
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Weighted Multi-Skill Resource
Constrained Project Scheduling: A
Greedy and Parallel Scheduling
Approach
SAEED AKBAR1, MUHAMMAD ZUBAIR 2, RIZWAN KHAN 1, UBAID UL AKBAR 3, RAHMAT
ULLAH4,*, and ZHONGLONG ZHENG1,*
1School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
2Department of Software Engineering, Lahore Garrison University, Pakistan
3Department of Computer Science, City University of Science and Information Technology, Pakistan
4School of Computer Science and Electronic Engineering, University of Essex, UK

*Corresponding author: Zhonglong Zheng (e-mail: zhonglong@zjnu.edu.cn)

ABSTRACT This study addresses the Weighted Multi-Skill Resource Constrained Project Scheduling
Problem (W-MSRCSPSP) with the aim of minimizing software project makespan. Unlike previous works,
our investigation regards heterogeneous resources characterized by varying skill proficiency levels. Another
major problem with existing methodologies is the potential underutilization of human resources due to
varying task durations. This work introduces an innovative scheduling approach known as the Greedy and
Parallel Scheduling (GPS) algorithm to handle the said issues. GPS focuses on assigning the most suitable
resources available to project activities at each scheduling point. The fundamental goal of our proposed
approach is to reduce resource wastage while efficiently allocating surplus resources, if any, to project tasks,
ultimately leading to a decrease in the makespan. To empirically evaluate the efficacy of the GPS algorithm,
we conduct a comparative analysis against the Parallel Scheduling Scheme (PSS). The advantage of our
proposed approach lies in its ability to optimize the utilization of available resources, resulting in accelerated
project completion. Results from extensive simulations substantiate this claim, demonstrating that the GPS
scheme outperforms the PSS approach in minimizing project duration.

INDEX TERMS Greedy and Parallel Scheduling, Heterogeneous skill proficiency, Parallel Scheduling
Scheme, Project scheduling, Resource assignment, Weighted multi-skilled resources.

I. INTRODUCTION

PROJECT scheduling is an integral step in software
project management that involves assigning resources

over time to execute project tasks. The timely completion
of a project is intricately linked to the decisions made
in resource scheduling [1], [2]. An ideal project schedule
achieves project completion within the stipulated timeframe
while minimizing project costs, all the while maintaining the
quality of the final deliverable. Project scheduling serves as
the conduit that transforms a project plan into a sequence
of project activities, optimizing the project’s total duration,
all within the confines of pre-existing constraints such as
human resource and the task precedence relationships [3],
[4]. The Resource-Constrained Project Scheduling Problem
(RCPSP) seeks to optimize activity start and end times to

achieve the earliest project completion, considering both
prerequisite relationships and resource constraints [5]–[7].
Notably, human resources, often scarce with specific skill
sets, pose a significant challenge when assigned to tasks
adhering to precedence relationships. This challenge char-
acterizes a more inclusive variant of RCPSP known as the
Multi-Skill Resource-Constrained Project Scheduling Prob-
lem (MSRCPSP) [3], [8], [9].

Originating from Blazewicz et al.’s work [10], RCPSP
remains a complex and enduring research domain, giving
rise to various models accommodating diverse combinations
of resources, activities, and objectives [11], [12]. Driven by
the rapid growth of the software industry, MSRCPSP has
gained substantial significance, particularly in the realm of
medium and large-scale projects. In MSRCPSP, each re-

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers for

source possesses one or more distinct skills enabling them
to handle various project tasks [13]. Task execution requires
collaboration among resources with specific proficiencies.
Notably, these renewable human resources can be allocated
to multiple activities, provided there is no temporal overlap in
their execution. The precise allocation of resources based on
their skills is of paramount importance within the MSRCPSP
domain [14].

Project scheduling problems are multifaceted, with con-
straints spanning deadlines, task precedence, resource avail-
ability, and skill requirements. Ultimately, the primary ob-
jective remains the efficient arrangement of all project ac-
tivities to minimize the project’s makespan while adhering
to task precedence constraints [13], [15]. Numerous project
strategies have been outlined within the literature with a pri-
mary emphasis on the minimization of the project makespan.
Typically, project scheduling techniques are categorized into
three distinct classes, as evidenced by the existing body of re-
search. First among these classes are the exact methods [16],
which harness integer programming models to ascertain the
optimal solution. However, a prevailing limitation of these
approaches arises when addressing problems characterized
by substantial dimensions, as they tend to be computationally
intensive.

To circumvent the challenges associated with exact meth-
ods, the research community introduces heuristic algorithms
to expedite solution identification within reasonable time
frames. Among these, parallel and serial schedule generation
schemes have emerged as predominant heuristic approaches,
demonstrating efficacy in practical project scheduling con-
texts. Nonetheless, it is noteworthy that these heuristic tech-
niques do not universally ensure the attainment of optimal
solutions. In response to this limitation, meta-heuristic al-
gorithms have emerged as a pivotal advancement in the
field, enhancing upon the capabilities of heuristic methods. A
salient feature of meta-heuristic algorithms is their capacity
to provide optimal solutions within a reasonable amount of
time [16].

Literature offers numerous scheduling algorithms to ad-
dress the MSRCPSPs, employing diverse exact methods [17],
[18], heuristics [19]–[22], and meta-heuristic algorithms [5],
[23]–[33]. These approaches take into consideration multiple
constraints inherent to project scheduling when assigning hu-
man resources to project tasks, such as the number of project
tasks, the precedence relationship among tasks, the number
of resources, and the number of skills. Nonetheless, a preva-
lent limitation observed in these existing scheduling tech-
niques lies in the overlook of skill proficiency heterogeneity
among resources, assuming uniform proficiency levels for
specific skills required in performing project tasks. Further-
more, the prevailing strategies may yield under-utilization of
human resources due to variations in the duration of project
tasks.

To address the aforementioned issues, this work offers
a novel Greedy and Parallel Scheduling (GPS) technique.
The present study focuses on the Weighted Multi-Skill Re-

source Constrained Project Scheduling Problem (WMSR-
CPSP) while explicitly considering the presence of hetero-
geneous resources, with the primary goal of minimizing the
project makespan. The GPS approach first allocates human
resources to project tasks in a greedy manner, employing
a best-fit strategy to ensure optimal resource utilization.
Also, it adeptly assigns resources to groups of parallel tasks,
maximizing resource utilization. It accomplishes this by as-
signing the available, unoccupied resources—freed up as a
result of recently completed tasks—to already running or
subsequent project tasks in a manner that collectively min-
imizes the overall makespan. Each resource in this context
possesses one or more skills, with varying efficiency levels
for each skill. Its inherent greediness ensures that a substan-
tial proportion of project resources remain actively engaged,
thereby enhancing overall resource utilization. Additionally,
this approach facilitates effective project monitoring and the
desirable allocation of highly skilled resources to pertinent
project activities by the project manager.

The principal contributions of this research can be summa-
rized as follows:

• Introducing a novel Greedy and Parallel Scheduling
(GPS) algorithm. GPS uses a best-fit strategy – it prior-
itizes efficiency by initially assigning the best available
resources to the shortest tasks to minimize waiting times
and optimize resource utilization. Moreover, the GPS
also performs parallel execution of tasks by creating
parallel executable task groups based on their prece-
dence relationships in order to avoid resource wastage
and minimize the overall makespan.

• Considering heterogeneous resources for performing
project tasks. Incorporating a realistic weighting scheme
that assigns resource weights for each skill based on
their respective proficiency levels. Distinct weights are
allocated for each skill mastered by individual re-
sources. Additionally, the GPS reassigns free resources
arising from the completion of preceding activities to
minimize resource wastage during the resource alloca-
tion process.

• Conducting extensive simulations considering 6 dif-
ferent factors such as the number of skills, number
of resources, and the graph complexity. Moreover, we
conduct a comprehensive analysis of the simulation
results to evaluate the effectiveness of the GPS strat-
egy compared to the Parallel Scheduling Scheme (PSS)
heuristic. Extensive experimental results affirm the su-
perior performance of the proposed strategy in terms of
minimizing the project makespan.

The subsequent sections of this paper are organized as fol-
lows. Section II presents the existing work related to project
scheduling in the literature. Section III delineates the problem
formulation. Section IV provides a brief discussion of the
proposed framework for project scheduling and resource
staffing. Finally, Sections ?? and VI present the simulation
results and conclusion of this work, respectively.

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers

II. RELATED WORK
While task scheduling is vital in various domains beyond
project management [34], [35], its settings and objectives
differ from those in project management. Given the unique
context and goals of MSRCPSP, specialized approaches and
solutions are necessary. Thus, this study distinctly addresses
the complexities of MSRCPSP within the project manage-
ment context. Extensive literature exists that tries to unravel
the complexities inherent to MSRCPSP. In contemporary
academic discourse, a notable surge of interest among re-
searchers centers on project scheduling, particularly with a
focus on minimizing the project makespan.

In the context of MSRCPSP, Mirnezami et al. [17] propose
a precise method for the Multi-mode Resource-Constrained
Project Scheduling Problem (MRCPSP) with multiple skills,
allowing activity preemption. They devise a novel Multi-
Objective Mixed-Integer Linear Programming (MILP) model
to handle uncertainty in non-renewable resources. The model
minimizes project makespan, resource costs, and project risk.
Shorter project durations increase resource consumption and
costs, while higher resource usage tends to reduce project
risk. Similarly, [36] proposes a MILP model for MSRCPSP,
addressing overlapping activities and rework in a fuzzy envi-
ronment. The model aims to optimize project duration, cost,
and quality, handling uncertainty through fuzzy mathematical
programming. However, the computational complexity of the
said models is very high.

In addition to exact methods, literature suggests sev-
eral heuristics-based approaches. For instance, in [21],
the authors address the challenge of efficiently schedul-
ing multiple projects with limited resources in high-end
equipment development, employing Variable Neighborhood
Search (VNS) for effective problem-solving within a reason-
able timeframe. Their approach introduces a comprehensive
scheduling model, considering multi-mode and multi-skill
factors and emphasizing optimal allocation of research and
development personnel and task sequencing. However, the
assumption of a constant employee ability coefficient ne-
glects potential skill improvement.

Similarly, Ref. [19] treats project scheduling as a multi-
objective optimization problem and introduces a novel
method to address the "new employee addition" dynamic
event, utilizing domain knowledge for robust scheduling. The
heuristic specifically handles scenarios involving mid-project
additions of new employees, considering budget and time
constraints. It also addresses the challenge of assigning one
resource to multiple projects concurrently in a multi-project
setting. Utilizing domain knowledge for population initial-
ization, the approach aims to generate high-quality solutions.
However, the approach overlooks certain dynamic events,
such as considering task slack time and handling software
requirements cancellation.

In [20], a mixed-integer goal programming model and a
three-phase greedy heuristic method are introduced for the
multi-project scheduling and multi-skilled employee assign-
ment problem. The method addresses constraints like mini-

mum task load and limits on tasks per week per employee,
employing a local and tabu search algorithm. Tested on
real data, the approach rapidly yields effective solutions for
realistically sized instances. However, it lacks consideration
for precedence relationships between projects or tasks. In a
related context, Akbar et al. [4] propose a scheduling heuris-
tic for MSRCPSP that accounts for the soft skills of human
resources. This approach examines factors such as available
resources, tasks per project, and precedence constraints, eval-
uating their impact on the overall project makespan.

A significant literature uses meta-heuristic approaches to
study the MSRCPSP. For instance, Chen et al. [33] propose
Hyper-Heuristic Filtered Genetic Programming (HH-FGP) to
improve the efficiency of solving the Stochastic Resource-
Constrained Multi-Project Scheduling Problem with Non-
identical Parallel Machines (SRCMPSP-NPI). The frame-
work refines Genetic Programming (GP) by simultaneously
filtering both the attribute set and depth range of gene expres-
sion trees, offering a unique hyper-heuristic perspective for
project scheduling in stochastic environments. Ma et al. [29]
explore a proactive project scheduling problem with flexible
resources possessing multiple skills, allowing skill changes at
discrete intervals. They introduce a tabu search algorithm to
generate a feasible skill allocation plan, aiming to maximize
schedule robustness. However, the proposed method does not
address the costs associated with skill switching.

Snauwaert et al. [9] study the impact of factors such as
skill proficiency, workforce size, and multi-skilled resources.
They find that beyond a certain skill level, additional skills
may increase costs without improving makespan. Workforce
size has a smaller impact than skill mastery, with the number
of skills, not resources, primarily influencing makespan. The
paper’s limitation is its deterministic focus, neglecting the
stochastic dimension of the MSRCPSP. In [23], Wang et
al. address the MSRPSP with uncertain resource availabil-
ity, introducing the GA-PR algorithm. It dynamically as-
signs skills, mitigating shortages by reallocating from idle
resources, aiming to minimize additional costs and project
makespan. However, the study considers homogeneous re-
sources. Li et al. [24] introduce MODJaya for MSRCPSP,
minimizing makespan and cost concurrently. MODJaya out-
performs NSGA-II and NTGA in CPU time, with MOEA/D
as the fastest, handling instances efficiently. The paper as-
sumes single-resource task assignments, neglecting real-
world collaboration scenarios involving multiple resources.

Li et al. [26] propose a two-stage priority rule-based
heuristic algorithm enhanced with a genetic algorithm (GA)
for the Software Project Scheduling Problem with Multi-
tasking (SPSPM), addressing employees handling multiple
tasks with varying skills and duration influenced by skill
characteristics. However, the approach needs to incorporate
more realistic factors in software project management, such
as uncertainty, resource leveling, and preemption. Tian [30]
introduces an innovative strategy for the multi-skill resource-
constrained project scheduling problem, considering skill
switches impacting time and cost. An Evolution Strategy

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers for

framework with multi-objective optimization (MOES) ad-
dresses the influence of skill transitions on project duration
and cost, guided by an improved resource-leveling operator
for new individuals with reduced duration. However, the
paper overlooks varying resource proficiencies, resulting in
a limitation where task processing time is not dynamically
adjusted when assigning different resources.

A meta-heuristic form of Genetic Algorithm (GA) [37],
[38] has been deliberated for addressing staffing issues in
project scheduling. This approach, guided by the GA princi-
ples, enhances quality by up to 17% when compared to cost-
based strategies, primarily by prioritizing the assignment of
tasks to the most experienced resources. Furthermore, sallam
et al. [39] investigate knowledge-based Evolutionary Algo-
rithms (EAs) to intelligently assign the most effective set
of resources to project activities. These EA algorithms con-
tribute to the early-stage development of an optimal schedule,
benefiting project management endeavors. Dang et al. [27]
present M-PSO, a novel particle swarm optimization tech-
nique. To enhance exploration, the algorithm incorporates a
migration method to escape local optima and broaden the
search space. However, the aforementioned strategies work
well only for large-scale projects.

In [24], a multi-objective discrete Jaya algorithm is pre-
sented for minimizing makespan and cost in mixed-integer
linear programming problems. The algorithm employs en-
coding, decoding techniques, and resource assignment cri-
teria to enhance solution diversity and resource utilization.
In [23], a dynamic optimization model integrates MSRCPSP
with uncertainty in resource availability, utilizing a Branch-
and-Bound algorithm and a hybrid Benders decomposition
algorithm to minimize makespan and total cost for multi-
skilled resources. It considers uncertainty in resource avail-
ability, aiming for a robust schedule to minimize schedule
instability costs. Nonetheless, the model assumes homoge-
neous skill levels and does not account for the costs associ-
ated with switching resources’ skills.

To address the intricacies posed by MSRCPSPs, studies
in [40], [41] offer multi-objective algorithms with the main
objective of minimizing project makespan and costs. These
proposed solutions exhibit optimal performance across a
spectrum of problem sizes, spanning small to significant
scales. Notably, a breadth-first search (BFS) algorithm has
been employed to determine the optimal mode selection for
each resource concerning the execution of specific project
tasks. Nevertheless, it is essential to underscore that these
BFS-based algorithms do not factor in skill assessment based
on resource capabilities. The prevailing corpus of literature
collectively underscores the central aim of scheduling al-
gorithms to minimize project makespan. However, the as-
signment of resource weights based on resource proficiency
levels is a facet largely overlooked in the majority of previous
works.

TABLE 1. Symbols and Notations

Notation Definition

GPS Greedy and Parallel Scheduling

PSS Parallel Scheduling Scheme

TPG Task Precedence Graph

MSRCPSP Multi-Skill Resource Constrained Project

Scheduling Problem

T = {t0, t1, . . . , tn, tn+1} Set of project tasks

S = {s1, s2, . . . , sl} Set of skills

R = {r1, r2, . . . , rk} Set of all resources

Tq Set of parallel executable tasks

V Set of vertices in TPG

E Set of edges in TPG

eti Edge of ti

Sti Set of skills required to perform ti

Srk Set of skills mastered by rk

Swsf Set of skills sorted as worst skills first

effti Total effort required to perform ti

eff∗
tisl

Effort done against sl of ti

dti Duration of ti

Cti Time already spent on ti

CTq Sum of time spent on tasks in Tq

R∗
ti

Resources assigned to ti

R∗ Set of assigned resources

R∗∗
ti

Set of surplus resources assigned to ti

LFtisl Latest finishing sl in ti

Ravail Set of available resources

wrksl Weight or proficiency of rk against sl∑|R|
wrk

rktisl Sum of proficiency values of resources

rk assigned to ti against sl

Bti Starting time of ti

Fti Finishing time of ti

tef Earliest finishing task

tlf Latest finishing task

Ftisl Finishing time of ti with respect to sl

LV (eti) Function returning left vertex of eti

RV (eti) Function returning right vertex of eti

TS Task skills matrix

tisj = 1 Skill sj is required to perform ti

RS Resource skills Matrix

rksj = [0, 1] rk has sj with weight [0,1]

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers

a0

a6

a5

a7 an+1

a1

a2

a3

a4

FIGURE 1. Directed-acyclic graph showing task precedence relationship

III. PROBLEM FORMULATION
Consider a software project T that consists of n tasks i-e
T = {t0, t1, t2,, ti, tj , . . . , tn, tn+1}where ti denotes the
ith task. While t0 and tn+1 are dummy tasks representing
the start and end of the project, respectively. The tuple
defines each project task (effti , dti) where effti is the effort
required to complete ti and dti represents the deadline for
ti. The task precedence graph (TPG) shows the precedence
constraints among the project tasks as depicted in Fig. 1.
A TPG is defined by TPG = (V,E) where V is the set
of tasks, i.e. V = {t0, t1, t2,, ti, tj , . . . , tn, tn+1} and
|V | = n + 2 while E is the set of directed edges used to
represent the precedence constraints among the tasks. The set
E can be defined as: E = { (a, b) | a, b ∈ T ∧ (a → b) },
where a → b defines the dependency of b on a; task a must
be executed ahead of b. Each project task ti requires several
resources having specific skills. These skills are defined by
the set S = {s1, s2,, sl}. A task-skill matrix (TS) is used
to represent skills required to perform each task, such as:

TS =

t1s1 t1s2 . . . t1sm

t2s1 t2s2 . . . t2sm
...

...
...

...

tns1 tns2 . . . tnsm

where tisj = 1 means that ith skill is required to perform
the jth task. To perform the project tasks, we have a set of
resources defined by R = {r1, r2, . . . , rk} while rk denotes
the total number of resources used in the project. In this set
of resources, each resource masters one or more skills. The
proficiency level of each resource is defined by the resource-
skill (RS) matrix as given below:

RS =

r1s1 r1s2 . . . r1sm

r2s1 r2s2 . . . r2sm
...

...
...

...

rks1 rks2 . . . rksm

where rksj = [0, 1] means that resource k possesses the skill
j with a proficiency score [0, 1].

In this scheduling problem, each resource rk ∈ R has one
or several skills denoted by Srk . Similarly, each project task
ti ∈ T requires a set of skills to be executed and denoted

by Sti . While Rtisl is the number of resources needed to
perform a skill sl required by task ti. Considering this setup,
the scheduling problem is defined as follows: Given a project
defined by the set T and resources defined by the set R, we
must assign the project tasks to resources in such a way that
the overall completion time of the project is minimized while
ensuring that no precedence constraint is violated. Non-
negative decision variables check the resources and skills
demanded to perform their corresponding activities. This
way, through decision variables assignment of resources to
project tasks is checked with respective skill capability. In
the case of W-MSRCPSP, we have considered the following
decision variables.

wrkslti =

{
1, if rk with sl is assigned to ti

0, otherwise

while rk ∈ R, ti ∈ T, sl ∈ Sti ∩ Srk

Based on the above decision variable, the W-MSRCPSP
can be formulated as follows. The basic notation for the
model is provided in Table 2, Appendix. The objective func-
tion is defined as:

minimize (Btn+1
) (1)

subject to:

Btj ≥ Bti + dti , ti, tj ∈ T ∧ (ti, tj) ∈ E (2)

∑
rk∈Rsl

wrkslti = Rtisl , ti ∈ T, sl ∈ Sti (3)

∑
sl∈Srk∩Sti

wrkslti ≤ 1, rk ∈ R, ti ∈ T (4)

|S|∑
sl=1

tisl > 0,∀ti ∈ T ∧ sl ∈ Sti (5)

|R|∑
rk=1

tirk > 0,∀ti ∈ T ∧ rk ∈ Rrk (6)

Bti ≥ 0, dti ≥ 0,∀ti ∈ T (7)

Rtisl ⊆
⋃

tirk>0

Sti ,∀ti ∈ T ∩ sl ∈ Sti (8)

Fti = Bti + dti ,∀ti ∈ T (9)

The goal of the proposed strategy is to minimize the overall
project duration, as depicted in Equation (1). Here, Btn+1

defines the starting time of the task (n + 1). Since, the task
(n + 1) marks the end of the project and is a dummy node,
Btn+1

denotes the end of the project. The objective function
defined in Equation (1) is subject to 8 constraints depicted in
Equations (2-11). The constraint in equation (2) defines the
fulfillment of the precedence constraints – the predecessors
ti of a selected task tj must be completed before starting tj .

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers for

According to constraint (3), a resource rk can be assigned
to a task ti with required skill sl if and only if resource ri
possesses the skill sl. Similarly, constraint (4) states that a
resource can be assigned to only one task at a time and can
perform at most one skill for any project task.

Equation (5) delineates that at least one skill is required
to perform each task. Similarly, equation (6) specifies that at
least one resource must perform each project task. Constraint
(7) depicts the starting time Bti and duration dti of any
project task ti cannot be negative. According to (8), resources
allocated to the task ti denoted by Rtisl must have the skills
required to perform ti in order to execute the task. Equation
(9) states that the finishing time of any task ti must be equal
to the sum of its starting time Bti and duration dti .

IV. PROPOSED GPS ALGORITHM
In this section, we introduce GPS, an innovative hybrid
scheduling approach that combines best-fit and parallel
scheduling strategies. The primary objective is to effectively
allocate optimal resources to project tasks at each scheduling
point. The proposed approach functions through a series of
iterations, the total number of which aligns with the overall
task count in the project. Tasks capable of simultaneous
execution are grouped into clusters or sets based on their
precedence relationships.

The algorithm commences by addressing the initial cluster
of parallel executable tasks, allocating resources to the tasks
within that cluster. Task prioritization occurs through arrang-
ing tasks in ascending order of their estimated execution
times, ensuring precedence for tasks with shorter duration to
minimize the waiting time of project tasks. Following this,
the proposed methodology assigns resources to the chosen
task based on its specific skill requirements using a best-fit
strategy. The proposed approach allocates available resources
based on their weights to project tasks against each skill
required by the project tasks. Using a best-fit strategy, the
proposed approach takes a resource with the highest weight
and assigns it greedily to the earliest finishing task first if
the required skill matches the skills of the selected resource.
Allocation continues until the task is completed within its
stipulated duration.

Following resource assignment to the earliest finishing
task, the next earliest finishing task among the unscheduled
ones is selected within the current group, and resources are
allocated from the available resource pool. This process en-
sures the allocation of all available resources to unscheduled
tasks in a given group. In contrast to existing strategies,
if any surplus resources are available, they are assigned
to the latest finishing task among the scheduled tasks to
minimize the overall makespan. Upon task completion, the
assigned resources are reallocated to another task within the
same group. When all tasks in a group are completed, the
subsequent set of parallel executable tasks is selected, and
the same procedure is repeated to execute the tasks in the
selected group.

A. TASK PRECEDENCE GRAPH
The proposed scheduling technique generates a task prece-
dence graph (TPG), where several tasks are linked through
precedence relations. A project graph is defined by
TPG = (V,E) where V is the set of tasks, i.e. V =
{t1, t2,, ti, tj , . . . , tn} and |V | = n while E is the set
of edges used to represent the precedence constraints among
the tasks. The set E can be defined as E = {(a, b)|a, b ∈
P ∧ (a → b)}, where a → b means that task a must be
executed before b.

B. TASK SUBSETS
In the context of TPG, as mentioned earlier, certain project
tasks can be executed concurrently if they do not violate their
precedence relationships. The proposed GPS design involves
partitioning the task set T into q subsets, indexed by i. Tasks
within each subset Ti have the potential for parallel execution
depending on the availability of adequate resources. Any
given task is exclusively associated with a specific subset
Ti – the intersection between any two subsets of T is null.
The conditions governing this partitioning mechanism are
formally expressed through the following mathematical for-
mulation:

|T | = |T1|+ |T2|+ · · ·+ |Ti|+ · · ·+ |Tq| = n

while Tq = {T1, T2, . . . , tm}, Ti ∩ Tj = ∅ ∀i, j ∈ subsets of
T . For a subset Ti, there should be no precedence constraint
among any pair of tasks tj and tk where tk, tl ∈ Ti. To
form the subsets of parallel executable tasks, the proposed
approach iteratively examines each vertex Vtk ∈ V to check
whether it is dependent on any other vertex in V . A vertex Vtk

is considered an independent vertex if ∀(a, b) ∈ E∧b ̸= Vtk .
At the end of the iteration, all the vertices that are not depen-
dent on any vertex in V are grouped to form a subset Ti and
are removed from V . The algorithm repeats the procedure to
create groups of parallel executable tasks until V becomes
empty.

C. RESOURCE WEIGHT
Within software projects, human resources are often
equipped with a diverse set of skills, enabling them to un-
dertake various project tasks. In the proposed methodology,
we take into account the presence of multi-skilled and het-
erogeneous human resources as a foundational element for
crafting an optimal schedule. These resources exhibit varying
proficiency levels across different skills. To maximize the
effective utilization of human resources for project tasks, we
employ a system where each resource is assigned weights
corresponding to their proficiency in each skill they possess.

A realistic weighting mechanism is utilized where a skill
proficiency score (within the [0,1] range) is attributed to each
resource against each skill they possess. The skill proficiency
score of a resource reflects its competence in utilizing the
corresponding skill. Consequently, each human resource pos-
sesses a range of multiple skills, each accompanied by a

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers

Algorithm 1: GPS

Input: T, S,R,E
Output: project_makespan

1 makespan← 0
2 Tq[]← CreateParallelTasksGroups(T,E)
3 foreach Tq ∈ Tq[] do
4 Ravail ← R
5 if Tq contains (t0 | tn+1) then
6 continue
7 end
8 sort(Tq)
9 makespan+ = ScheduleTasksSubset(Tq, Ravail)

10 end
11 return makespan

distinct proficiency score. For instance, a resource assigned
a weight of 0.8 for a specific skill signifies that this resource
can execute 80% of the associated work within a standard
working day. Conversely, a highly proficient resource, char-
acterized by a weight of 1, is adept at accomplishing 100% of
the work associated with a skill within the same time-frame.

D. PROPOSED SCHEDULING TECHNIQUE
To enhance readability and comprehension, we break down
the proposed scheduling Algorithm into five sub-algorithms.
Algorithm 1 serves as the starting point for the proposed
strategy. It takes the set of project tasks T , the required skill
set S, the available resources R, and the set of edges E,
specifying the precedence constraints among the tasks in T
as input. The algorithm returns the resulting makespan as its
output.

Algorithm 1 starts by initializing the project makespan,
denoted by variable makespan, to 0. Next, it calls the
Algorithm 2 to obtain an array of parallel executable tasks
Tq. Tq signifies a collection of tasks that are executable
simultaneously if sufficient resources are available. The al-
gorithm then schedules each set of parallel executable tasks
by looping through the array (see Line 3 - 10). The algorithm
invokes Algorithm 3 at Line 9 to schedule the tasks in
selected Tq. Note that Algorithm 3 returns the time spent on
completing the tasks in Tq after completing the scheduling
process. At Line 9, the Algorithm 1 takes the returned value
and adds it to the total makespan of the project. However,
before calling the 3, it sorts the tasks in Tq based on their
finishing time – earliest finishing tasks are scheduled first.
Also, if Tq contains the dummy tasks, representing the start
and end of the project, they are neglected by moving on to
the next element in T∥[] (refer to Line 5-7). Finally, the main
algorithm returns the total makespan after scheduling all the
project tasks (at Line 11).

Algorithm 2 formalizes the grouping of parallel executable
tasks. It takes the set of project tasks T and edges E as input
and returns an array of parallel executable tasks. A group

Algorithm 2: CreateParallelTasksGroups

Input: T,E
Output: Tq[]

1 Tq[]← ∅
2 while T is not empty do
3 Tq ← ∅
4 foreach ti ∈ T do
5 parallel_vertix← true
6 foreach eti ∈ E do
7 if RV(eti) is ti then
8 parallel_vertix← false
9 break

10 end
11 end
12 if parallel_vertix == true then
13 Tq ← Tq + ti
14 end
15 end
16 foreach ti ∈ Tq do
17 T ← T − ti
18 foreach eti ∈ E do
19 if LV(eti) is ti then
20 E ← E − eti
21 end
22 end
23 end
24 Tq[]← Tq[] + Tq
25 end
26 return Tq[]

of parallel executable tasks, denoted by Tq, consists of all
the tasks that can be executed at the same time if enough
resources are available. The algorithm starts by creating an
empty array of Tq. It iterates through the elements of T (until
there are no more tasks left in T) to find and group tasks that
can be run in parallel (From Line 2-25). In each iteration, it
takes each element in T denoted by ti at Line 4, and checks
whether a ti represents the right vertex of any edge e in E
is ti. If yes, it means ti depends on some other task in T and
therefore cannot be run in parallel (see Lines 6-9). Otherwise,
ti can be added to the set of parallel executable tasks Tq. This
process is repeated until all the elements in T are traversed.

After executing Line 15, the algorithm finds a set of
parallel executable tasks in T . Next, the algorithm needs to
add the Tq to the array of parallel executable tasks and remove
all the edges from E whose left vertex is in Tq (refer to Line
16-23). Finally, the algorithm adds Tq to the array of Tq. It
repeats this process until all the elements are grouped, and
there is no task left in T . Finally, it returns the array of Tq at
Line 26.

Algorithm 3 outlines the steps followed to schedule all
tasks in Tq. It takes Tq and the set of available resources
Ravail as input, and returns the time CTq spent on completing

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers for

Algorithm 3: ScheduleTasksSubset

Input: Tq ∈ Tq[], Ravail ∈ R
Output: CTq

1 CTq ← 0
2 while Tq > 0 do
3 foreach ti ∈ Tq do
4 if |Rti∗| == 0 or Fti > dti then
5 AssignResources(ti, Ravail)
6 end
7 end
8 AssignExtraResources(Tq, Ravail)
9 tef ← null

10 foreach ti ∈ Tq do
11 Fti ←max(Ftisl)
12 if tef is null OR Fti < Ftef then
13 tef ← ti
14 Ftef ← Fti

15 end
16 end
17 Ravail ← Ravail +Rtef

18 Tq ← Tq − tef
19 foreach ti ∈ Tq do
20 foreach sl ∈ Sti do
21 eff∗

tisl
+ = (Ftef − Cti)×

∑|R|
wrk

rksl

22 end
23 Cti ← Ftef

24 end
25 CTq ← Ftef

26 end
27 return CTq

tasks in Tq. It assigns resources to each task ti in Tq until
there is no more task left. It does so by calling the Algorithm
4 (at Line 5) if the task has not already been scheduled and
the finishing time is not less than the deadline (duration).
Otherwise, it moves on to the next task and repeats the
process from Lines 3-7. After assigning enough resources
to each task, there might be some free resources available.
The algorithm tries to assign surplus resources to scheduled
tasks in Tq to minimize the makespan. To do so, it invokes
Algorithm 5. Next, it finds the earliest finishing task (refer to
Line 9-16).

At this point, the algorithm needs to mark the earliest
finishing task completed and remove it from the set of parallel
executable tasks (Lines 17 and 18). Finally, it has to calculate
the effort done against each task and record the time taken Cti

by each ti (see Line 24). However, it is very important to note
that the effort is calculated against each required skill as the
finishing time is calculated based on the latest finishing skill
of a task. This is done from lines 20-22. Finally, the algorithm
records the time taken by all the tasks in Tq denoted by CTq

at Line 25, and returns the recorded value at Line 27 after

Algorithm 4: AssignResources

Input: ti ∈ T,Ravail ∈ R
Output: Boolean[true|false]

1 foreach sl ∈ Sti do
2 effprev

tisl
← eff∗

tisl
3 while |Ravail| > 0 do
4 r ← findMaxWrk(Ravail, sl)
5 if r is null then
6 Ravail = Ravail +R∗

ti
7 return false
8 end
9 R∗

ti ← R∗
ti + r

10 Ravail ← Ravail − r

11 Ftisl ← Ctisl +
eff∗

tisl
−effprev

tisl∑|R|
Wrk

rktisl

12 if Ftisl ≤ dti then
13 break
14 end
15 end
16 end
17 return true

Algorithm 5: AssignExtraResources

Input: Tq ∈ Tq, Ravail ∈ R
Output: Assignment of free resources to the tasks in

Tq

1 Ttemp ← Tq
2 foreach ti ∈ Ttemp do
3 if |R∗

ti| < 1 then
4 Ttemp ← Ttemp − ti
5 end
6 end
7 Top_Loop: while |Ravail| > 0 ∧ |Ttemp| > 0 do
8 tlf ← getLatestF inishingTask(Ttemp)
9 slf ← getLatestF inishingSkill(ti)

10 while rk ∈ Ravail do
11 if slf ∈ Srk then
12 R∗∗

tlf
← R∗∗

tlf
+ rk

13 Ravail ← Ravail − rk
14 continue Top_Loop
15 end
16 end
17 Ttemp = Ttemp − ti
18 end

completing all the tasks by repeating the same process (From
Line 2-26) until there is no element left in Tq.

Algorithm 4 is used to assign available resources to a
particular task. It takes a task ti and a set of available re-
sources Ravail as input and returns a boolean value indicating

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers

TABLE 2. Experimental Set

Experiment N
um

be
r

O
fT

as
ks

N
um

be
r

O
fS

ki
lls

N
um

be
r

O
fR

es
ou

rc
es

(P
re

de
ce

ss
or

,S
uc

ce
ss

or
)

M
ax

.R
es

ou
rc

es
pe

r
Sk

ill

M
ax

.R
es

ou
rc

es
pe

r
Ta

sk

1 1-15 1-4 1-20 1-4 1-15 1-4

2 1-40 4 15 3 10 4

3 15 1-4 15 3 10 4

4 15 4 1-20 3 10 4

5 15 4 15 1-4 10 4

6 15 4 15 3 1-15 4

7 15 4 15 3 10 1-4

whether the assignment was successful or not. The algorithm
assigns resources against each skill sl required by ti. The
main function of this algorithm is to assign enough resources
so that the task can be finished within its deadline. Moreover,
it assigns the best available resources against each skill by
finding resources having the required skill with maximum
proficiency.

In line 1, it takes a skill sl from required skills Sti . It
finds the best available resource r having the skill sl with
the highest proficiency at Line 4. If r is null, it indicates there
is no resource available with the required skill. So, in line
5, it checks if r is null and there is no resource assigned
to ti against the required skill, then it needs to free the
resources assigned to ti and return false, indicating unsuc-
cessful assignment. Otherwise, it assigns r to ti, removes
r from Ravail, and calculates the finishing time of ti with
respect to skill sl (refer to Line 9-11). If the finishing time
is less than or equal to the deadline of the task, it moves on
to the next required skill sl ∈ Sti . Otherwise, it repeats the
procedure from Line 4 to 15 to assign more resources until
the finishing time meets the deadline constraint if the set of
available resources Ravail is not empty (see Line 3).

Algorithm 5 depicts the procedure for assigning surplus
resources (if any) to scheduled activities to minimize the
total makespan and reduce resource wastage. The idea is
to assign more resources to the latest finishing task so that
the total makespan can be minimized. The algorithm takes
Tq and Ravail as input. The algorithm starts by initializing
a variable Ttemp to Tq. Next, it removes unscheduled tasks
from Ttemp (see lines 2-6). It does so by checking if a task
ti in Ttemp has assigned resources in the previous step. If
no resources have been assigned to ti in the previous step,
it means the task has not been scheduled yet due to a lack
of available resources for ti. After removing unscheduled

FIGURE 2. Experiment 1 (a): Comparison in terms of project makespan

FIGURE 3. Experiment 1 (b): Comparison in terms of resource wastage

tasks, it tries to assign resources to the latest finishing task
in Ttemp. Moreover, it assigns resources against the latest
finishing skill of the latest finishing task to maximize the
benefits of resource assignment. Hence, in lines 8 and 9, it
selects the latest finishing task and then the latest finishing
skill of the task, respectively.

The resource allocation is done from lines 10-16, where
it takes each resource from available resources and checks
whether the resources have the required skill. If no, it moves
on to the next resource. If yes, it assigns the resource to Ti

against sl and removes the resource from the set of avail-
able resources, and jumps to the Top_Loop. If no resource
assignment occurs, it executes Line 17, indicating a lack of
resources to be assigned to ti against any required skill. The
algorithm follows the same procedure (from lines 7-17) for
other tasks in Ttemp if there are any and the set of available
resources is not empty.

V. SIMULATION RESULTS AND DISCUSSION
For comparison, we have specifically chosen to compare our
proposed GPS algorithm with the PSS heuristic due to its
relevance and established use in the field of project manage-
ment. The PSS heuristic serves as an appropriate benchmark,
allowing us to highlight the distinct advantages and improve-
ments our GPS algorithm offers, particularly in terms of re-
source optimization and project makespan efficiency, which
are critical in non-real-time project management scenarios.

In order to evaluate the proposed technique against the
PSS heuristic [13], we conduct 7 different experiments. Table
2 depicts the experimental setup for this study. We have

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers for

FIGURE 4. Experiment 2: Impact of number of tasks on project makespan

FIGURE 5. Experiment 3: Impact of Number of Skills Required

considered the following six different scheduling parame-
ters; number of tasks, number of skills required, resources,
complexity of the topology graph in terms of predecessors
and successors of the tasks, task duration, and resources
against each skill required for a project task to be performed.
Each experiment consists of 50 projects. The first experiment
evaluates the proposed approach against its counterpart in
50 random projects where the values of the six parameters
considered are randomly chosen in the specified range (see
Table 2). The remaining 6 experiments are conducted to show
the impact of different factors, such as varying the number
of project tasks and available resources, on the efficacy of
the proposed approach compared to the PSS heuristic. For
experiments 2 to 7, we change the value of one of the
scheduling parameters while keeping the other parameters
constant.

Experiment 1 is set up to evaluate the performance of the
proposed technique against the PSS in 50 random projects
in terms of the total makespan of the projects. In this exper-

FIGURE 6. Experiment 4: Impact of number of available resources

FIGURE 7. Experiment 5: Impact of graph complexity

iment, we choose random values for all the factors within
their specified range, as depicted in Table 2. Compared to
the PSS heuristic, the proposed GPS design optimizes the
usage of the available resources and significantly reduces
the project makespan, as shown in Fig. 2 and Fig. 3. In
the set of 50 randomly generated projects, the PSS heuristic
completes the projects with an average makespan of 58.96
days. However, the proposed GPS design completes the
projects with an average project makespan of 50.42 days. The
average completion gap to complete the project makespan for
our technique is 9.80 days compared to the PSS heuristic,
which is only 2.88 days. Many resources remain free in
the PSS heuristic compared to our technique. This indicates
that the GPS strategy better utilizes available resources, as
shown in Fig. 3. This is due to the fact that the GPS design
assigns surplus resources, if available, to the latest finishing
tasks. Also, it assigns the newly freed resources from the
earliest finishing tasks to the tasks that minimize the overall
makespan.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers

FIGURE 8. Experiment 6: Impact of duration of project tasks

In experiment set 2, we study the impact of a number of
project tasks on the appropriateness of both the GPS and the
PSS heuristic. We increase the number of tasks from 5 to 40
while keeping all the other factors constant. It is observed that
the proposed strategy performs better than the PSS heuristic.
However, there is no significant impact of the number of
project tasks on the efficacy of both strategies, as depicted
in Fig.4. Fig. 4 clearly shows that the project makespan in-
creases for both the proposed and the PSS heuristic in almost
similar fashion as the number of project tasks increases.

In the third experiment, we varied the number of skills
required to perform each task to complete the project within
time. The value for required skills against each task range
from 1 to 4. In the case of our technique, the average project
makespan is considerably lower than the PSS when the skill
demand for project tasks is lower. As depicted in Fig. 5, when
we increase the number of skills required to perform each
task, the average makespan gap between the two strategies
tends to reduce due to the fact that there are no surplus
resources available to minimize the project makespan. In
other words, for a smaller number of skill requirements,
most project resources remain free in the set of available
resources. The proposed technique gets maximum benefit
from these free resources to optimize the project makespan.
As the number of skills increases, the resource requirement
also increases to perform these skills. So, due to the less
availability of resources, the proposed technique has no extra
resources to utilize to optimize the project makespan; hence,
the difference in the average makespan decreases. However,
overall, the proposed strategy outperforms the PSS heuristic
even if there are no extra resources available.

In experiment 4, we increase the number of available re-
sources, and the project’s average makespan decreases in our
proposed GPS design since it utilizes all available resources
whenever they are free. Also, the proposal considers parallel
executable tasks to optimize project makespan. While the
PSS heuristic only assigns enough resources to a task against

FIGURE 9. Experiment 7: Impact of required resources per task

each required skill to finish it within its deadline and does
not consider assigning extra available resources to optimize
the project makespan. Fig. 6 depicts that the PSS heuristic is
less effective in optimizing the project makespan compared
to the proposed technique when the number of resources is
increased as it assigns only the required number of resources
to the project tasks and tries to optimize the project makespan
by leveraging the concept of parallel executable tasks only.
In contrast, the proposed approach takes benefits from the
concept of parallel executable tasks as well as the utilization
of surplus resources if available.

In experiment 5, we study the impact of network graph
complexity on the appropriateness of both the GPS and the
PSS heuristic. We increase the number of predecessor and
successor tasks in the graph from 1 to 4. The proposed
resource allocation strategy performs significantly better than
the PSS heuristic when the complexity of the network graph
is lower. Fig. 7 shows that the project makespan tends to
decrease between the two strategies when we increase the
number of predecessors and successors.

In experiment 6, the case of project task duration is consid-
ered. The proposed technique attains promising results with
a minimum task duration compared to the PSS heuristic.
When we increase the task duration, the project makespan
gap increases between the two techniques, as shown in Fig.
7. This is because when the task duration range is high
(for instance, 1-15), the proposed GPS strategy can take
advantage of resources freed from earliest finishing tasks and
use them to optimize the project makespan by assigning them
to other tasks running in parallel.

In the last experiment, we study the impact of resource
requirements against each skill required to perform a project
task. As depicted in Fig. 8, the proposed GPS strategy per-
forms significantly better than the PSS heuristic. However,
with the increase in the number of resources required for each
skill to perform a task, the gap between the makespan due to
the GPS and PSS strategies tends to decrease.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers for

VI. CONCLUSION
In this paper, we study the Weighted Multi-Skill Resource
Constrained Project Scheduling Problem (W-MSRCSPSP)
in order to minimize the project’s overall makespan. Unlike
previous research, we devise a novel greedy and parallel
scheduling approach that considers heterogeneous resources
with different skill proficiency levels. After conducting ex-
tensive experiments, it is found that the proposed GPS tech-
nique is more effective in almost all project settings than the
PSS heuristic. Six different parameters are considered during
resource allocation to assess the efficacy of the proposed
strategy compared to its counterpart.

In the first experiment with 50 random projects, the pro-
posed GPS strategy outperforms the PSS heuristic in terms
of project makespan. To further evaluate the effectiveness of
the GPS technique in handling changes in the six factors, six
additional experiments are conducted. In each experiment,
the value of one of the six factors is increased while keeping
the other five factors constant, and the performance of both
the GPS and PSS heuristics is observed.

It is observed that when the number of project tasks is
increased, there is no significant impact on the efficacy of
either scheduling strategy, as the project makespan for both
techniques increases in almost a similar fashion. However,
when the task duration increases, the GPS strategy performs
significantly better than the PSS heuristic. In addition, when
the complexity of the project graph is low, the GPS strategy
outperforms the PSS heuristic by a large margin. However,
as the complexity of the project graph increases, the gap
between the performance of the GPS and PSS techniques
tends to decrease. When the minimum number of resources
is required for each skill, the GPS technique performs con-
siderably better in minimizing project makespan.

Overall, the experimental results demonstrate that the GPS
technique is able to effectively assign resources and minimize
project makespan, resulting in better performance compared
to the PSS heuristic. In the future, the GPS technique can
be further improved and optimized by considering additional
factors and constraints in the resource allocation process.

REFERENCES
[1] X. Shen, Y. Guo, and A. Li, “Cooperative coevolution with an im-

proved resource allocation for large-scale multi-objective software project
scheduling,” Applied Soft Computing, vol. 88, p. 106059, 2020.

[2] N. Nigar, M. K. Shahzad, S. Islam, S. Kumar, and A. Jaleel, “Modeling
human resource experience evolution for multiobjective project scheduling
in large scale software projects,” IEEE Access, vol. 10, pp. 44 677–44 690,
2022.

[3] M. Ghasemi, R. K. Chakrabortty, R. Shahabi-Shahmiri, and S.-A.
Mirnezami, “A chance-constrained programming method with credibil-
ity measure for solving the multi-skill multi-mode resource-constrained
project scheduling problem,” International Journal of Construction Man-
agement, pp. 1–17, 2023.

[4] S. Akbar, I. Ahmad, R. Khan, I. O. Lopes, and R. Ullah, “Multi-skills
resource constrained and personality traits based project scheduling,”
IEEE Access, vol. 10, pp. 131 419–131 429, 2022.

[5] H. Zhentao, C. Nanfang, H. Xuejun, and M. E. Mahaffey, “Time-and
resource-based robust scheduling algorithms for multi-skilled projects,”
Automation in Construction, vol. 153, p. 104948, 2023.

[6] Z. Hua, Z. Liu, L. Yang, and L. Yang, “Improved genetic algorithm based
on time windows decomposition for solving resource-constrained project

scheduling problem,” Automation in Construction, vol. 142, p. 104503,
2022.

[7] G. A. Fernandes and S. R. de Souza, “A matheuristic approach to the
multi-mode resource constrained project scheduling problem,” Computers
& Industrial Engineering, vol. 162, p. 107592, 2021.

[8] H. Ding, C. Zhuang, and J. Liu, “Extensions of the resource-constrained
project scheduling problem,” Automation in Construction, vol. 153, p.
104958, 2023.

[9] J. Snauwaert and M. Vanhoucke, “A classification and new benchmark
instances for the multi-skilled resource-constrained project scheduling
problem,” European Journal of Operational Research, vol. 307, no. 1, pp.
1–19, 2023.

[10] J. Blazewicz, J. K. Lenstra, and A. R. Kan, “Scheduling subject to resource
constraints: classification and complexity,” Discrete applied mathematics,
vol. 5, no. 1, pp. 11–24, 1983.

[11] F. Habibi, F. Barzinpour, and S. Sadjadi, “Resource-constrained project
scheduling problem: review of past and recent developments,” Journal of
project management, vol. 3, no. 2, pp. 55–88, 2018.

[12] A. Ghamginzadeh, A. A. Najafi, and M. Khalilzadeh, “Multi-objective
multi-skill resource-constrained project scheduling problem under time
uncertainty,” International Journal of Fuzzy Systems, vol. 23, pp. 518–534,
2021.

[13] B. F. Almeida, I. Correia, and F. Saldanha-da Gama, “Priority-based
heuristics for the multi-skill resource constrained project scheduling prob-
lem,” Expert Systems with Applications, vol. 57, pp. 91–103, 2016.

[14] A. Ciupe, B. Orza, C. Florea, and A. Vlaicu, “Skill-oriented priority
scheduling for solving the resource constrained project scheduling prob-
lem,” in 2015 IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP). IEEE, 2015, pp. 85–92.

[15] J. Xiao, X.-T. Ao, and Y. Tang, “Solving software project scheduling prob-
lems with ant colony optimization,” Computers & Operations Research,
vol. 40, no. 1, pp. 33–46, 2013.

[16] H. Tahami and H. Fakhravar, “A literature review on combining heuristics
and exact algorithms in combinatorial optimization,” European Journal of
Information Technologies and Computer Science, vol. 2, no. 2, pp. 6–12,
2022.

[17] S.-A. Mirnezami, R. Tavakkoli-Moghaddam, R. Shahabi-Shahmiri, and
M. Ghasemi, “An integrated chance-constrained stochastic model for
a preemptive multi-skilled multi-mode resource-constrained project
scheduling problem: a case study of building a sports center,” Engineering
Applications of Artificial Intelligence, vol. 126, p. 106726, 2023.

[18] R. V. Polancos and R. R. Seva, “A risk minimization model for a multi-
skilled, multi-mode resource-constrained project scheduling problem with
discrete time-cost-quality-risk trade-off,” Engineering Management Jour-
nal, pp. 1–17, 2023.

[19] N. Nigar, M. K. Shahzad, S. Islam, O. Oki, and J. Lukose, “Multi-objective
dynamic software project scheduling: A novel approach to handle em-
ployee’s addition,” IEEE Access, 2023.

[20] M. Haroune, C. Dhib, E. Neron, A. Soukhal, H. Mohamed Babou, and
M. F. Nanne, “Multi-project scheduling problem under shared multi-skill
resource constraints,” Top, vol. 31, no. 1, pp. 194–235, 2023.

[21] L. Cui, X. Liu, S. Lu, and Z. Jia, “A variable neighborhood search ap-
proach for the resource-constrained multi-project collaborative scheduling
problem,” Applied Soft Computing, vol. 107, p. 107480, 2021.

[22] J. L. Peng, X. Liu, C. Peng, and Y. Shao, “Multi-skill resource-constrained
multi-modal project scheduling problem based on hybrid quantum algo-
rithm,” Scientific Reports, vol. 13, no. 1, p. 18502, 2023.

[23] M. Wang, G. Liu, and X. Lin, “Dynamic optimization of the multi-
skilled resource-constrained project scheduling problem with uncertainty
in resource availability,” Mathematics, vol. 10, no. 17, p. 3070, 2022.

[24] Y.-Y. Li, J. Lin, and Z.-J. Wang, “Multi-skill resource constrained project
scheduling using a multi-objective discrete jaya algorithm,” Applied Intel-
ligence, vol. 52, no. 5, pp. 5718–5738, 2022.

[25] L. Zhu, J. Lin, Y.-Y. Li, and Z.-J. Wang, “A decomposition-based multi-
objective genetic programming hyper-heuristic approach for the multi-
skill resource constrained project scheduling problem,” Knowledge-based
systems, vol. 225, p. 107099, 2021.

[26] H. Li, H. Zhu, L. Zheng, and Y. Liu, “Software project scheduling with
multitasking.” Economic Computation & Economic Cybernetics Studies
& Research, vol. 57, no. 1, 2023.

[27] H. Dang Quoc, C. Nguyen Doan et al., “An effective hybrid algorithm
based on particle swarm optimization with migration method for solving
the multiskill resource-constrained project scheduling problem,” Applied
Computational Intelligence and Soft Computing, vol. 2022, 2022.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Saeed Akbar et al.: Preparation of Papers

[28] Y. Yu, Z. Xu, D. Liu, and S. Zhao, “A two-stage approach with softmax
scoring mechanism for a multi-project scheduling problem sharing multi-
skilled staff,” Expert Systems with Applications, vol. 203, p. 117385,
2022.

[29] Y. Ma, Z. He, N. Wang, and E. Demeulemeester, “Tabu search for proactive
project scheduling problem with flexible resources,” Computers & Opera-
tions Research, vol. 153, p. 106185, 2023.

[30] Y. Tian, T. Xiong, Z. Liu, Y. Mei, and L. Wan, “Multi-objective multi-
skill resource-constrained project scheduling problem with skill switches:
Model and evolutionary approaches,” Computers & Industrial Engineer-
ing, vol. 167, p. 107897, 2022.

[31] J. C. Chen, Y.-Y. Chen, T.-L. Chen, and Y.-H. Lin, “Multi-project schedul-
ing with multi-skilled workforce assignment considering uncertainty and
learning effect for large-scale equipment manufacturer,” Computers &
Industrial Engineering, vol. 169, p. 108240, 2022.

[32] J. Luo, M. Vanhoucke, J. Coelho, and W. Guo, “An efficient genetic
programming approach to design priority rules for resource-constrained
project scheduling problem,” Expert Systems with Applications, vol. 198,
p. 116753, 2022.

[33] H. Chen, G. Ding, J. Zhang, R. Li, L. Jiang, and S. Qin, “A filtering genetic
programming framework for stochastic resource constrained multi-project
scheduling problem under new project insertions,” Expert Systems with
Applications, vol. 198, p. 116911, 2022.

[34] J. Chen, P. Han, Y. Zhang, T. You, and P. Zheng, “Scheduling energy
consumption-constrained workflows in heterogeneous multi-processor
embedded systems,” Journal of Systems Architecture, vol. 142, p. 102938,
2023.

[35] J. Chen, T. Li, Y. Zhang, T. You, Y. Lu, P. Tiwari, and N. Kumar,
“Global-and-local attention-based reinforcement learning for cooperative
behaviour control of multiple uavs,” IEEE Transactions on Vehicular
Technology, 2023.

[36] F. Zarei, M. Arashpour, S.-A. Mirnezami, R. Shahabi-Shahamiri, and
M. Ghasemi, “Multi-skill resource-constrained project scheduling prob-
lem considering overlapping: fuzzy multi-objective programming ap-
proach to a case study,” International Journal of Construction Manage-
ment, pp. 1–14, 2023.

[37] D. Seo, D. Shin, and D.-H. Bae, “Quality based software project staffing
and scheduling with cost bound,” in 2015 Asia-Pacific Software Engineer-
ing Conference (APSEC). IEEE, 2015, pp. 269–276.

[38] Y. Ge and B. Xu, “Dynamic staffing and rescheduling in software project
management: A hybrid approach,” PloS one, vol. 11, no. 6, p. e0157104,
2016.

[39] K. M. Sallam, R. K. Chakrabortty, and M. J. Ryan, “A two-stage multi-
operator differential evolution algorithm for solving resource constrained
project scheduling problems,” Future Generation Computer Systems, vol.
108, pp. 432–444, 2020.

[40] L. Wang and X.-l. Zheng, “A knowledge-guided multi-objective fruit fly
optimization algorithm for the multi-skill resource constrained project
scheduling problem,” Swarm and Evolutionary Computation, vol. 38, pp.
54–63, 2018.

[41] T. Zhou, Q. Long, K. M. Law, and C. Wu, “Multi-objective stochas-
tic project scheduling with alternative execution methods: An improved
quantum-behaved particle swarm optimization approach,” Expert Systems
with Applications, vol. 203, p. 117029, 2022.

SAEED AKBAR received his PhD degree in
Computer Science from the School of Computer
Science and Technology, Huazhong University of
Science and Technology, Wuhan, China in 2022.
After completing his Master degree in Software
Engineering from COMSATS University, Islam-
abad in 2017, he served as a lecturer at the Depart-
ment of Computer Science, IQRA National Uni-
versity, Peshawar Pakistan. Currently, he is pursu-
ing postdoc at the School of Computer Science and

Technology, Zhejiang Normal University, China. His research interest in-
cludes Cloud Computing, Sustainable Computing, High Performance Com-
puting, Dynamic Thermal-management of Data Centers, Algorithmic Game
Theory, Resource Management, Deep Learning, and Computer Vision.

MUHAMMAD ZUBAIR received the bachelor’s
degree in software engineering from the Govern-
ment College University, Faisalabad, Pakistan, in
2014, and the M.S. degree in software engineering
from COMSATS University, Islamabad, Pakistan,
in 2017. He is currently working as a Lecturer at
the Department of Software Engineering, Lahore
Garrison University, Lahore, Pakistan. He was a
Lecturer at the Department of Computer Science
and Information Technology, Lahore Leads Uni-

versity, Lahore, Pakistan. His research interests include software project
scheduling, software requirement engineering, and global software engineer-
ing.

RIZWAN KHAN received his Ph.D degree in in-
formation and communication engineering from
the School of Electronic Information and Com-
munications, Huazhong University of Science and
Technology, Wuhan, China. He also worked with
the Wuhan National Laboratory of Optoelectron-
ics, Wuhan. Currently, he is pursuing postdoc-
torate from the School of Computer Science and
Mathematics, Zhejiang Normal University, Jinhua,
Zhejiang China, and also working with Key Lab-

oratory of Intelligent Education Technology and Application of Zhejiang
Province, Zhejiang Normal University, Zhejiang, Jinhua, China His current
research interests include computer vision, signal processing, image process-
ing, medical image processing, healthcare applications, machine learning,
and deep learning.

UBAID UL AKBAR has recently completed his
Bachelor’s degree in Computer Science from the
Department of Computer Science, the City Uni-
versity of Science and Information Technology,
Pakistan. His research interests include Object-
Oriented Software Engineering, Visual (Block-
based) Programming Languages, Software Project
Scheduling, Resource Scheduling in Cloud and
High-Performance Computing.

RAHMAT ULLAH is a Lecturer at the School
of Computer Science and Electronic Engineering,
University of Essex, United Kingdom. He pre-
viously worked as a Research & Development
Associate with the Faculty of Computing, Engi-
neering and Science, University of South Wales,
U.K. Rahmat received his Master’s in Software
Engineering from COMSATS University, Islam-
abad, Pakistan, and his PhD from the School of
Engineering, University of Edinburgh, U.K. His

research interests include biomedical signal processing, microwave imaging,
software engineering, machine learning, and digital health.

ZHONGLONG ZHENG (Member, IEEE) re-
ceived the B.S. degree in electronic engineering
from the China University of Petroleum, in 1999,
and the Ph.D. degree from the Department of Au-
tomation, Shanghai Jiao Tong University, in 2005.
He is currently a Full Professor with the College
of Computer Science and Technology, Zhejiang
Normal University, Jinhua, China. His research
interests include machine learning, data mining,
and blockchain.

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3350440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

