each with its
unique configuration, were put to the test to gauge their predic-
tive prowess. The architecture variations spanned from MEG-
Net‘s specialized depth-wise and separable convolutions to the
simpler yet potent design of ShallowConvNet and the more
complex layers of DeepConvNet. To unravel the networks’ true
potential, we cautiously evaluated their performance across a
set of event pairs. These pairs, encompassing diverse cognitive
tasks, provided a robust and varied ground for assessment.
The selection of event pairs and their corresponding functions
added a layer of specificity to the evaluation, ensuring a
comprehensive exploration of the networks’ capabilities.

The experiment involved careful tuning of hyperparameters
to optimize the model‘s performance. Through meticulous
experimentation with different values of kernel length and
dropout rate, we discerned the configurations that led to the
highest accuracy score. This iterative process underscored
the importance of hyperparameter tuning in fine-tuning the
model‘s predictive capabilities. As we turned our attention
to individual event pairs, we observed nuanced variations
in the model‘s performance. All the neural network models
showcased varying degrees of accuracy scores across different
event pairs. These results provided a deeper understanding

TABLE II: The classification accuracy (%) for Hand vs Feet
(H-F)

Models
SVM (FB1) MEGNet ShallowConvNet DeepConvNet

Freq. band 8-12 Hz 1-40 Hz 1-40 Hz 1-40 Hz
Sub 1 58 70 50 60
Sub 3 74 70 80 70
Sub 4 50 70 60 80
Sub 6 47 60 50 70
Sub 7 51 50 70 60
Sub 9 51 50 80 50
Sub 11 47 50 50 50
Sub 12 56 60 80 70
Sub 13 49 70 80 50
Sub 14 50 50 70 50
Sub 15 80 70 90 50
Sub 16 57 60 70 60
Sub 17 55 60 40 50
Sub 18 53 70 70 60
Sub 19 54 90 50 80
Sub 20 64 50 60 50
Mean 56 62.5 65.625 60
Std 9.37 11.25 14.59 10.95

TABLE III: The classification accuracy (%) for Hand vs
Subtraction (H-S)

Models
SVM (FB1) MEGNet ShallowConvNet DeepConvNet

Freq. band 8-12 Hz 1-40 Hz 1-40 Hz 1-40 Hz
Sub 1 53 60 80 50
Sub 3 95 80 90 80
Sub 4 50 70 40 70
Sub 6 50 60 80 70
Sub 7 62 70 60 50
Sub 9 83 50 60 50
Sub 11 91 80 90 60
Sub 12 51 50 80 50
Sub 13 86 60 80 50
Sub 14 50 50 70 60
Sub 15 56 50 70 50
Sub 16 57 70 80 50
Sub 17 71 50 60 60
Sub 18 88 80 90 60
Sub 19 56 80 70 60
Sub 20 90 60 100 50
Mean 68.06 63.75 75 57.5
Std 17.57 12.0 15.05 9.30

of the brain‘s responses to different cognitive tasks, shedding
light on the intricacies that define our cognitive experiences.

Tables 2-5 present the accuracy score of the SVM classifier
reported by [10] along with the performance of three distinct
neural network architectures: MEGNet, ShallowConvNet, and
DeepConvNet, across six pair-wise binary classification tasks
involving motor and cognitive imagery-based brain-computer
interfaces. Our main focus lies in understanding how each
model performs in terms of mean accuracy and the variabil-
ity of these accuracies across the tasks. When it comes to
distinguishing between hand and feet movements given in
Table II, we observed that the MEGNet model exhibited a
superior mean accuracy of 62.%, surpassing the traditional
SVM classifier‘s mean accuracy of 56%. This indicates the
potential of deep learning in decoding intricate cognitive
tasks. ShallowConvNet hovered around 65.62%, and Deep-



TABLE IV: The classification accuracy (%) for Hand vs Word
(H-W)

Models
SVM (FB1) MEGNet ShallowConvNet DeepConvNet

Freq. band 8-12 Hz 1-40 Hz 1-40 Hz 1-40 Hz
Sub 1 53 70 60 50
Sub 3 94 60 80 60
Sub 4 50 70 80 70
Sub 6 54 90 60 80
Sub 7 69 70 60 50
Sub 9 67 60 80 70
Sub 11 86 50 80 60
Sub 12 56 60 100 50
Sub 13 90 50 100 50
Sub 14 62 50 50 60
Sub 15 65 80 80 50
Sub 16 62 70 70 70
Sub 17 57 60 60 50
Sub 18 88 50 60 50
Sub 19 61 60 60 60
Sub 20 91 80 90 50
Mean 69.06 64.37 73.125 58.12
Std 15.35 12.09 15.37 9.81

TABLE V: The classification accuracy (%) for Feet vs Word
(F-W)

Models
SVM (FB1) MEGNet ShallowConvNet DeepConvNet

Freq. band 8-12 Hz 1-40 Hz 1-40 Hz 1-40 Hz
Sub 1 61 60 60 70
Sub 3 70 80 90 70
Sub 4 50 70 90 50
Sub 6 58 80 80 90
Sub 7 87 100 80 70
Sub 9 50 60 90 50
Sub 11 83 50 70 50
Sub 12 68 50 70 50
Sub 13 91 50 70 60
Sub 14 54 70 50 50
Sub 15 69 70 80 50
Sub 16 62 60 70 70
Sub 17 55 80 80 80
Sub 18 45 50 60 60
Sub 19 57 60 80 70
Sub 20 87 80 90 50
Mean 65.43 66.87 75.62 61.87
Std 14.66 14.47 12.09 12.76

ConvNet stood at about 60%. This translates to MEGNet and
ShallowConvNet performing fairly well, whereas DeepCon-
vNet lagged slightly behind. What‘s interesting is that while
ShallowConvNet scored higher on average, MEGNet showed
more consistent accuracy results across different scenarios.
In distinguishing hand movements from mental subtractions
given in Table III, MEGNet exhibited an average accuracy
of 63.75%, outperforming the SVM classifier with a mean
accuracy of 56%, ShallowConvNet settled at around 75%, and
DeepConvNet emerged as the leader with roughly 57.5%. This
time, ShallowConvNet took the lead with its higher average
accuracy and a moderate level of stability. ShallowConvNet
remained steady, but MEGNet demonstrated consistency in its
performance. In the case of foot movements versus mental sub-
tractions given in Table VI, MEGNet maintained an average
accuracy of approximately 65.62%, ShallowConvNet stayed

TABLE VI: The classification accuracy (%) for Feet vs Sub-
traction (F-S)

Models
SVM (FB1) MEGNet ShallowConvNet DeepConvNet

Freq. band 8-12 Hz 1-40 Hz 1-40 Hz 1-40 Hz
Sub 1 51 80 80 70
Sub 3 69 50 90 60
Sub 4 50 70 60 70
Sub 6 57 80 80 50
Sub 7 66 80 60 50
Sub 9 75 80 80 80
Sub 11 85 50 70 50
Sub 12 59 60 60 70
Sub 13 87 60 60 50
Sub 14 55 50 80 50
Sub 15 75 50 100 50
Sub 16 70 50 80 60
Sub 17 70 70 70 100
Sub 18 64 50 70 50
Sub 19 63 80 60 80
Sub 20 91 70 90 80
Mean 67.93 65.62 74.37 63.75
Std 12.42 12.63 12.63 15.43

TABLE VII: The classification accuracy (%) for Subtraction
vs Word (S-W)

Models
SVM (FB1) MEGNet ShallowConvNet DeepConvNet

Freq. band 8-12 Hz 1-40 Hz 1-40 Hz 1-40 Hz
Sub 1 51 70 70 50
Sub 3 74 70 80 50
Sub 4 49 60 70 50
Sub 6 53 80 80 80
Sub 7 58 70 50 70
Sub 9 70 60 60 50
Sub 11 90 80 70 50
Sub 12 63 70 50 50
Sub 13 57 70 50 60
Sub 14 65 50 60 30
Sub 15 59 60 60 50
Sub 16 72 80 80 70
Sub 17 47 80 70 60
Sub 18 60 50 50 80
Sub 19 62 80 50 60
Sub 20 77 50 50 50
Mean 62.93 67.5 62.5 56.87
Std 11.43 11.25 11.83 13.02

around 74.34%, and DeepConvNet reached an average of
about 63.75%. MEGNet displayed consistent accuracy results
and ShallowConvNet held its ground, while DeepConvNet
showed a bit more variation in its performance. While distin-
guishing hand movements from imagined words given in Table
IV, MEGNet achieved an average accuracy of around 64.37%,
ShallowConvNet peaked at roughly 73.12%, and DeepCon-
vNet settled at around 58.12%. ShallowConvNet claimed the
highest average accuracy, yet MEGNet and DeepConvNet
seemed to trade some accuracy for consistency. For foot
movements from imagined words given in Table V, MEGNet
showcased an average accuracy of 66.87%, ShallowConvNet
rose to around 75.62%, and DeepConvNet lagged a bit at
61.87%. ShallowConvNet shone brightly in terms of both
accuracy and stability, while MEGNet maintained a compet-
itive edge. Lastly, in the case of mental subtractions versus



imagined words given in Table VII, MEGNet stayed around
67.5%, ShallowConvNet hovered at 62.5%, and DeepConvNet
scored around 56.87%. MEGNet demonstrated stable perfor-
mance, ShallowConvNet retained its accuracy with moderate
fluctuations, and DeepConvNet showcased a wider range of
results. When comparing the current research results with the
previous work conducted by the dataset author [10], where
a Support Vector Machine (SVM) classifier was employed,
notable differences and advancements become apparent. In the
previous study, the SVM classifier achieved accuracy levels
that ranged from approximately 50% to 95% across various
cognitive event pairs. Interestingly, the current deep learning
models, including MEGNet, ShallowConvNet, and DeepCon-
vNet, exhibited competitive or even improved accuracy in
many cases, indicating the potential for neural networks to
outperform traditional feature extraction methods and machine
learning classifiers in capturing intricate patterns within MEG
data.

IV. DISCUSSION

Previous studies [23][10] have reported significant classifier
performance at the individual level, which was reliant on dra-
matic feature extraction and used multivariate pattern analysis
to decode MEG signals. Conversely [7] used a linear discrim-
inant analysis (LDA) classifier with 5-fold cross-validation
to classify and evaluate the brain response to visual stimuli.
In their research [24] used EEGNet to categorize objects,
specifically faces, tools, animals, and scenes captured from
MEG data with very high levels of accuracy in both binary
and multi-class classification settings. The prevailing challenge
however lies in the decoding of motor tasks from cognitive
imagery using the high spatial and temporal precision of MEG,
leading towards identifiable areas responsible for each related
task; an objective that is addressed in our current study.

The consistency of our results with the previous litera-
ture [10] proved the capabilities of deep learning models to
perform vast feature extraction and decoding of motor tasks
from cognitive imagery in MEG signals without the use of
additional algorithms such as the Common Spatial Pattern
(CSP) [10] or Independent Component Analysis (ICA) [25].
The study reveals that the classification performance of the
EEGNet-inspired MEGNet model and ShallowConvNet were
similar across the subjects achieving high accuracy levels,
especially in tasks that involve distinguishing between motor
and cognitive imagery. This propensity for accuracy could be
attributed to its shallow structure that enables efficient extrac-
tion of key features. However, ShallowConvNet also exhibits
more variability, which suggests that its performance might
be sensitive to specific task characteristics. ShallowConvNet
efficiently captures prominent features from MEG signals but
may struggle with capturing nuanced patterns present in more
complex tasks. The MEGNet architecture allows for more
comprehensive pattern extraction, capturing both spatial and
temporal characteristics of MEG signals, making it a suitable
choice for various MEG tasks. In contrast, DeepConvNet
displayed poorer performance showcasing also the highest

variability of all the models, highlighting its sensitivity to task 
complexity and architecture parameters. DeepConvNet, as its 
name suggests, adopts a more complex architecture with a 
greater number of layers. This suggests that DeepConvNet 
requires more data to be trained effectively than MEGNet. 
These observations emphasize the importance of a balanced 
consideration between model performance and stability in the 
context of brain-computer interface applications.

V. CONCLUSIONS

In the present study, we conducted a comprehensive analysis 
of three deep neural network models, namely MEGNet, Shal-
lowConvNet, and DeepConvNet on MEG signal classification. 
The comparison was conducted on a dataset containing motor 
and cognitive imagery tasks. We performed pair-wise decoding 
of cognitive and motor tasks. Through an extensive evaluation 
of accuracy and stability, we provide valuable insights into 
the strengths and limitations of each model. Our findings 
underscore the significance o f  t he t r ade-off b e tween accuracy 
and stability in model selection for these applications. The 
MEGNet model shows consistent performance and generalizes 
well across paradigms compared to ConvNet. It also performs 
comparably to the reference algorithms even with limited 
training data across all tested paradigms. ShallowConvNet 
excels in terms of accuracy, although its performance varies 
with task intricacies. DeepConvNet, while occasionally com-
petitive, exhibits more significant v a riability. I  n  o  u r study, 
MEGNet exhibited an average accuracy of 64.37% (± 3%), 
positioning it slightly below the performance of other es-
tablished models like ShallowConvNet. Despite this, it is 
essential to underscore the unique effectiveness and advantages 
offered by MEGNet. The model’s capabilities may extend 
beyond a singular accuracy metric, showcasing strengths in 
specific scenarios or applications. Moreover, it is imperative to 
acknowledge the limitations inherent in MEGNet. Recognizing 
these limitations provides valuable insights and perspectives 
for future research and enhancement. By presenting a nuanced 
understanding of both the strengths and limitations, we aim to 
foster a comprehensive evaluation of MEGNet’s applicability 
in diverse contexts. This study serves as a stepping stone for 
further exploration and refinement o f  M E GNet’s p o tential in 
neuroimaging applications.
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