
Applying Private Information Retrieval to
Lightweight Bitcoin Clients

Kaihua Qin∗, Henryk Hadass∗, Arthur Gervais∗ and Joel Reardon†
∗Department of Computing, Imperial College London

Email: kaihua.qin@imperial.ac.uk, henryk.hadass14@imperial.ac.uk, a.gervais@imperial.ac.uk
†Department of Computer Science, University of Calgary

Email: joel.reardon@ucalgary.ca

Abstract—Lightweight Bitcoin clients execute a Simple Pay-
ment Verification (SPV) protocol to verify the validity of trans-
actions related to a particular user. Currently, lightweight clients
use Bloom filters to significantly reduce the amount of bandwidth
required to validate a particular transaction. This is despite the
fact that research has shown that Bloom filters are insufficient
at preserving the privacy of clients’ queries.

In this paper we describe our design of an SPV protocol
that leverages Private Information Retrieval (PIR) to create fully
private and performant queries. We show that our protocol has
a low bandwidth and latency cost; properties that make our
protocol a viable alternative for lightweight Bitcoin clients and
other cryptocurrencies with a similar SPV model. In contract
to Bloom filters, our PIR-based approach offers deterministic
privacy to the user.

Among our results, we show that in the worst case, clients who
would like to verify 100 transactions occurring in the past week
incurs a bandwidth cost of 33.54 MB with an associated latency
of approximately 4.8 minutes, when using our protocol. The
same query executed using the Bloom-filter-based SPV protocol
incurs a bandwidth cost of 12.85 MB; this is a modest overhead
considering the privacy guarantees it provides.

Index Terms—Private Information Retrieval; Bitcoin; Simple
Payment Verification;

I. INTRODUCTION

Bitcoin [1], a pseudonymous cryptocurrency created in
2008, enables users to perform irreversible electronic trans-
actions. Once a transaction occurs, the Bitcoin peer-to-peer
network records this fact in a replicated and public database
called the blockchain. The clients that verify and store every
transaction in the network are called full nodes. This verifi-
cation process is resource intensive, requiring hardware and
storage nearly exceeding personal computers. At the time of
writing, the Bitcoin blockchain was approximately 210 GB in
size, monotonically growing every day.

Resource constrained devices, such as mobile phones, are
unable to store the entire contents of the Bitcoin blockchain
given its prohibitive size1. Moreover, bandwidth usage on
mobile phones is usually metered, which is another factor pre-
venting full nodes from being run on such devices. These lim-
itations, combined with the scale of the blockchain, prevents
participants in the system from being able to validate their

1At the time of writing, an iPhone 8 with 256 GB of storage costs $749,
a Samsung Galaxy Note 9 with 512 GB of storage costs $1,249.99 and a
SanDisk Ultra 400 GB microSD card alone costs $175.13.

own transactions on their mobile phones. Bitcoin, however,
was aimed at completely removing such trust assumptions: no
central third-party should be required for it to work properly.
This suggests that users need to run their own full nodes at
home in order to participate in the network.

This drawback was already anticipated when Bitcoin was
first introduced [1]. Nakamoto suggests that a lightweight
version of the full node protocol should be used in resource
constrained environments, which was called Simple Payment
Verification (SPV). SPV simply verifies transactions which are
relevant to a specific user, in contrast to a full node which
verifies every single transaction that has ever occurred.

A simple implementation of SPV requires the client to
download the whole Bitcoin blockchain, much like a full node,
in order to verify a single transaction. This approach preserves
the privacy of the client since no other network participant
can determine which transaction the client is interested in
verifying. However, this approach wastes bandwidth since the
majority of the downloaded data is discarded. We call this
solution Naive SPV.

SPV as described in the Bitcoin white-paper was only
realised in 2012 when a Bloom-filter-based SPV protocol
was proposed in Bitcoin Improvement Proposal number 37
(BIP-37) [2]. This proposal allowed the SPV protocol to
significantly reduce the amount of bandwidth used in verifying
a particular transaction, when compared with Naive SPV.
This resulted in BIP-37 becoming the de-facto standard in
the Bitcoin community for lightweight clients, with mobile
cryptocurrency wallet applications such as BitcoinJ [3] imple-
menting it. We call this solution BIP-37 SPV.

Using Bloom filters, however, does not maintain the privacy
of a user’s queries. This has been acknowledged not only by
the authors of BIP-37 [4], but also by the Bitcoin commu-
nity [5] and by researchers in this field such as Gervais et
al. [6]. Bloom filters present a trade-off between bandwidth
and privacy. In the existing Bitcoin wallet implementations,
almost no privacy is guaranteed because a low false posi-
tive rate is chosen for the sake of bandwidth. Bloom filters
are moreover vulnerable to intersection attacks even though
sacrificing bandwidth and increasing the false positive rate,
which means that the adversary can read the user’s interest
by intersecting the results from different Bloom filters of the
same wallet. Gervais et al. [6] offer solutions to improve the

ar
X

iv
:2

00
8.

11
35

8v
1

 [
cs

.C
R

]
 2

6
A

ug
 2

02
0

privacy provisions of Bloom filters. Nevertheless, we would
like to provide the user with full and deterministic privacy.

In a public payments network such as Bitcoin, privacy is a
fundamental requirement. Users who do not adequately pre-
serve their privacy allow full node peers to discover the Bitcoin
addresses they own and which transactions they have been
involved in. Upon discovering this information, adversarial
peers can engage in a denial of service to users or addresses
which they disfavour. In addition, these peers can engage in a
trivial process of tracing the funds of a particular user, given
that the Bitcoin blockchain is public. This tracing could expose
an individual to personal harm if it was discovered that they
have access to a large quantity of Bitcoin. Due to these risks, it
is highly desirable that Bitcoin’s users preserve their privacy.

Summary: In this paper we describe our design of a Private
Information Retrieval (PIR) based SPV client to demonstrate
that a fully private, low bandwidth and low latency lightweight
Bitcoin client is feasible. The contributions of this work are
the following:

• First PIR system for blockchain: To the best of our
knowledge, we are the first to design a PIR scheme to
increase the privacy properties of cryptocurrency based
systems.

• Different PIR schemes: We show that in the single-
server setting our protocol is as efficient as BIP-37 SPV,
while in the multi-server setting it has a comparable
bandwidth cost.

• Bandwidth comparison: We provide a detailed analysis
of the bandwidth cost of our novel protocol and compare
its cost to the Naive and BIP-37 SPV protocols. We show
that in both instances our protocol is far more bandwidth
efficient than the Naive SPV protocol.

• Practical Latency: We also show that the latency of
executing queries in our protocol is tolerable, with clients
being able to perform fully private SPV in far less than
a minute when verifying recent transactions.

This work is organised as follows. Section II covers the
necessary background. Section III provides an overview of our
system and Section IV outlines the details. In Section V, we
present our evaluation. Section VI covers future work which
improves our implementation and in Section VII, we discuss
related work in this field. Finally, we conclude in Section VIII.

II. BACKGROUND

A. Bitcoin

Other than full nodes and lightweight clients, Bitcoin has
another type of network participant called miners. The role
of miners is to secure the Bitcoin blockchain through the
execution of a Proof-of-Work (PoW) mechanism.

Blocks, which contain one or more transactions, have the
PoW mechanism executed on them by miners. Blocks are said
to be mined once a solution to the PoW mechanism has been
found. The first mined block is called the Genesis block. Each
block contains a block header, which is a lightweight summary
of the contents of the block and is 80 bytes in size. Each

Bitcoin transaction consist of one or more inputs and outputs,
with the inputs describing where the Bitcoin is coming from
and the outputs where it is going to. Each transaction has
a unique identifier called a transaction ID (TXID) which is
obtained by applying a hash function to the transaction data.

The TXIDs of all of the transactions contained in a block
are used to construct a Merkle [7] tree, whose root is included
in the block header. This Merkle tree root serves as a unique
identifier for all of the transactions included in a particular
block. Since the outputs of a transaction state where the
Bitcoin is sent to, spending Bitcoin means using the outputs
of some transaction (for which you were the beneficiary)
as the inputs to a new transaction. Since Bitcoin prevents
double spending of the currency, this divides outputs into two
categories: those that have been spent—i.e., used as inputs
to a subsequent transaction—and those that are unspent. The
latter are called Unspent Transaction Outputs (UTXOs) and
they sum to the total amount of Bitcoin in existence.

UTXOs represent the concept of “having bitcoin”—insofar
that one can sign value transactions that include the UTXOs as
inputs. Each transaction output includes a Bitcoin address of
which there are a number of different types, the most common
of which are Pay-to-Public-Key-Hash (P2PKH) and Pay-to-
Script-Hash (P2SH) [8]. P2PKH are addresses owned by a
single entity whereas P2SH can be multi-signature addresses.
These addresses are usually encoded in the hexadecimal
base58 format. Base58 removes characters from its encoding
set which are similar to each other, such as 0, O, I and l,
to reduce the risk of users mixing up distinct characters with
similar glyphs.

B. Simple Payment Verification (SPV)

Three items are required to perform SPV on a transaction.
The transaction itself, the list of TXIDs from the correspond-
ing block and a list of all the block headers from the Genesis
block, up to and including the block in which the transaction
of interest is included. The transaction is used to calculate its
TXID, to check that this TXID exists in the list of TXIDs from
the relevant block and to confirm that an addresses belonging
to the client is referenced in an output. The list of TXIDs is
used to construct the Merkle tree and subsequently calculate
the Merkle tree root and check if it matches the value stored
in the corresponding block header. The list of block headers is
used to prove that the header belonging to the block of interest
can be placed in a valid location in the Bitcoin blockchain by
recursively hashing them and confirming their corresponding
Proofs-of-Work. Once the validity of a transaction has been
determined, using the three items outlined above, confidence
in the irreversibility of that transaction needs to be established.
This is done by ensuring that the block containing the transac-
tion of interest is embedded by normally 1 to 6 subsequently
mined blocks depending on the transaction value [9].

A naive implementation of an SPV client would first es-
tablish one or more connections to a set of full nodes. Next,
in order to verify a transaction, the client would request for
every single block of transactions from the Genesis block up

to the block in which the transaction is included, from the
peers it is connected to. For each received block the client
would then select the data detailed above and discard the rest.
The advantage of this approach is that the full node peers are
not able to determine which particular transaction the client is
interested in verifying, thus preserving the user’s privacy. This
is because the SPV client needs to download essentially the
whole blockchain for each transaction which it would like to
verify. However, this means that this approach is bandwidth
intensive since the majority of the downloaded data is not used
and is discarded.

C. BIP-37: Bloom filters & Merkle blocks

In order to improve bandwidth efficiency over the Naive
SPV protocol, the BIP-37 SPV protocol introduced Bloom fil-
ters and a corresponding Merkle block to significantly reduce
the bandwidth required to verify a particular transaction. We
now explain both of these constructions.

A Bloom filter is a space efficient, probabilistic data struc-
ture that allows for the testing of an elements’ membership
in a set. Bloom filters work probabilistically and, by design,
only have false positives (FP) but not false negatives (FN).
This means that Bloom filters reliably tell when an element
is definitely not in a set, but only offer probabilistic guidance
as to whether an element may be in a set. Adding an element
to a set and testing for membership are both constant time
operations. Bloom filters that have too many elements con-
tained within them are said to be “too full”, which renders
them unusable due to their excessively high FP rate.

Bloom filters work by using a small number of (non-
cryptographic) hash functions that map the set element to a
random bit position in the filter. So if you have five hash
functions, there are five positions in the filter for each element,
and this set of positions is characteristic to each element.
To insert an element into the set, one simply makes all the
element’s characteristic positions to one (i.e., “on”). Thus,
to see if an element is in the set, one simply checks if all
the characteristic positions are “on”: if any are “off” (i.e.,
not set to 1 but instead still 0) then we are certain that the
element was never inserted. If all are on, however, it may
be due to a coincidence from the other elements that were
inserted. Therefore, there are no false negatives but there are
false positives.

When using Bloom filters in the SPV setting, the FP rate
is used as a proxy for the privacy level of the Bloom filter.
An SPV client with ample bandwidth may choose to have a
high FP rate. This means that the full node peer from which
data is downloaded to verify a transaction, cannot accurately
determine which transaction the SPV client is interested in
verifying. Bloom filters with an exceedingly high FP rate
will download as much data, and have the same privacy
provisions, as Naive SPV. This is because such a Bloom filter
would match all addresses and in effect download the entire
blockchain.

In contrast, an SPV client with access to a minimal amount
of bandwidth would create an accurate Bloom filter, by setting

a low FP rate. This would mean that the full node peer
would know exactly which transactions the SPV client is
interested in verifying, since only a specific set of data would
be downloaded. As such, Bloom filters represent a trade-
off, which is configurable by the user, between privacy—the
precision of the data returned from a full node peer—and
bandwidth.

Once a Bloom filter has been created, it is used in the
construction of the corresponding Merkle block. This consists
of a block header and a partial Merkle tree, called a Merkle
branch. The Merkle branch consists of all the TXIDs for
whom set membership passed in the Bloom filter—and which
therefore includes false positives—as well as intermediate
Merkle tree hashes, including the Merkle tree root. Altogether,
this allows the SPV client to connect these TXIDs together and
to verify the value of the Merkle tree root located in the block
header. A Merkle block is followed by a list of transactions
which were set in the Bloom filter, and whose TXIDs were
already included in the Merkle branch.

In practice, users tend to use low FP rates when constructing
Bloom filters [5], thus maintaining virtually no privacy. The
reason low FP rates are used is because they allow faster
synchronization for SPV clients. SPV synchronisation is a
process by which a users’ wallet is brought up to date with
the current state of the blockchain by reflecting in the wallets’
balance the final result of the transactions in which the user
was involved. Increasing the FP rate leads to longer synchro-
nization times, since more data needs to be downloaded. This
has been commonly observed [4] to have a negative effect on
users’ satisfaction with SPV client implementations such as
BitcoinJ [3]. This occurs because users are more concerned
about the overall performance of their wallet application,
rather than their privacy.

D. Private Information Retrieval

Private Information Retrieval (PIR) allows users to query a
database, such that the database learns nothing about the users’
query. The trivial solution to this would be for the client to
download the entire database and perform the query offline.
Over the years more efficient PIR protocols have emerged
which have significantly improved on this upper bound. We
provide a brief overview below.

There exist two classes of PIR: Information Theoretic PIR
(IT-PIR) and Computational PIR (C-PIR). IT-PIR protocols
involve replicating the database among a set of servers.
The client makes different queries to different servers and
determines the result of their query from the set of server
responses. IT-PIR is information theoretically secure, provided
that the different servers do not collude with each other, up
to a certain threshold. C-PIR protocols, in contrast, require
only one server to store the database and query privacy is
guaranteed by cryptographic means.

Each class of PIR has its own advantages and disadvantages.
The advantages of multi-server IT-PIR are that it generally
incurs smaller communication and computation costs. This
is because IT-PIR treats queries as vectors, and databases

as matrices, on which linear algebra operations of vector-by-
matrix multiplication are performed. As such, the size of the
database should be square in order for the communication cost
between client and server to be optimal. IT-PIR is also robust
to missing or incorrect database server responses.

The disadvantage of IT-PIR is that the threshold of non-
colluding servers needs to be maintained and it is not clear
how this requirement can be enforced in practice, particularly
because a database server can mount a Sybil attack.

The advantage of single-server C-PIR is that it relies only
on a single server, however, due to this property, C-PIR is not
robust since it cannot overcome missing or incorrect database
server responses.

C-PIR is generally computationally slower when compared
to IT-PIR. This is because greater computation is required in
encoding clients’ queries and because the server is perform-
ing matrix-by-matrix multiplication—in contrast to vector-
by-matrix multiplication in some IT-PIR schemes. Another
disadvantage of some C-PIR protocols is that they are based
on lattice problems whose security provisions are not well
understood. Because of this, clients may have doubts about
the privacy of their queries [10].

In our implementation we use a hybrid PIR scheme by Devet
and Goldberg [10] which combines the advantages of IT-PIR
and C-PIR, while minimising the disadvantages of either one.
The underlying IT-PIR protocol in this hybrid scheme is by
Devet et al. [11] which leverages Shamir Secret Sharing and
Reed-Solomon decoding to create a robust and Byzantine-
fault-tolerant IT-PIR protocol which can withstand up to t
colluding servers (t is called the privacy level). The C-PIR
scheme used is by Aguilar-Melchor and Gaborit [12].

The hybrid PIR scheme treats the underlying data as ele-
ments of the finite field GF(28). This protocol can be found
in the Percy++ [13] open source library which implements a
number of state-of-the-art PIR protocols.

III. SYSTEM OVERVIEW

In this section we describe our system design, its properties
and considered adversarial models. We denote the IT-PIR
protocol as Φ and the C-PIR protocol as Θ in our hybrid
scheme.

A. System Model

Our system features the following entities:
• Ledger: We assume the existence of an immutable

ledger, acting as coarse-grained timestamping service.
The ledger’s purpose is to discern not yet spent electronic
coins (commonly referred to as unspent transaction out-
puts or short UTXO).

• User: A user possesses one or more private keys in the
ledger and intends to validate the transactions towards
the accounts (e.g., Bitcoin addresses) controlled by the
private keys through SPV.

• PIR server: The PIR server responds to the PIR queries
from the SPV clients and provides the data required to
perform the SPV.

We assume users can communicate with PIR servers through
the underlying network.

B. High-Level Operation

In this section, we outline the high-level operations of our
system (cf. Figure 1).
(a) PIR servers download the whole blockchain and construct

PIR databases. For each database, the PIR server creates
a description file called manifest file.

(b) As outlined in Section II, the user collects all available
block headers from e.g., full node peers.

(c) The user fetches the manifest files from the PIR servers
to efficiently query the PIR database afterwards.

(d) The user executes the PIR-SPV protocol. PIR queries
can be run recursively (i.e., in one PIR query, the user
encodes and exchanges several query messages before
receiving the final PIR response). The user decodes the
responses and then performs SPV validation (verifying
the partial Merkle tree of the received transactions given
the downloaded block headers).

SPV client

PIR servers

Blockchain

(a)

(c)

(d)

(b)

Fig. 1: High-level operations of our system: (a) PIR servers
download the blockchain; (b) User keeps up to date with all
available block headers; (c) User fetches the manifest files
from the PIR servers; (d) User executes the PIR-SPV protocol.

C. Main Properties

Our system provides the following properties:
• User: Given our system, users can query their transac-

tions from other blockchain nodes, without disclosing
the transactions that they are interested in. We call this
property transaction query privacy.

• PIR server: We assume that different PIR servers cre-
ate equal databases and manifest files, given the same
blockchain source. While serving user requests, the PIR
servers do not learn any user-centric transaction data.

D. Adversarial Model

The privacy offered by the hybrid PIR scheme relies on the
fact that both schemes Φ and Θ preserve the query privacy.
For Φ, we assume that k out of ` servers respond per PIR
query. We then define the privacy level t and the number of

Byzantine servers v, s.t. v < k − t − 1. We assume that no
more than t servers are colluding to discover the contents of a
users query, which ensures the privacy of Φ. This implies that
we assume not all PIR servers are colluding in the case that
all servers are responsive and there is no Byzantine server. For
Θ, we assume that malicious PIR servers are computationally
bound, which guarantees that disclosing user’s interest from a
Θ PIR query is infeasible.

IV. SYSTEM DETAILS

In this section, we detail the architecture of our system. We
begin by describing how PIR servers build the databases to
facilitate PIR-based queries. Then, we describe the manifest
files, which are used by clients to construct PIR-based queries.
Finally, we depict our PIR-based SPV protocol.

A. Database Construction

1) Database Content Structure: We split the data required
to perform SVP into three distinct components (i.e., the
address PIR DB, the Merkle tree PIR DB and the transaction
PIR DB), the formats of which are respectively detailed below.

a) Address PIR DB: In our implementation, we take a
user-centric, address-first approach, which means that a user
needs to select a Bitcoin address that belongs to them with
which they would like to execute our protocol. Figure 2
illustrates the structure of a single entry in a row in the Address
PIR database. A row is made up of one or more of these
entries.

Fig. 2: Structure of a single Address PIR DB row

An explanation of each field follows:

• Address: This field holds a particular Bitcoin address can
be involved in more than one transaction. As such, there
can be multiple entries with the same address. This field
serves as the entry point to our PIR SPV protocol.

• TXID: This field identifies the transaction whose output
address the address field refers to. This field is used to
query the Transaction PIR database.

• Block height: This field holds the block height of the
block which includes the transaction the TXID field refers
to. This field is used to query the Merkle Tree PIR
database.

• Vout Index: This field holds the index value of the output
of the transaction referenced by the TXID field, in which
the address referenced by the address field was used. This
field serves more of a convenience than a necessity, by
allowing clients to quickly identify the location of their
output in the relevant transaction, without having to look
through every transaction output.

b) Merkle Tree PIR DB: This database contains the
TXIDs which are used to calculate the Merkle tree root in
the SPV protocol. The structure of a single row in the Merkle
Tree PIR database is shown in Figure 3, where each TXID is
32 bytes in length.

Fig. 3: Structure of a single Merkle Tree PIR DB row

c) Transaction PIR DB: This database contains the hex-
adecimal format of transactions in the UTXO set. Figure 4
illustrates the structure of a single row in the Transaction PIR
database, where each row consists of transaction bytes.

Fig. 4: Structure of a single Transaction PIR DB row

2) Temporal Partitioning of Databases: We explain our
rationale for partitioning the databases across several time
periods in this section.

The collected data are split into three distinct time periods,
with associated manifest files: weekly, monthly and all-time.
Since a new block is generated approximately every 10 min-
utes, weekly data consists of the most-recent 1 008 collected
blocks, monthly data the preceding 4 032 blocks, and all-time
data consisted of all remaining blocks—up to and including
the Genesis block.

The temporal partitioning of the collected data means that
enormous amounts of data do not usually need to be searched
using PIR. This leaks the fact that a client is interested in, for
example, more-recent data whenever the weekly databases are
queried. This can be assumed to be true, however, given the
knowledge that an entity is using Bitcoin; more importantly,
simply accessing recent transactions does not imply one has
recent transactions. The important piece of privacy to maintain
is the mapping of a client to the set of addresses that they
control. This is maintained implicitly since the client can only
query the Address PIR DB under PIR.

Clients who are interested in verifying a transaction for
a particular range of time simply issue their queries to the
corresponding PIR database. This structure allows our static
implementation to be easily transformed into one which is
periodically updated whenever a new block is generated. This
is outlined in Appendix C.

The other advantage of this partitioning is that it reduces
the bandwidth and latency cost for clients who are interested
in verifying more recent transactions.

3) Database Dimensions: In this section, we describe how
the height and width of the databases are determined.

Several factors influence the appropriateness of the database
dimensions when using PIR. PIR seeks to minimize the

communication cost, which is the bandwidth required to obtain
one row of data from any of our databases. The PIR system
that we use has an optimal communication cost when the
“height” and “width” of the database are approximately equal.
That is, the number of rows is proportional to the size of each
row. This is because requests in PIR have a constant cost per
row while the PIR replies are the size of a single row. As
such, we tried to ensure that our databases were square-like
when possible. Larger sets of data were placed into rectangular
databases to avoid bandwidth bloat. Bandwidth bloat is when
individual rows in a database contain a greater proportion of
irrelevant information with respect to the clients query.

It should be noted that larger databases increase the latency
of PIR queries, as they are executed over more data which is
computationally intensive. In most cases the database size was
slightly larger than the set of data being stored in it, resulting
in the remaining space being padded with strings of zeros.

4) Data Ordering: Once the dimensions of the databases
are determined, the collected data have to be ordered, as
described below, before being placed into these databases.

For Address PIR DB data, each entry is lexicographically
sorted by the address field. For Merkle Tree PIR DB data,
each list of TXIDs is sorted in ascending order according
to the associated block height. No ordering is imposed on
Transaction PIR DB data.

After the sorting occurred of the respective sets of data, it
is then arranged in row-oriented order in the databases. This
is where a row is filled from left to right with entries before
the next row is filled. This localises the entries, thus reducing
the total number of queries that clients need to perform.

B. Database Manifest Files
In the PIR scheme we utilised, users are required to grasp

some preliminary knowledge of the queried database (e.g.,
database dimensions and the position of the desired data)
before making a request. Consequently, for each database, a
manifest file is generated which provides sufficient information
to bootstrap a PIR query. A manifest file consists of one
or more records, each of which indicates the location of an
individual piece of data. Users request from PIR servers to
fetch the manifest files before making the queries. As manifest
files are the global descriptions of the databases, the request
does not reveal any user’s interest other than participating in
Bitcoin. Note, in Section VI, we propose a solution that saves
the trouble of downloading the whole manifest file replaced by
iterative PIR queries to reduce bandwidth cost. We concretely
describe the format of the manifest files in Appendix A.

C. PIR-Based SPV Protocol
We describe our PIR-based SPV protocol which facilitates

private lightweight Bitcoin clients in Algorithm 1. The client
is required to obtain the available block headers independently.
Execution of the PIR-SPV protocol is divided into three
rounds of queries to three PIR databases in the proper order
(cf. Algorithm 1). Once completing the queries, the user can
perform the SPV validation of the selected transaction with
the transaction content, TXIDs and the block headers.

Algorithm 1: PIR-SPV protocol
Data: SPV client C, one or multiple PIR servers S
Result: C obtains the necessary data for a SPV privately
Initialization: S constructs the PIR databases and

associated manifest files; C downloads the manifest files
from S;

a.1 C selects an address to fetch a record from the Address
PIR DB manifest file and generates the PIR queries
based on row indices of the selected record;

a.2 S computes the result using the PIR queries on the
Address PIR DB;

a.3 C parses and decodes the result to obtain one or more
Address PIR DB entries;

b.1 C uses the value of the block height field of an entry to
fetch the corresponding record from the Merkle Tree
PIR DB manifest file and generates the PIR queries
based on the row indices;

b.2 S computes the result using the PIR queries on the
Merkle Tree PIR DB;

b.3 C parses and decodes the result to obtain the requested
list of TXIDs;

c.1 C uses the value of the TXID field from the same entry
that was selected in step b.1, to fetch the corresponding
record from the Transaction PIR DB manifest file and
generates the PIR queries based on the row indices;

c.2 S computes the result using the PIR queries on the
Transaction PIR DB;

c.3 C parses and decodes the result to obtain the requested
transaction.

V. EVALUATION

We collected the necessary data between February and April
2018 from 9 virtual machines (VMs) running the core Bitcoin
client. Each VM ran a Ubuntu 16.04 (64-bit) OS, had four 1
GHz CPUs, 8 GB of RAM and a 300 GB hard drive. For sim-
plicity, in our implementation, we only considered the UTXO
set of P2PKH addresses. Note the Bitcoin Core supports a
descriptor scheme [14] to generally express different types
of outputs. We therefore reasonably deduce the feasibility of
extending our solution to cover various address types.

Table I summarises the sizes of the individual components
of the system. We use database width to denote the number
of records stored in a row. For example, the all-time data for
the Address PIR DB states that a single row contains 906
entries, each of which is 62 bytes in size (cf. Section IV).
Because the data fields vary across the different databases, the
exact number of bytes that a database row consumes therefore
varies. We detail the process of determining the dimensions in
Appendix B.

A. Benchmark Methodology

We executed our PIR-based SPV protocol and compared
its bandwidth cost with the Bloom-filter-based BIP-37 SPV
protocol and with the fully private Naive SPV protocol. Since

TABLE I: The sizes and dimensions of the generated databases and their corresponding manifest files

All-Time
blocks 1 to 508462

Monthly
blocks 508463 to 512494

Weekly
blocks 512495 to 513502

Address PIR DBs

entries per row (width)
rows (height)
Total size of DB
Size of manifest file

906
56172
3.16 GB
65.99 MB

214
13268
176.04 MB
175.33 MB

124
7688
59.11 MB
66.97 MB

Merkle Tree PIR DBs

entries per row (width)
rows (height)
Total size of DB
Size of manifest file

821
394080
10.18 GB
40.90 MB

1196
38272
1.46 GB
0.32 MB

1184
37888
1.44 GB
78.62 KB

Transaction PIR DBs

Length of row in bytes (width)
rows (height)
Total size of DB
Size of manifest file

758
20942782
15.87 GB
3.03 GB

848
1537424
1.30 GB
218.68 MB

876
512460
448.91 MB
72.45 MB

we use Devet et al.’s [10] hybrid PIR scheme, the client can
query one or more PIR servers when executing our protocol.
The experiments were executed locally on a single machine,
running one or more PIR server instances. This machine had a
Ubuntu 16.04 (64-bit) OS, Intel Core i7 3.4 GHz CPU, 16 GB
of RAM and a 512 GB hard drive. To ensure a fair and accurate
comparison, we did not include the cost of downloading the
block headers, since this is a common element of all three
protocols. We did not include the bandwidth cost of client-side
queries for BIP-37 and Naive SPV since these are contained
in peer-to-peer layer messages. We did, however, include the
bandwidth cost of client-side queries for PIR SPV since that
is a fundamental element of performing PIR. The other steps
that we followed when collecting our data were:

• PIR SPV: For every TXID located in each entry in
the Address PIR DBs, we executed the PIR protocol as
outlined in Section IV and used the total length of the
returned rows, from one or more PIR servers, as part of
the bandwidth cost. The downloading of manifest files is
not included in our calculation of bandwidth cost because
in Section VI we present a feasible solution which
removes the need for clients to download them. Instead,
clients perform interpolation search using iterative PIR
queries to retrieve a particular record, which we imagine
will have a small bandwidth cost.
Two sets of data were collected for PIR SPV. The first
set of data used only one PIR server to simulate the
case of single-server C-PIR being used by the hybrid PIR
schema. The second set of data used three PIR servers
to simulate the case of multi-server IT-PIR being used
by the hybrid PIR schema. The bandwidth cost of using
additional servers is linear, assuming that no Byzantine
PIR servers exist. It should be noted that under C-PIR,
a recursive depth of size 1 was used, as suggested by
Aguilar-Melchor and Gaborit [12].

• BIP-37 SPV: For every TXID located in each entry in
the Address PIR DBs, a Bloom filter was constructed and
then used to send a Bitcoin peer-to-peer layer message
to a full node hosted on one of our VMs. The length
of the reply, which contained the Merkle block and the

associated transactions, was measured and used as the
bandwidth cost. It should be noted that this reply also
contained a network message header which was 24 bytes
in length [15]. This value was deducted from the final
bandwidth cost calculations since this does not exist in
the other two protocols.

• Naive SPV: For every TXID located in each entry in
the Address PIR DBs, we measured the total amount of
bandwidth that had to be used to download the blocks
between the Genesis block and the block in which the
transaction of interest was included. We used a single
full node hosted on one of our VMs.

B. Results and Analysis
The results are recorded in Figure 5, which shows three

histograms displaying the bandwidth cost required to verify
a single transaction for each of the different SPV protocols,
across all-time, monthly and weekly data. These results are
summarised in Table II, which shows the expectation and
standard deviation of the collected data.

Figure 6 shows the cumulative bandwidth cost required to
verify up to 100 transactions by the different SPV protocols,
across the three time periods. The corresponding latency cost
of executing our PIR SPV protocol in the single- and multi-
server setting is also shown. A small sample of these results
is shown in Table III. In Figure 6, to calculate the bandwidth
cost of verifying one or more transactions through SPV, steps
similar to those described in Section V-A were followed
with some adjustments. For example, to calculate the total
bandwidth cost of verifying 7 transactions, a random entry
from the Address PIR DB was picked 7 times, and its TXID
used to perform Naive, BIP-37 and PIR-based SPV. The
bandwidth cost for each TXID was calculated as described
in Section V-A and then the results of the 7 calculations were
totaled. We did this five times and then an average was taken.
This average is used as the final result.

It should be noted that when calculating the bandwidth cost
of Bloom-filter-based SPV, a fresh filter was used on each
TXID, rather than a single filter encoding the set of 7 TXIDs.
This is because a Bloom filter gets full very quickly when it
is used to match a large number of TXIDs. A full Bloom filter

(a) All-Time

(b) Monthly

(c) Weekly

Fig. 5: Histograms showing the bandwidth cost of verifying a single TXID by BIP-37 SPV, single- and multi-server PIR SPV
and Naive SPV, for the three time periods.

TABLE II: Summary of Figure 5, showing the expectation and standard deviation of the bandwidth cost for the different
protocols, for the three time periods.

BIP-37 PIR: 1 server PIR: 3 servers Naive

All-Time expectation
std. dev.

102.80 KB
130.25 KB

21.54 MB
35.43 KB

64.61 MB
106.29 KB

80.27 GB
50.24 GB

Monthly expectation
std. dev.

132.43 KB
149.14 KB

1.70 MB
34.00 KB

5.11 MB
102.01 KB

159.19 GB
1.12 GB

Weekly expectation
std. dev.

128.52 KB
155.19 KB

666.07 KB
34.00 KB

2.00 MB
102.66 KB

161.47 GB
292.08 MB

is one where most of the entries are set to “on”. Using a fresh
filter for each TXID would mean that we would obtain a more
accurate bandwidth cost.

The latency was measured by executing the hybrid PIR
protocol from Percy++ [13] on the average number of rows
needed to verify a set of TXIDs, for example 7, for each of the
Address, Merkle Tree and Transaction PIR databases. Figure 6
shows the latency of a single server, for both the C-PIR and
IT-PIR cases, because even though 3 servers were used to
facilitate IT-PIR, the query was sent in parallel to each server
rather than sequentially.

In the weekly and monthly case, Figure 6 shows that single-
server PIR SPV has a similar bandwidth cost to BIP-37 SPV

when verifying between 20 and 100 transactions. In particular,
Table III shows that if a client is interested in performing
single-sever PIR SPV on 100 transactions which occurred in
the past week, it will take approximately 2 minutes for this
query to be executed, with a bandwidth cost of 11.18 MB.
In contrast, BIP-37 SPV will require 12.85 MB in the same
scenario.

Clients who are interested in a smaller number of trans-
actions for the same time period, such as 20, would incur a
bandwidth cost of 8.31 MB in the multi-server setting, with a
latency of approximately 62 seconds. In the monthly case, a
similar query would incur a bandwidth cost of 12.20 MB with
a latency of approximately 2.3 minutes, while in the all-time

(a) All-Time (b) Monthly (c) Weekly

Fig. 6: Cumulative distribution of bandwidth cost for the verification of transactions under BIP-37 SPV, single- and multi-server
PIR SPV and Naive SPV, across the three time periods. The latency of single- and multi-server PIR SPV is also displayed.

TABLE III: A small sample of results from Figure 6, showing the bandwidth and latency cost for a particular number of
transactions under different SPV protocols, across the three time periods.

Number of Transactions BIP-37 PIR: 1 server PIR: 3 servers Naive C-PIR latency IT-PIR latency

1
All-Time
Monthly
Weekly

69.32 KB
44.08 KB
89.78 KB

21.51 MB
1.70 MB
691.04 KB

64.53 MB
5.09 MB
2.07 MB

84.85 GB
10.86 GB
13.32 GB

68.44 s
3.89 s
2.84 s

203.52 s
9.39 s
6.02 s

20
All-Time
Monthly
Weekly

2.82 MB
2.87 MB
2.76 MB

23.41 MB
4.07 MB
2.77 MB

70.23 MB
12.20 MB
8.31 MB

1.72 TB
234.94 GB
282.31 GB

680.54 s
53.07 s
26.85 s

2008.16 s
137.28 s
61.78 s

40
All-Time
Monthly
Weekly

3.80 MB
5.18 MB
5.50 MB

25.46 MB
6.32 MB
4.89 MB

76.37 MB
18.97 MB
14.68 MB

3.16 TB
461.65 GB
549.78 GB

1736.52 s
119.43 s
45.31 s

5124.89 s
307.34 s
103.20 s

60
All-Time
Monthly
Weekly

6.38 MB
8.20 MB
8.58 MB

27.44 MB
8.53 MB
7.09 MB

82.32 MB
25.60 MB
21.27 MB

4.91 TB
682.80 GB
821.44 GB

2281.91 s
149.21 s
68.89 s

6732.03 s
389.73 s
156.38 s

80
All-Time
Monthly
Weekly

8.31 MB
10.80 MB
9.12 MB

29.61 MB
10.81 MB
9.26 MB

88.83 MB
32.44 MB
27.79 MB

6.44 TB
898.70 GB
1.09 TB

3079.08 s
203.77 s
104.49 s

9083.17 s
511.47 s
238.56 s

100
All-Time
Monthly
Weekly

10.09 MB
13.50 MB
12.85 MB

31.50 MB
12.85 MB
11.18 MB

94.49 MB
38.56 MB
33.54 MB

8.03 TB
1.11 TB
1.34 TB

3948.97 s
200.78 s
125.31 s

11650.12 s
523.98 s
286.26 s

case this would increase to 70.23 MB and approximately 34
minutes respectively. In the same scenario, BIP-37 SPV will
require only 2.76, 2.87 and 2.82 MB respectively.

We expect that clients will query monthly and weekly data
most often and that all-time data will only be queried when
the client is synchronising with the Bitcoin blockchain for the

first time, and when the client has been disconnected from the
Bitcoin blockchain for more than a month. We imagine that
these scenarios will happen infrequently, and as such the user
experience will not be adversely affected by the large latency
of querying all-time data.

VI. FUTURE WORK

In this section, we mainly discuss the future work on
the manifest file trie scheme, which attempts to spare the
manifest file downloading bandwidth. We further discuss other
extensions (i.e. database partitioning, dynamic protocol and
integration with bitcoin) in Appendix C.

Since in some cases most of the PIR database entries hold
distinct identities (e.g. the weekly address PIR database),
which requires a single record in the manifest file for each
entry in the database, manifest files have a nearly equivalent
or even larger size compared with the database (cf. Table I).
This may incur a poor performance in bandwidth because the
client is required to download the whole manifest file.

Manifest files are currently structured as a list of entries
which need to be sent to the client in order for the client to be
able to query the corresponding databases. Sending the client
an updated copy of these manifest files whenever a server-
side change occurs (which would be every 10 minutes) is
not bandwidth efficient. In order to mitigate this problem, we
propose transforming the simple manifest files into a format
suitable for PIR queries. These PIR compatible manifest files
would then be stored on the PIR server and clients, in order to
extract a particular record, would perform interpolation search
on these manifest files, under PIR.

With this approach we remove the excessive bandwidth cost
of sending full manifest files to the client, and ensure that the
record of interest is extracted privately. The addition of PIR-
based manifest files requires a slight update to our protocol,
whereby the client would first need to perform interpolation
search under PIR in order to select each record from each of
the manifest files, before using that record in our protocol as
outlined in Section IV.

VII. RELATED WORK

There exists a limited body of work which focuses on
solving the problem associated with the privacy provisions of
Bloom filters for the SPV protocol.

In 2017, Kanemura et al. [16] proposed a γ-deniability
enabled Bloom filter to be used instead of the current im-
plementation as specified in BIP-37. γ-deniability is a privacy
metric that shows how many true positives are hidden by false
positives. In this case, for the number of Bitcoin addresses
or TXIDs set in a Bloom filter. Hence, a higher γ-deniability
value would indicate a greater level of privacy since more true
positives would be obscured by false positives. There exists an
alternative proposal detailed in BIP-157 [17] which describes
client-side block filtering. This approach is the inverse of BIP-
37. Rather than having clients send a filter to a full node,
full node peers generate deterministic filters on each block of
transactions that they store and send these to the client. The
client is then able to see if this deterministic filter matches
any data it is interested in. In the case that there is a positive
match, the client requests for the relevant full block of data
to be downloaded. Compared to BIP-37, the privacy provision
of this proposal is greatly improved. This is because full node
peers are only able to determine which full block the client

is interested in, compared to a Bloom filter, which identifies
individual addresses and transactions a client may be interested
in.

Compared to solutions based on probabilistic data struc-
tures, the only information leakage in our implementation is
that of time since clients can choose which time period they
would like to query. It can be easily assumed that all clients
would like to query the most recent data found in the weekly
databases, and the monthly and all-time set’s of data are too
large for an adversary to gain any meaningful information.
In addition, our protocol uses less bandwidth since the PIR
queries are precise. Since each block of transactions has a
maximum size of 1 MB in Bitcoin, client-side block filtering
will require the client to download at least 1 MB of data in
the worst case. If a client would like to verify 20 transactions
which occurred in the past week, they would incur a bandwidth
cost of 8.31 MB by using our protocol, in the worst case. If
these transactions are located in individual blocks, then the
bandwidth cost of BIP-157 would be 20 MB in the worst
case.

Matetic et al. [18] and Wüst et al. [19] proposed approaches
to protect the privacy of lightweight clients, which however
requires a trusted execution environment.

Other work has focused on increasing the privacy of Bitcoin
transactions. Dandelion [20], which is specified in BIP-156,
proposes privacy enhanced routing for transactions, but is
yet to be integrated into the core Bitcoin client. Currently,
when a transaction is submitted into the Bitcoin peer-to-peer
network, an adversary can easily link an IP address to the
node which broadcasts that particular transaction. Dandelion
mitigates this class of attacks by sending transactions over a
randomly selected path in the Bitcoin peer-to-peer network
before broadcasting that transaction to other peers.

There are some other protocols attempting to mitigate the
privacy issues (e.g., Monero [21], Zcash [22], Solidus [23],
[24] and Cryptonote [25]). These techniques ensure that even
though the blockchain of these cryptocurrencies is public,
information regarding the source, amount and destination of a
transaction is obfuscated and cannot be deduced. For further
analysis of their effectiveness, we refer the reader to [26]–[28].

VIII. CONCLUSION

Bitcoin’s lack of privacy with the use of Bloom filters for
SPV clients has been a known issue for many years. Our work
solves this problem by applying PIR to the SPV protocol and
we develop an implementation to validate our design. We used
this software to measure the bandwidth cost and latency of our
protocol and found that its bandwidth cost was similar to that
of BIP-37 SPV in the single-server setting of the hybrid PIR
schema, and comparable in the multi-server setting. We also
proposed some improvements to our protocol, one of which
removed the bandwidth cost of downloading large manifest
files. We believe we are the first to detail a fully private
practical protocol for SPV in Bitcoin.

REFERENCES

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[2] M. Hearn and M. Corallo, “BIP-37,” https://github.com/bitcoin/bips/
blob/master/bip-0037.mediawiki.

[3] “bitcoinj.” [Online]. Available: https://bitcoinj.github.io/
[4] M. Hearn, “Bloom filter privacy and thoughts on a newer protocol.”

[Online]. Available: http://www.openbitcoinprivacyproject.org/2015/02/
bloom-filter-privacy-and-thoughts-on-a-newer-protocol/

[5] J. Nick, “Privacy in BitcoinJ - nickler’s.” [Online]. Available:
https://jonasnick.github.io/blog/2015/02/12/privacy-in-bitcoinj/

[6] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber, “On the privacy
provisions of bloom filters in lightweight bitcoin clients,” in Proceedings
of the 30th Annual Computer Security Applications Conference. ACM,
2014, pp. 326–335.

[7] R. C. Merkle, “Protocols for public key cryptosystems,” in 1980 IEEE
Symposium on Security and Privacy. IEEE, 1980, pp. 122–122.

[8] “BlockSci.” [Online]. Available: https://citp.github.io/BlockSci/demo.
html

[9] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, 2016, pp. 3–16.

[10] C. Devet and I. Goldberg, “The best of both worlds: Combining
information-theoretic and computational pir for communication effi-
ciency,” in International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 2014, pp. 63–82.

[11] C. Devet, I. Goldberg, and N. Heninger, “Optimally robust private
information retrieval,” in Presented as part of the 21st {USENIX}
Security Symposium ({USENIX} Security 12), 2012, pp. 269–283.

[12] C. Aguilar-Melchor and P. Gaborit, “A lattice-based computationally-
efficient private information retrieval protocol,” in Western European
Workshop on Research in Cryptology. Citeseer, 2007.

[13] “Percy++ / PIR in C++.” [Online]. Available: http://percy.sourceforge.
net/

[14] “bitcoin/descriptors.md at master bitcoin/bitcoin,” https://github.com/
bitcoin/bitcoin/blob/master/doc/descriptors.md.

[15] “Protocol documentation - Bitcoin Wiki.” [Online]. Available: https:
//en.bitcoin.it/wiki/Protocol documentation#Message structure

[16] K. Kanemura, K. Toyoda, and T. Ohtsuki, “Design of privacy-preserving
mobile bitcoin client based on γ-deniability enabled bloom filter,” in
2017 IEEE 28th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC). IEEE, 2017, pp. 1–6.

[17] O. Osuntokun, A. Akselrod, and J. Posen, “BIP-157,” https://github.com/
bitcoin/bips/blob/master/bip-0157.mediawiki.

[18] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “Bite: Bitcoin lightweight client privacy using trusted
execution,” IACR Cryptology ePrint Archive 2018, XXXX, Tech. Rep.,
2018.

[19] K. Wüst, S. Matetic, M. Schneider, I. Miers, K. Kostiainen, and
S. Capkun, “Zlite: Lightweight clients for shielded zcash transactions
using trusted execution,” in International Conference on Financial
Cryptography and Data Security. Springer, 2019.

[20] B. Denby, A. Miller, G. Fanti, S. Bakshi, S. Venkatakrishnan, and
P. Viswanath, “Dandylion.” [Online]. Available: https://github.com/
mablem8/bips/blob/master/bip-dandelion.mediawiki#Implementation

[21] “Home — Monero - secure, private, untraceable.” [Online]. Available:
https://getmonero.org/

[22] “Home Zcash.” [Online]. Available: https://z.cash/
[23] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solidus:

An incentive-compatible cryptocurrency based on permissionless byzan-
tine consensus,” CoRR, abs/1612.02916, 2016.

[24] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via pvorm,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 701–717.

[25] N. Van Saberhagen, “Cryptonote v 2.0,” 2013.
[26] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,

K. Hogan, J. Hennessey, A. Miller, A. Narayanan et al., “An empirical
analysis of traceability in the monero blockchain,” Proceedings on
Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 143–163, 2018.

[27] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis of
moneros blockchain,” in European Symposium on Research in Computer
Security. Springer, 2017, pp. 153–173.

[28] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An empirical
analysis of anonymity in zcash,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 463–477.

APPENDIX

A. Manifest Files Formats

In this section, we describe the formats for the three
databases’ manifest files.

1) Address PIR DB Manifest File: Each record in this
manifest file consists of a mapping of an address to the location
of the corresponding row entry(ies) in the Address PIR DB.
Figure 7 illustrates the structure of this record.

{...
(i) “address” : [
(ii) “row index start”,
(iii) “row index end”,
(iv) “column index start”,
(v) “column index end”,

]
...}

Fig. 7: Example record in Address PIR DB manifest file

(i) The address contained in the address field of the entry
referenced by this record.

(ii) The row index where the first entry is located.
(iii) The row index where the last entry is located.
(iv) The column index where the first entry is located.
(v) The column index where the last entry is located.
2) Merkle Tree PIR DB Manifest File: Each record in this

manifest file consists of a mapping of a block height to the
location of the corresponding list of TXIDs in the Merkle Tree
PIR DB. Figure 8 illustrates the structure of this record.

{...
(i) “block-height” : [
(ii) “row index start”,
(iii) “row index end”,
(iv) “column index start”,
(v) “column index end”,

]
...}

Fig. 8: Example record in Merkle Tree PIR DB manifest file

(i) The block height of the TXIDs referenced by this record.
(ii) The row index where the first TXID is located.

(iii) The row index where the last TXID is located.
(iv) The column index where the first TXID is located.
(v) The column index where the last TXID is located.
3) Transaction PIR DB Manifest File: Each record in this

manifest file consists of a mapping of a TXID to the location
of the corresponding transaction in the Transaction PIR DB.
Figure 9 illustrates the structure of this record.

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://bitcoinj.github.io/
http://www.openbitcoinprivacyproject.org/2015/02/bloom-filter-privacy-and-thoughts-on-a-newer-protocol/
http://www.openbitcoinprivacyproject.org/2015/02/bloom-filter-privacy-and-thoughts-on-a-newer-protocol/
https://jonasnick.github.io/blog/2015/02/12/privacy-in-bitcoinj/
https://citp.github.io/BlockSci/demo.html
https://citp.github.io/BlockSci/demo.html
http://percy.sourceforge.net/
http://percy.sourceforge.net/
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://en.bitcoin.it/wiki/Protocol_documentation#Message_structure
https://en.bitcoin.it/wiki/Protocol_documentation#Message_structure
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/mablem8/bips/blob/master/bip-dandelion.mediawiki#Implementation
https://github.com/mablem8/bips/blob/master/bip-dandelion.mediawiki#Implementation
https://getmonero.org/
https://z.cash/

{...
(i) “txid” : [
(ii) “row index start”,
(iii) “row index end”,
(iv) “column index start”,
(v) “column index end”,

]
...}

Fig. 9: Example record in Transaction PIR DB manifest file

(i) The TXID of the transaction referenced by this record.
(ii) The row index where the first byte of the transaction is

located.
(iii) The row index where the last byte of the transaction is

located.
(iv) The column index where the first byte of the transaction

is located.
(v) The column index where the last byte of the transaction

is located.

B. Database Dimensions Determination

Below we detail the methodology we followed for deter-
mining the dimensions of the databases.

a) Address PIR DB Dimensions: The size of the all-time,
monthly and weekly data was measured and the height and
width values were chosen such that the databases were square
in shape, to minimise the communication cost.

b) Merkle Tree & Transaction PIR DB Dimensions:
To determine the width of the rows for these two database
types, two graphs were plotted. Figure 10 shows the number
of transactions per block and Figure 11 shows how the length
of transactions changes over time. For both database types, for
the three time periods, the width was taken as the expected
value of the respective data sets. The statistical measure of
expectation was used for the width because this would reduce
the number of times a query would have to be performed, given
that in expectation, the row result given to the client would
contain the complete set of data required. However, the width
of the Merkle Tree PIR DB for the set of all-time data was
taken as the running average instead, since Figure 10 shows
an extremely skewed distribution. Monthly and weekly Merkle
Tree DBs were square, while the rest, namely the all-time
Merkle Tree DB and all Transaction DBs, were rectangular.

C. Extended Future Work

1) Database Partitioning: Since all-time databases are no-
tably large, partitioning them would reduce the bandwidth and
latency cost of queries, since they will be executed over a
smaller data set. Database partitioning would require for two
new fields, “pir db start” and “pir db end”, to be added to
the respective manifest files, to track the databases in which a
particular entry is included. This would require the PIR based
SPV protocol to be slightly adjusted, with the client selecting
both the database and row indices when constructing queries.
However, database partitioning would expose the client to a

statistical privacy attack. Here, a malicious PIR server can
monitor for a pattern of querying across multiple databases by
the same client and attempt to deduce the user’s interests. As
such, the partitioning should not be excessive. As a guideline,
each partitioned all-time sub-database should not be smaller
than the size of the corresponding database for the monthly
set of data.

2) Dynamic Protocol: Currently our proof-of-concept im-
plementation is static, which means that it does not reflect
the latest state of the Bitcoin blockchain. A new block of
transactions is mined and sent out into the Bitcoin peer-to-
peer network approximately once every 10 minutes.

In order to create a dynamic implementation of our protocol,
these new blocks would first need to be parsed into the
format described in Sections IV. The new data would then
be appended to the final rows of the appropriate weekly
databases, with Address PIR DB data being subsequently
sorted to maintain lexicographic ordering.

After collecting a week’s worth of new data in the weekly
databases, these databases are subsequently emptied by having
their data migrated to the monthly databases. Similarly, once
a month’s worth of new data is collected in the monthly
databases, these databases are also emptied by having their
data migrated to the all-time databases, where it permanently
remains. This migration simply involves the new data being
appended to the final rows of the appropriate monthly or all-
time databases, with Address PIR DB data being subsequently
sorted to maintain lexicographic ordering. In addition, when-
ever such updates occur, either when new data arrives in the
weekly databases or when data is migrated, these changes are
reflected in the manifest files of the corresponding databases.

This process ensures that the freshest data exists in the set
of weekly databases, followed by the monthly and all-time
databases. In addition, PIR servers do not need to perform
synchronisation with each other with regards to the current
state of the blockchain as that is implicitly handled by Bitcoin.

Our protocol can be further extended by having finer-
grained temporal slices of the Bitcoin blockchain, such as for
the past day or hour. Having too many temporal partitions,
however, can expose the client to a privacy attack. A malicious
PIR server can monitor a client’s query and determine that
the client is interested in hourly data, thus reducing the set of
data in which that clients transaction of interest is included,
when compared to the set of weekly data. This increases
the likelihood of the malicious PIR server determining which
addresses the client controls.

3) Integration with Bitcoin: Our protocol as described in
this paper can be easily integrated with Bitcoin and other
cryptocurrencies with a similar SPV model. Our protocol
acts as an alternative SPV implementation which is fully
private, and as such would only require changes at the network
protocol layer. At a minimum, new network message headers
would need to be created which would allow clients to identify
which full nodes support PIR SPV. Full nodes which do
support PIR SPV would also need to account for extra storage

Fig. 10: Number of TXID’s per block Fig. 11: Length of transactions over time

to accommodate the additional databases and corresponding
manifest files that are necessary to facilitate PIR based queries.

	I Introduction
	II Background
	II-A Bitcoin
	II-B Simple Payment Verification (SPV)
	II-C BIP-37: Bloom filters & Merkle blocks
	II-D Private Information Retrieval

	III System Overview
	III-A System Model
	III-B High-Level Operation
	III-C Main Properties
	III-D Adversarial Model

	IV System Details
	IV-A Database Construction
	IV-A1 Database Content Structure
	IV-A2 Temporal Partitioning of Databases
	IV-A3 Database Dimensions
	IV-A4 Data Ordering

	IV-B Database Manifest Files
	IV-C PIR-Based SPV Protocol

	V Evaluation
	V-A Benchmark Methodology
	V-B Results and Analysis

	VI Future Work
	VII Related Work
	VIII Conclusion
	References
	Appendix
	A Manifest Files Formats
	A1 Address PIR DB Manifest File
	A2 Merkle Tree PIR DB Manifest File
	A3 Transaction PIR DB Manifest File

	B Database Dimensions Determination
	C Extended Future Work
	C1 Database Partitioning
	C2 Dynamic Protocol
	C3 Integration with Bitcoin

