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ABSTRACT Many weight quantization approaches were explored to save the communication bandwidth
between the clients and the server in federated learning using high-end computing machines. However,
there is a lack of weight quantization research for online federated learning using TinyML devices which
are restricted by the mini-batch size, the neural network size, and the communication method due to
their severe hardware resource constraints and power budgets. We name Tiny Online Federated Learning
(TinyOFL) for online federated learning using TinyML devices in the Internet of Things (IoT). This
paper performs a comprehensive analysis of the effects of weight quantization in TinyOFL in terms of
accuracy, stability, overfitting, communication efficiency, energy consumption, and delivery time, and
extracts practical guidelines on how to apply the weight quantization to TinyOFL. Our analysis is supported
by a TinyOFL case study with three Arduino Portenta H7 boards running federated learning clients for a
keyword spotting task. Our findings include that in TinyOFL, a more aggressive weight quantization can be
allowed than in online learning without FL, without affecting the accuracy thanks to TinyOFL’s quasi-batch
training property. For example, using 7-bit weights achieved the equivalent accuracy to 32-bit floating point
weights, while saving communication bandwidth by 4.6×. Overfitting by increasing network width rarely
occurs in TinyOFL, but may occur if strong weight quantization is applied. The experiments also showed
that there is a design space for TinyOFL applications by compensating for the accuracy loss due to weight
quantization with an increase of the neural network size.

INDEX TERMS TinyML, approximate computing, federated learning, IoT.

I. INTRODUCTION
Federated Learning (FL) is a collaborative training approach
for a machine learning model with distributed nodes to
deal with massive training data efficiently and address data
privacy [1]. Specifically, Internet of Things (IoT) devices
with sensors are a source of data that can be used for training.
On such memory-constrained devices Online Learning (OL)
can be used to train the models sequentially as new samples
get captured. FL utilizing OL is referred to as online FL [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

Particularly, we name Tiny Online FL (TinyOFL) for online
FL using TinyML devices in the IoT. Likewise, Tiny Online
Learning (TinyOL) [3] is referred to as online learning
using TinyML devices without any federated learning scheme
in this paper. Using machine learning models on IoT
devices has been shown by several recent works regarding
anomaly detection [4], continuous learning [3], and transfer
learning [5].

Different aspects of heterogeneity in the IoT make FL
challenging for being used in embedded devices [6]: 1)
the computing capacity of the IoT nodes can be different
either due to the different hardware, because of concurrent
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executions of other tasks at the node, or due to node-specific
energy budgets, 2) IoT nodes obtain data from the proper
sensors, but the quantity and quality of the local data and
their distribution at each node may vary, for instance, due
to the local circumstances the nodes may obtain a different
number of training samples, and 3) for the communication of
the trained model with the aggregator, some nodes may face
limitations due to low network bandwidth or lack of energy.

For example, in the case of the first and second challenge,
if certain clients are selected more frequently according to
node-specific energy budgets and communication bandwidth
constraints, their local updates have a stronger influence
on the global model. Consequently, the global model may
become more biased towards the data distribution of those
frequently selected clients. Therefore, it is highly likely that
higher accuracy is expected on their specific data patterns,
but potentially lower accuracy on the data patterns of less
frequently selected clients. The final trained model may
reflect the bias in the client selection process in TinyOFL.

This paper addresses the third challenge for enabling
FL in the IoT by an understanding of the effects of the
weight quantization on TinyOFL in terms of generalization
ability, communication efficiency, and energy efficiency. The
scenario targeted is IoT devices at remote locations with
machine learning applications that use Low Power, Wide
Area Network (LPWAN) communication technologies [7].
The wireless links of these LPWANs have very low data
rates compared to the Internet. In rural areas such links can
cover several kilometers of distance. The communication has
a limited power budget since the power supply from batteries
or solar power can be unstable.

LoRa is one of the LPWAN for the IoT [8]. Compared to
other long range technologies such as NB-IoT and Sigfox,
LoRa is operated in the unlicensed band and does not require
any license fees or network operator [9]. In comparison with
Sigfox, LoRa allows a higher payload size. A LoRa packet
can have a size of up to 255B. However, in many countries,
the duty cycle of LoRa communication is limited to 1%,
which limits the data rate that can be achieved. The node-
to-node communication with LoRa between geographically
spread IoT nodes is enabled by LoRa mesh networks [10].
However, sending the least number of packets in a LoRa
communication is, in general, desirable for reducing packet
collisions and latency. The application of the proposed
TinyOFL for trainingMachine Learning (ML)models at such
LoRa-interconnected nodes would greatly benefit from the
quantized model communication.

FL with IoT devices implies that an ML model is trained
on-device, i.e., on the node itself [11]. However, among the
options to equip a microcontroller-based IoT device with a
trained model, on-device training is nowadays still a niche
approach, though recently attracting a significant amount
of attention. The dominating method today is training an
ML model off-device on a powerful computer or with a
cloud service. The advantage of that approach is that enough
computing power and data storage is available to train the

model with a large dataset up to the required accuracy [12].
Before flashing the model to the IoT device, tools such as
Tensorflow Light Micro1 optimize the model size for fitting
into the small memory of a microcontroller board. This
external training achieves high performingmodels, but it does
not allow the model to be updated later since its values are
stored in the board’s flash memory where the weights cannot
be changed.

If the IoT device is already deployed, other arrangements
of the application code can allow updating a node with a new
machine learning model over-the-air, as proposed in [13].
While this approach allows a node to obtain a new model and
hence change its function to a different task, the model is still
trained off-device and with external data. The sensor data that
the node obtains is not exploited for model training but only
for inference.

Training a machine learning model on the IoT device is an
emerging option to make the embedded learning in the IoT
adaptive, e.g., to the concept drift of data or for retraining
a model with the data that is generated by the sensors at
the device. A recent survey by Rajapakse et al. reviews the
growing number of works that studied changing ML models
at IoT boards [14]. In on-device training, a model can be
trained on a node in an isolated fashion with the local data
it collects, without requiring any network interface, or, if a
network interface exists to connect to other nodes with the
same machine learning task, then the model could principally
be trained with FL.

The impact of weight quantization on the accuracy and
energy consumption was empirically explored with MNIST
using LeNet, SVHN using a shallow CNN, and CIFAR-
10 using ALEXnet [15]. However, the generalization ability
was not described for these machine learning frameworks.
We notice that different behaviors can be expected between
conventional ML and tiny ML, given the generalization
ability described for well-knownML framework with regards
to bias-variance tradeoff, overfitting, and regularization
according to the target complexity, model complexity, mini-
batch size, and the training data quality and quantity. For
instance, in TinyOFL the restricted memory of an IoT
board may require training with a mini-batch size of one,
while Conventional Federated Learning (CFL) can utilize
much larger mini-batch sizes. Due to the inherent limitations
in memory resources on TinyML devices, we opt for an
online learning approach employing a local mini-batch
size of ‘1’. In this scenario, FedSGD, which averages
gradients, necessitates communication between the server
and clients for every local sample, resulting in significant
training overhead. To overcome this limitation, we choose
FedAVG, which averages weight parameters, to minimize
the communication cost in proportion to the number of local
updates [16].
In this paper, we aim to make a step forward in the

applicability of FL in the IoT, specifically for tiny resource-

1https://www.tensorflow.org/lite/microcontrollers
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constraint IoT nodes with a low communication capacity.
For this, we explore the effects of weight quantization
on TinyOFL with a flexible model weight quantization
communication scheme that allows the client and the server
in FL to flexibly choose the number of bits used for
communicating the model weights. In flexible model weight
quantization communication FL, the clients and server do
the local computation with full precision, but the model
communication is done with quantized weights. In practice,
quantification is implemented as a component of the code
that runs on an IoT device. It is active when the nodes do
TinyOFL.2 The client running on the node can choose for
every FL round the number of bits for the model transmission
to optimize its communication according to its link and
energy budget.

The main contributions of this paper include the new
findings regarding the effects of weight quantization on
TinyOFL as follows:
• TinyOFL allows weight quantization to be more aggres-
sive than TinyOL. E.g., 5-bit weights reach 74%
accuracy with FL, but 50% accuracy without FL.

• Overfitting rarely occurs in TinyOFL by weight quanti-
zation due to its relatively restricted model capacity.

• In TinyOFL, increasing the model size by leveraging
the communication saving from quantization does
not generate overfitting but improves the accuracy in
general, unlike CFL. There is a sweet spot between
the quantization bit-width and the increased model size
for saving power and communication bandwidth while
keeping the accuracy equivalent to the full-precision
model.

• We evaluate the effects of weight quantization on
TinyOFL in terms of accuracy, overfitting, power, and
transmission time, with a keyword spotting application.

II. DESIGN
A. FEDERATED LEARNING OVERVIEW
FL is a collaborative training method that utilizes multiple
clients in parallel to deal withmassive training data efficiently
in a privacy-preserving manner. First, an ML model is shared
among nK client devices [17]. The training data are split into
nK subsets, and each subset of the training data is assigned
to each client. The weights of the model on each client are
trained separately using its own local training data, given
a mini-batch size and the number of Local Update Round
(LUR)s. The trained weights on each device are sent to a
centralized component called a server or aggregator. Once
this server receives the trained weights of all nK clients,
a new model is created by aggregating the weights using
the weighted average. By using this aggregation method the
resulting model has better accuracy when the data is unevenly
distributed between the clients, by giving more importance
to the weights of the models that have went through more

2Our implementation and the dataset used for the experimentation
is available at the git repository https://github.com/NilLlisterri/TinyML-
FederatedLearning/tree/mixed-precision

training rounds. The weights of the resulting model are sent
back to the clients for the next training round. The above
procedure is repetitively performed until the accuracy is
saturated. FL parameters also include the number of total
training samples nTR, the number of local training samples
ntr (= nTR/nK ), the number of LURs nl , the number of global
FL updates nR, and the number of test samples nTE .

B. WEIGHT QUANTIZATION
We apply uniform quantization to the weights [18]. At each
client we obtain for its locally trained Neural Network (NN)
model the values of the maximum and minimum weights,
w_max and w_min, given as a 4 byte float data type. Our
weight quantization transforms the weight values w to the
quantized values w′ in the range of an int data type between
w_max and w_min according to a determined width l of bits.
For this width, b is the higher value of the range and a is the
lower value of the range that can be represented as int by the
number of bits. The transformation from the weights w to w′

at the local node applies the equation:

w′ = round(
(w− w_min)(b− a)
w_max − w_min

) (1)

At the server, w′ is transformed back into an approximate
wa by applying the equation:

wa = w_min+
(w′ − a)(w_max − w_min)

b− a
(2)

The dequanitzed weights wa have an error p with regards
to w, which is determined by the range of w and the width l
of w′.

p =
1
2
(w_max − w_min)

2l
(3)

Figure 1 shows an example of transforming the weights
w into w′ with 8 bits. In this example, the weights at the
local node have a minimum a maximum weight of −0.5 and
0.5, respectively. The integer representation with 8 bits has
256 values for representing w by w′ on a range of a =
0 and b = 255. By the transformation of w into w′, there
is a loss of precision. In the example, the error with which
wa represents w is 0.00195. The approach is similar to the
block Floating Point (FP) arithmetic approach [19] in that
all quantized weights share an exponent according to their
magnitude distribution.

FIGURE 1. Example of applying weight transformation to an 8 bits integer.

Figure 2 illustrates how the quantization is applied in
TinyOFL. On the top, N client nodes transform their local
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weights of 4 byte float datatype into 8 bit integers. Each client
sends the metadata about the transformation it used and the
convertedweights to the server. Themetadata is needed by the
server to transform back the received weights w′ into weights
wa of 4 byte floats. This metadata must include the specific
w_max and w_min. The width l with which the transformed
weights are represented needs to be transmitted as well if it
is not statically defined by configuration. FedAVG [16] is
applied at the server to obtain the weights wg of the global
model. Only for the model communication between clients
and server, the weights are quantized. At the server, the
dequanitzation is performed by transforming the 8 bit integers
received into 4 byte float datatype weights. The full precision,
i.e., IEEE single precision, is utilized for the weights wa and
wg, albeit the dequantized weights at the server that were
transformed have a loss of precision. Once the new global
model is calculated, eq. (1) is applied at the server on wg
with the corresponding minimum and maxiumum weights to
obtain wg′, and the clients apply eq. (2) on wg′ to obtain wga.
Algorithm 1 shows how to quantize the weights in the

FL clients and send them. A client first needs to obtain the
number of bits to represent the quantized weights for the
communication. The transformation is flexible with regard to
the width of the number of bits per weight. This allows an
FL client either to use a statically configured value or adapt
this parameter to the individual resource availability, such as
bandwidth and energy evaluated at every FL round.

Algorithm 1 Algorithm for Sending Quantized Weights
From a Client
Require: training = false
l = getWidth() ▷ e.g. by configuration or dynamically
w_max = getMax(weights)
w_min = getMin(weights)
a = 0
b = 2l − 1
sendMetaData(l, w_max, w_min)
for all weights do

w′← (w−w_min)(b−a)
w_max−w_min

sendQuantizedWeight(w′)
end for

The server receives from each federated client themetadata
that specifies how the weights were quantized. Every client
can send its weights with a different number of bits, therefore
the server has to obtain the metadata for every client and
transform the received weights accordingly. Principally, the
server could also send the global model back to the clients
with a client-specific quantization. For this, the client could
add a flag to the metadata message indicating if the server
should maintain the quantization of the client or if it can be
changed. Compared to the number of weights of a neural
network that are sent, the overhead of sending the metadata
is negligible.

III. EFFECTS OF WEIGHT QUANTIZATION ON TINYOFL
The limited compute resources of TinyML devices restrict
their applications, model capacity, training setting require-
ments, and accuracy properties, which is different from CFL.
The memory availability on these microcontroller-based
boards impedes the storage of data samples and prevents a
model from being trained with a mini-batch size greater than
one. Such online FL in tiny devices, which we call TinyOFL
in this paper to distinguish it from the other FL scenarios,
has the specific condition that the data samples obtained from
the on-board sensors can be used for training only once, then
the sample is deleted and replaced by the next sample from
the sensor. If TinyOFL is done in real conditions, the lack of
storage of the boards does not allow to work with a training
and testing data set as in CFL. Data samples for training in
TinyOFL are always new and are never repeated [20], which
restricts the model training compared to CFL. Having this
mini-batch size of one specific to TinyOFL, we will explore
the effects of weight quantization for this situation.

A. WEIGHT QUANTIZATION FOR ONLINE FL
Online learning updates the global weights for every training
sample, while online FL updates the global weights for
every ntr × nK samples. The weight quantization in online
FL quantizes the weights for local training on each client
according to the mini-batch size assigned to the clients, and
the quantized weights trained on each client are sent to
the server. Then, the weights received from each client are
averaged in the server with full precision arithmetic, and the
averaged weights are quantized again and sent back to the
clients. Therefore, the weights are updated per the number
of training samples (i.e., ntr × nK samples) equal to the
number of clients multiplied by a local mini-batch size in
online FL. On the contrary, the weight quantization without
FL utilizes the quantized weights in updating the weights per
training sample. The noise effects on the accuracy due to the
weight quantization can be stochastically diminished in the
weight updates by averaging the weights in FL, while the
noise effects are not diminished in the weight updates without
FL. Therefore, the weight quantization can bemore beneficial
with the FL framework.

Eq. (4) represents each local weight update in FL using ntr
training samples.

wt,i = wt−1,i − η6
ntr
j=1∇e(w

(j−1)
t−1,i), (4)

where η is a learning rate, ∇e(w(j)
t,i) is an error gradient with

respect to the local weights in the i-th client after the j-th local
iteration, and:

w(0)
t−1,i = wt−1,i,w

(j)
t−1,i = w(j−1)

t−1,i + η∇e(w(j−1)
t−1,i). (5)

Each ∇e(w(j)
t,i) is updated:

∇e(w(j)
t,i) =

∂e(w(j)
t,i)

∂w(j)
t,i

(6)
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FIGURE 2. Applying quantization and dequantization for model communication in FL at the client and server
side.

The FL updates the global weights wt by averaging the local
weights as follows.

wt = 1/nK6
nK
i=1wt,i. (7)

For example, the nK = 1 and ntr = 1 for conventional online
learning and nK ≥ 2 and ntr ≥ 1 for online FL. Therefore,
the global weights for online learning are updated nK × ntr
times more than online FL.

Based on Eq. (4) to (7), the online FL updates the weights
as a quasi-mini-batch method as if the mini-batch size equals
the number of devices K . Therefore, the stability of the
online learning method can be enhanced by online FL, since
the gradient direction per each weight update can be more
accurate than online learning. The stability can be affected
by the error caused by weight quantization. Therefore, the
enhanced stability of online FL allows the weights to be
quantized more aggressively than in online learning. The
TinyOFL Property 1 (TP1) describes the effects of TinyOFL
on weight quantization as follows.
TinyOFL Property 1 (Effects of TinyOFL onWeight Quan-
tization): TinyOFL allows weight quantization to be more
aggressive than online learning.

The sketch proof of TP1 is as follows. We compare the
effects of quantization errors on the accuracy between online
learning and online FL. Considering the weight quantization
in Eq. (4), online FL applies the weight quantization after
using ntr samples, generating the weight quantization noise:

w̃t,i = wt−1,i − η6
ntr
j=1∇e(w̃

(j−1)
t−1,i + ϵ

(j−1)
t,i )+6

ntr
j=1ϵ

(j)
t,i

= wt−1,i − η6
ntr
j=1∇e(w

(j−1)
t−1,i)+6

ntr
j=1(ϵ

(j)
t,i + δ

(j−1)
t,i ),

(8)

where w̃t,i represents the quantized weights for wt,i, ϵ
(j)
t,i is a

quantization error on the jth local weight update and:

δ
(j−1)
t,i = ∇e(w̃(j−1)

t−1,i + ϵ
(j−1)
t,i )−∇e(w(j−1)

t−1,i). (9)

We may consider δ(j−1)t,i as the deviation of the gradient due to
the weight quantization. Considering the weight quantization
for Eq. (5) yields:

w̃(j)
t−1,i = w̃(j−1)

t−1,i + η∇e(w̃(j−1)
t−1,i)+ ϵ

(j)
t,i. (10)

Therefore, the quantization errors ϵ
(j)
t,i and the gradient

deviation due to the weight quantization δ
(j−1)
t,i are accumu-

lated in the local updates before a global update. The two
accumulated errors can be represented as:

ϵt,i = 6
ntr
j=1ϵ

(j)
t,i, δt,i = 6

ntr
j=1δ

(j−1)
t,i . (11)

Considering the weight quantization errors for each client i
in Eq. (7), the weight update averages the quantization errors
across the K devices:

w̃t = 1/nK6
nK
i=1wt,i + 1/nK6

nK
i=1(ϵt,i + δt,i). (12)

Based on Eq. (12), the effects of the weight quantization
errors and the gradient deviation errors on the accuracy
become diminished as the number of devices, nK , increases
thanks to the stochastic error cancellation property.Moreover,
the weights proceeded with ntr steps on each client are
averaged, leading to more accurate weights. On the contrary,
online learning does not average the weights and the quan-
tization errors since it utilizes single client. Hence, without
leveraging such stochastic error cancellation property, online
learning is more susceptible to the weight quantization errors
than online FL. This leads to TP1.
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B. WEIGHT QUANTIZATION EFFECTS ON ACCURACY
The accuracy of TinyOFL is often limited due to its restricted
model capacity. However, the accuracy is not affected by
weight quantization if the quantization noise is relatively
lower than the data noise [21].

The feature map using quantized weights, f̃i(xi), on the
input feature xi at the i-th layer can be deviated by δyi due
to the weight quantization as follows:

f̃i(xi) = fi(xi)+ δyi, (13)

where fi(xi) is the feature map operation on xi using non-
quantized weights. The f̃i(xi) generates the quantity δqi based
on the backward error analysis [21], [22]:

f̃i(xi) = fi(xi + δqi). (14)

The δqi is often referred to as the backward error whichmakes
Eq. (14) hold (i.e., by linearity, δqi = f −1i (δyi).). We refer
to the backward error as the quantization noise since the
backward error behaves as the noise on the feature xi [21].
Next, we explore the effects of quantization on the

accuracy mathematically by linking the quantization error
with data noise [21]. By the backward error analysis [21],
[22], the input neurons multiplied by the quantized weights
can be expressed as the perturbed input neurons multiplied
by the original weights as follows:

xi,j × (wj,k + ϵj,k ) = (xi,j + δqi,j)× wj,k , (15)

where xi,j is the jth neuron value at the i-th layer, wj,k is
the weight connecting between xi,j and x(i+1),k prior to the
activation layer, ϵj,k is the weight quantization error on the
weight wj,k , and δqi,j is the effect of the quantization on the
input noise if wj,k ̸= 0. If wi,j = 0, there is no quantization
error. Replacing xi,j with x∗i,j + δdi,j, where δdi,j is the noise
in the xi,j and x∗i,j is the noiseless feature map, the right side
in Eq. (15) becomes:

(x∗i,j + δdi,j + δqi,j)× wj,k . (16)

Therefore, the quantization error does not affect the accuracy
in practice, if:

|δqi,j| ≪ |δdi,j|. (17)

Based on Eq. (17), TinyOFL Property 2 (TP2) is as follows.

TinyOFL Property 2 (Equivalent Accuracy Condition for
Weight Quantization in TinyOFL): The weight quantization
can achieve the equivalent accuracy to the baseline model
if the condition of (17) is satisfied.

FL exhibits good performance when the data are assigned
among clients in an Independent and Identically Distributed
(IID) fashion, but the FL performance is degraded when the
data distribution follows a non-IID fashion [16]. The data
sharing method [23] that shares a portion of the training data
among all clients can minimize the accuracy loss for non-
IID FL cases. Hence, weight quantization along with the data
sharing would be beneficial to minimize the accuracy loss
incurred by non-IID data [23], [24].

C. WEIGHT QUANTIZATION EFFECTS ON BIAS-VARIANCE
TRADE-OFF
The overfitting events rarely occur on neural networks trained
with backpropagation [25]. However, the weight quantization
adds noise to the labels of input samples in the feature map
operations, increasing the variance part in the bias-variance
analysis [26], [27]. Therefore, the effects of the variance
part on the accuracy becomes more significant by weight
quantization. This implies that a monotonously decreasing
error curve from a neural network can be transformed into
a double-descent curve as the number of hidden neurons
increases due to the weight quantization [27]. Due to the
restricted model size for TinyOFL, the overfitting due to the
quantization noise rarely occurs in TinyOFL, compared to
CFL. TinyOFL Property 3 (TP3) is described as follows.

TinyOFL Property 3 (Overfitting in TinyOFL):
Overfitting rarely occurs in TinyOFL due to its relatively
restricted model capacity.

The weight quantization allows more parameters fit in
the model, increasing the model size. Based on TP3, the
increased model capacity would not cause overfitting in
TinyOFL. For a high-end computing machine, the quantized
networks would require regularization to prevent the overfit-
ting effects caused by quantization. Therefore, unlike CFL,
there exists an accuracy trade-off in TinyOFL between the
accuracy loss by quantizing the weights and the accuracy
gain by increasing model capacity by leveraging additional
memory footprint generated by weight quantization. Tiny-
OFL Property 4 (TP4) is described as follows.

TinyOFL Property 4 (Accuracy Trade-Off due to
Weight Quantization): There exists an accuracy trade-off
in TinyOFL between the level of weight quantization
and the model capacity.

D. WEIGHT QUANTIZATION EFFECTS ON TRANSMISSION
Unlike CFL, TinyOFL remote scenarios often require
LPWAN due to the location and restricted power budget
of the tiny device. Since LoRa [28] is one of the most
widely used LPWAN, we adopt LoRa for our case study.
LaRa communication in many countries follows a duty cycle
regulation. A duty cycle represents the fraction of one period
in which a signal is active. For example, for a duty cycle of
1%, sending the next LoRa packet should wait 99× packet
sending time. Therefore, sending entire weights of a neural
network using LoRa requires the duration TLoRa in Eq. (18).

TLoRa = Tsp × #p × 100/DC(%), (18)

where Tsp is the time cost to send a single packet of LoRa,
#p is the number of LoRa packets required for sending entire
weights of a neural network, and DC(%) represents the duty
cycle specified with a percentage. The weight quantization
reduces #p, minimizing TLoRa and the energy cost. The #p
can be estimated by the total storage required for the entire
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weights divided by the maximum bytes required for a single
LoRa packet.

IV. EVALUATION
This section discusses the experimental setup and evaluates
the effects of weight quantization on model performance,
bandwidth savings, energy savings, and training time.

A. EXPERIMENTAL SETUP
Our case study extends a keyword spotting application [20]
with four words. The four words include ‘‘Montserrat’’,
‘‘Pedraforca’’, ‘‘Vermell’’, and ‘‘Blau’’. Our experimental
setup is as follows.

1) NEURAL NETWORK STRUCTURE FOR KEYWORD
SPOTTING TASKS
Feedforward neural networks are used with a single hidden
layer with the sigmoid activation functions (i.e., 650 neurons
for the input layer, variable size for the hidden layer, and
4 neurons for the output layer). Each sample consists of
650 values from the 50 windows of 13 Mel Frequency
Cepstral Coefficients (MFCC), which is a one-second mono
audio recording of the keyword sampled at 16 KHz. The
number of neurons in the hidden layer nh varies throughout
the experimentation, ranging from 5 to 25 neurons, with an
increment of 5. The output layer consists of 4 neurons, each
representing a different keyword. The predicted keyword is
given by applying the softmax function with all the output
nodes.

2) TRAINING AND TEST DATA FOR FL
The number of clients is: nK = 3, the number of total training
samples is: nTR = 480, the number of training samples for
each client is: ntr = 160, and the number of test samples
is: nTE = 60. We divide the training samples into three
160 training samples (i.e., 40 samples for each class) to
allocate them to each local device, as shown in Fig. 3. In order
to generate repeatable experimental conditions that allow
comparison and performance understanding, the speech
samples used for the training were previously recorded.
We added to the FL implementation of the server an auxiliary
function that allowed to transmit the raw speech samples to
the boards, one by one as if they were obtained by the board’s
microphone, to enable each client to do the local training at
the corresponding FL round.

3) HARDWARE AND THE FL IMPLEMENTATION
We use the three Arduino Portenta H7 boards shown in Fig. 4
to run the FL clients. Each board has 1 MB RAM and a
dual-core processor consisting of a Cortex M7 core running
at 480 MHz and a M4 core running at 240 MHz. For our
purpose, only the M7 core is used. The neural network model
on each client is trained locally with its training data. Then
the node sends its model with quantized weights to a PC,
as explained in section II, where the FL server is hosted.
We use the serial port with a stop-and-wait protocol to ensure

FIGURE 3. Distribution of the dataset samples.

the reliable communication of the model weights. The FL
server on the PC generates a new global model from the
received local models. For the training at the microcontroller-
boards and generating the global models at the PC, the
weights are in 4 byte float data types. Quantization is applied
for the communication of the weights between clients and the
server, for which the 4 byte weights are transformed into the
l-bit representation, as depicted in Fig. 2.

4) TRAINING SETTING FOR FL
The mini-batch size is 1 in our experiments based on the
memory resource constraint in the Arduino Portenta H7. The
number of local updates per FL round is set to 4 (nl = 4).
With 160 training samples and 4 local update rounds, the
number of FL rounds nR is 40. All the weights are initialized
with a uniform distribution for training.

FIGURE 4. The three arduino portenta H7 boards used in the experiments.

The main configuration parameters used in the experime-
nation are summarized in Table 1.

B. EFFECTS ON GLOBAL MODEL ACCURACY
We evaluate the effect of weight quantization on the accuracy
of the global model. The global model is updated at the server
after every FL round, and its accuracy is evaluated with the
60 test samples. The accuracy is calculated based on Eq. (19).

Acc = nTP/(nTP + nFP), (19)
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TABLE 1. Experimental setup summary.

where nTP and nFP represent the number of true predictions
and the number of false predictions.

1) ACCURACY VARIATION ACCORDING TO QUANTIZATION
LEVEL
We explore the equivalent accuracy condition (17) with
various weight quantization levels, compared to a baseline
model. Fig. 5 shows the accuracy evolution according to
l = [3, 8] with a fixed nh = 25. The model using 32-bit
FP weights is used as a baseline. The accuracy of the model
using 32-bit FP weights is equivalent to the accuracy using
7- or 8-bit weights, ranging between 95 and 98% with an
equivalent convergence rate. The equivalent condition of (17)
maintains if l ≥ 7 in our case study, supporting TP2. The
accuracy drops occur if l ≤ 6, since the quantization errors
on the locally updated weights affect the accuracy of globally
updated weights. Particularly, using 3-bit weights annihilates
the model’s training ability.

Fig. 6 represents the accuracy using 5-bit weights on
a single device without FL. In this figure, 480 training
samples are used and the weight quantization is applied
every 4 samples. Compared to Fig. 5, 5-bit weights with
FL reach 74% accuracy with FL, but 50% accuracy without
FL. Therefore, aggressive weight quantization can be allowed
with FL, as discussed in TP1.

FIGURE 5. Accuracy according to weight quantization with different
bit-widths.

2) ACCURACY VARIATION ACCORDING TO THE HIDDEN
LAYER SIZE
Fig. 7 analyzes the accuracy concerning nh = {25, 20, 15, 10,
5} for l = {32, 16, 8, 7, 6, 5, 4}. The accuracy is obtained

FIGURE 6. Accuracy with 5-bit weight quantization without FL.

after 40 FL rounds, with each client model trained with
160 samples (i.e., 40 samples of each class). The accuracy
is improved as the number of neurons in the hidden layer
increases, given a fixed number of bits for weights.

We observe that the least sufficient bit width for theweights
depends on the network model capacity. For example, the
accuracy of the network with full-precision weights is similar
to 8-bit weights for all cases of the hidden layer sizes. With
7-bit quantization, a model requires 20 neurons at least to
produce an equivalent accuracy to a full precision network.
For nh ≤ 15, the quantization noise from using 7-bit weights
affects the accuracy. I.e., the effect of quantization noise on
the accuracy becomes weaker as the number of neurons in
the hidden layer increases. In this case, we believe that the
average quantization noise effect per weight on the accuracy
becomes weaker since more portion of weights could become
close to zeros as the size of the hidden layer increases [25].
The neural network having 25 neurons of the hidden layer
classified 59 samples out of 60 test samples correctly using
7-bit weights, while 57 samples using 32-bit FP weights -
the quantization noise accidentally impacted the accuracy
positively.

We observe that TPs 3 and 4 hold in our experiments.
Based on Figure 7, some models with a larger hidden
layer sent with lower precision perform better than small
models with higher precision, such as the case of the model
of 5-bit weights with 20 neurons compared to the 7-bit
weights with 10 neurons. Therefore, there is a potential to
exploit the accuracy tradeoff between using more of an IoT
node’s communication and more of its local computation
resources to reach a certain model accuracy based on TP4.
Such accuracy tradeoff exists in TinyOFL thanks to TP3.
However, TinyOFL with aggressive weight quantization can
face overfitting. Fig. 8 represents the accuracy variation as
the number of neurons in the hidden layer increases for
32-bit FP and 5-bit weights. The quantization noise larger
than a threshold due to employing 5-bit weights degrades
the accuracy as the hidden layer size increases (e.g. when
the number of neurons is larger than 40). However, neural
networks using 32-bit FPweights did not face such overfitting
as discussed in TP3.
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FIGURE 7. Comparison of the effects of the hidden layer size and number
of bits of mixed precision on the accuracy.

FIGURE 8. Overfitting with 5-bit weights.

3) EFFECTS OF QUANTIZATION ON WEIGHT DISTRIBUTION
The feedforward neural network with 25 hidden neu-
rons has a total number of weights of 16379, consisting
of 16250 weights between the input and hidden layer,
100 weights between the hidden and output layer, and
29 weights due to the biases of the neurons in the hidden
and output layer. Fig. 9 represents the weight distribution
of the quantized weights w′ of a local model with 5 bits
at a different number of FL rounds (nR = {0, 20, 40}).
Wemeasure the number of the 5-bit weights within the integer
range [0, 31] with step size, s = 1. As the training proceeds,
the weights tend towards a Gaussian distribution, and the
standard deviation becomes smaller (i.e., more weights come
closer to zero.). In Fig. 9, the backpropagation property
regulating most weights with small values still holds with
5-bit weights in our TinyOFL use case.

C. EFFECTS ON BANDWIDTH SAVINGS
Table 2 represents the communication cost of the model
required for a single transfer in terms of kBytes. We calculate
the cost based on the number of model parameters (weights
and bias) according to different bit-width for weights and
different numbers of neurons in the hidden layer. Notice
that the total communication cost depends on the number of
FL rounds, while the number of FL rounds depends on the
training data pattern, the accuracy requirements, and on the
re-transmission of messages.

Based on Table 2 and Fig. 7, using 7-bit weights with nh =
25 can save bandwidth by 4.6× without losing accuracy,

FIGURE 9. Distributions of 5-bit weights at 0, 20, and 40 (from left to
right) FL rounds.

compared to 32-bit FP weights. Given 75% accuracy budget,
6-bit weights with nh = 15 can minimize the communication
cost, compared to 5-bit weights with nh = 20. Therefore,
the optimal bit-width for the weights should consider the
accuracy trade-off between the quantization level and the
network size. In our experiment, the error due to the
quantization noise is compensated by the increased network
size. The network size is often limited, so overfitting by
increasing the network size hardly occurs in TinyOFL.
In such cases, the negative effects of the quantization on the
accuracy can be compensated by increasing the network size.

TABLE 2. kBytes of the weights required with respect to the model size
and quantization.

D. EFFECTS ON ENERGY SAVINGS AND MODEL
DELIVERY TIME
We analyze the energy cost of the communication for the
Arduino Portenta H7 nodes of our FL deployment. The
Portenta board supports three wireless network interfaces:
Wifi, Bluetooth, and LoRa. We singled out LoRa for our
study since LoRa is customized for the energy-efficient
communication of remote IoT nodes, which is an important
application field for nodes with embedded learning [29].

In LoRa, one of the configuration parameters that deter-
mines the energy consumption is the Spreading Factor (SF).
A different SF has to be configured depending on the distance
between two nodes. The higher the SF, the higher the distance
that the link covers. With a higher SF, however, the packet
transmission has a longer time-on-air. This longer duration
of the LoRa packet transmission then consumes more energy
of the IoT device than the quicker transmissions with a lower
SF.3 Therefore, in general, the reduction of the amount of
data transmitted with quantized weights will translate into

3https://www.thethingsnetwork.org/docs/lorawan/spreading-factors/
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less energy consumption, but the concrete savings depend on
the application case.

The communication latency is also affected by the
proposed quantization approach. The weight quantization can
reduce the latency since less data is transmitted. However,
also other factors come into play, such as the network
topology of the LPWAN communication technology. The
latency for a specific application case is different if the
nodes of an FL network are, e.g., at a one hop distance
or in a mesh network with several hops. Also, the traffic
in the network which affects the packet collisions and
possible re-transmissions, influences the latency of the
specific application case.

We utilize the approach used in [30] to control the
transmission of low-level LoRa packets. An SX1276 LoRa
Breakout Board [31] is used to measure the energy cost of
the LoRa communication. We set a maximum payload to
222B. This is a packet size that is accepted by most of the
regulations worldwide.4 Wemeasure the energy consumption
of sending a single LoRa message to estimate the total cost
of communication for the number of packets required to send
models with different bit widths from one node to another.
For the experiment, we use the RadioLib library that supports
the SX1276 module.5 For the LoRa communication setup,
we use the default configuration of the library with a TX
power of 10dBm and SF 9. Figure 10 shows a snapshot of
a measurement.

FIGURE 10. Current measurement in a LoRa packet communication with
222B payload.

It can be seen that when the node sends a LoRa packet,
the current in the idle state is around 87 mA, while 194 mA
is required for the active communication during 1520 ms
that corresponds to the Time-on-Air of sending of a single
LoRa packet with a payload of 222B, given communication
settings. Table 3 shows the estimated energy cost based on the
estimated number of LoRa packets related to the bit width of
the weight quantization, the current given, and the voltage
of 5V, and Time-on-Air measurements. It can be observed
that the energy cost is linearly proportional to the number
of bits of the weights transferred. This result is consistent
with the analysis performed on the energy consumption for
different data rates and payloads in [32], which shows that
higher payload sizes which results in a higher Time-on-Air

4https://lora-developers.semtech.com/documentation/tech-papers-and-
guides/the-book/packet-size-considerations/

5https://github.com/jgromes/RadioLib

increase the energy consumption. Applying a reduction of the
quantization level which results in a lower number of packets
that have to be transmitted, both the energy consumption and
delivery time are reduced proportionally to the lower number
of bits of the weights.

Notice that the real delivery time of a model should
consider a duty cycle regulation, making the delivery time
much longer, compared to the Time-on-Air (i.e., the Time-
on-Air corresponds to 100% duty cycle in Eq. (18)). If we
consider a duty cycle of 1%, sending the model with weights
of 32 bit width would take around 100h, and using 8-bit
quantizedweights can reduce it to 25h.With packet loss, there
will be an additional number of packets due to the need for
re-sending of packets and the overhead of a reliable message
delivery protocol. Since such packet loss does not depend on
the weight quantization in LoRa, the bandwidth and energy
savings would be in proportion to weight quantization in
practice. Given these considerations and the measurements
obtained, the weight quantization considering the accuracy
trade-off of TP4 can reduce both the energy and the end-to-
end delivery time significantly in TinyOFL.

TABLE 3. Total energy and Time-On-Air of sending the weights with
different bit widths of the largest neural network used in the experiment
with a hidden layer of 25 neurons.

V. RELATED WORK
Mixed precision model training methods were mainly
investigated for single neural networks. For instance, lower
and higher precision arithmetic are employed for the
Multiplications and the Accumulations (MACs) in matrix
multiplications to accelerate training without losing accu-
racy [33], [34], [35]. In this regard, various data types have
been studied for the lower precision and higher precision
arithmetic for MACs, such as IEEE half precision and IEEE
single precision data type [34], BFloat16 and IEEE single
precision data type [36], and an 8-bit FP and DLFloat data
type [37]. The idea behind such mixed precision training was
to accelerate training speed by reducing the memory access
costs for MAC operations.

It has been a main research topic in FL to explore
how to reduce the cost of model communication. One of
the main approaches is weight quantization. Probabilistic
weight quantization was proposed in [17] as one of
the sketching methods for compression. Suresh et al. [38]
proposed stochastic rotated quantization to improve the
accuracy without decreasing the number of quantization
bits, compared to [17]. Yoon et al. [39] proposed a trainable
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weight dequantizer used in the central server to reconstructs
heterogeneous low-bitwidth weights according to each client
environment to appropriate full-precision weights. The work
in [40] proposed Quantized Stochastic Gradient Decent
(QSGD), in which the gradients of the local model are
quantized with a configurable number of bits depending on
the network bandwidth. While the above mentioned works
transmit in a compressed representation all gradients of
the model to the server, in Lazy Aggregated Quantization
(LAQ) the client examines the change of each weight
gradient and skips the transmission of the less informative
quantized gradients [41]. As an extension to LAQ, Adaptive
Quantitzed Gradient (AQG) was proposed [42]. In AQG,
depending on the amount of update of a gradient, the client
quantizes gradients with more or fewer bits, applying thus
an adaptive number of bits for the transmission. Quantizing
the gradients of the model instead of the weights has an
asymmetric performance gain since it reduces only the cost
of communication from the client to the server, but not from
the server to the clients. Differently, quantizing the model
weights benefits the bidirectional communication. It has
been pointed out in [43] that realistic environments have
non-IID data, for which a performance drop of FL with
many existing compression schemes was observed. Different
methods for reducing the model communication cost can be
combined as in the FedPAQ algorithm [44], which includes
optimizing the relation between the amount of local SGD
training and communication to the server, considering partial
client participation in an FL round and applying parameter
value quantization. Mitra et al. [45] proposed an online FL
variant that minimizes the difference between the prediction
error averaged over all clients and the predication error in the
global model in the server after averaging local weights over
entire time steps. This method allows clients to communicate
with the server infrequently, minimizing the communication
cost in FL.

The research for FL on microcontroller-based IoT devices
is still a new area with yet only a few works published.
Kopparapu et al. proposed TinyFedTL for federated trans-
fer learning [46]. A compressed version of TensorFlow’s
MobileNet on the device was used to perform an image
recognition task on theArduinoNano 33BLE. Thework [20],
[47] analyzed how FL could benefit model performance,
compared to training the model with local data only.

Most of the above works are developed from a rather the-
oretical perspective, and the performance is often evaluated
with simulations. Differently, by the prototype developed in
our work, we aim to bridge the existing research results with
the emerging practitioner community of TinyML.

Several research and practical implementations combine
ML on remote IoT nodes with LoRaWAN communication.
An example is the mosquito logger system proposed in [29].
The IoT device performs the signal processing and classifi-
cation. Instead of sending raw data, only the classification
result is communicated to the remote gateway, resulting in
a huge saving of bandwidth usage of the LoRa link. This

kind of application uses a trained model that is flashed on the
device before deploying the node in the field. The quantized
model weight communication that we studied in this paper
can contribute to such types of applications enabling models
to be trained by FL over LoRa. Moreover, in this paper,
we analyzed the effects of weight quantization on TinyOFL
in terms of the stability (TP1), accuracy (TP2), overfitting
(TP3), and the accuracy trade-off between the quantization
level and the extensible network width (TP4) with theoretical
and experimental support.

VI. CONCLUSION
This paper performs a comprehensive analysis of the effects
of weight quantization on TinyOFL in terms of the accuracy,
stability, overfitting, and accuracy trade-off between quanti-
zation level and expandable neural network width, bandwidth
savings, energy savings, and delivery time with theoretical
and empirical support by a TinyOFL use case on three
Arduino Portenta boards. We believe that such foundations
on the effects of weight quantization on TinyOFL will
provide computing system engineers and machine learning
engineers with guidelines on how to practically apply weight
quantization for their TinyOFL use cases.

The weight quantization has advantages in TinyOFL. In the
case study, the 7-bit weight quantization in TinyOFL saved
bandwidth by 4.6×without losingmodel accuracy, compared
to full-precision weights. We also observe that 5-bit weights
reach 74% accuracy with FL, but 50% accuracy without
FL, implying that TinyOFL allows the weight quantization
to be more aggressive, compared to TinyOL. The weight
quantization can cause overfitting in TinyOFL. For example,
the 5-bit weights degrade the accuracy as the number of
neurons in the hidden layer size becomes larger than 40,
while 32-bit FP weights did not face such overfitting. It is
advantageous to utilize three Arduino Portenta boards since
our findings TP1 to TP4 can be supported empirically given
our training data. E.g., the main challenges using more clients
in our experiments are related to the training dataset size.
The training data would have to be partitioned between a
lot of devices, and each device would be trained with very
few samples. However, it is disadvantageous to utilize the
three boards since TinyOFLwithmore Portenta boards would
allow us to explore the effects of weight quantization on the
accuracy and the communication bandwidth cost more deeply
with respect to the increased number of clients.

In future work, we aim to explore deeper the optimization
potential of weight quantization for memory and communi-
cation resource needs of the FL server using more Portenta
boards. While in our experimental scenario the FL server was
hosted on a PC, a LoRamesh network would allow the clients
to communicate with an FL server hosted on an IoT device
as well. However, the centralized FL server design requires
a significant amount of memory at the server for storing
the local models before averaging and also needs bandwidth
for the communication of the model exchanges with each
client. Applying the proposed weight quantization for a more
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decentralized FL server design suitable to run on tiny IoT
nodes could foster a machine learning intelligence entirely
provided by an IoT network.
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