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We study the distributed facility location problem, where a set of agents with positions on the 
line of real numbers are partitioned into disjoint districts, and the goal is to choose a point 
to satisfy certain criteria, such as optimize an objective function or avoid strategic behavior. A 
mechanism in our distributed setting works in two steps: For each district it chooses a point 
that is representative of the positions reported by the agents in the district, and then decides 
one of these representative points as the final output. We consider two classes of mechanisms: 
Unrestricted mechanisms which assume that the agents directly provide their true positions as 
input, and strategyproof mechanisms which deal with strategic agents and aim to incentivize 
them to truthfully report their positions. For both classes, we show tight bounds on the best 
possible approximation in terms of several minimization social objectives, including the well-

known average social cost (average total distance of agents from the chosen point) and max cost 
(maximum distance among all agents from the chosen point), as well as other fairness-inspired 
objectives that are tailor-made for the distributed setting, in particular, the max-of-average and 
the average-of-max.

1. Introduction

The theory of social choice deals with the fundamental question of how to aggregate the opinions or preferences of diverse 
individuals into a collective decision. The quality of such a social decision can be measured in several ways, such as based on 
axiomatic properties, as is usually the case in economics, or qualitative metrics, an approach mainly stemming from the literature in 
computer science. The most prominent such metric is that of distortion [47], which captures precisely the (in)efficiency of a social 
choice rule, or a class of such rules that often operate under some restrictions, such as the lack of expressive elicitation of the 
preferences of the agents.

The distortion of social choice rules (or mechanisms) has been a focal point of research over the past decade, for many different 
settings; see the recent survey of Anshelevich et al. [8] for an overview. The vast majority of previous works assume a basic setting 
in which a set of agents have cardinal (i.e., numerical) preferences over a set of possible outcomes (alternatives), and the goal is to 
quantify the best possible distortion of mechanisms that are given as input limited information about the preferences of the agents 

✩ This paper unifies and partially extends earlier versions that appeared in Proceedings of the 14th International Symposium on Algorithmic Game Theory [27] and 
Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems [31].
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(usually rankings that are consistent with the cardinal values) in terms of the social welfare objective, the total value of the agents for 
the chosen outcome [7,12,21,33].

In many cases, however, the situation is not that simple. For example, in elections, the agents (now voters) are naturally or 
artificially partitioned into districts, which elect their representatives, and based on these representatives only a final winner is 
chosen. More generally, the decision-making process is often distributed, in the sense that decisions are first made at a local level, 
among disjoint sets of agents, and then these decisions are aggregated into a collective outcome. These types of situations are not 
captured by the simple setting laid out above, and bring forward important challenges and complications when measuring the 
efficiency of social choice mechanisms.

To capture problems of a more complex nature like the ones mentioned above, Filos-Ratsikas et al. [30] initiated the study of 
the distortion in distributed social choice, where decisions are made by mechanisms that operate as follows: The mechanism first 
chooses a representative alternative for each district according to a local election with the agents of the district as voters, and then 
chooses one of the representatives as the winner. In their work, Filos-Ratsikas et al. [30] considered a setting with agents that have 
normalized cardinal valuations over the possible outcomes. In follow-up work, Anshelevich et al. [9] studied the same question in 
the very popular metric social choice setting, which has dominated the literature of the distortion over the years. In this setting, agents 
and alternatives are points on a metric space, and distances capture either physical or ideological distances along different axes. 
Anshelevich et al. [9] explored the possibilities and limitations in the design of distributed mechanisms by showing (almost) tight 
bounds on their distortion, not only for the social cost (total distance), but also for several other objectives which are appropriate 
for the distributed setting; in particular, they also consider the maximum cost of any agent, the maximum of the sum of costs of the 
agents in each district, and the sum of the maximum costs of the agents in each district.

Importantly, the work of Anshelevich et al. [9] only considers a discrete social choice setting, in which there is a finite set of 
alternatives over which the agents are required to choose. Many real-world problems are better modeled as settings where there 
is a continuum of alternatives (e.g., captured by the line of real numbers). Traditionally, this setting has become known as facility 
location [48] and its centralized variant is one of the most well-studied topics in social choice theory; see the recent survey of Chan 
et al. [16] for a detailed overview. In this paper, we study the distributed variant of the continuous setting. We consider two types of 
mechanisms: (a) mechanisms that are only constrained by the fact that they operate in a distributed environment, and (b) mechanisms 
that are also constrained to be strategyproof, i.e., they do not provide incentives to the agents to lie about their preferences. We show 
tight bounds on the distortion of distributed mechanisms within these two classes in terms of (variations of) the four social objectives 
considered by Anshelevich et al. [9] as mentioned above. We highlight the distributed facility location setting that we focus on, as 
well as our results, in more detail below.

1.1. Setting and results

We consider a facility location setting with a set of agents that are positioned in the line of real numbers (capturing 1-Euclidean 
preferences) and are partitioned into disjoint districts. The composition of the districts is fixed and independent of the positions of the 
agents. In general, the districts are exogenous and could be assembled based on geographical locations that might be different from 
the positions of the agents on the line, as the latter may refer to opinions about an issue. As an example, consider the case where the 
position of the facility corresponds to the time at which an online meeting between groups of agents located in different cities must 
be scheduled. Here, the districts consist of agents in the same city, while the positions of the agents on the line correspond to their 
ideal times for holding the meeting.

A distributed mechanism takes as input the positions of the agents and outputs a single point of the line where a public facility 
is to be located. This decision is made as follows: For each district, the mechanism chooses a location that is representative of the 
positions of the agents therein. Afterwards, it chooses the output to be one of the locations that represent the districts. The mechanism 
is distributed in the sense that the choice of the representative location of each district depends only on the positions reported by the 
agents that belong to the district. In the meeting scheduling example presented above, each district (consisting of agents located in 
the same city) jointly proposes a candidate meeting time as a function of the personal ideal times of the agents therein, and then one 
among these candidate times is chosen as the final one for the meeting.

We design deterministic distributed mechanisms that satisfy various criteria of interest and achieve the best possible distortion 
bounds. First, we aim to design distributed mechanisms to approximately optimize social objectives that are functions of the distances 
between the chosen locations and the positions of the agents. Following the work of Anshelevich et al. [9], we focus on the following 
objectives:

• The average distance of the agents (Average cost).

• The maximum distance among all agents (Max cost).

• The average, over all districts, maximum agent distance in each district (Average-of-Max cost).

• The maximum, over all districts, average agent distance in each district (Max-of-Average cost).

We consider both the class of unrestricted mechanisms and the class of strategyproof mechanisms (mechanisms that do not incen-

tivize the agents to misreport their locations). We show tight bounds on the best possible distortion of mechanisms in these classes 
for all aforementioned objectives of interest, which are all small constants; this showcases that the distributed nature of mechanisms 
in our setting leads to higher inefficiency compared to centralized mechanisms, but not by much. The precise bounds are shown in 
2

Table 1. Quite interestingly, and perhaps unexpectedly, our unrestricted mechanism for the Average-of-Max objective is optimal, that 
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Table 1

Overview of our tight distortion bounds for deterministic distributed mecha-

nisms.

Unrestricted Strategyproof

Average 2 (Section 3.1) 3 (Section 3.2)

Max 2 (Section 4) 2 (Section 4)

Average-of-Max 1 (Section 5.1) 1 +
√
2 (Section 5.2)

Max-of-Average 2 (Section 6.1) 1 +
√
2 (Section 6.2)

is, it achieves a distortion of 1. This demonstrates that, for this particular objective, the distributed nature of the decision making 
does not influence the quality of the decision at all, and stands in contrast to the results of Anshelevich et al. [9] for the same ob-

jective in the discrete setting. Our strategyproof mechanisms are designed by carefully composing centralized statistics mechanisms 
for choosing the district representatives and the final location; in particular, depending on the objective at hand, we appropriately 
choose the values of two parameters 𝑝 and 𝑞𝑑 to define mechanisms that work by choosing the position of the 𝑞𝑑 -th agent in a district 
𝑑 as its representative, and then select the 𝑝-th representative as the output location.

1.2. Related work

The distortion was originally defined by Procaccia and Rosenschein [47] to quantify the loss in social welfare due to social choice 
mechanisms having access only to preference rankings over the possible outcomes, rather than to the complete cardinal structure of 
the preferences. The distortion of mechanisms has been studied for several social choice problems, including single-winner voting, 
multi-winner voting, participatory budgeting, and matching in both the normalized utilitarian setting [10,12,14,21,28], as well as 
the metric setting [6,7,15,17,33,38,39]. Recently, the notion of the distortion has been more broadly interpreted as capturing the 
deterioration of an aggregate objective due to limited information, giving rise to works on communication complexity [43,44], query 
complexity [2–4,42], and other tradeoffs between information and distortion [1], as well as the distortion of distributed mechanisms 
that we study in the present paper [9,30,51]. We refer the reader to the survey of Anshelevich et al. [8] for a detailed exposition.

The literature on strategyproof facility location is also rather extensive. Procaccia and Tennenholtz [48] were the first to study 
strategyproof facility location problems on the line as part of their agenda on approximate mechanism design without money. Since 
then, several variants of the problem have been proposed and studied, including settings in which there are several facilities to locate 
[32,40,41], the space of possible locations is restricted [26,36,37,49], the agents have heterogeneous preferences over the facilities 
[5,25,52], only some of the available facilities can be located [19,24], or the aim is to optimize different objectives [13,29,53]. We 
refer the reader to the survey of Chan et al. [16] for more details.

With very few exceptions, the aforementioned works on strategyproof facility location problems focus on the case where the agents 
are positioned on a line. Preferences induced by the line metric are often referred to as 1-Euclidean and have been instrumental in 
the development of some of the most fundamental models studied in economics [20,35], psychology [18], political science [50], and 
computer science [23]. The pioneering ideas of Hotelling [35] use the (continuous) line to explain the placement of firms on spatial 
markets, where the space is either physical, or might be determined by the characteristics of consumers or products. Downs [20]

then refined this model to explain the convergence of political party members towards the same points along an ideological axis, 
especially in bipartisan elections. In the model of Downs [20], the line can capture any political issue, such as the government’s 
intervention in the economy, ranging from full control to very little or no intervention (see also [50]). As another example captured 
by 1-Euclidean preferences, consider the question of how much environmental issues should affect the implementation of a policy, 
with extreme left corresponding to the opinion that “environmental issues should have no effect on the policy” and extreme right 
corresponding to the opinion that “if the policy has any effect on the environment whatsoever, it should not be implemented”.

Generally speaking, while more general metric spaces allow for the definition of more fine-grained preferences along several 
dimensions, the (continuous) line metric is quite often expressive enough to accurately capture preferences on specific issues that 
might be put to a vote. From a purely social choice perspective, 1-Euclidean preferences have also attracted attention since they are 
simultaneously single-peaked and single-crossing, thus leading to several attractive properties from an axiomatic and a computational 
standpoint (e.g., see [18,22,34]).

2. Preliminaries

An instance of our problem is a tuple 𝐼 = (𝑁, 𝐱, 𝐷), where

• 𝑁 is a set of 𝑛 agents.

• 𝐱 = (𝑥𝑖)𝑖∈𝑁 is a vector containing the position 𝑥𝑖 ∈ℝ of agent 𝑖 on the line of real numbers.

• 𝐷 = {𝑑1, ..., 𝑑𝑘} is a set of 𝑘 ≥ 1 given districts. Each district 𝑑 ∈ 𝐷 contains a set 𝑁𝑑 ⊆ 𝑁 of agents such that 𝑁𝑑 ∩𝑁𝑑′ = ∅
and 

⋃
𝑑∈𝐷 𝑁𝑑 =𝑁 . By 𝑛𝑑 = |𝑁𝑑 | we denote the number of agents in 𝑑; when 𝑛𝑑 ∶= 𝜆 ∶= 𝑛∕𝑘 for every 𝑑 ∈𝐷, we say that the 

districts are symmetric.

A distributed mechanism 𝑀 is used to decide the location of a facility based on the positions reported by the agents and the composition 
3

of the districts. In particular, given an instance 𝐼 , a distributed mechanism works by implementing the following two steps:
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• Step 1: For each district 𝑑 ∈ 𝐷, using only the positions of the agents in 𝑁𝑑 , the mechanism chooses a representative location

𝑦𝑑 ∈ℝ for the district.

• Step 2: Given the size and the representative locations of the districts, the mechanism outputs a single location 𝑀(𝐼) ∈ {𝑦𝑑}𝑑∈𝐷

as the winner.

If a location 𝑧 is chosen, then the distance 𝛿(𝑥𝑖, 𝑧) = |𝑥𝑖 − 𝑧| between the position 𝑥𝑖 of agent 𝑖 and 𝑧 is the individual cost of agent 𝑖
for 𝑧.

Remark 2.1. Embedded in the definition of distributed mechanisms are the following two properties. First, distributed mechanisms 
are anonymous over districts, meaning that for two districts in which the (reported) positions of the agents are identical, the mech-

anism will output the same location as the representative. Second, the mechanism is independent over districts, meaning that the 
representative chosen for a district 𝑑 is independent not only of the reported positions of agents in other districts, but also of the 
number of other districts and their sizes. These assumptions are necessary for our lower bounds to work. At the same time, they 
are also (implicitly) present in previous works on distributed distortion [30,9], and capture the essence of the information loss in 
distributed decision making.

2.1. Social objectives and strategyproofness

We want to design mechanisms that output locations which are efficient according to a social objective. Let 𝑧 ∈ℝ be any location. 
We consider the following four social minimization objectives:

• The Average cost (or average social cost) of location 𝑧 is the average total individual cost of all agents for 𝑧:

1
𝑛

∑
𝑖∈𝑁

𝛿(𝑥𝑖, 𝑧) =
1
𝑛

∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑥𝑖, 𝑧).

• The Max cost of location 𝑧 is the maximum individual cost over all agents for 𝑧:

max
𝑖∈𝑁

𝛿(𝑥𝑖, 𝑧) = max
𝑑∈𝐷

max
𝑖∈𝑁𝑑

𝛿(𝑥𝑖, 𝑧).

• The Average-of-Max cost of location 𝑧 is the average sum over each district of the maximum individual cost therein:

1
𝑘

∑
𝑑∈𝐷

{
max
𝑖∈𝑁𝑑

𝛿(𝑥𝑖, 𝑧)
}

.

• The Max-of-Average cost of location 𝑧 is the maximum over each district of the average total individual cost therein:

max
𝑑∈𝐷

{
1
𝑛𝑑

∑
𝑖∈𝑁𝑑

𝛿(𝑥𝑖, 𝑧)
}

.

To simplify our notation, whenever the social objective is clear from context, we will use cost(𝑧|𝐼) to denote the cost of 𝑧 ∈ ℝ
according to the objective function at hand in instance 𝐼 . Whenever 𝐼 is clear from context, we will drop it from notation and simply 
write cost(𝑧); this will mostly be done in the proofs of our upper bounds.

Another goal is to design mechanisms that are resilient to strategic manipulation, that is, they do not allow the agents to unilat-

erally affect the outcome in their favor (i.e., lead to a location with smaller individual cost) by reporting false positions. Formally, 
a mechanism is strategyproof if for any pair of instances 𝐼 = (𝑁, (𝐱−𝑖, 𝑥𝑖), 𝐷) and 𝐽 = (𝑁, (𝐱−𝑖, 𝑥′𝑖), 𝐷) that differ in the position of a 
single agent 𝑖, it holds that 𝛿(𝑥𝑖, 𝑀(𝐼)) ≤ 𝛿(𝑥𝑖, 𝑀(𝐽 )).

2.2. Distortion of mechanisms

The distortion of a distributed mechanism 𝑀 with respect to some social objective (which defines the cost of each possible 
location) is the worst case (over all instances) of the ratio between the cost of the location chosen by the mechanism and the 
minimum cost of any location:

sup
𝐼=(𝑁,𝐱,𝐷)

cost(𝑀(𝐼)|𝐼)
min𝑧∈ℝ cost(𝑧|𝐼)

By definition, the distortion of is always at least 1. Our goal is to design distributed mechanisms that have an as low distortion as 
possible with respect to the social objectives defined above. We will consider both unrestricted mechanisms which assume that the 
4

agents act truthfully, as well as strategyproof mechanisms which aim to avoid strategic manipulations.
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2.3. Useful observations

Before we proceed with the presentation of our main technical results in the upcoming sections, we first state some useful 
properties. The bounds on the distortion of some of our mechanisms will follow by characterizing worst-case instances, and for that 
we will need the inequality

𝛼 + 𝛾

𝛽 + 𝛾
<

𝛼

𝛽
, (1)

which holds for any 𝛼 > 𝛽 ≥ 0 and 𝛾 > 0.

Another useful observation is that any distributed mechanism with finite distortion with respect to any of the social objectives that 
we consider must be cardinally unanimous. Formally, a mechanism is cardinally-unanimous if it chooses the representative location 
of a district to be 𝑧 whenever all agents in the district are positioned at 𝑧.

Lemma 2.2. Any distributed mechanism that achieves finite distortion with respect to any social objective 𝐹 ∈ {Average, Max, Average-of-

Max, Max-of-Average} must be cardinally-unanimous.

Proof. Let 𝑀 be a distributed mechanism that is not cardinally-unanimous. Consequently, there must exist a location 𝑧 such that 
when all the agents of a district are positioned at 𝑧, the mechanism decides the representative location of the district to be some 
𝑦 ≠ 𝑧. Now, consider an instance in which all agents (no matter which district they belong to) are positioned at 𝑧. Given the 
behavior of the mechanism, 𝑦 is the representative location of all districts, and thus it must be the winner. However, cost(𝑧) = 0 and 
cost(𝑦) > 0 for any social objective 𝐹 , and thus the distortion is infinite. So, to achieve finite distortion, any mechanism must be 
cardinally-unanimous. □

We next show that each member of a class of intuitive distributed mechanisms is strategyproof. Consider an ordering of the 
districts according to their representative locations (from left to right on the line), i.e., 𝑦𝑑 ≤ 𝑦𝑑+1 for any 𝑑 ∈ [𝑘 − 1], and assign 
weight 𝛼𝑑 ≥ 0 to each district 𝑑. Fix 𝑞𝑑 ∈ [𝑛𝑑 ] for any district 𝑑. Fix 𝑡 ∈ (0, 

∑
𝑑 𝛼𝑑 ] and let 𝑝(𝑡, (𝛼𝑑 )𝑑 ) be the maximum 𝓁 ∈ [𝑘]

such that 
∑𝓁−1

𝑑=1 𝛼𝑑 < 𝑡. The 𝑝(𝑡, (𝛼𝑑 )𝑑 )-Statistic-of-𝑞𝑑 -Statistic mechanism works as follows: It first chooses the representative location 
of each district 𝑑 to be the position of the 𝑞𝑑 -th ordered agent therein, and then outputs the 𝑝-th ordered representative location 
as the winner. Whenever the district weights are 𝛼𝑑 = 1 for every district 𝑑, we have that 𝑝 = ⌈𝑡⌉, and we will thus simplify 
our terminology and refer to these mechanisms as 𝑝-Statistic-of-𝑞𝑑 -Statistic; most of our strategyproof mechanisms belong to this 
subclass. For example, with unit weights, 𝑞𝑑 = ⌊(𝑛𝑑 + 1)∕2⌋ and 𝑝 = ⌊(𝑘 + 1)∕2⌋, we have a mechanism that selects the position of 
the (leftmost) median agent in each district to be its representative location and then selects the (leftmost) median representative 
location as the winner. The next lemma shows that any 𝑝(𝑡, (𝛼𝑑)𝑑 )-Statistic-of-𝑞𝑑 -Statistic mechanism is strategyproof, and will allow 
us to only focus on bounding the distortion in the next sections.

Lemma 2.3. For fixed weights 𝛼𝑑 for any district 𝑑, fixed 𝑡 ∈ [0, 
∑

𝑑 𝛼𝑑 ], and fixed 𝑞𝑑 ∈ [𝑛𝑑 ] for any district 𝑑, the 𝑝(𝑡, (𝛼𝑑)𝑑 )-Statistic-

of-𝑞𝑑 -Statistic mechanism is strategyproof.

Proof. Consider any instance 𝐼 = (𝑁, 𝐱, 𝐷) and let 𝑤 be the location chosen by the mechanism. Let 𝑖 be any agent that belongs to 
some district 𝑑 ∈𝐷 that has representative 𝑦. If the position of 𝑖 is the final winner, then 𝑖 clearly has no incentive to deviate. So, 
without loss of generality, assume that the winner is some location 𝑤 > 𝑥𝑖. Observe that to affect the outcome of the mechanism, 
agent 𝑖 must first be able to affect the representative of 𝑑. We distinguish between the following cases.

• If 𝑦 < 𝑥𝑖, then agent 𝑖 would have to report a position 𝑥′
𝑖
< 𝑦 to change the representative of 𝑑, but such a position cannot affect 

the final winner since the total weight of the representatives to the left of 𝑤 remains the same.

• If 𝑦 >𝑤, then agent 𝑖 would have to report a position 𝑥′
𝑖
> 𝑦 to change the representative of 𝑑 to 𝑥′

𝑖
. However, this again cannot 

affect the final winner as the total weight of the representatives to the left of 𝑤 has not changed.

• If 𝑦 ∈ [𝑥𝑖, 𝑤], then agent 𝑖 could report 𝑥′
𝑖
> 𝑤 and change the representative of 𝑑 to 𝑦′. If 𝑦′ ≤𝑤, then 𝑤 remains the winner 

since the total weight of the representatives to its left remains the same. If 𝑦′ > 𝑤, then the total weight of the representatives 
to the left of 𝑤 cannot increase, leading to some representative 𝑧 ≥𝑤 being chosen as the (new) winner. However, this would 
mean that the individual cost of 𝑖 does not decrease (since the winner has potentially moved farther to the right).

Hence, agent 𝑖 has no incentive to deviate, thus proving that the mechanism is strategyproof. □

3. Average social cost

We begin with the Average social cost objective, for which we show a tight bound of 2 for the class of unrestricted mechanisms, 
5

and a tight bound of 3 for strategyproof mechanisms.
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3.1. Unrestricted mechanisms

We start with the upper bound. We consider the WEIGHTED-MEDIAN-OF-TRUNCATEDAVG mechanism, which works as follows: For 
each district 𝑑, the mechanism considers a set of 𝑛𝑑∕2 agents ranging from the (𝑛𝑑∕4 + 1)-th leftmost to the (3 ⋅ 𝑛𝑑∕4)-th leftmost,1

and chooses their average as the representative location 𝑦𝑑 of the district. Then, it considers a set of locations consisting of 𝑛𝑑 copies 
of each representative location 𝑦𝑑 and chooses the median of them as the overall winner. See Mechanism 1 for a detailed description.

Mechanism 1: WEIGHTED-MEDIAN-OF-TRUNCATEDAVG.

for each district 𝑑 ∈𝐷 do

𝑆𝑑 ∶= {𝑖 ∈𝑁𝑑 ∶ 𝑖 is at least the (𝑛𝑑∕4 + 1)-th and at most the (3 ⋅ 𝑛𝑑∕4)-th leftmost agent};

𝑦𝑑 ∶=
∑

𝑖∈𝑆𝑑
𝑥𝑖|𝑆𝑑 | ;

return 𝑤 ∶= Median𝑑∈𝐷{𝑦
𝑛𝑑

𝑑
};

To bound the distortion of WEIGHTED-MEDIAN-OF-TRUNCATEDAVG, we characterize the structure of worst-case instances, where 
the distortion of the mechanism is maximized and is strictly larger than 1. For such an instance 𝐼 , let 𝑤 be the location chosen by 
the mechanism when given as input a worst-case instance, and denote by 𝑜 the optimal location; since the objective is the average 
social cost, 𝑜 is the position of the median agent (or any point between the positions of the median agents in case of an even total 
number of agents). Without loss of generality, we assume that 𝑤 < 𝑜; the case 𝑤 > 𝑜 is symmetric.

We first show that there are cases where, starting from an instance with distortion strictly larger than 1, moving particular 
agents to appropriate intervals, leads to new instances that have strictly worse distortion. This transformation will be useful when 
characterizing the worst-case instances for the mechanism.

Lemma 3.1. Let 𝐼 and 𝐽 be two instances that differ on the position of a single agent 𝑖, such that 𝑤 is the location chosen by the mechanism 
when given any of the two instances as input, and 𝑜 is the optimal location for 𝐼 . The distortion of the mechanism when given 𝐽 as input is 
strictly larger than its distortion when given 𝐼 as input in the following cases:

(a) 𝑖 is positioned at 𝑥𝑖 < 𝑜 in 𝐼 , and at 𝑥′
𝑖
∈ (𝑥𝑖, 𝑜] in 𝐽 ;

(b) 𝑖 is positioned at 𝑥𝑖 > 𝑜 in 𝐼 , and at 𝑥′
𝑖
∈ [𝑜, 𝑥𝑖) in 𝐽 .

Proof. Since the optimal location 𝑜′ for 𝐽 satisfies the inequality cost(𝑜′|𝐽 ) ≤ cost(𝑜|𝐽 ), it suffices to show that

cost(𝑤|𝐼)
cost(𝑜|𝐼) <

cost(𝑤|𝐽 )
cost(𝑜|𝐽 ) ,

which would then imply that

cost(𝑤|𝐼)
cost(𝑜|𝐼) <

cost(𝑤|𝐽 )
cost(𝑜′|𝐽 ) .

For (a), we have that 𝛿(𝑥𝑖, 𝑤) ≤ 𝛿(𝑥𝑖, 𝑥′𝑖) + 𝛿(𝑥′
𝑖
, 𝑤) by the triangle inequality, and also 𝛿(𝑥𝑖, 𝑜) = 𝛿(𝑥𝑖, 𝑥′𝑖) + 𝛿(𝑥′

𝑖
, 𝑜); recall our assump-

tion that 𝑤 < 𝑜. So,

cost(𝑤|𝐼)
cost(𝑜|𝐼) =

∑
𝑗≠𝑖 𝛿(𝑥𝑗 ,𝑤) + 𝛿(𝑥𝑖,𝑤)∑
𝑗≠𝑖 𝛿(𝑥𝑗 , 𝑜) + 𝛿(𝑥𝑖, 𝑜)

≤

∑
𝑗≠𝑖 𝛿(𝑥𝑗 ,𝑤) + 𝛿(𝑥𝑖, 𝑥

′
𝑖
) + 𝛿(𝑥′

𝑖
,𝑤)∑

𝑗≠𝑖 𝛿(𝑥𝑗 , 𝑜) + 𝛿(𝑥𝑖, 𝑥
′
𝑖
) + 𝛿(𝑥′

𝑖
, 𝑜)

.

Since the distortion of the mechanism when given 𝐼 as input is strictly larger than 1 and the distances are non-negative, we can 
apply Inequality (1) with 𝛼 =

∑
𝑗≠𝑖 𝛿(𝑥𝑗 , 𝑤) + 𝛿(𝑥′

𝑖
, 𝑤), 𝛽 =

∑
𝑗≠𝑖 𝛿(𝑥𝑗 , 𝑜) + 𝛿(𝑥′

𝑖
, 𝑜) and 𝛾 = 𝛿(𝑥𝑖, 𝑥′𝑖), to obtain

cost(𝑤|𝐼)
cost(𝑜|𝐼) <

∑
𝑗≠𝑖 𝛿(𝑥𝑗 ,𝑤) + 𝛿(𝑥′

𝑖
,𝑤)∑

𝑗≠𝑖 𝛿(𝑥𝑗 , 𝑜) + 𝛿(𝑥′
𝑖
, 𝑜)

= cost(𝑤|𝐽 )
cost(𝑜|𝐽 ) .

For (b), observe that 𝛿(𝑥𝑖, 𝑤) = 𝛿(𝑥𝑖, 𝑥′𝑖) + 𝛿(𝑥′
𝑖
, 𝑤) and 𝛿(𝑥𝑖, 𝑜) = 𝛿(𝑥𝑖, 𝑥′𝑖) + 𝛿(𝑥′

𝑖
, 𝑜). Therefore, the desired inequality again follows by 

appropriately applying Inequality (1). □

We are now ready to show that the worst-case instance 𝐼 has the following properties:

• At least 𝑘∕2 districts have representative 𝑤 (Lemma 3.2);

• 𝑜 can be the only other district representative and all agents in such districts are positioned at 𝑜 (Lemma 3.3).

1 For simplicity, we present the mechanism assuming that the number of agents in each district is a multiple of 4; extending the description of the mechanism and 
6

the proof is straightforward.
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Lemma 3.2. In the worst-case instance 𝐼 , there are no district representatives to the left of 𝑤.

Proof. Suppose towards a contradiction that the worst-case instance 𝐼 is such that there is a district 𝑑 with representative 𝑦 < 𝑤. 
Since 𝑦 is an average of some agent positions in 𝑑, there is a set of agents 𝑆 ⊆ 𝑆𝑑 with 𝑥𝑖 ≤𝑤 for every 𝑖 ∈ 𝑆 . We move each agent 
𝑖 ∈ 𝑆 to a new position 𝑥′

𝑖
such that 𝑥𝑖 < 𝑥′

𝑖
≤ 𝑤 and the truncated average of the agents in 𝑑 becomes 𝑤. Clearly, the outcome of 

the mechanism, as well as the optimal location, remain the same in the new instance; 𝑤 is still the median representative, and the 
position of the overall median agent did not change. By Lemma 3.1(a) and since 𝑤 < 𝑜, moving any agent 𝑖 ∈ 𝑆 to 𝑥′

𝑖
≤𝑤 leads to a 

new instance with strictly larger distortion, which contradicts the fact that we start from a worst-case instance. □

Lemma 3.3. In the worst-case instance 𝐼 , besides 𝑤, the only other district representative can be 𝑜, and all agents in such districts are 
positioned on 𝑜.

Proof. Suppose towards a contradiction that the worst-case instance 𝐼 is such that there exists a district 𝑑 with representative 
𝑦 ∉ {𝑤, 𝑜}. We move every agent 𝑖 ∈ 𝑁𝑑 from 𝑥𝑖 to 𝑥′

𝑖
= 𝑜. Hence, the truncated average of the agents in 𝑑 changes from 𝑦 to 𝑜. 

By Lemma 3.2 and since 𝑤 is the (weighted) median representative, we have that at least half of the multiset defined by district 
representatives coincide with 𝑤. Consequently, the outcome of the mechanism is not affected when we move the agents of 𝑑. The 
optimal location also remains the same as the median agent location does not change. By Lemma 3.1, the distortion of the new 
instance we obtain after moving each agent 𝑖 (irrespective of whether 𝑥𝑖 < 𝑜 or 𝑥𝑖 > 𝑜) is strictly larger than the distortion of instance 
𝐼 , contradicting the fact that it is a worst-case instance. □

We also argue that it suffices to focus on the case where the worst-case instance 𝐼 consists of just two districts that are in fact 
symmetric; this will simplify the last part of our proof.

Lemma 3.4. There exists a worst-case instance with two symmetric districts, one with representative 𝑤 and one with representative 𝑜.

Proof. Consider any worst-case instance, and let 𝐷𝑤 and 𝐷𝑜 denote the sets of districts that have representative 𝑤 and 𝑜, re-

spectively. We first argue that 
∑

𝑑∈𝐷𝑤
𝑛𝑑 =

∑
𝑑∈𝐷𝑜

𝑛𝑑 . Note that since 𝑤 is a median among all copies of representatives, we have ∑
𝑑∈𝐷𝑤

𝑛𝑑 ≥
∑

𝑑∈𝐷𝑜
𝑛𝑑 . Let us assume that 

∑
𝑑∈𝐷𝑤

𝑛𝑑 >
∑

𝑑∈𝐷𝑜
𝑛𝑑 ; we will reach a contradiction by creating a new instance, with 

strictly larger distortion, that has one additional district with 
∑

𝑑∈𝐷𝑤
𝑛𝑑 −

∑
𝑑∈𝐷𝑜

𝑛𝑑 agents positioned at 𝑜. Clearly, in this new in-

stance the mechanism again outputs 𝑤, while the optimal location remains 𝑜. Since the agents in the newly added district contribute 
0 to the optimal cost and strictly greater than 0 to the social cost of 𝑤, the distortion is strictly larger.

Now, since 
∑

𝑑∈𝐷𝑤
𝑛𝑑 =

∑
𝑑∈𝐷𝑜

𝑛𝑑 and all agents in districts with representative 𝑜 are positioned at 𝑜 (by Lemma 3.3), we can 
redistribute the agents in districts with representative 𝑜 in a different set of districts, so that for any district 𝑑 ∈ 𝐷𝑤 there is a 
dedicated district 𝑑′ ∈𝐷𝑜 with 𝑛𝑑 = 𝑛𝑑′ . Note that 𝑤 and 𝑜 remain the same in this instance and so does the distortion. We can then, 
without loss of generality, limit our focus on worst-case instances with just two symmetric districts, one with representative 𝑤 and 
one with representative 𝑜. □

Having shown that it suffices to consider a worst-case instance with two symmetric districts, where district 𝑑𝑤 has representative 
𝑤 while district 𝑑𝑜 has all agents positioned at 𝑜, we now argue about the agent positions in 𝑑𝑤; recall that each district has size 
𝜆 = 𝑛∕2 in this case. Let 𝓁 and 𝑟 be the locations of the (𝜆∕4 + 1)- and 3𝜆∕4-leftmost agent, respectively, in 𝑑𝑤 (i.e., the leftmost and 
rightmost location among agents in 𝑆𝑑𝑤

). Clearly, it holds that 𝓁 ≤ 𝑤 ≤ 𝑟. We argue that 𝑟 ≤ 𝑜, and that all agents not in 𝑆𝑑𝑤
are 

either at 𝓁 or at 𝑜.

Lemma 3.5. In district 𝑑𝑤, 𝑟 ≤ 𝑜.

Proof. Suppose towards a contradiction that the worst-case instance 𝐼 is such that 𝑟 > 𝑜 in 𝑑𝑤, and thus 𝓁 < 𝑤. Let 𝐿 be the set of 
agents in 𝑆𝑑𝑤

that are positioned to the left of or at 𝑤, and 𝑅 the set of agents in 𝑆𝑑𝑤
that are positioned to the right of 𝑜. By the 

definition of 𝑤, for any set 𝑄 ⊆ 𝐿, we have

𝑤 = 2
𝜆

⎛⎜⎜⎝
∑
𝑖∈𝐿

𝑥𝑖 +
∑
𝑖∈𝑅

𝑥𝑖 +
∑

𝑖∈𝑆𝑑𝑤
⧵(𝐿∪𝑅)

𝑥𝑖

⎞⎟⎟⎠
= 2

𝜆

⎛⎜⎜⎝
∑
𝑖∈𝐿

𝑥𝑖 +
∑
𝑖∈𝑅

(𝑥𝑖 − 𝑜) +
∑
𝑖∈𝑅

𝑜+
∑

𝑖∈𝑆𝑑𝑤
⧵(𝐿∪𝑅)

𝑥𝑖

⎞⎟⎟⎠
= 2

𝜆

⎛⎜⎜ ∑
𝑥𝑖 +

∑(
𝑥𝑖 +

1|𝑄| ∑(𝑥𝑗 − 𝑜)

)
+
∑

𝑜+
∑

𝑥𝑖

⎞⎟⎟ .

7

⎝𝑖∈𝐿⧵𝑄 𝑖∈𝑄 𝑗∈𝑅 𝑖∈𝑅 𝑖∈𝑆𝑑𝑤
⧵(𝐿∪𝑅) ⎠
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Consequently, there must exist a set 𝐿< ⊆ 𝐿 such that 𝑥𝑖 +
1|𝐿<| ∑𝑗∈𝑅(𝑥𝑗 − 𝑜) ≤𝑤 < 𝑜 for every 𝑖 ∈𝐿<; if no such set exists, then the 

last expression above would be strictly larger than 𝑤. We obtain a new instance 𝐽 by moving all agents in 𝑅 from 𝑥𝑖 to 𝑥′
𝑖
= 𝑜 and 

all agents in 𝐿< from 𝑥𝑖 to 𝑥′
𝑖
= 𝑥𝑖 +

1|𝐿<| ∑𝑗∈𝑅(𝑥𝑗 − 𝑜). Clearly, 𝑤 is still the representative of 𝑑𝑤 and 𝑜 the optimal location. By 
Lemma 3.1, since all agents that moved are closer to 𝑜 in 𝐽 that in 𝐼 , 𝐽 must have distortion strictly larger than 𝐼 , a contradiction. □

Lemma 3.6. In district 𝑑𝑤, the 𝜆∕4 leftmost agents are positioned at 𝓁 and the 𝜆∕4 rightmost agents are positioned at 𝑜.

Proof. Assume otherwise and note that all these agents are not in 𝑆𝑑𝑤
and, hence, do not affect 𝑤. By repeatedly applying Lemma 3.1

and moving each agent 𝑖 with 𝑥𝑖 < 𝓁 to 𝓁 and each agent 𝑖 with 𝑥𝑖 > 𝑟 at 𝑜, we reach an instance with strictly larger distortion; a 
contradiction. □

We are finally ready to prove the main result of this section.

Theorem 3.7. For Average, the distortion of WEIGHTED-MEDIAN-OF-TRUNCATEDAVG is at most 2.

Proof. By Lemmas 3.3, 3.4 and 3.6, we have that the 2𝜆 agents in the worst-case instance 𝐼 are distributed on the line as follows: 
𝜆∕4 agents are positioned at 𝓁, 5𝜆∕4 agents are positioned at 𝑜 (𝜆 agents from 𝑑𝑜 and 𝜆∕4 agents from 𝑑𝑤), and 𝜆∕2 agents are 
positioned in [𝓁, 𝑟]. We partition the 𝜆∕2 agents in 𝑆𝑑𝑤

into two sets: 𝐿 = {𝑖 ∈ 𝑆𝑑𝑤
∶ 𝑥𝑖 ≤𝑤} and 𝑅 = {𝑖 ∈ 𝑆𝑑𝑤

∶ 𝑥𝑖 > 𝑤}. Since 𝑟 ≤ 𝑜

(due to Lemma 3.5) and 𝑤 =
∑

𝑖∈𝐿∪𝑅 𝑥𝑖 (by definition), the optimal cost is

cost(𝑜|𝐼) = 1
2𝜆

(
𝜆

4
(𝑜− 𝓁) +

∑
𝑖∈𝐿

(𝑜− 𝑥𝑖) +
∑
𝑖∈𝑅

(𝑜− 𝑥𝑖)

)
= 1

2𝜆

(
𝜆

4
(𝑜− 𝓁) + 𝜆

2
(𝑜−𝑤)

)
= 1

2𝜆

(
𝜆

4
(𝑤− 𝓁) + 3𝜆

4
(𝑜−𝑤)

)
. (2)

Similarly, the cost of the mechanism is

cost(𝑤|𝐼) = 1
2𝜆

(
𝜆

4
(𝑤− 𝓁) +

∑
𝑖∈𝐿

(𝑤− 𝑥𝑖) +
∑
𝑖∈𝑅

(𝑥𝑖 −𝑤) + 5𝜆
4
(𝑜−𝑤)

)
. (3)

By the definition of 𝑤, 
∑

𝑖∈𝐿 (𝑤− 𝑥𝑖) =
∑

𝑖∈𝑅 (𝑥𝑖 −𝑤). Also, again by definition, |𝐿| ≥ 1. If 𝑅 = ∅, it must be the case that 𝓁 =
𝑤 = 𝑟, and the distortion is at most 5∕3 as Equations (2) and (3) are simplified to cost(𝑜|𝐼) = 3(𝑜 −𝑤)∕8 and cost(𝑤|𝐼) = 5(𝑜 −𝑤)∕8, 
respectively. Hence, in the rest of the proof we will assume that |𝑅| ≥ 1.

Since 𝑥𝑖 ≤ 𝑜 for each agent 𝑖 ∈𝑅 and |𝐿| + |𝑅| = 𝜆∕2, we have∑
𝑖∈𝐿

(𝑤− 𝑥𝑖) =
∑
𝑖∈𝑅

(𝑥𝑖 −𝑤) ≤ |𝑅|(𝑜−𝑤)⇔ 𝑜−𝑤 ≥

∑
𝑖∈𝐿 (𝑤− 𝑥𝑖)
𝜆∕2 − |𝐿| .

Similarly, as 𝑥𝑖 ≥ 𝓁 for each agent 𝑖 ∈𝐿, we obtain∑
𝑖∈𝐿

(𝑤− 𝑥𝑖) ≤ |𝐿|(𝑤− 𝓁)⇔𝑤− 𝓁 ≥

∑
𝑖∈𝐿 (𝑤− 𝑥𝑖)|𝐿| .

Let 𝑜 −𝑤 =
∑

𝑖∈𝐿(𝑤−𝑥𝑖)
𝜆

2 −|𝐿| + 𝜉1 and 𝑤 − 𝓁 =
∑

𝑖∈𝐿 (𝑤−𝑥𝑖)|𝐿| + 𝜉2, where 𝜉1, 𝜉2 ≥ 0. Therefore, Equations (2) and (3) can be rewritten as

cost(𝑜|𝐼) = 1
2𝜆

(
𝜆

4

(∑
𝑖∈𝐿 (𝑤− 𝑥𝑖)|𝐿| + 𝜉2

)
+ 3𝜆

4

(∑
𝑖∈𝐿(𝑤− 𝑥𝑖)
𝜆

2 − |𝐿| + 𝜉1

))

cost(𝑤|𝐼) = 1
2𝜆

(
𝜆

4

(∑
𝑖∈𝐿 (𝑤− 𝑥𝑖)|𝐿| + 𝜉2

)
+ 5𝜆

4

(∑
𝑖∈𝐿(𝑤− 𝑥𝑖)
𝜆

2 − |𝐿| + 𝜉1

)
+ 2

∑
𝑖∈𝐿

(𝑤− 𝑥𝑖)

)
.

It is not hard to see that, unless the distortion is at most 5∕3 and the claim holds trivially, the ratio is maximized when 𝜉1 = 𝜉2 = 0. 
We can then obtain the following upper bound on the distortion.

cost(𝑤|𝐼)
cost(𝑜|𝐼) ≤

𝜆

4|𝐿| + 5𝜆
2𝜆−4|𝐿| + 2

𝜆

4|𝐿| + 3𝜆
2𝜆−4|𝐿| ≤ 2,

( )

8

where the last inequality follows since 𝜆

4|𝐿| + 5𝜆
2𝜆−4|𝐿| + 2 ≤ 2 𝜆

4|𝐿| + 3𝜆
2𝜆−4|𝐿| ⇔ (𝜆 − 4|𝐿|)2 ≥ 0. This concludes the proof. □
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We now argue that WEIGHTED-MEDIAN-OF-TRUNCATEDAVG is best possible by showing a matching lower bound of 2 on the 
distortion of all unrestricted mechanisms. To show the lower bound, we will argue about the representative locations that any 
mechanism with small distortion (less than 2) must choose when given as input particular symmetric districts. To simplify the 
presentation of our proofs, we will consider the total distance as the objective rather than the average; the ratio is exactly the same 
as the factor of 1∕𝑛 simplifies. Without loss of generality, we assume that, for any instance with two symmetric districts that have 
different representative locations, the overall winner is the leftmost of them.

Lemma 3.8. Let 𝑀 be any mechanism with distortion strictly less than 2 in terms of Average. Let 𝐼 be any instance with 𝑘 = 2𝜇 + 1
symmetric districts of size 𝜆 such that (a) the representative of 𝜇 districts is some location 𝑦1, (b) the representative of the remaining 𝜇 + 1
districts is some location 𝑦2, and (c) 𝑦1 < 𝑦2. Then,

(i) 𝑀(𝐼) = 𝑦2, and

(ii) for the representative 𝑧 of any district in which

•
𝜆

2 + 𝜆

4(𝜇+1) agents are positioned at some 𝑧1,

•
𝜆

2 − 𝜆

4(𝜇+1) agents are positioned at some 𝑧2 > 𝑧1,

it holds that 𝑧 < 𝑧1+𝑧2
2 .

Proof. We will prove the statement by induction on 𝜇.

Base case: 𝜇 = 1. For part (i), let 𝑦1 and 𝑦2 > 𝑦1 be any real numbers. Consider an instance 𝐼 with the following three districts:

• In the first district, all 𝜆 agents are positioned at 𝑦1. Due to unanimity, the representative of this district is 𝑦1.

• In the other two districts, all 𝜆 agents are positioned at 𝑦2. Due to unanimity, the representative of these districts is 𝑦2.

Clearly, the cost of the two representative locations are cost(𝑦1|𝐼) = 2𝜆(𝑦2 − 𝑦1) and cost(𝑦2|𝐼) = 𝜆(𝑦2 − 𝑦1). Since the distortion of 
𝑀 is strictly less than 2, it must be the case that the overall winner in this instance is 𝑀(𝐼) = 𝑦2.

For part (ii), let 𝑧1 and 𝑧2 > 𝑧1 be any real numbers. We will show that some location 𝑧 < 𝑧1+𝑧2
2 must be the representative of a 

district 𝑑 such that (a) 5𝜆∕8 agents are positioned at 𝑧1 and (b) 3𝜆∕8 agents are positioned at 𝑧2. Consider the following instance 𝐽
with three districts:

• In the first district, all 𝜆 agents are positioned at 𝑧1. Due to unanimity, the representative of this district is 𝑧1.

• The other two districts are identical to district 𝑑 that is described above. Let 𝑧 be the representative of these districts.

Assume towards a contradiction that 𝑧 ≥ 𝑧1+𝑧2
2 . Then, by part (i) of the statement that is proved above for the base case (which holds 

for any 𝑦1 and 𝑦2 > 𝑦1), we know that 𝑀(𝐽 ) = 𝑧. We have

cost(𝑧1|𝐽 ) = 2 ⋅ 3𝜆
8
(𝑧2 − 𝑧1) =

3𝜆
4
(𝑧2 − 𝑧1)

and

cost(𝑧|𝐽 ) = 2 ⋅ 5𝜆
8
(𝑧− 𝑧1) + 2 ⋅ 3𝜆

8
|𝑧2 − 𝑧|+ 𝜆(𝑧− 𝑧1).

Observe that cost(𝑧|𝐽 ) is an increasing function of 𝑧, no matter whether 𝑧 < 𝑧2 or 𝑧 ≥ 𝑧2. Since 𝑧 ≥ 𝑧1+𝑧2
2 ,

cost(𝑧|𝐽 ) ≥ cost

(
𝑧1 + 𝑧2

2
||||𝐽
)
= 6𝜆

4
(𝑧2 − 𝑧1).

Therefore, we have that the distortion of 𝑀 is at least 2, a contradiction.

Induction step: We will prove the statement for 𝜇 = 𝓁, assuming that it holds for 𝜇 = 𝓁 − 1. For part (i), let 𝑦1 and 𝑦2 > 𝑦1 be any 
real numbers. Consider the following instance 𝐼 with 2𝓁 + 1 districts:

• In each of the first 𝓁 districts, 𝜆

2 + 𝜆

4𝓁 agents are positioned at 𝑦1 and 𝜆

2 − 𝜆

4𝓁 agents are positioned at 𝑦2. By part (ii) of the 
induction hypothesis, the representative of these districts is some location 𝑧 ≤ 𝑦1+𝑦2

2 .

• In each of the other 𝓁 +1 districts, all 𝜆 agents are positioned at 𝑦2. Due to unanimity, the representative of these districts is 𝑦2.

By the range of possible values of 𝑧, we have

cost(𝑧|𝐼) = 𝓁 ⋅
(
𝜆

2
+ 𝜆

4𝓁

)
⋅ |𝑧− 𝑦1|+ 𝓁 ⋅

(
𝜆

2
− 𝜆

4𝓁

)
⋅ (𝑦2 − 𝑧) + (𝓁 + 1) ⋅ 𝜆 ⋅ (𝑦2 − 𝑧)

(2𝓁 + 1)(𝑦2 − 𝑦1)
9

≥ 𝜆 ⋅
2
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and

cost(𝑦2|𝐼) = 𝓁 ⋅
(
𝜆

2
+ 𝜆

4𝓁

)
⋅ (𝑦2 − 𝑦1) = 𝜆 ⋅

2𝓁 + 1
4

⋅ (𝑦2 − 𝑦1).

If the overall winner is 𝑧, then the distortion of 𝑀 is at least 2, a contradiction. Consequently, it must be the case that the overall 
winner for instance 𝐼 is 𝑀(𝐼) = 𝑦2.

For part (ii), let 𝑧1 and 𝑧2 > 𝑧1 be any real numbers, and consider the following instance 𝐽 with 2𝓁 + 1 districts:

• In the first 𝓁 districts, all 𝜆 agents are positioned at 𝑧1. By unanimity, the representative of these districts is 𝑧1.

• In each of the remaining 𝓁 + 1 districts, 𝜆2 + 𝜆

4(𝓁+1) agents are positioned at 𝑧1 and 𝜆2 − 𝜆

4(𝓁+1) agents are located at 𝑧2. Let 𝑧 be 
the representative of these districts.

Assume towards a contradiction (to part (ii) of the lemma) that 𝑧 ≥ 𝑧1+𝑧2
2 . Then, by the proof of part (i) of the induction step above 

(which holds for any 𝑦1 and 𝑦2 > 𝑦1), we know that the overall winner is 𝑀(𝐽 ) = 𝑧. By the range of possible values of 𝑧, we have

cost(𝑧1|𝐽 ) = (𝓁 + 1) ⋅
(

𝜆

2
− 𝜆

4(𝓁 + 1)

)
⋅ (𝑧2 − 𝑧1)

= 𝜆 ⋅
2𝓁 + 1

4
⋅ (𝑧2 − 𝑧1)

and

cost(𝑧|𝐽 ) = 𝓁 ⋅ 𝜆 ⋅ (𝑧− 𝑧1) + (𝓁 + 1) ⋅
(

𝜆

2
+ 𝜆

4(𝓁 + 1)

)
⋅ (𝑧− 𝑧1) + (𝓁 + 1) ⋅

(
𝜆

2
− 𝜆

4(𝓁 + 1)

)
⋅ |𝑧2 − 𝑧|

≥ 𝜆 ⋅
2𝓁 + 1

2
⋅ (𝑧2 − 𝑧1).

Therefore, the distortion of 𝑀 is at least 2, a contradiction. □

We are now ready to prove the lower bound.

Theorem 3.9. For Average, the distortion of any mechanism is at least 2 − 𝜀, for any 𝜀 > 0.

Proof. Assume towards a contradiction that there exists some 𝜀 > 0 such that a mechanism 𝑀 has distortion smaller than 2 − 𝜀.

First, we will prove that the representative location 𝑦 of a district 𝑑 in which 𝜆∕2 agents are positioned at 0 and 𝜆∕2 agents are 
positioned at 1, must satisfy 𝑦 ≥ 1∕2, as otherwise the distortion of 𝑀 would be at least 2. Assume that 𝑦 < 1∕2 and consider the 
following instance 𝐼 with two districts:

• The first district is identical to district 𝑑 as defined above.

• In the second district, all 𝜆 agents are positioned at 1. By unanimity, the representative of this district is 1.

Recall that, for any instance with two districts that have different representative locations, it is without loss of generality to assume 
that the overall winner is the leftmost of the representatives, that is, 𝑀(𝐼) = 𝑦 in our case. We have

cost(𝑦|𝐼) = 𝜆

2
⋅ |𝑦|+ 𝜆

2
(1 − 𝑦) + 𝜆(1 − 𝑦) ≥ 𝜆(3 − 2𝑦)

2
and

cost(1|𝐼) = 𝜆

2
.

Therefore, the distortion of 𝑀 is at least 3 − 2𝑦 > 2, a contradiction. Hence, 𝑦 ≥ 1∕2.

Now consider the following instance 𝐽 with 2𝜇 + 1 districts:

• In each of the first 𝜇 districts, there are 𝜆 agents positioned at 0. By unanimity, the representative of these districts is location 0.

• Each of the remaining 𝜇 + 1 districts is identical to 𝑑: There are 𝜆∕2 agents positioned at 0 and 𝜆∕2 agents positioned at 1. By 
the above discussion, the representative of these districts is some location 𝑦 ≥ 1∕2.

By Lemma 3.8, the overall winner of instance 𝐽 is 𝑀(𝐽 ) = 𝑦. We have

cost(0|𝐽 ) = (𝜇 + 1) ⋅ 𝜆
2

and
10

cost(𝑦|𝐽 ) = (𝜇 + 1) ⋅ 𝜆
2
𝑦+ (𝜇 + 1) ⋅ 𝜆

2
|1 − 𝑦|+ 𝜇 ⋅ 𝜆𝑦
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≥ (𝜇 + 1) ⋅ 𝜆
2
+ 𝜇 ⋅ 𝜆𝑦.

Hence, the distortion of 𝑀 is at least

1 + 2𝜇𝑦
𝜇 + 1

≥ 1 + 𝜇

𝜇 + 1
,

which, when 𝜇 becomes arbitrarily large, is at least 2 − 𝜀, a contradiction. □

3.2. Strategyproof mechanisms

For the class of strategyproof mechanisms, we will show a tight bound of 3. For the upper bound, we consider the WEIGHTED-

MEDIAN-OF-MEDIANS mechanism. For each district 𝑑, the mechanism chooses the position of the median agent in 𝑑 as the repre-

sentative location 𝑦𝑑 of 𝑑. Then, it considers a multiset of locations consisting of 𝑛𝑑 copies of each representative location 𝑦𝑑 , and 
chooses the median of them as the overall winner. See Mechanism 2. This mechanism is strategyproof as it is equivalent to the

𝑝(𝑛∕2, (𝑛𝑑 )𝑑 )-STATISTIC-OF-⌈𝑛𝑑∕2⌉-STATISTIC mechanism.

Mechanism 2: WEIGHTED-MEDIAN-OF-MEDIANS.

for each district 𝑑 ∈𝐷 do

𝑦𝑑 ∶= Median𝑖∈𝑁𝑑
{𝑥𝑖};

return 𝑤 ∶= Median𝑑∈𝐷{𝑦
𝑛𝑑

𝑑
};

Theorem 3.10. For Average, the distortion of WEIGHTED-MEDIAN-OF-MEDIANS is at most 3.

Proof. Let 𝑤 be the overall winner chosen by the mechanism when given some instance as input, and let 𝑜 be an optimal location. 
For a given set of points on the line, it is well-known that the median of them minimizes the total distance. Hence, for every district 
𝑑, since 𝑦𝑑 is the median agent position in district 𝑑, we have that∑

𝑖∈𝑁𝑑

𝛿(𝑖, 𝑦𝑑 ) ≤
∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑜).

By adding these inequalities over all districts, we obtain∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑦𝑑 ) ≤
∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑜) = 𝑛 ⋅ cost(𝑜). (4)

Similarly, since 𝑤 is the median of the multiset consisting of 𝑛𝑑 copies of 𝑦𝑑 for every 𝑑 ∈𝐷, we have that∑
𝑑∈𝐷

𝑛𝑑 ⋅ 𝛿(𝑦𝑑,𝑤) ≤
∑
𝑑∈𝐷

𝑛𝑑 ⋅ 𝛿(𝑦𝑑, 𝑜).

Equivalently (since 𝑛𝑑 = |𝑁𝑑 |), and using the triangle inequality as well as Inequality (4), we have∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑦𝑑,𝑤) ≤
∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑦𝑑, 𝑜)

≤
∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑦𝑑 ) +
∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑜)

≤ 2𝑛 ⋅ cost(𝑜). (5)

Now, by applying the triangle inequality, Inequality (4) and Inequality (5), we can bound the average cost of 𝑤 as follows:

cost(𝑤) = 1
𝑛

∑
𝑖∈𝑁

𝛿(𝑖,𝑤) = 1
𝑛

∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑖,𝑤)

≤
1
𝑛

∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑦𝑑 ) +
1
𝑛

∑
𝑑∈𝐷

∑
𝑖∈𝑁𝑑

𝛿(𝑦𝑑,𝑤)

≤ 3 ⋅ cost(𝑜),

and the proof is complete. □

Next, we show a matching lower bound of 3 on the distortion of any strategyproof mechanism, thus establishing that WEIGHTED-

MEDIAN-OF-MEDIANS is best possible within this class. The construction of the lower bound is similar to the one for the class of 
unrestricted mechanisms, in the sense that we will show properties that strategyproof mechanisms with small distortion (less than 
3) must satisfy when given as input instances with symmetric districts of size 𝜆. As we did in the proof of the lower bound for 
11

unrestricted mechanisms, we consider the total distance as the objective rather than the average, and also assume without loss of 
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generality that, for any instance with two symmetric districts that have different representative locations, the overall winner is the 
leftmost of them.

We first show the following lemma stating that, when moving any subset of the agents in a district to the representative location 
of the district, strategyproofness dictates that the representative remains the same for the newly acquired district. We remark that 
the proof of the lemma can also be obtained as a corollary of a more general result in [11] (see Proposition 3.2.); we present a short 
proof that is sufficient for our purposes here.

Lemma 3.11. Let 𝑀 be a strategyproof mechanism that chooses location 𝑦 to be the representative of some district 𝑑. Then, 𝑦 must also be 
chosen as the representative location of the district 𝑑−𝑆 which is the same as 𝑑 with the difference that all agents in some subset 𝑆 ⊆𝑁𝑑 are 
positioned at 𝑦.

Proof. Consider any agent 𝑖 ∈𝑁𝑑 that is positioned at 𝑥𝑖 in 𝑑, and the district 𝑑−{𝑖} that is the same as 𝑑 with the difference that 
agent 𝑖 is positioned at 𝑦; recall that 𝑦 is the location chosen by 𝑀 to be representative of 𝑑. Now, suppose that 𝑀 chooses some 
location 𝑧 ≠ 𝑦 to be representative of 𝑑−{𝑖}. Hence, when 𝑀 is given as input a single-district instance consisting of 𝑑−{𝑖}, it chooses 
the overall winner to be 𝑧. However, agent 𝑖 can misreport her position as 𝑥𝑖 so that the district is changed to 𝑑, leading 𝑀 to output 
𝑦 as the overall winner rather than 𝑥. This way, 𝑖 has decreased her cost from |𝑧 − 𝑦| to 0, contradicting the strategyproofness of 𝑀 . 
Consequently, 𝑀 must choose 𝑦 as the representative of 𝑑−{𝑖} as well. By induction, the same must be true when each of the agents 
in 𝑆 moved, one by one, from their positions in 𝑑 to 𝑦 to form district 𝑑−𝑆 . □

Our next lemma is very similar to Lemma 3.8, but applies only to strategyproof mechanisms with distortion strictly less than 3.

Lemma 3.12. Let 𝑀 be any strategyproof mechanism with distortion strictly less than 3 in terms of Average. Let 𝐼 be any instance with 
𝑘 = 2𝜇 + 1 symmetric districts of size 𝜆 such that (a) the representative of 𝜇 districts is some location 𝑦1, (b) the representative of the 
remaining 𝜇 + 1 districts is some location 𝑦2, and (c) 𝑦1 < 𝑦2. Then, the overall winner must be 𝑀(𝐼) = 𝑦2.

Proof. We will prove the statement by induction on 𝜇.

Base case: 𝜇 = 1. Consider an instance 𝐼1 with a single district in which there are 3𝜆∕4 agents positioned at 𝑦1 and 𝜆∕4 agents that 
are positioned at 𝑦2. Observe that 𝑦1 is the location that minimizes the total distance of the agents, in particular,

cost(𝑦1|𝐼1) = 𝜆

4
⋅ (𝑦2 − 𝑦1).

We will argue that the representative 𝑧 of this district must be such that 𝑧 < 𝑦2. Assume, otherwise, that 𝑧 ≥ 𝑦2 and note that in that 
case

cost(𝑧|𝐼1) = 3𝜆
4

⋅ (𝑧− 𝑦1) +
𝜆

4
⋅ (𝑧− 𝑦2) ≥

3𝜆
4

⋅ (𝑦2 − 𝑦1),

which contradicts the assumption that the distortion of 𝑀 is strictly less than 3.

Next, consider an instance 𝐼2 with a single district such that there are 3𝜆∕4 agents positioned at 𝑧 and 𝜆∕4 agents positioned at 
𝑦2. Observe that the districts of 𝐼1 and 𝐼2 are the same with the only difference that the 3𝜆∕4 agents who are positioned at 𝑦1 in 𝐼1
are positioned at 𝑧 in 𝐼2. Since 𝑧 is the representative of the district in 𝐼1, by Lemma 3.11, the representative of the district in 𝐼2
must also be 𝑧.

Finally, consider an instance 𝐼3 with the following three districts:

• The first district is identical to the district in 𝐼2: 3𝜆∕4 agents are positioned at 𝑧 and 𝜆∕4 agents are positioned at 𝑦2. By the 
above discussion, the representative of this district is 𝑧 < 𝑦2.

• In the remaining two districts, all 𝜆 agents are positioned at 𝑦2. By unanimity, the representative of these districts is 𝑦2.

We have

cost(𝑧|𝐼3) = 𝜆

4
⋅ (𝑦2 − 𝑧) + 2𝜆 ⋅ (𝑦2 − 𝑧) = 9𝜆

4
⋅ (𝑦2 − 𝑧)

and

cost(𝑦2|𝐼3) = 3𝜆
4

⋅ (𝑦2 − 𝑧).

If the overall winner is 𝑧, then the distortion is at least 3, and thus it must to be the case that the overall winner is 𝑀(𝐼3) = 𝑦2.

Induction step: We will now prove the statement for 𝜇 = 𝓁, assuming that it holds for 𝜇 = 𝓁 − 1. First, consider an instance 𝐼𝓁 with 
the following 2𝓁 − 1 districts:
12

• In each of the first 𝓁 − 1 districts, all 𝜆 agents are positioned at some 𝑦. By unanimity, the representative of these districts is 𝑦.
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• In each of the remaining 𝓁 districts, 𝜆∕2 + 𝜆∕(4𝓁) agents are positioned at 𝑦, and 𝜆∕2 − 𝜆∕(4𝓁) agents are positioned at some 
𝑦2 > 𝑦. Let 𝑧 be the representative of these districts.

Again, we will argue that 𝑧 < 𝑦2. Assume, otherwise, that 𝑧 ≥ 𝑦2 and note that, in that case, the overall winner must be 𝑀(𝐼𝓁) = 𝑧

by the induction hypothesis. We have

cost(𝑧|𝐼𝓁) = (𝓁 − 1) ⋅ 𝜆 ⋅ (𝑧− 𝑦) + 𝓁 ⋅
(
𝜆

2
+ 𝜆

4𝓁

)
⋅ (𝑧− 𝑦) + 𝓁 ⋅

(
𝜆

2
− 𝜆

4𝓁

)
⋅ (𝑧− 𝑦2)

≥ 𝜆 ⋅
6𝓁 − 3

4
⋅ (𝑦2 − 𝑦).

At the same time, we have that

𝑐𝑜𝑠𝑡(𝑦|𝐼𝓁) = 𝜆 ⋅
2𝓁 − 1

4
⋅ (𝑦2 − 𝑦),

and we reach a contradiction on the distortion of 𝑀 being strictly less than 3; hence, it must be 𝑧 < 𝑦2.

Our next goal is to identify a district 𝑑 such that 𝜆∕2 +𝜆∕(4𝓁) agents are positioned at some location 𝑦1 < 𝑦2, 𝜆∕2 −𝜆∕(4𝓁) agents 
are positioned at 𝑦2, and the representative of the district is 𝑦1.

• If 𝑧 = 𝑦, then any of the last 𝓁 districts in 𝐼𝓁 is such a district.

• If 𝑧 ≠ 𝑦, consider a district 𝑑 such that 𝜆∕2 + 𝜆∕(4𝓁) agents are positioned at 𝑧 and 𝜆∕2 − 𝜆∕(4𝓁) agents are positioned at 𝑦2. 
Observe that this district is similar to each of the last 𝓁 districts in 𝐼𝓁 , with the difference that the 𝜆∕2 + 𝜆∕(4𝓁) agents who are 
positioned at 𝑦 in 𝐼𝓁 are now moved to 𝑧. Therefore, by Lemma 3.11, the representative of 𝑑 must be 𝑧, and since 𝑧 < 𝑦2, 𝑑
satisfies the property.

So, in any case we have identified the district 𝑑 we have been looking for, with 𝑦1 = 𝑧.

Finally, consider an instance 𝐽𝓁 with the following 2𝜇 + 1 districts and recall that 𝜇 = 𝓁:

• Each of the first 𝓁 districts is identical to 𝑑 above: 𝜆∕2 + 𝜆∕(4𝓁) agents are positioned at 𝑦1 and 𝜆∕2 − 𝜆∕(4𝓁) agents are 
positioned at 𝑦2. So, the representative of these districts is 𝑦1.

• In each of the other 𝓁 + 1 districts, all 𝜆 agents are positioned at 𝑦2. By unanimity, the representative of these districts is 𝑦2.

We have

cost(𝑦1|𝐽𝓁) = 𝓁 ⋅
(
𝜆

2
− 𝜆

4𝓁

)
⋅ (𝑦2 − 𝑦1) + (𝓁 + 1) ⋅ 𝜆 ⋅ (𝑦2 − 𝑦1) =

3𝜆(2𝓁 + 1)
4

⋅ (𝑦2 − 𝑦1)

and

cost(𝑦2|𝐽𝓁) = 𝓁 ⋅
(
𝜆

2
+ 𝜆

4𝓁

)
⋅ (𝑦2 − 𝑦1) =

𝜆(2𝓁 + 1)
4

⋅ (𝑦2 − 𝑦1).

If the overall winner is 𝑦1 then the distortion is at least 3, a contradiction. Hence, the overall winner must be 𝑀(𝐽𝓁) = 𝑦2. □

We are now ready to prove the lower bound.

Theorem 3.13. For Average, the distortion of any strategyproof mechanism is at least 3 − 𝜀, for any 𝜀 > 0.

Proof. Assume towards a contradiction that there exists some 𝜀 > 0 such that a strategyproof mechanism 𝑀 has distortion smaller 
than 3 − 𝜀. We start with an instance 𝐼1 with a single district in which 𝜆∕2 agents are positioned at 0 and 𝜆∕2 agents are positioned 
at 1. Let 𝑦 be the representative of the district (and thus the overall winner). We will argue that it must be 𝑦 ≥ 1. Assume otherwise 
that 𝑦 < 1, and let 𝐼2 be an instance with a single district that is obtained from the district of 𝐼1 by moving the first 𝜆∕2 agents from 0
to 𝑦 (the remaining 𝜆∕2 agents are still positioned at 1). Note that if 𝑦 = 0, then 𝐼1 and 𝐼2 are equivalent. Therefore, by Lemma 3.11, 
the representative of (the district of) 𝐼2 is 𝑦 as well. Next, consider an instance 𝐼3 with the following two districts:

• The first district is identical to the district of 𝐼2: 𝜆∕2 agents are positioned at 𝑦 and 𝜆∕2 agents are positioned at 1. So, the 
representative of this district is 𝑦.

• In the second district, all 𝜆 agents are positioned at 1. By unanimity, the representative of this district is 1.

We have

cost(𝑦|𝐼3) = 𝜆

2
⋅ (1 − 𝑦) + 𝜆 ⋅ (1 − 𝑦) = 3𝜆

2
⋅ (1 − 𝑦)

and
13

cost(1|𝐼3) = 𝜆

2
⋅ (1 − 𝑦).
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Recall that it is without loss of generality to assume that 𝑀 selects the leftmost representative for any instance with two districts 
such that their representatives are different. So, in our case, the overall winner is 𝑀(𝐼3) = 𝑦. However, this leads to a distortion of at 
least 3, a contradiction. We have now established that the representative of the district of 𝐼1 must be 𝑦 ≥ 1.

To complete the proof, consider an instance 𝐼 with the following 2𝜇 + 1 districts:

• In each of the first 𝜇 districts, all 𝜆 agents are positioned at 0. By unanimity, the representative of these districts is 0.

• Each of the remaining 𝜇+1 districts is identical to the district of 𝐼1: 𝜆∕2 agents are positioned at 0 and 𝜆∕2 agents are positioned 
at 1. By the above discussion, the representative of these districts is 𝑦 ≥ 1.

By Lemma 3.12, the overall winner must be 𝑀(𝐼) = 𝑦. We have

cost(0|𝐼) = (𝜇 + 1) ⋅ 𝜆
2

and

cost(𝑦|𝐼) = 𝜇 ⋅ 𝜆 ⋅ 𝑦+ (𝜇 + 1) ⋅ 𝜆
2
⋅ 𝑦+ (𝜇 + 1) ⋅ 𝜆

2
⋅ (𝑦− 1) ≥ (3𝜇 + 1) ⋅ 𝜆

2
.

Therefore, the distortion is at least 3𝜇+1
𝜇+1 , which becomes arbitrarily close to 3 as 𝜇 becomes arbitrarily large. □

4. Max cost

We now consider the Max cost objective, for which we show a tight bound of 2 for both unrestricted and strategyproof mech-

anisms. For the upper bound, we consider the ARBITRARY mechanism, which chooses the representative of each district to be the 
position of any agent therein, and then chooses any representative as the final winner. See Mechanism 3 for a specific implemen-

tation of this mechanism using the position of the leftmost agent from each district as the district representative, and then the 
leftmost representative as the final winner. Clearly, ARBITRARY is equivalent to some 𝑝-Statistic-of-𝑞-Statistic mechanism depending 
on the choices within and over districts; for example, the particular implementation of ARBITRARY as Mechanism 3 is equivalent to 
1-Statistic-of-1-Statistic.

Mechanism 3: ARBITRARY (LEFTMOST-OF-LEFTMOST).

for each district 𝑑 do

𝑦𝑑 ∶= min𝑖∈𝑁𝑑
{𝑥𝑖};

return 𝑤 ∶= min𝑑{𝑦𝑑};

Theorem 4.1. For Max, the distortion of ARBITRARY is at most 2.

Proof. Given any instance, let 𝓁 and 𝑟 denote the positions of the leftmost and the rightmost agent, respectively. Clearly, the optimal 
location is 𝑜 = 𝑟−𝓁

2 , and thus cost(𝑜) = 𝑟−𝓁
2 . On the other hand, the ARBITRARY mechanism will necessarily return the location of some 

agent as the winner 𝑤, and hence cost(𝑤) ≤ 𝑟 − 𝓁; the claim follows. □

We also show a matching lower bound for all mechanisms, thus completing the picture.

Theorem 4.2. For Max, the distortion of any mechanism (unrestricted or strategyproof) is at least 2.

Proof. Consider any mechanism and the following instance 𝐼 with two districts. The agents in the first district are all positioned 
at −1, while the agents in the second district are all positioned at 1. Due to unanimity (Lemma 2.2), the representatives of the 
two districts must be −1 and 1, respectively. Hence, the winner is either −1 or 1. However, cost(−1|𝐼) = cost(1|𝐼) = 2, whereas 
cost(0|𝐼) = 1, leading to a distortion of 2. □

5. Average-of-Max

Here, we focus on the Average-of-Max objective; recall that this objective is the average sum over each district of the maximum 
agent cost therein. For unrestricted mechanisms, we show that it is possible to compute the optimal location (and thus achieve a 
distortion of 1), whereas, for strategyproof mechanisms, we show a tight distortion bound of 1 +

√
2.

5.1. Unrestricted mechanisms

We will show that the MEDIAN-OF-MIDPOINTS mechanism optimizes the Average-of-Max objective. This mechanism chooses the 
14

representative of each district to be the midpoint of the interval defined by the positions of the agents therein, and then chooses the 
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median representative (breaking ties in favor of the leftmost median in case there are two) as the final winner. See Mechanism 4 for 
a detailed description.

Mechanism 4: MEDIAN-OF-MIDPOINTS.

for each district 𝑑 do

𝑦𝑑 ∶=
1
2
⋅
(
max𝑖∈𝑁𝑑

𝑥𝑖 +min𝑖∈𝑁𝑑
𝑥𝑖

)
;

return 𝑤 ∶= Median𝑑∈𝐷{𝑦𝑑} ;

Theorem 5.1. For Average-of-Max, the distortion of MEDIAN-OF-MIDPOINTS is 1.

Proof. For any district 𝑑, let 𝓁𝑑 and 𝑟𝑑 be the (positions of the) leftmost and rightmost agents therein, respectively. The Average-

of-Max cost of an arbitrary location 𝑧 is

1
𝑘

∑
𝑑∈𝐷

max
𝑖∈𝑁𝑑

𝛿(𝑥𝑖, 𝑧) =
1
𝑘

∑
𝑑∈𝐷

max{𝛿(𝓁𝑑 , 𝑧), 𝛿(𝑟𝑑 , 𝑧)}

= 1
𝑘

∑
𝑑∈𝐷

𝛿

(
𝓁𝑑 + 𝑟𝑑

2
, 𝑧

)
+ 1

𝑘

∑
𝑑∈𝐷

𝑟𝑑 − 𝓁𝑑

2
.

Since the second term is a constant in terms of 𝑧, the above expression is minimized when the first term is minimized, which 
is done when 𝑧 is chosen to minimize the average distance from the midpoints of the intervals defined by the agents in each 
district. Consequently, it suffices to choose the median district midpoint as the winner. This is precisely the definition of MEDIAN-

OF-MIDPOINTS. □

5.2. Strategyproof mechanisms

For strategyproof mechanisms, we will show a tight bound of 1 +
√
2. For the upper bound, we consider the

(
1 − 1∕

√
2
)
𝑘-

LEFTMOST-OF-RIGHTMOST mechanism, which chooses the representative of each district to be the position of the rightmost agent 
therein, and then chooses the ⌈(1 − 1∕

√
2
)
𝑘⌉-th leftmost representative as the final winner. See Mechanism 5 for a detailed de-

scription. Clearly, the mechanism is an implementation of 𝑝-Statistic-of-𝑞-Statistic with 𝑝 = ⌈(1 − 1∕
√
2
)
𝑘⌉ and 𝑞𝑑 = 𝑛𝑑 , and is thus 

strategyproof. So, it suffices to show that it achieves a distortion of at most 1 +
√
2.

Mechanism 5:
(
1 − 1∕

√
2
)
𝑘-LEFTMOST-OF-RIGHTMOST.

for each district 𝑑 ∈𝐷 do

𝑦𝑑 ∶= rightmost agent;

return 𝑤 ∶= ⌈(1 − 1∕
√
2
)
𝑘⌉-th leftmost representative;

Theorem 5.2. For the Average-of-Max cost, the distortion of
(
1 − 1∕

√
2
)
𝑘-LEFTMOST-OF-RIGHTMOST is at most 1 +

√
2.

Proof. Let 𝑤 be the location chosen by the mechanism when given some instance as input, and 𝑜 an optimal location. For each 
district 𝑑, let 𝑖𝑑 be the most distant agent from 𝑤, and 𝑖∗

𝑑
the most distant agent from 𝑜. So, cost(𝑤|𝐼) = 1

𝑘

∑
𝑑∈𝐷 𝛿(𝑖𝑑 , 𝑤), and 

cost(𝑜|𝐼) = 1
𝑘

∑
𝑑∈𝐷 𝛿(𝑖∗

𝑑
, 𝑜) ≥ 1

𝑘

∑
𝑑∈𝐷 𝛿(𝑗, 𝑜) for any agent 𝑗 ∈ 𝑁𝑑 . We consider the following two cases depending on the relative 

positions of 𝑤 and 𝑜.

Case 1: 𝑜 <𝑤.

Let 𝑆 = {𝑑 ∈ 𝐷 ∶ 𝑦𝑑 ≥ 𝑤} be the set of district representatives to the right of 𝑤. By the definition of 𝑤, we have that |𝑆| =
𝑘 + 1 − ⌈(1 − 1∕

√
2
)
𝑘⌉ = 1 + ⌊𝑘∕√2⌋ ≥ 𝑘√

2
. Since 𝑜 <𝑤 ≤ 𝑦𝑑 for every 𝑑 ∈ 𝑆 and 𝑦𝑑 ∈𝑁𝑑 , we have that

cost(𝑜) ≥ 1
𝑘

∑
𝑑∈𝑆

𝛿(𝑦𝑑, 𝑜) ≥
1
𝑘
⋅ |𝑆| ⋅ 𝛿(𝑤,𝑜) ≥ 1√

2
⋅ 𝛿(𝑤,𝑜)⇔ 𝛿(𝑤,𝑜) ≤

√
2 ⋅ cost(𝑜).
15

By the triangle inequality and since 𝑖𝑑 ∈𝑁𝑑 , we have
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cost(𝑤) = 1
𝑘

∑
𝑑∈𝐷

𝛿(𝑖𝑑 ,𝑤) ≤ 1
𝑘

∑
𝑑∈𝐷

𝛿(𝑖𝑑 , 𝑜) +
1
𝑘

∑
𝑑∈𝐷

𝛿(𝑤,𝑜)

≤ cost(𝑜) + 𝛿(𝑤,𝑜)

≤ (1 +
√
2) ⋅ cost(𝑜).

Case 2: 𝑤 < 𝑜.

We partition the districts into a set 𝐿 that includes ⌈(1 − 1√
2
)𝑘⌉ districts from the one with the leftmost representative until the one 

with the ⌈(1 − 1√
2
)𝑘⌉-th leftmost representative (that is, 𝑤), and a set 𝑅 that includes the remaining districts. By definition, we have 

that |𝑅|∕|𝐿| = (𝑘 − ⌈(1 − 1√
2
)𝑘⌉)∕(⌈(1 − 1√

2
)𝑘⌉) ≤ 1 +

√
2. For every district 𝑑, let 𝓁𝑑 and 𝑟𝑑 be the leftmost and rightmost agents in 

𝑑, respectively. We make the following observations:

• For every 𝑑 ∈ 𝐿, since 𝑦𝑑 is the rightmost agent of 𝑑 and 𝑦𝑑 ≤𝑤 < 𝑜, it must be the case that 𝑖𝑑 = 𝑖∗
𝑑
= 𝓁𝑑 . Due to the positions 

of 𝓁𝑑 , 𝑤 and 𝑜, we have that 𝛿(𝓁𝑑 , 𝑜) = 𝛿(𝓁𝑑 , 𝑤) + 𝛿(𝑤, 𝑜).
• For every 𝑑 ∈𝑅, by the triangle inequality, we have that 𝛿(𝑖𝑑 , 𝑤) ≤ 𝛿(𝑖𝑑 , 𝑜) + 𝛿(𝑤, 𝑜). Since 𝛿(𝑖𝑑 , 𝑜) ≤ 𝛿(𝑖∗

𝑑
, 𝑜) by the definition of 

𝑖∗
𝑑
, we further have that 𝛿(𝑖𝑑 , 𝑤) ≤ 𝛿(𝑖∗

𝑑
, 𝑜) + 𝛿(𝑤, 𝑜).

Hence,

cost(𝑤) = 1
𝑘

∑
𝑑∈𝐷

𝛿(𝑖𝑑 ,𝑤) = 1
𝑘

∑
𝑑∈𝐿

𝛿(𝓁𝑑 ,𝑤) + 1
𝑘

∑
𝑑∈𝑅

𝛿(𝑖𝑑 ,𝑤)

≤
1
𝑘

∑
𝑑∈𝐿

(
𝛿(𝓁𝑑 ,𝑤) + 𝛿(𝑤,𝑜)

)
− |𝐿|

𝑘
⋅ 𝛿(𝑤,𝑜) + 1

𝑘

∑
𝑑∈𝑅

(
𝛿(𝑖∗

𝑑
, 𝑜) + 𝛿(𝑤,𝑜)

)
= cost(𝑜) + |𝑅|− |𝐿|

𝑘
⋅ 𝛿(𝑤,𝑜).

Since 𝑦𝑑 ≤𝑤 < 𝑜 for every 𝑑 ∈𝐿 and 𝑦𝑑 ∈𝑁𝑑 , we have that

cost(𝑜) ≥ 1
𝑘

∑
𝑑∈𝐿

𝛿(𝑦𝑑, 𝑜) ≥
|𝐿|
𝑘

⋅ 𝛿(𝑤,𝑜)⇔ 𝛿(𝑤,𝑜) ≤ 𝑘|𝐿| ⋅ cost(𝑜).

Therefore, we obtain

cost(𝑤) ≤ cost(𝑜|𝐼) + |𝑅|− |𝐿||𝐿| ⋅ cost(𝑜) = |𝑅||𝐿| ⋅ cost(𝑜) ≤ (1 +
√
2) ⋅ cost(𝑜),

as desired. □

We also show a matching lower bound on the distortion of all strategyproof mechanisms.

Theorem 5.3. For Average-of-Max, the distortion of any strategyproof mechanism is at least 1 +
√
2 − 𝜀, for any 𝜀 > 0.

Proof. Assume towards a contradiction that there exists some 𝜀 > 0 and a strategyproof mechanism with distortion strictly smaller 
than 1 +

√
2−𝜀. Without loss of generality, we assume that when there are two symmetric districts with different representatives, we 

choose the leftmost as the final winner. We will prove the statement by showing some properties about the behavior of strategyproof 
mechanisms in particular instances.

Property (P1): We claim that there is a district with two agents such that the mechanism chooses some agent position as the district 
representative. Consider a district 𝑑 with one agent positioned at 𝑥 and one agent positioned at 𝑦 > 𝑥. If the mechanism chooses the 
representative to be 𝑥 or 𝑦, then we are done. Otherwise, suppose that the representative is chosen to be some 𝑧 ∉ {𝑥, 𝑦}. Due to 
strategyproofness, 𝑧 must also be the representative of the district 𝑑′ where any of the two agents has been moved to 𝑧; otherwise, 
in the single-district instance consisting of 𝑑′, the agent that is moved would have incentive to report that she is positioned as in 𝑑
to change the outcome to 𝑧.

Property (P2): By Property (P1) there exists a district with two agents such that the mechanism chooses the district representative 
to be the position of one of the agents; without loss of generality we assume that the agents are positioned at 0 and 1. We claim 
that the representative of this district must be 1 as otherwise the distortion would be at least 3. Indeed, suppose otherwise that the 
representative is 0, and consider the following instance 𝐼1 with two districts:

• In the first district, there is an agent at 0 and an agent at 1. By the above discussion, the representative is 0.

• In the second district, there are two agents at 1∕2. Due to unanimity, the representative is 1∕2 (otherwise the distortion would 
16

be infinite due to Lemma 2.2).
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Since there are only two districts and two different representatives, the overall winner is 0. But,

cost(0|𝐼1) = 1
2

(
(1 − 0) + (1∕2 − 0)

)
= 3∕4

and

cost(1∕2|𝐼1) = 1
2

(
(1 − 1∕2) + (1∕2 − 1∕2)

)
= 1∕4,

leading to a distortion of 3.

Property (P3): Let 𝛼 < 𝛽 be two (large) integers such that 𝛽∕𝛼 = 1 +
√
2 − 𝛿, for some arbitrarily small 𝛿 > 0. We claim that in 

instances with 𝛼 + 𝛽 districts such that 1∕2 is the representative of 𝛼 districts and 1 is the representative of 𝛽 districts, the overall 
winner must be 1 as otherwise the distortion would be 𝛽∕𝛼 = 1 +

√
2 − 𝛿. Indeed, suppose that the winner is 1∕2 in such a case, and 

consider the following instance 𝐼2 with 𝛼 + 𝛽 districts:

• In 𝛼 districts, there are two agents at 1∕2.

• In 𝛽 districts, there are two agents at 1.

Due to unanimity (Lemma 2.2), the representatives are 1∕2 and 1, respectively, and the overall winner is 1∕2 by assumption. Then, 
cost(1∕2|𝐼2) = 1

2 ⋅ 𝛽∕2 and cost(1|𝐼2) = 1
2 ⋅ 𝛼∕2. So, the distortion is at least 𝛽∕𝛼 = 1 +

√
2 − 𝛿.

Reaching a contradiction: Now, we consider the following instance 𝐼3 with 𝛼 + 𝛽 districts:

• In 𝛼 districts, there are two agents at 1∕2. Due to unanimity the representative of all these districts is 1∕2.

• In 𝛽 districts, there is one agent at 0 and one agent at 1. By property (P2), the representative of all these districts is 1.

Since 1∕2 is the representative of 𝛼 districts and 1 is the representative of 𝛽 districts, by property (P3), the overall winner is 1. We 
have that

cost(1|𝐼3) = 1
2

(
𝛼

2
+ 𝛽

)
and

cost(1∕2|𝐼3) = 1
2
⋅
𝛽

2
.

That is, the distortion is at least 2 + 𝛼

𝛽
> 2 + 1

1+
√
2
= 1 +

√
2; a contradiction. □

6. Max-of-Average

We now turn our attention to the last objective, Max-of-Average, which is the maximum over each district of the average total 
individual cost therein. We show a tight bound of 2 for unrestricted mechanisms and a tight bound of 1 +

√
2 for strategyproof 

mechanisms.

6.1. Unrestricted mechanisms

Since the lower bound of 2 for the Max cost objective holds even when there is a single agent in each district, it extends to the case 
of Max-of-Average as well. For the upper bound, we consider the ARBITRARY-OF-AVG mechanism, which chooses the representative 
of each district to be the average of the positions of the agents in the district, and then chooses an arbitrary representative (e.g., the 
leftmost) as the final winner. See Mechanism 6 for a detailed description.

Mechanism 6: ARBITRARY-OF-AVG.

for each district 𝑑 ∈𝐷 do

𝑦𝑑 ∶=
∑

𝑖∈𝑁𝑑
𝑥𝑖

𝑛𝑑

;

return 𝑤 ∶= min𝑑∈𝐷 𝑦𝑑 ;
17

Theorem 6.1. For Max-of-Average, the distortion of ARBITRARY-OF-AVG is at most 2.
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Proof. Let 𝑤 be the location chosen by the mechanism when given some instance as input, and 𝑜 an optimal location; without loss 
of generality, we assume that 𝑤 < 𝑜. Denote by 𝑑∗ a district that defines the cost of 𝑤, that is, 𝑑∗ ∈ argmax𝑑∈𝐷

1
𝑛𝑑

∑
𝑖∈𝑁𝑑

𝛿(𝑥𝑖, 𝑤). 
Also, denote by 𝑑𝑤 a district that has representative 𝑤, that is,

𝑤 = 1
𝑛𝑑𝑤

∑
𝑖∈𝑁𝑑𝑤

𝑥𝑖 ⇔
1

𝑛𝑑𝑤

∑
𝑖∈𝑁𝑑𝑤

(𝑤− 𝑥𝑖) = 0.

By the triangle inequality, we have that

cost(𝑤) = 1
𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑥𝑖,𝑤)

≤
1

𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑥𝑖, 𝑜) +
1

𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑤,𝑜)

≤ cost(𝑜) + 𝛿(𝑤,𝑜).

By the definition of 𝑑𝑤, we have that

𝛿(𝑤,𝑜) = 𝑜−𝑤

= 𝑜−𝑤+ 1
𝑛𝑑𝑤

∑
𝑖∈𝑁𝑑𝑤

(𝑤− 𝑥𝑖)

= 1
𝑛𝑑𝑤

∑
𝑖∈𝑁𝑑𝑤

(𝑜− 𝑥𝑖)

≤
1

𝑛𝑑𝑤

∑
𝑖∈𝑁𝑑𝑤

𝛿(𝑥𝑖, 𝑜)

≤ cost(𝑜),

where the inequality follows since 𝛿(𝑥𝑖, 𝑜) = 𝑜 − 𝑥𝑖 when 𝑥𝑖 ≤ 𝑜 and 𝛿(𝑥𝑖, 𝑜) = 𝑥𝑖 − 𝑜 ≥ 𝑜 − 𝑥𝑖 when 𝑥𝑖 ≥ 𝑜. Therefore, we obtain that 
cost(𝑤|𝐼) ≤ 2 ⋅ cost(𝑜), as desired. □

6.2. Strategyproof mechanisms

We now turn out attention to strategyproof mechanisms and show a tight bound of 1 +
√
2. For the upper bound, we consider the

RIGHTMOST-OF-
(
1 − 1∕

√
2
)
𝑛𝑑 -LEFTMOST mechanism, which chooses the representative of each district 𝑑 to be the position of the ⌈(1 − 1∕

√
2
)
𝑛𝑑⌉-th leftmost agent therein, and then chooses the rightmost representative as the final winner. See Mechanism 7 for 

a detailed description. This mechanism is an implementation of 𝑝-Statistic-of-𝑞𝑑 -Statistic with 𝑝 = 𝑘 and 𝑞𝑑 = ⌈(1 − 1∕
√
2
)
𝑛𝑑⌉, and 

is thus strategyproof. So, it suffices to show that it achieves a distortion of at most 1 +
√
2.

Mechanism 7: RIGHTMOST-OF-
(
1 − 1∕

√
2
)
𝑛𝑑 -LEFTMOST.

for each district 𝑑 ∈𝐷 do

𝑦𝑑 ∶= ⌈(1 − 1∕
√
2
)
𝑛𝑑⌉-th leftmost agent;

return 𝑤 ∶= rightmost representative;

Theorem 6.2. For the Max-of-Average cost, the distortion of RIGHTMOST-OF-
(
1 − 1∕

√
2
)
𝑛𝑑 -LEFTMOST is at most 1 +

√
2.

Proof. Let 𝑤 be the location chosen be the mechanism when given some instance as input, and 𝑜 an optimal location. Denote by 𝑑∗

a district that gives the max average sum for 𝑤, and by 𝑑𝑤 a district with representative 𝑤. Also, for any district 𝑑, we denote by 
cost𝑑 (𝑥) =

1
𝑛𝑑

∑
𝑖∈𝑁𝑑

𝛿(𝑖, 𝑥) the average total distance of the agents in 𝑑 from location 𝑥, and let 𝑜𝑑 be the location that minimizes 
this distance (that is, 𝑜𝑑 is the median agent of 𝑑). Clearly, by definition, we have that cost(𝑤) = cost𝑑∗ (𝑤), and cost𝑑 (𝑜) ≤ cost(𝑜) for 
every district 𝑑. We consider the following two cases:
18

Case 1: 𝑜 <𝑤.
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By the definition of 𝑑∗ and the triangle inequality, we have

cost(𝑤) = 1
𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑖,𝑤)

≤
1

𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑖, 𝑜) + 1
𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑜,𝑤)

≤ cost(𝑜) + 𝛿(𝑜,𝑤).

Let 𝑆 = {𝑖 ∈𝑁𝑑𝑤
∶ 𝑥𝑖 ≥𝑤} be the set of agents that are positioned at the right of (or exactly at) 𝑤 in 𝑑𝑤. Since 𝑜 <𝑤, 𝛿(𝑖, 𝑜) ≥ 𝛿(𝑤, 𝑜)

for every 𝑖 ∈ 𝑆 . Also, by the definition of 𝑤, |𝑆| = 𝑛𝑑𝑤
+ 1 − ⌈(1 − 1∕

√
2
)
𝑛𝑑𝑤

⌉ = 1 + ⌊ 1√
2
⋅ 𝑛𝑑𝑤⌋ ≥ 1√

2
⋅ 𝑛𝑑𝑤 . Hence,

cost𝑑𝑤 (𝑜) =
1

𝑛𝑑𝑤

∑
𝑖∈𝑁𝑑𝑤

𝛿(𝑖, 𝑜) ≥ 1
𝑛𝑑𝑤

⋅ |𝑆| ⋅ 𝛿(𝑤,𝑜) ≥ 1√
2
⋅ 𝛿(𝑤,𝑜)

⇔ 𝛿(𝑤,𝑜) ≤
√
2 ⋅ cost𝑑𝑤 (𝑜) ≤

√
2 ⋅ cost(𝑜).

By combining everything together, we obtain a bound of 1 +
√
2.

Case 2: 𝑤 < 𝑜.

We consider the following two subcases:

• 𝑜𝑑∗ ≤𝑤 < 𝑜. By the monotonicity of the (average) social cost2 for the agents in district 𝑑∗, we have that cost𝑑∗ (𝑜𝑑∗ ) ≤ cost𝑑∗ (𝑤) ≤
cost𝑑∗ (𝑜), and thus cost(𝑤) ≤ cost(𝑜).

• 𝑤 < 𝑜𝑑∗ . Since 𝑤 is the rightmost representative, it must be the case that 𝑦𝑑∗ ≤𝑤 < 𝑜𝑑∗ . So, again by the monotonicity of the 
(average) social cost within the district 𝑑∗, we have that cost𝑑∗ (𝑜𝑑∗ ) ≤ cost𝑑∗ (𝑤) ≤ cost𝑑∗ (𝑦𝑑∗ ). We will argue that cost𝑑∗ (𝑦𝑑∗ ) ≤
(1 +

√
2) ⋅ cost𝑑∗ (𝑜𝑑∗ ).

Let 𝐿 be the set that includes ⌈(1 − 1√
2
)𝑛𝑑∗⌉ agents of 𝑑∗ from the leftmost to the ⌈(1 − 1√

2
)𝑛𝑑∗⌉-th leftmost agent (that is, 𝑦𝑑∗ ), 

and the set 𝑅 that includes the remaining agents. By definition, we have that |𝑅|∕|𝐿| = (𝑛𝑑∗ − ⌈(1 − 1√
2
)𝑛𝑑∗⌉)∕⌈(1 − 1√

2
)𝑛𝑑∗⌉ ≤

1 +
√
2. Now, observe that

– For every agent 𝑖 ∈𝐿, 𝑖 ≤ 𝑦𝑑∗ , and thus 𝛿(𝑖, 𝑜𝑑∗ ) = 𝛿(𝑖, 𝑦𝑑∗ ) + 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ ).
– For every agent 𝑖 ∈𝑅, 𝑖 ≥ 𝑦𝑑∗ , and thus 𝛿(𝑖, 𝑦𝑑∗ ) ≤ 𝛿(𝑖, 𝑜𝑑∗ ) + 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ ).
Hence,

cost𝑑∗ (𝑦𝑑∗ ) =
1

𝑛𝑑∗

∑
𝑖∈𝑁𝑑∗

𝛿(𝑖, 𝑦𝑑∗ )

= 1
𝑛𝑑∗

∑
𝑖∈𝐿

𝛿(𝑖, 𝑦𝑑∗ ) +
1

𝑛𝑑∗

∑
𝑖∈𝑅

𝛿(𝑖, 𝑦𝑑∗ )

≤
1

𝑛𝑑∗

∑
𝑖∈𝐿

𝛿(𝑖, 𝑦𝑑∗ ) +
1

𝑛𝑑∗

∑
𝑖∈𝑅

(
𝛿(𝑖, 𝑜𝑑∗ ) + 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ )

)
= 1

𝑛𝑑∗

∑
𝑖∈𝐿

(
𝛿(𝑖, 𝑦𝑑∗ ) + 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ )

)
+ 1

𝑛𝑑∗

∑
𝑖∈𝑅

𝛿(𝑖, 𝑜𝑑∗ ) +
|𝑅|− |𝐿|

𝑛𝑑∗
⋅ 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ )

= cost𝑑∗ (𝑜𝑑∗ ) +
|𝑅|− |𝐿|

𝑛𝑑∗
⋅ 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ ).

Since 𝑦𝑑∗ < 𝑜𝑑∗ , we also have that cost𝑑∗ (𝑜) ≥
1

𝑛𝑑∗
⋅ |𝐿| ⋅ 𝛿(𝑦𝑑∗ , 𝑜𝑑∗ ), and thus

cost𝑑∗ (𝑦𝑑∗ ) ≤ cost𝑑∗ (𝑜𝑑∗ ) +
|𝑅|− |𝐿||𝐿| ⋅ cost𝑑∗ (𝑜𝑑∗ )

= |𝑅||𝐿| ⋅ cost𝑑∗ (𝑜𝑑∗ )

≤ (1 +
√
2) ⋅ cost𝑑∗ (𝑜𝑑∗ ).

From this, we finally get that

2 It is a well-known fact that the social cost objective is monotone in the locations. In particular, for any set of agents 𝑆 , if 𝑦1 ∈ argmin𝑥
∑

𝑖∈𝑆 𝛿(𝑖, 𝑥), then 
19

∑
𝑖∈𝑆 𝛿(𝑖, 𝑦1) ≤

∑
𝑖∈𝑆 𝛿(𝑖, 𝑦2) ≤

∑
𝑖∈𝑆 𝛿(𝑖, 𝑦3) for any 𝑦1 ≤ 𝑦2 ≤ 𝑦3 or 𝑦3 ≤ 𝑦2 ≤ 𝑦1 .
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cost𝑑∗ (𝑤) ≤ (1 +
√
2) ⋅ cost𝑑∗ (𝑜𝑑∗ ) ≤ (1 +

√
2) ⋅ cost𝑑∗ (𝑜),

and thus cost(𝑤) ≤ (1 +
√
2)cost(𝑜). □

Finally, we show a matching lower bound for any strategyproof mechanism.

Theorem 6.3. For Max-of-Average, the distortion of any strategyproof mechanism is at least 1 +
√
2 − 𝜀, for any 𝜀 > 0.

Proof. Suppose towards a contradiction that there is a strategyproof mechanism with distortion strictly smaller than 1 +
√
2− 𝜀, for 

any 𝜀 > 0. We will reach a contradiction by showing several properties that any strategyproof mechanism must satisfy when given 
particular instances with symmetric districts consisting of 𝜆 = (2 +

√
2)𝑥 agents, where 𝑥 is an arbitrarily large integer.

Property (P1): Consider a district with (1 +
√
2)𝑥 agents at 0 and 𝑥 agents at 1.3 We claim that the mechanism must choose 0

as the representative of this district as otherwise the distortion would be at least 1 +
√
2. Indeed, suppose that the representative 

is some 𝑦 ≠ 0. By moving one of the agents at 1 to 𝑦, we obtain a new district whose representative must still be 𝑦; otherwise, 
in the instance that consists only of this new district, the agent at 𝑦 would have incentive to misreport her position as 1, thus 
leading to the representative (and the final winner) to change to 𝑦. By induction, we obtain that 𝑦 must be the representative of the 
district with (1 +

√
2)𝑥 agents at 0 and 𝑥 agents at 𝑦. In the instance 𝐼 that consists of only the latter district, the winner is 𝑦 with 

cost(𝑦|𝐼) = 1
𝜆
⋅ (1 +

√
2)𝑥 ⋅ |𝑦|, whereas cost(0|𝐼) = 1

𝜆
⋅ 𝑥 ⋅ |𝑦|, leading to a distortion of at least 1 +

√
2.

Property (P2): Consider a district with 𝑥 agents at 1 and (1 +
√
2)𝑥 agents at 2. We claim that the mechanism must choose 2 as the 

representative of this district as otherwise the distortion would be at least 1 +
√
2. This follows by arguments similar to those for 

property (P1).

Reaching a contradiction: Consider the following instance 𝐽 with two districts:

• In the first district, there are (1 +
√
2)𝑥 agents at 0 and 𝑥 agents at 1.

• In the second district, there are 𝑥 agents at 1 and (1 +
√
2)𝑥 agents at 2.

By properties (P1) and (P2), the representatives of the two districts must be 0 and 2, respectively, and thus one of these two locations 
is chosen as the final winner. However, cost(0|𝐽 ) = cost(2|𝐽 ) = 1

𝜆
⋅
(
2(1 +

√
2)𝑥+ 𝑥

)
, while cost(1|𝐽 ) = 1

𝜆
⋅ (1 +

√
2)𝑥, leading to a 

distortion of 2 + 1
1+

√
2
= 1 +

√
2. □

7. Open problems

In this paper we settled the distortion of unrestricted and strategyproof mechanisms for the distributed single-facility location 
problem in terms of social objectives that are combinations of average and max (within and over the districts). There are several 
interesting directions for future work, such as to extend our work to more general metric spaces, or to define further meaningful 
objectives and study similar questions about efficiency and strategyproofness. It would also be quite interesting to try to obtain a 
characterization of strategyproof distributed mechanisms, assuming some natural properties (such as anonymity or cardinal unanim-

ity), potentially making use of classic results in the centralized setting [46,45]. Another direction is to consider a more general class 
of distributed mechanisms that are not restricted to choosing one of the district representatives as the winner, but can choose any 
location on the line according to some function of the representatives, similarly to how mechanisms operate in the distributed social 
choice setting of Anshelevich et al. [9]. Beyond the single-facility location problem that we studied here, one could consider settings 
with more facilities and agents that have heterogeneous preferences over the facilities.
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