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Abstract

Using a dependently typed host language, we give a well

scoped-and-typed by construction presentation of a minimal

two level simply typed calculus with a static and a dynamic

stage. The staging function partially evaluating the part of a

term that are static is obtained by a model construction in-

spired by normalisation by evaluation.

We then go on to demonstrate how this minimal language

can be extended to provide additional metaprogramming ca-

pabilities, and to define a higher order functional language

evaluating to digital circuit descriptions.
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1 Introduction

Staged compilation, by running arbitrary programs at com-

pile time in order to generate code, is a way to offer users

metaprogramming facilities. Kovács demonstrated that the

notion of two level type theories, originally introduced in ho-

motopy theory, can be repurposed to describe layered lan-

guages equipped with a staging operation partially evaluat-

ing the terms in the upper layer [18].

In order to enable the mechanised study of such systems,

we give an intrinsically scoped-and-typed treatment of vari-

ous two level simply typed calculi and their corresponding

staging operations evaluating away all of the static subterms.

We obtain these staging operations by performing type-directed

model constructions reminiscent of the ones used for normal-

isation by evaluation, hence the title of this paper.
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This culminates in a system that takes seriously Kovács’

remark that the static and dynamic layers do not need to have

exactly the same features. Its static layer is a higher order

functional language while the dynamic one corresponds to

digital circuit descriptions. This casts existing work on high

level languages for quantum circuit descriptions into a new

light as two level theories.

This work has been fully formalised using Agda [21] as

our host language (but any implementation of Martin-Löf

type theory [19] with inductive families [14] would do).

2 A Primer on Intrinsically Typed λ-Calculi

Let us start with a quick primer on intrinsically scoped-and-

typed λ-calculi defined in a dependently typed host language.

The interested reader can refer to ACMM [3] for a more in-

depth presentation of this approach.

2.1 Object Types and Contexts

We first give an inductive definition of object types. We call

it Type and its own type is Set, the type of all small types in

Agda. It has two constructors presented in generalised alge-

braic datatype fashion. We use ‘α as our base type, and (A ‘⇒

B) is the type of functions from A to B.

data Type : Set where

‘α : Type

_‘⇒_ : (A B : Type)→ Type

Agda-ism (Syntax Highlighting). All of the code snippets in

this paper are semantically highlighed: keywords are orange,

definitions and types are blue, data constructors are green,

bound variables are slanted, and comments are brown.

Agda-ism (Implicit Prenex Polymorphism). We extensively

use Agda’s variable mechanism: all of the seemingly unbound

names will in fact have been automatically quantified over

in a prenex position provided that they have been declared

beforehand.

The following block for instance announces that from now

on unbound As, Bs, and Cs stand for implicitly bound Type

variables.

variable A B C : Type

Next, we form contexts as left-nested lists of types using

constructor names similar to the ones typically used in type

Scoped and typed staging by evaluation
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judgments. Contexts may be the empty context ε or a com-

pound context (Γ , A) obtained by extending an existing con-

text Γ on the right with a newly bound (nameless) variable of

type A.

data Context : Set where

ε : Context

_,_ : Context→ Type→ Context

variable Γ ∆ Θ : Context

variable P Q : Context→ Set

2.2 Manipulating Indexed Types

In this paper we are going to conform to the convention of

only mentioning context extensions when presenting judge-

ments. That is to say we will write the application and λ-

abstraction rules as they are in the right column rather than

the left one where the ambient context Γ is explicitly threaded.

Γ ⊢ f : A→ B Γ ⊢ t : A

Γ ⊢ f t : B

Γ, x : A ⊢ b : B

Γ ⊢ λx.b : A→ B

f : A→ B t : A

f t : B

x : A ⊢ b : B

λx.b : A→ B

To do so, we need to introduce a small set of combinators

to manipulate indexed definitions. These are commonplace

and already present in Agda’s standard library. First, ∀[_] uni-

versally quantifies over its argument’s index; it is meant to

be used to surround a complex expression built up using the

other combinators.

∀[_] : (I → Set)→ Set

∀[ P ] = ∀ {i}→ P i

Second, the suggestively named _⊢_ allows us to modify

the index; it will be useful to extend a context with freshly

bound variables.

_⊢_ : (I → J)→ (J → Set)→ (I → Set)

(f ⊢ P) i = P (f i)

Third, we can form index-respecting function spaces.

_⇒_ : (P Q : I → Set)→ (I → Set)

(P⇒ Q) i = P i→ Q i

Finally, the pointwise lifting of pairing is called _∩_; it

will only come into play in Section 5.2.

_∩_ : (P Q : I → Set)→ (I → Set)

(P ∩ Q) i = P i × Q i

We include below an artificial example of a type written

using the combinators together with its full expansion using

explicit context-passing.

∀[ (_, A) ⊢ (P ∩ Q⇒ Q ∩ P) ]

∀ {Γ}→ (P (Γ , A) × Q (Γ , A))→ (Q (Γ , A) × P (Γ , A))

2.3 Intrinsically Typed Variables

Our first inductive family [14] Var formalises what it means

for a variable of type A to be present in context Γ. It is indexed

over said type and context. We present it side by side with the

corresponding inference rules for the typing judgement for

variables denoted (· :v ·). The first constructor (here) states

that in a non-empty context where the most local variable has

type A we can indeed obtain a variable of type A. The second

one (there) states that if a variable of type A is present in a

context then it also is present in the same context extended

with a freshly bound variable of type B.

data Var : Type→ Context→ Set where

here : ∀[ (_, A) ⊢ Var A ]

there : ∀[ Var A⇒ (_, B) ⊢ Var A ]

x : A ⊢ x :v A

x :v A

y : B ⊢ x :v A

This is a standard definition corresponding to a scoped-

and-typed variant of De Bruijn indices [5, 6, 8, 13]: here cor-

responds to zero, and there to successor.

2.4 Intrinsically Typed Terms

We are now ready to give the type of intrinsically typed terms.

It is once again an inductive family indexed over a type and

a context; its declaration is as follows.

data Term : Type→ Context→ Set where

We will introduce constructors in turn, each paralleled by

its counterpart as an inference rule. We start with the vari-

able rule: a variable of type A forms a valid term of type A.

As you can see below, we use a line lexed as a comment

(----) to suggestively typeset the constructor’s type like the

corresponding rule.

‘var : ∀[ Var A⇒

--------

Term A ]

x :v A

x : A

Next we have the constructor for applications. It states that

by combining a term whose type is a function type from A to

B and a term of type A, we obtain a term of type B.

‘app : ∀[ Term (A ‘⇒ B)⇒ Term A⇒

------------------------

Term B ]

f : A→ B t : A

f t : B

Last but not least, the rule for λ-abstraction is the only rule

with a premise mentioning a context extension. It states that

we can build a term for a function from A to B by building the

function’s body of type B in a context extended by a freshly

bound variable of type A.

Scoped and typed staging by evaluation
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‘lam : ∀[ (_, A) ⊢ Term B⇒

----------------

Term (A ‘⇒ B) ]

x : A ⊢ b : B

λx.b : A→ B

Putting it all together, we obtain the following inductive

family.

data Term : Type→ Context→ Set where

‘var : ∀[ Var A⇒ Term A ]

‘app : ∀[ Term (A ‘⇒ B)⇒ Term A⇒ Term B ]

‘lam : ∀[ (_, A) ⊢ Term B⇒ Term (A ‘⇒ B) ]

This gives us the intrinsically scoped-and-typed syntax for

the simply typed lambda calculus. And we give our first ex-

ample: the identity function (λ.0 in de Bruijn notation).

‘id : ∀[ Term (A ‘⇒ A) ]

‘id = ‘lam (‘var here)

As any well behaved syntax should, it is stable under weak-

ening as we are going to see shortly.

2.5 Weakening

Following Altenkirch, Hofmann, and Streicher [4] we start

by defining the category of weakenings with contexts as ob-

jects and the following inductive family as morphims.

data _≤_ : Context→ Context→ Set where

done : ε ≤ ε

keep : Γ ≤ ∆→ Γ , A ≤ ∆ , A

drop : Γ ≤ ∆→ Γ ≤ ∆ , A

This relation on contexts, also known as order-preserving

embeddings in the literature, is a first order description of

order-preserving injections: done is the trivial injection of

the empty context into itself; keep extends an existing injec-

tion into one that preserves the most local variable; and drop

records that the most local variable of the target context does

not have a pre-image via the injection.

We can define identity and composition of these morphisms

(we leave the definitions out but they are available in the ac-

companying material).

≤-refl : Γ ≤ Γ ≤-trans : Γ ≤ ∆→ ∆ ≤ Θ→ Γ ≤ Θ

These order-preserving embeddings all have an action on

suitably well behaved scoped families. We will call these ac-

tions weakening principles, and introduce the following type

synonym to describe them.

Weaken : (Context→ Set)→ Set

Weaken P = ∀ {Γ ∆}→ Γ ≤ ∆→ P Γ→ P ∆

The action on variables is given by the following wkVar

definition. It is defined by induction over the renaming and

case analysis on the de Bruijn index if the most local variable

happens to be in both contexts.

wkVar : Weaken (Var A)

wkVar (drop σ) v = there (wkVar σ v)

wkVar (keep σ) here = here

wkVar (keep σ) (there v) = there (wkVar σ v)

The action on terms is purely structural, with the caveat

that the weakening needs to be amended when going under

a binder: the most recently bound variable is present in both

the source and target contexts and so we use keep to mark it

as retained.

wkTerm : Weaken (Term A)

wkTerm σ (‘var v) = ‘var (wkVar σ v)

wkTerm σ (‘app f t) = ‘app (wkTerm σ f ) (wkTerm σ t)

wkTerm σ (‘lam b) = ‘lam (wkTerm (keep σ) b)

Using these results, we can define function composition as

a pseudo constructor: provided g and f , we form λx.g f x i.e.

we use g and f in a context extended with x hence the need

for weakening.

_‘◦_ : ∀[ Term (B ‘⇒ C)⇒ Term (A ‘⇒ B)⇒ Term (A ‘⇒ C) ]

g ‘◦ f = let Γ≤Γ,A = drop ≤-refl in

‘lam (‘app (wkTerm Γ≤Γ,A g)

(‘app (wkTerm Γ≤Γ,A f ) (‘var here)))

Agda-ism (Lexing of Identifiers). Ignoring details about re-

served characters for now: any space-free string of unicode

characters is considered a single identifier. Correspondingly,

in the example above Γ≤Γ,A is a single identifier named like

this to document for the human reader what its type looks

like.

2.6 Normalisation by Evaluation

It is now time to define an evaluation function for this syntax.

By the end of this section, we will have a function eval turn-

ing terms into Kripke-style values, provided that we have an

environment assigning values to each of the term’s free vari-

ables. It will have the following type.

eval : Env Γ ∆→ Term A Γ→ Value A ∆

2.6.1 Kripke Function Spaces. This whole process is based

on Kripke semantics for intuitionistic logic [20]. As a conse-

quence one of the central concepts is closure under future

worlds, here context extensions. This idea is captured by the

definition of the � record: we can inhabit (� A Γ) whenever

for any extension ∆ of Γ we are able to construct an (A ∆).

record � (A : Context→ Set) (Γ : Context) : Set where

constructor mk�

field run� : ∀[ (Γ ≤_)⇒ A ]

For more information on � and its properties, see Allais,

Atkey, Chapman, McBride, and McKinna [2, Section 3.1].

We will only use the fact that it is a comonad, that is to say

that we can define extract and duplicate thanks to the fact that

the embedding relation is a preorder.

extract : ∀[ � P⇒ P ]

extract p = p .run� ≤-refl

Scoped and typed staging by evaluation
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duplicate : ∀[ � P⇒ � (� P) ]

duplicate p .run� σ .run� = p .run� ◦ ≤-trans σ

Agda-ism (Copattern matching). The definition of duplicate

proceeds by copattern-matching [1]. This allows us to define

values of a record type (here �) by defining the result of tak-

ing each of its projections (here the unique run� one). In this

instance it is particularly useful because we have a type in-

volving nested records and each projection takes additional

arguments: an (implicit) context and a weakening into that

context.

Kripke function spaces then correspond to functions inside

a box, hence the following definition.

Kripke : (P Q : Context→ Set)→ (Context→ Set)

Kripke P Q = � (P⇒ Q)

The comonadic structure of � additionally ensures we can

define semantic application (_$$_) and weakening of Kripke

function spaces.

_$$_ : ∀[ Kripke P Q⇒ P⇒ Q ]

_$$_ = extract

wkKripke : Weaken (Kripke P Q)

wkKripke σ f = duplicate f .run� σ

Finally, we introduce a notation to hide away �-related

notions when building Kripke functions. After the following

declarations we can write λλ[ σ , v ] b to implement a function

of type (Kripke A B Γ).

syntax mk� (λ σ x→ b) = λλ[ σ , x ] b

Agda-ism (Syntax Declarations). A syntax declaration intro-

duces syntactic sugar that is allowed to perform variable

binding, or take arguments in a seemingly out-of-order man-

ner. In the above declaration the left hand side describes the

actual term and the right hand side its newly introduced sug-

ared form.

We now have all of the ingredients necessary to perform

the model construction allowing us to implement a normaliser.

2.6.2 Model Construction. This step follows standard tech-

niques for normalisation by evaluation [7, 10, 11]. The fam-

ily of values is defined by induction on the value’s type. Val-

ues of a base type are neutral terms (this is not enforced here

and we are happy to simply reuse Term) while values of a

function type are Kripke function spaces between values of

the domain and values of the codomain.

Value : Type→ Context→ Set

Value ‘α = Term ‘α

Value (A ‘⇒ B) = Kripke (Value A) (Value B)

We prove that values can be weakened by using the fact

they are defined in terms of families already known to be

amenable to weakenings.

wkValue : (A : Type)→Weaken (Value A)

wkValue ‘α σ v = wkTerm σ v

wkValue (A ‘⇒ B) σ v = wkKripke σ v

Environments are functions associating a Value to each

Variable in scope.

record Env (Γ ∆ : Context) : Set where

field get : ∀ {A}→ Var A Γ→ Value A ∆

In the upcoming definition of the evaluation function, en-

vironments will in general simply be threaded through. They

will only need to be modified when going under a binder.

This binder, interpreted as a Kripke function space, will pro-

vide a context weakening and a value living in that context.

The environment will have to be extended with the value

while its existing content will need to be transported, along

the weakening, into the bigger context. The extend definition

combines these two operations into a single one. It is defined

in copattern style: .run� builds a box while .get builds the

returned environment. The definition proceeds by case anal-

ysis on the variable to be mapped to a value: if it is the newly

bound one, we immediately return the value we just obtained,

and otherwise we look up the associated value in the old en-

vironment and use σ to appropriately weaken it.

extend : ∀[ Env Γ⇒ � (Value A⇒ Env (Γ , A)) ]

extend ρ .run� σ v .get here = v

extend ρ .run� σ v .get (there x) = wkValue _ σ (ρ .get x)

The evaluation function maps terms to values provided

that an environment assigns a value to every free variable in

scope. It is defined by induction on the term and maps every

construct to its semantical counterpart: variables become en-

vironment lookups, application become Kripke applications,

and λ-abstractions become Kripke functions.

eval : Env Γ ∆→ Term A Γ→ Value A ∆

eval ρ (‘var v) = ρ .get v

eval ρ (‘app f t) = eval ρ f $$ eval ρ t

eval ρ (‘lam b) = λλ[ σ , v ] eval (extend ρ .run� σ v) b

A typical normalisation by evaluation presentation would

conclude with the definition of a reification function extract-

ing a term from a value in a type-directed manner before

defining normalisation as the composition of evaluation and

reification. This last step will however not be useful for our

study of two level calculi and so we leave it out. It can be

found in details in Catarina Coquand’s work on normalisa-

tion by evaluation for a simply typed λ-calculus with explicit

substitutions [10].

Now that we have seen how to define a small well scoped-

and-typed language and construct an evaluation function by

performing a model construction, we can start looking at a

extending it to two level language.

Scoped and typed staging by evaluation
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3 Minimal Intrinsically Typed Two Level

Type Theory

We start with the smallest two level calculus we can possibly

define by extending the simply typed λ-calculus as defined

in the previous section with quotes (‘〈_〉) and splices (‘∼_).

This will enable us to write and stage simple programs

such as the following.

‘α ‘⇒ ‘α ∋ ‘app ‘idd (‘∼ ‘app ‘ids ‘〈 ‘idd 〉){ ‘app ‘idd ‘idd

The three-place relation (A ∋ s { t) states that staging a

term s at type A yields the term t. Here, ‘idd is a dynamic

identity function while ‘ids is a static one, ‘〈_〉 quotes a static

term inside a dynamic one, and ‘∼_ splices a dynamic term

in a static one. Correspondingly, staging will partially evalu-

ate the call to ‘ids as well as all the quotes and splices while

leaving the rest of the term intact. Hence the result: the call

to the static identity function has fully reduced but the call to

the dynamic one has been preserved.

3.1 Phases, Stages, and Types

We start by defining a sum type of phases denoting whether

we are currently writing src code or inspecting stg code that

has already been partially evaluated.

data Phase : Set where

src stg : Phase

variable ph : Phase

Additionally, our notion of types is going to be explicitly

indexed by the stage they live in. These stages are themselves

indexed over the phase they are allowed to appear in. The

static (sta) stage is only available in the src phase: once code

has been staged, all of its static parts will be gone. The dy-

namic (dyn) stage however will be available in both phases,

hence the unconstrained index ph.

data Stage : Phase→ Set where

sta : Stage src

dyn : Stage ph

variable st : Stage ph

We can now define our inductive family of simple types

indexed by their stage.

data Type : Stage ph→ Set where

‘α : Type st

‘⇑_ : Type {src} dyn→ Type sta

_‘⇒_ : (A B : Type st)→ Type st

variable A B C : Type st

We have both static and dynamic terms of base type, hence

the unconstrained indices ph and st for the constructor ‘α. The

constructor ‘⇑_ allows us to embed dynamic types into static

ones; (‘⇑ A) is effectively the type of programs that will com-

pute a value of type A at runtime. This is only available in

the src phase. Function types are available in both layers

provided that they are homogeneous: both the domain and

codomain need to live in the same layer.

Purely dynamic types in the source phase have a direct

counterpart in the staged one. We demonstrate this by imple-

menting the following asStaged function.

asStaged : Type {src} dyn→ Type {stg} dyn

asStaged ‘α = ‘α

asStaged (A ‘⇒ B) = asStaged A ‘⇒ asStaged B

It is essentially the identity function except for the fact that

its domain and codomain have different indices.

3.2 Intrinsically Scoped and Typed Syntax

We skip over the definition of contexts and variables: they

are essentially the same as the ones we gave in Section 2.

Our type of term is indexed by a phase, a stage, a type at

that stage, and a context.

data Term : (ph : Phase) (st : Stage ph)→

Type st→ Context→ Set where

The first constructors are familiar: they are exactly the

ones seen in the previous section. These constructs are avail-

able at both levels and both before and after staging hence the

fact that the phase and stage indices are polymorphic here.

‘var : ∀[ Var A⇒ Term ph st A ]

‘app : ∀[ Term ph st (A ‘⇒ B)⇒ Term ph st A⇒ Term ph st B ]

‘lam : ∀[ (_, A) ⊢ Term ph st B⇒ Term ph st (A ‘⇒ B) ]

Next we have the constructs specific to the two level calcu-

lus: quotes (‘〈_〉) let users insert dynamic terms into static ex-

pressions while splices (‘∼_) allow static terms to be inserted

in dynamic ones. Staging will, by definition, eliminate these

and so their phase index is constrained to be src.

‘〈_〉 : ∀[ Term src dyn A⇒ Term src sta (‘⇑ A) ]

‘∼_ : ∀[ Term src sta (‘⇑ A)⇒ Term src dyn A ]

Putting it all together, we obtain the following inductive

family representing a minimal intrinsically typed two-level

calculus.

data Term : (ph : Phase) (st : Stage ph)→

Type st→ Context→ Set where

‘var : ∀[ Var A⇒ Term ph st A ]

‘app : ∀[ Term ph st (A ‘⇒ B)⇒ Term ph st A⇒ Term ph st B ]

‘lam : ∀[ (_, A) ⊢ Term ph st B⇒ Term ph st (A ‘⇒ B) ]

‘〈_〉 : ∀[ Term src dyn A⇒ Term src sta (‘⇑ A) ]

‘∼_ : ∀[ Term src sta (‘⇑ A)⇒ Term src dyn A ]

We can readily write examples such as the following defi-

nitions of a purely dynamic and a purely static identity func-

tion. The dynamic function will survive staging even if it is

applied to a dynamic argument while the static one can only

exist in the source phase and will be fully evaluated during

staging.

‘idd : ∀[ Term ph dyn (A ‘⇒ A) ]

‘idd = ‘lam (‘var here)

‘ids : ∀[ Term src sta (A ‘⇒ A) ]

‘ids = ‘lam (‘var here)

Scoped and typed staging by evaluation
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Now that we have a syntax, we can start building the ma-

chinery that will actually perform its partial evaluation.

4 Staging by Evaluation

The goal of this section is to define a type of Values as well as

an evaluation function which computes the value associated

to each term, provided that we have an appropriate environ-

ment to interpret the term’s free variables. This will once

again yield a function eval of the following type.

eval : Env Γ ∆→ Term src st A Γ→ Value st A ∆

As a corollary we will obtain a staging function that takes

a closed dynamic term and gets rid of all of the quotes and

splices by fully evaluating all of its static parts.

stage : Term src dyn A ε→ Term stg dyn (asStaged A) ε

We start with the model construction describing precisely

the type of values.

4.1 Model Construction

The type of values is defined by case analysis on the stage.

Static values are given a static meaning (defined below) while

dynamic values are given a meaning as staged terms i.e. terms

guaranteed not to contain any static subterm.

Value : (st : Stage src)→ Type st→ Context→ Set

Value sta = Static

Value dyn = Term stg dyn ◦ asStaged

The family of static values is defined by induction on the

value’s type. It is fairly similar to the standard normalisation

by evaluation construction except that static values at a base

types cannot possibly be neutral terms.

Static : Type sta→ Context→ Set

Static ‘α = const ⊥

Static (‘⇑ A) = Value dyn A

Static (A ‘⇒ B) = Kripke (Static A) (Static B)

There are no static values of type ‘α as this base type does

not have any associated constructors and so we return the

empty type ⊥; values of type (‘⇑ A) are dynamic values of

type A i.e. staged terms of type A; functions from A to B are

interpreted using Kripke function spaces from static values

of type A to static values of type B.

4.2 Evaluation

We can now explain what the meaning of each term construc-

tor is. In every instance we will proceed by case analysis

on the stage the meaning is being used at, essentially using

a meaning inspired by normalisation by evaluation for the

static part and one inspired by substitution for the dynamic

one.

Application is interpreted as the semantic application de-

fined for Kripke function spaces in the static case, and the

syntactic ‘app constructor in the dynamic one.

app : (st : Stage src) {A B : Type st}→

Value st (A ‘⇒ B) Γ→ Value st A Γ→ Value st B Γ

app sta = _$$_

app dyn = ‘app

Lambda-abstractions are mapped to Kripke λs for static

values and to syntactic ones for the dynamic ones.

lam : (st : Stage src) {A B : Type st}→

Kripke (Value st A) (Value st B) Γ→

Value st (A ‘⇒ B) Γ

lam sta b = λλ[ σ , v ] b .run� σ v

lam dyn b = ‘lam (b .run� (drop ≤-refl) (‘var here))

Putting it all together, we obtain the following definition

of the evaluation function. Note that by virtue of the model

construction the interpretation of both ‘∼_ and ‘〈_〉 is the iden-

tity function: static values of type (‘⇑ A) and staged terms of

type A are interchangeable.

eval : Env Γ ∆→ Term src st A Γ→ Value st A ∆

eval ρ (‘var v) = ρ .get v

eval ρ (‘app {st = st} f t) = app st (eval ρ f ) (eval ρ t)

eval ρ (‘lam {st = st} b) = lam st (body ρ b)

eval ρ ‘〈 t 〉 = eval ρ t

eval ρ (‘∼ v) = eval ρ v

The function eval is mutually defined with an auxiliary

function describing its behaviour on the body of a λ-abstraction.

It is defined using semantics lambdas and extend.

body : Env Γ ∆→ Term src st B (Γ , A)→

Kripke (Value st A) (Value st B) ∆

body ρ b = λλ[ σ , v ] eval (extend ρ .run� σ v) b

We finally obtain the stage function by calling eval with

an empty environment.

stage : Term src dyn A ε→ Term stg dyn (asStaged A) ε

stage = eval (λ where .get ())

Agda-ism ((Co)Pattern-Matching Lambda). The keyword (λ

where) is analogous to Haskell’s \case: it introduces a pattern-

matching lambda. In this instance, it is a copattern-matching

one: we define the environment of type (Env ε ε) by copattern-

matching on .get which allows us to bind an argument of type

(Var A ε) that can in turn be immediately dismissed as unin-

habited using the empty pattern ().

5 A More Practical Two Level Calculus

We are now going to extend the minimal calculus we used so

far to show a more realistic example of a two level calculus.

First we are going to add natural numbers and their elimi-

nator. These will be available at both stages and we will see

how we can transfer a static natural number to the dynamic

phase by defining a static ‘reify term.

Second, based on Kovács’ observation that the static and

dynamic language do not need to have exactly the same fea-

tures, we are going to add a type of static pairs. These pairs

Scoped and typed staging by evaluation
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and their projections can be used in arbitrary static code but

will be guaranteed to be evaluated away during staging. We

will demonstrate this by giving a static term ‘fib implement-

ing a standard linear (ignoring the cost of addition) algorithm

for the Fibonacci function. This will allow us to obtain e.g.

‘N ∋ ‘app (‘app ‘add ‘zero) (‘∼ ‘app (‘reify ‘◦ ‘fib) (fromN 8))

{ ‘app (‘app ‘add ‘zero) (fromN 21)

where fromN is a helper function turning Agda literals into

Terms built using ‘zero and ‘succ, and ‘add is a dynamic addi-

tion function. Note that the dynamic call to addition was not

evaluated away during staging.

5.1 Adding natural numbers

Our first extension adds the inductive type of Peano-style nat-

ural numbers, its two constructors, and the appropriate elim-

inator for it.

5.1.1 Types and Terms. First we extend the definition of

Type with a new constructor ‘N. Natural numbers will be

present at both stages and so we allow the index to be poly-

morphic.

‘N : Type st

We then add Term constructors for the two Peano-style

constructors (‘zero and ‘succ) as well as an eliminator (‘iter)

which turns a natural number into its Church encoding [9,

Chapter 3].

‘zero : ∀[ Term ph st ‘N ]

‘succ : ∀[ Term ph st ‘N⇒ Term ph st ‘N ]

‘iter : ∀[ Term ph st (‘N ‘⇒ (A ‘⇒ A) ‘⇒ A ‘⇒ A) ]

Our first program example is the function ‘reify that turns

its static natural number argument into a dynamic encoding.

It does so by iterating over its input and replacing static ‘zeros

and ‘succs by dynamic ones.

‘reify : ∀[ Term src sta (‘N ‘⇒ ‘⇑ ‘N) ]

‘reify = ‘lam (‘app (‘app (‘app ‘iter (‘var here))

(‘lam ‘〈 ‘succ (‘∼ ‘var here) 〉))

‘〈 ‘zero 〉)

We can also naturally define addition as iterated calls to

‘succ. This definition is valid at both stages hence the poly-

morphic phase and stage indices.

‘add : ∀[ Term ph st (‘N ‘⇒ ‘N ‘⇒ ‘N) ]

‘add = ‘lam (‘app (‘app ‘iter (‘var here)) (‘lam (‘succ (‘var here))))

Let us now see how to evaluate the newly added constructs.

5.1.2 Staging by Evaluation. We extend the definition of

Static with a new clause decreeing that values of type ‘N are

constant natural numbers.

Static ‘N = const N

We can then describe the semantical counterparts of the

newly added constructors. The term constructor ‘zero is ei-

ther interpreted by the natural number 0 or by the term con-

structor itself depending on whether it is used in a static or

dynamic manner.

zero : (st : Stage src)→ Value st ‘N Γ

zero sta = 0

zero dyn = ‘zero

Similarly ‘succ is interpreted either as (1 +_) if it used in

a static manner or by the term constructor itself for dynamic

uses.

succ : (st : Stage src)→ Value st ‘N Γ→ Value st ‘N Γ

succ sta = 1 +_

succ dyn = ‘succ

The meaning of ‘iter in the static layer is defined in terms

of the iterate function defined by pattern-matching in the host

language and turning a natural number into its Church en-

coding. Note that we need to use wkKripke to bring the succ

argument into the wider scope the zero one lives int.

iterate : {ty : Set}→ (ty→ ty)→ ty→ N→ ty

iterate s z 0 = z

iterate s z (suc n) = s (iterate s z n)

iter : ∀ st {A}→ Value st (‘N ‘⇒ (A ‘⇒ A) ‘⇒ (A ‘⇒ A)) Γ

iter dyn = ‘iter

iter sta = λλ[ _ , m ] λλ[ _ , succ ] λλ[ σ , zero ]

iterate (weak-Kripke σ succ $$_) zero m

We can readily compute with these numbers. Reifying the

static result obtained by adding 7 to 35 will for instance re-

turn 42 (here fromN once again stands for a helper function

turning Agda literals into Term numbers).

‘N ∋ ‘∼ ‘app ‘reify (‘app (‘app ‘add (fromN 7)) (fromN 35))

{ fromN 42

Let us now look at an example of the fact, highlighted in

Kovács’ original paper, that static datatypes do not need to

have a counterpart at runtime.

5.2 Adding static pairs

We now want to add pairs that are only available in the static

layer and ensure that all traces of pairs and their projections

will have completely disappeared after staging.

5.2.1 Types and Terms. We first extend the inductive def-

inition of object types with a new construct for pair types. It

is explicitly marked as sta only.

_‘×_ : (A B : Type sta)→ Type sta

We then extend the inductive family of term constructs

with a constructor for pairs (_‘,_) and two constructors for

the first (‘fst) and second (‘snd) projection respectively.

_‘,_ : ∀[ Term src sta A⇒ Term src sta B⇒

Term src sta (A ‘× B) ]

Scoped and typed staging by evaluation
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‘fst : ∀[ Term src sta ((A ‘× B) ‘⇒ A) ]

‘snd : ∀[ Term src sta ((A ‘× B) ‘⇒ B) ]

This enables us to implement in the static layer the classic

linear definition of the Fibonacci function which internally

uses a pair of the current Fibonacci number and its successor.

It is obtained by taking the first projection of the result of

iterating the invariant-respecting step function over the valid

base case.

‘fib : Term src sta (‘N ‘⇒ ‘N) ε

‘fib = ‘fst ‘◦ ‘lam (‘app (‘app (‘app

-- this implements n 7→ (fib n, fib (1 + n))

‘iter (‘var here))

{- step -} (‘lam

let fibn = ‘app ‘fst (‘var here)

fib1 n = ‘app ‘snd (‘var here)

fib2 n = ‘app (‘app ‘add fibn) fib1 n

in (fib1 n ‘, fib2 n)))

{- base -} (‘zero ‘, ‘succ ‘zero))

This definition uses _‘◦_ defined in Section 2.5, and ‘add

defined in Section 5.1.1.

5.2.2 Staging by Evaluation. The amendment to the model

construction and the definition of the constructors’ semanti-

cal counterparts is easy. First, static pairs are pairs of static

values.

Static (A ‘× B) = Static A ∩ Static B

Second, pair constructors are mapped to pair constructors

in the host language, and the same for projections.

eval ρ (s ‘, t) = eval ρ s , eval ρ t

eval ρ ‘fst = λλ[ _ , v ] Prod.proj1 v

eval ρ ‘snd = λλ[ _ , v ] Prod.proj2 v

These definition now allow us to evaluate static calls to the

Fibonacci function such as the one presented in this section’s

introduction.

‘N ∋ ‘app (‘app ‘add ‘zero) (‘∼ ‘app (‘reify ‘◦ ‘fib) (fromN 8))

{ ‘app (‘app ‘add ‘zero) (fromN 21)

While this addition of static pairs may seem interesting

but anecdotal, the same techniques can be used to work on

defining a much more applicable two level language.

6 Application: Circuit Generation

This section’s content is inspired by Quipper, a functional

programming language to describe quantum computations

introduced by Green, Lumsdaine, Ross, Selinger, and Val-

iron [16] and related formal treatments such as Rennela and

Staton’s categorical models [23]. This strand of research gives

us a good example of a setting in which we have two very

distinct layers: a static layer with a full-fledged functional

language, and a dynamic layer of quantum circuits obtained

by partially evaluating the source.

In our proof of concept, we study a minimal language of

classical circuits inspired by Π-ware a formal hardware de-

scription and verification language proposed by Flor, Swier-

stra, and Sijsling [15]. This allows us to focus on the two-

level aspect instead of having to deal with linearity and uni-

tary operators which are specific to the Quantum setting.

6.1 Types and Terms

Our definition of types should now be mostly unsurprising.

We have function spaces (this time confined to the static

layer), a lifting construct allowing the embedding of dynamic

types in the static layer at the source stage, and finally a type

of circuits 〈 i | o 〉 characterised by their input (i) and output

(o) arities, each represented by a natural number in the host

language.

data Type : Stage ph→ Set where

_‘⇒_ : (A B : Type sta)→ Type sta

‘⇑_ : Type {src} dyn→ Type sta

‘〈_|_〉 : (i o : N)→ Type {ph} dyn

Next, we extend the basic simply typed lambda calculus

with quotes and splices with term constructors for circuit de-

scriptions. They will all belong to the dynamic stage. Our

first constructor gives us the universal nand gate. Its type

records the fact it takes two inputs and returns a single out-

put.

‘nand : ∀[ Term ph dyn ‘〈 2 | 1 〉 ]

Next, we have a constructor for the parallel composition of

existing circuits. The input and output arities of the resulting

circuit are obtained by adding up the respective input and

output arities of each of the components.

‘par : ∀[ Term ph dyn ‘〈 i1 | o1 〉 ⇒

Term ph dyn ‘〈 i2 | o2 〉 ⇒

Term ph dyn ‘〈 i1 + i2 | o1 + o2 〉 ]

We can also compose circuits sequentially, provided that

the output arity of the first circuit matches the input arity of

the second.

‘seq : ∀[ Term ph dyn ‘〈 i | m 〉 ⇒

Term ph dyn ‘〈 m | o 〉 ⇒

Term ph dyn ‘〈 i | o 〉 ]

Finally, we follow the Π-ware [15] approach and offer a

general rewiring component. A ‘mix’ of i inputs returning

o outputs is defined by a vector (i.e. a list of known length)

of size o containing finite numbers between 0 and i corre-

sponding to the input the output is connected to. This allows

arbitrary duplications and deletions of inputs.

‘mix : Vec (Fin i) o→ ∀[ Term ph dyn ‘〈 i | o 〉 ]

Typical examples include ‘id2 (the identity circuit on two

inputs), ‘swap (the circuit swapping its two inputs), and ‘dup

(the circuit duplicating its single input). We present them be-

low together with the corresponding wiring diagrams.

Scoped and typed staging by evaluation
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‘id2 : ∀[ Term ph dyn ‘〈 2 | 2 〉 ]

‘id2 = ‘mix (0 :: 1 :: [])

‘swap : ∀[ Term ph dyn ‘〈 2 | 2 〉 ]

‘swap = ‘mix (1 :: 0 :: [])

‘dup : ∀[ Term ph dyn ‘〈 1 | 2 〉 ]

‘dup = ‘mix (0 :: 0 :: [])

We can then define our first real example: ‘diag, a static

program taking a circuit with two inputs and one output and

returning a circuit with one input and one output. It does so

by first duplicating the one input using ‘dup and then feed-

ing it to both of the argument’s ports. We present it below

together with the corresponding circuit diagram.

‘diag : ∀[ Term src sta (‘⇑ ‘〈 2 | 1 〉 ‘⇒ ‘⇑ ‘〈 1 | 1 〉) ]

‘diag = ‘lam ‘〈 ‘seq ‘dup (‘∼ ‘var here) 〉

c 7→ x c r

We can then obtain the ‘not gate by taking the diagonal of

the ‘nand built-in gate.

‘not : ∀[ Term src dyn ‘〈 1 | 1 〉 ]

‘not = ‘∼ ‘app ‘diag ‘〈 ‘nand 〉

Staging this definition does evaluate away all of the func-

tion calls to yield a simple circuit obtained by sequentially

composing ‘dup and ‘nand as shown below.

‘〈 1 | 1 〉 ∋ ‘not{ ‘seq ‘dup ‘nand

Using standard constructions, we can define ‘and and ‘or in

terms of the universal ‘nand gate.

‘and : ∀[ Term src dyn ‘〈 2 | 1 〉 ]

‘and = ‘seq ‘nand ‘not

‘or : ∀[ Term src dyn ‘〈 2 | 1 〉 ]

‘or = ‘seq (‘par ‘not ‘not) ‘nand

Going back to a slightly more complex setting, adding

booleans in the static layer lets us once again define more in-

teresting terms. For instance, the following ‘tab circuit tabulating

its input: given a function that takes a boolean and computes

a one-input one-output circuit, it returns a circuit with two

inputs and one output that has the same behaviour.

‘tab : ∀[ Term src sta ((‘Bool ‘⇒ ‘⇑ ‘〈 1 | 1 〉) ‘⇒ ‘⇑ ‘〈 2 | 1 〉) ]

‘tab = ‘lam ‘〈 ‘seq (‘seq (‘seq

(‘par ‘dup ‘dup)

(‘mix (0 :: 2 :: 1 :: 3 :: [])))

(‘par (‘seq (‘par ‘id1 (‘∼ ‘app (‘var here) ‘true)) ‘and)

(‘seq (‘par ‘not (‘∼ ‘app (‘var here) ‘false)) ‘and)))

‘or 〉

Using dashed lines to separate the different constituting

parts of the circuit as defined above, we obtain the following

circuit diagram.

f 7→

b

x

f 1

f 0

r

This term is not in and of itself particularly useful but its

generalisation to one that could take a function computing an

〈 i | o 〉 circuit and return an equivalent 〈 1 + i | o 〉 circuit would

allow us to build arbitrarily complex circuits by tabulating

static n-ary boolean functions.

This would however require a setting where the static layer

is dependently typed like in Kovács’ original work, some-

thing out of scope for this paper.

7 Related work

Prior work on partial evaluation and metaprogramming abounds

so we will only focus on the very most relevant works involv-

ing strong types.

Quantum Circuits Generation. As already mentioned in

Section 6, such two level systems occur naturally when defin-

ing high level languages for (quantum) circuit descriptions.

Rennela and Staton’s EWire language is itself the categori-

cal treatment of a minor generalisation of Paykin, Rand, and

Zdancewic’s QWire [22], a clear invariant-enforcing improve-

ment over the weakly typed Haskell embedded domain spe-

cific language Quipper [16]. EWire is an ad-hoc construction

which, although not worded explicitly in terms of a two level

type theory, effectively is one: quotes and splices are called

boxing and unboxing, and a QWire-inspired partial normal-

isation procedure proven to be semantics-preserving is de-

fined.

SMT Constraints Generation. In their work on compiling

higher order specifications to SMT constraints [12], Daggit,

Atkey, Kokke, Komendantskaya, and Arnaboldi designed a

cunning ’translation by evaluation’ to partially evaluate spec-

ifications written in a full featured high level functional lan-

guage (without recursion) into first order SMT constraints.

This is not explicitly designed as a two level system and so

the sucess of the partial evaluation comes from a careful but

ultimately ad-hoc design rather than a systematic approach.

Unlike ours, their system however comes with a proof of

correctness: the generated formula is proven to be logically

equivalent to the high level specification. This is an obvious

avenue for future work on our part.

Typed Metaprogramming. Jang, Gélineau, Monnier, and

Pientka’s Mœbius [17] defines a type theory with a built

in notion of quasiquotations that can be used to generate

programs in a type-safe manner. The language lets metapro-

grams inspect the code fragments they are passed as argu-

ments thus allowing e.g. the implementation of optimisation

passes post-processing the result of a prior metaprogram. This
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is extremely powerful, at the cost of a more complex under-

lying theory. In Mœbius the meta and object language are

essentially the same but it does not seem to be a necessary

restriction.

8 Future Work

Soundness and Completeness. We focused here on the

intrinsically typed language description, the corresponding

model construction, and the acquisition of a staging-by-evaluation

function as a corollary. Following Catarina Coquand’s work

on formalising normalisation by evaluation [10] we could ad-

ditionally introduce the appropriate logical relations to prove

that this process is sound and complete with respect to a

small step semantics for the static layer.

Dependently Typed Circuit Description Language. Our

undergraduates are already being taught digital logic using

a functional-style circuit description language. Extending it

with a dependently typed meta-programming layer would al-

low them to structure their understanding of the generic con-

struction of arithmetic circuits for arbitrarily large inputs.

Generic Two Level Construction. Even though we have

seen that having two wildly different language layers can be

extremely useful, a two-level construction with exactly the

same features is still very useful: it lets programmers use

their language of choice as its own metaprogramming facili-

ties. Correspondingly, giving a generic treatment of the con-

struction taking a language and returning its standard two-

level version is an important endeavour. A promising approach

involves defining such a transformation by induction over a

universe of language descriptions [2].
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