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CAPABLE is lightweight mechanised imperative language that provides native support for Multiparty
Session Types (MPSTs). Through mechanisation, we can explore and catalogue the changes required
to extend similar languages with native support for MPSTs, as well as the interplay between the
existing type-system and other novel extensions. Principally, our demo shows CAPABLE in action and
what a language with native MPSTs can look like. We also look beneath the surface syntax and offer
insight over how we created intrinsically typed sessions (and session types) within a dependently
typed language. We show a compact well-scoped encoding of session types, mechanised proofs of
soundness and completeness for projection, and how dependent types help with bidirectional type
checking of typed sessions.

1 Introduction

Session types, first introduced in [6, 7, 12], are an important typing discipline to reason statically
about the communication behaviours of our programs. While originally session types addressed com-
munication between two parties (binary), they were later generalised to express communication be-
tween any number of participants (multiparty) [8]. When looking to incorporate Session Types (STs)
within an existing programming language many expressive solutions tend towards code generation us-
ing a pre-existing toolchain [16] and integration using bespoke Embedded Domain Specific Languages
(eDSLs) [5, 3]. Ultimately, these solutions are limited in their expressiveness by the host language being
targeted, and how idioms from Multiparty Session Type (MPST) theory are translated. For instance,
code generation à la Scribble [16] generates an API endpoint that separates code for communication
from code that operates on values. What if, instead, we sought to extend a language and incorporate STs
as native, and perhaps future first-class, code constructs?

CAPABLE is a lightweight imperative language that we have mechanised within Idris 2, to ensure
that the language’s design and implementation is correct-by-construction. Through the mechanised im-
plementation we can now explore how novel language extensions can be incorporated correctly without
affecting the language’s type-safety. With a mechanised language implementation we can also document
the changes required to the language’s syntax and semantics when extending similar language’s with
novel extensions.

We are particularly interested in exploring how MPSTs help make interprocess communication (IPC)
more reliable and type-driven, and what language changes are required. We have extended CAPABLE

with MPSTs derived from an existing concise formalism [11], combined with communication context
managers to realise typed communication. As such CAPABLE is the first mechanised language imple-
mentation in a dependently-typed language to support intrinsically multiparty session-typed terms.

Our demo provides an overview of CAPABLE, how ill-typed IPC can occur, and how extending the
language with MPSTs enables well-typed IPC to occur.
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2 A Tour of CAPABLE

We begin our demo by exploring CAPABLE and its support for session types. Specifically our tour of the
language is structured as follows:

1. Basics of (Imperative) Programming in CAPABLE: provides an overview of the core language
features, concentrating datatypes, functions, memory, and interactive editing with typed-holes;

2. IPC Behaving Badly: demonstrates how, through a lack of behavioural typing, we can specify
correctly and incorrectly behaving clients for the well-known RFC 862 Echo program [10];

3. IPC Behaving Correctly: explores CAPABLE’s support for session types by describing various
global protocols, and realising specific endpoints for these protocols, we will also demonstrate
how typed-holes act as a guide during endpoint development;

3 Mechanisation of CAPABLE

The second part of our demo will delve into the salient aspects behind the incorporation of Multiparty
Session Types into the mechanisation of CAPABLE. Specifically we will highlight:

1. Efficient Encoding of Session Types: showcases the advantages of dependent types for efficient and
compact representations of session types as a single well-scoped parameterised datatype;

2. Proofs (of Projection) as Programs: details how a mechanised proof of soundness and complete-
ness of plain global type projection is used during elaboration to not only construct local types
from global types, but to construct evidence that global types are well-formed;

3. Intrinsically Typed Sessions: will explore our modelling of intrinsically typed sessions, and how
through the auspices of bi-directional typing we can design our typed-sessions to have inferable
local types for better error reporting;

We provide an overview of the code that will walked-through during both pars of the demo, high-
lighting different aspects, in Appendix A.

4 Conclusion

In this demo we have showcased CAPABLE, the first intrinsically-typed imperative language implemen-
tation with native support for Multiparty Session Types. CAPABLE is available freely online:

https://github.com/DSbD-AppControl/capable-lang

Other programming languages with native session types include Links [9], SePi [4], Sill [14], C0 [15],
FreeST [1] to name just a few. These languages, however, tend to focus on binary communication, and
while backed by powerful type systems, they lack mechanisation. Closer to our work is Theimann’s [13],
who presents a functional pearl [13] for Agda in which he demonstrates how to intrinsically session-type
functional programs with binary session types. While both approaches look at constructing intrinsically-
session-typed languages they compliment each other. Theimann’s work takes a more theoretically ac-
curate term language in which there are typed-channels that are linearly used, while we take a simpler
approach with a managed runtime but have multiparty sessions. Within Theimann’s and our work the
complete meta-theory of session-types has not been studied, such study is an obvious area of future in-
vestigation. Fortunately, the meta-theory of binary session-types has been engineered in Coq [2], and
will help provide us with insight in our own future directions.
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A An Extended Look at “CAPABLE in Action”

A two page demo proposal doesn’t leave much room to showcase precisely what we plan to showcase.
We thus provide an overview of the code that will be walked-through during the first part of our demo.
The second half of the demo, will walk-through parts of the code that we have already linked to.

A.1 Basics of (Imperative Programming in CAPABLE

CAPABLE is a simple imperative language (with ML-style references) with a concrete term syntax mod-
elled after Rust in which functions contain expressions that can be sequenced. Although the term syntax
is inspired by Rust we do not borrow the advanced behavioural type checking (specifically borrow check-
ing and lifetimes) that Rust is well known for. Further, the set of base types are indicative containing
integers, characters, string, fixed length (and dynamic) arrays, tuples, and data structures comprising of
structures and unions. For this section we will walk-through the following code that highlights the core
imperative code constructs, using typed-holes to guide the development of the main function.

1 struct point {x : Int; y : Int}
2 union either {left : String; right : Int}
3

4 func printLn (str : String) -> Unit { print(str); print(toString('\n')) }
5 func setVarX (p : &point, x : Int) -> Unit { mut(p, set_x(!p, x)) }
6

7 main (args : [String]) -> Unit
8 { val p = point(1, 2) ;
9 printLn(toString(get_x(!p)));

10 setVarX(p, 2);
11 printLn(toString(get_x(!p)));
12 local x = left("Hello World") ;
13 match x { when left(x) { printLn(x) } when right(y) { printLn(toString(y)) } }
14 }

A.2 IPC Behaving Badly

Within CAPABLE behaviourally untyped IPC is file-handle-oriented and presented to the developer in the
form of bespoke base types and a corresponding API to create, read, write, and close handles. Using these
handles, developers can interact with files (FILE), unidirectional processes (PIPE), and bi-directional
processes (PROC). The process API itself avoids the billion dollar mistake and returns tagged unions
indicating the success of the effectful operations.

We will motivate the badly behaving IPC with the following code that shows incorrect interaction
with an Echo clone written in Python. Our client does not read the response from the initial send and
instead attempts to send another value to be returned.

1 main (args : [String]) -> Unit
2 { printLn("My First Program with files");
3 match popen2("python3 echoClone.py")
4 { when left(e) { printLn("Error opening") }
5 when right(fhs)
6 { match write(fhs, "Hello")
7 { when left(err) { printLn("Error sending line.") }
8 when right(res)
9 { match write(fhs, "Hello")

10 { when left(err) { printLn("Error reading line.") }
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11 when right(res) { printLn(res); close(fhs) }}}}}}
12 }

A.3 IPC Behaving Correctly

In the final section of the demo in using CAPABLE we demonstrate how the support for MPSTs enables
the developer to specify an Echo protocol, and write a session-typed client that adheres to said protocol.
The following example will be walked-through and typed.

1 union MaybeInt {nout : Unit; this : Int}
2 union msg {msg : Int}
3

4 role Client role Server
5

6 protocol Echo = Client ==> Server [msg] { msg(Int) . Server ==> Client [msg] { msg(Int) . end } }
7

8 session echoClient <Echo as Client> (i : Int) -> MaybeInt
9 { send [msg] Server msg(i) catch { printLn("Crashing on Send"); crash(nout(unit)) }

10 recv [msg] Server { when msg (i) { end(this(i)) } }
11 catch { printLn("Crashing on Recv"); crash(nout(unit)) } }
12

13 main (args : [String]) -> Unit
14 { match run echoClient(2) with [Server as "python3 pingping.py"]
15 { when nout(i) { printLn("Oops we crashed!") }
16 when this(i) { print("We echoed this, successfully: "); printLn(toString(i)) } } }

We will show how global types are manifested within the language and are just another regular
old datatype, and a datatype that can also be projected in the REPL. We then will look at how typed-
sessions are embedded in the language as a bespoke typed-function, offering a behaviourally safe subset
of CAPABLE.

As part of this walk-through we will show how support for typed-holes allows a basic form of type-
aware editing. Specifically we will walk-through the following example:

session echoClient <Echo as Client>
(i : Int) -> MaybeInt

{ send [msg] Server msg(i)
catch { printLn("Crashing on Send");

crash(nout(unit)) }
?next

}

## Typing Context
i : Int
## Recursion Vars

## Roles
+ Server
+ Client
---
next : (recvFrom[Server] {msg(Int).End})

and demonstrates how our compiler, when encountering a typed-hole, displays the local typing con-
text (including recursion variables for processes), the current active roles, and the type of the next step in
the protocol.

We will also show the power of bi-directional typing and how we can synthesis partial local types
(send is not a synthesisable term, but we have a solution we will talk about during discussion of the
mechanisation) from typed-sessions when encountering an error during type-checking. Specifically we
will discuss the following ill-typed session and generated error message.
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session echoServer <Echo as Server>
(i : Int) -> MaybeInt

{ send [msg] Client msg(i)
catch { printLn("Crashing on Send");

crash(nout(unit)) }
end(nout(unit))

}

Type Checking Error
main.capable:23:2-0:
Expecting an expression of type:

(recvFrom[Client] { msg(Int)
. (sendTo[Client] {msg(Int).End})})

but given:
(sendTo[Client] msg(Int) . End)
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