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A B S T R A C T

Maintenance planning of networked multi-asset systems is a complex problem due to the inherent individual
and collective asset constraints and dynamics as well as the size of the system and interdependencies among
assets. Although multi-asset systems have been studied numerous times in the past decades, maintenance
planning implications of the system’s network characteristics have been barely analysed. Likewise, solutions
that consider the network perspective suffer from scalability issues as a network-wide observability is assumed.
This paper proposes a network maintenance planning approach based on the decomposition of the multi-
asset network into fixed-size localised subnetworks. The overall network maintenance plan is produced by
aggregating the subnetwork maintenance plans, which are computed independently via a multi-agent deep
reinforcement learning (MARL) algorithm. The results are evaluated against a network-wide approach as well
as the commonly-used individual approach. The paper also introduces a systematic approach to integrate the
MARL resulting policy in a multi-asset agent-based model. Simulation results of several random asset networks
and a large nationwide network infrastructure show that, although a network-wide approach outperforms, on
average, other approaches considered, the localised subnetworks approach, provides an acceptable alternative
in networks with small-world properties, without the need of a network-wide view.
1. Introduction

Maintaining critical infrastructure assets in a timely manner is key
to prolonging their lifespan. This reduces the maintenance operation
costs and the overall impact on the service delivery. Most of the
attention in research and practice has been around individual asset
maintenance and only recently, the sources of complexities of multi-
assets systems have been considered for a system-wide maintenance
planning (Petchrompo and Parlikad, 2019).

Although progress has been made to understand the collective na-
ture of the maintenance planning problem, there is still a lack of studies
covering the implications of maintenance planning in networked multi-
assets systems as discussed in Section 2. These studies are relevant to
support the management decisions in the context of large networks of
assets aggregating subnetworks with multiple topologies such as those
present in nationwide critical infrastructures, among others (Zio, 2007).
This type of networked multi-asset systems bring additional challenges
to the maintenance problem. On the one hand the interdependences
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among assets and on the other, the scale of the systems restrict the
application of (global) network-wide approaches that consider the state
of every individual asset and the resulting network dynamics.

This paper explores the use of network-specific maintenance plan-
ning with an aim to minimise maintenance costs and the impact on
service provision. A network-specific planning approach captures the
network characteristics and uses that information to identify oppor-
tunities for synergistic maintenance activities in a multi-asset system.
Our previous work has shown that, although network-wide approaches
might yield best results, compared to individual approaches and thanks
to the global view of the system, when the multi-asset system grows,
the computational resources needed to generate the plan also scales
up (Pérez Hernández et al., 2022). Hence, the motivation of this study is
to identify alternative approaches that consider the network character-
istics of the multi-asset system, to generate an acceptable maintenance
plan without the need of a global network view.

To address this challenge, this paper proposes a maintenance plan-
ning approach grounded in breaking down the networked multi-asset
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system in fixed-size subnetworks and solve separately every subnetwork
maintenance plan. This task is approached by framing the planning as
a multi-agent reinforcement learning (MARL) problem (Busoniu et al.,
2010). The paper also introduces a systematic approach to integrate the
MARL resulting policy in an agent-based model that enables simulation
of the dynamics of a networked multi-asset system. This approach is
evaluated against a network-wide approach and common preventive
and corrective individual approaches.

The contents of the paper is structured as follows. The relevant
literature on multi-asset maintenance planning is reviewed in Section 2,
mainly considering nationwide infrastructures where complex networks
characteristics are clear. The formulation of the network maintenance
problem is presented in Section 3. A comprehensive Network-wide
approach is explained in Section 4. As alternative to this approach, a
novel localised approach is introduced in Section 5. This approach uses
only information of the local subnetworks to produce the maintenance
plan. As this approach relies on Multi-Agent Reinforcement Learning
(MARL) to learn the optimal policy, the mechanism to integrate MARL
policies into a networked-assets agent-based model is also proposed
in Section 6. The network-specific approaches are evaluated against
alternatives for several random networks and a large nationwide in-
frastructure network. The context of evaluation is provided in Section 7.
The evaluation results are presented and discussed in Section 8. Finally,
future work and conclusions are drawn in Section 9.

2. Multi-asset maintenance planning

In the last years, there has been significant attention to the main-
tenance planning of multi-asset systems. These are systems of sev-
eral homogeneous or heterogeneous assets that might depend on each
other (Petchrompo and Parlikad, 2019). These dependencies can be
physical or logical and these are the source of the existence of networks
of assets. Although a network perspective is not always considered in
the study of multi-asset systems, this perspective brings tools to capture
the static and dynamic properties of the system to better understand its
behaviour (Vespignani, 2018). This behaviour is key to determine best
maintenance approaches. The network structure and dynamics of the
systems can be considered among other factors, at different planning
levels. For example, a maintenance strategy encompasses a wide organ-
isational perspective, as highlighted in industry standards such as ISO
55001 (ISO (International Organization for Standardization), 2014),
and strategies can be classified according to distinctive approaches
of corrective (breakdown), preventive and predictive maintenance (Poór
t al., 2019). Likewise, multiple objectives such as maximising system
vailability, minimising maintenance costs, or risk of failures, can be
onsidered among these maintenance strategies (Pinciroli et al., 2023).

Civil infrastructures are usually seen as networks with multiple
aintenance planning drivers. Researchers have structured a solution

ased on dynamic programming to plan the maintenance of a bridge
etwork, considering safety and cost objectives (Frangopol and Liu,
007). Their approach aims to reach optimal solutions, firstly at in-
ividual level and secondly at network level. Similarly, minimisation
f pavement costs while maintaining the quality requirements has
een achieved with a multi-objective optimisation model (Meneses and
erreira, 2012). Moreover, a model combining analytical and numeric
echniques for multi-component multi-system networks is presented
n Liang and Parlikad (2020). The model introduces a genetic algo-
ithm where the mutation is based on an agglomerative procedure. All
ogether solving the Markov Decision Process (MDP) for maintaining
he entire system. The model is demonstrated in a two-bridge network
btaining reductions of overall maintenance costs. A weighted random
orest algorithm also enables maintenance planning decisions in a road
etwork (Han et al., 2022). The decisions are based on the sequence
f the conservation plan, the time after maintenance, and specific
2

aintenance indicators. s
Maintenance plan optimisation has also been a recurrent challenge
n transport industries. Maintenance of railway networks is studied
n Mohammadi and He (2022). Authors use double deep Q-networks
einforcement learning to find the policy that optimises maintenance
nd renewal planning. The aim is to reduce costs and failure occur-
ence in large railway networks. The case study focused on a 5-year
lan for a railway network of 4000 miles, that was discretised into
egments as part of the state model. Mixed integer programming has
nabled the optimisation of the maintenance activities while taking
nto account the railway traffic, at the long-term, and also the required
ycles for maintenance (Lidén and Joborn, 2017). Another proposal
ims to formulate a plan for the chinese railway infrastructure, by
onsidering both, the maintenance requirements and the constraints
erived from the railway network schedule (Zhang et al., 2020). These
uthors use a heuristics algorithm built on the Lagrangian relaxation
rocess for solving the joint optimisation problem. Simulation of these
ailway asset networks has been also addressed by researchers. Fleets of
ssets have been simulated to study the condition-based maintenance of
ritical components (Márquez et al., 2023). Their focus is on optimising
he maintenance activities for each asset’s critical components based on
heir remaining useful life (RUL). Moreover, vehicle fleets have been
tudied as a multi-objective problem (Wang et al., 2022). In their work,
uthors use the predicted RUL of the vehicle components to compute
he maintenance schedule of the vehicle fleet. The schedule is obtained
y using a tailored evolutionary algorithm that seeks to reduce repair
osts, improve safety and reduce downtime.

In addition to specific asset condition, different aspects including
eography, customer needs and risk, among others, are also considered
n maintenance planning of different infrastructures. Researchers of the
ater distribution networks, have proposed a Maintenance Grouping
ptimisation model based on genetic algorithms (Li et al., 2014). This
pproach enables the grouping of adjacent pipelines to plan mainte-
ance, showing cost benefits compared to ungrouped plans. Empirical,
ingle and multi-objective optimisation approaches for the maintenance
f pipeline networks have been also evaluated with evolutionary al-
orithms (Chu et al., 2022). In this case, the ‘‘Non-dominated Sorting
enetic Algorithm II’’ (NSGA-II) with an elitist selection, obtains the
aintenance plan that contemplates costs, reliability and overall net-
ork health. Online and Offline Deep Q-Networks reinforcement learn-

ng has been also used in maintenance planning of water pipes (Bukhsh
t al., 2023). Authors train an agent to learn the optimal rehabilitation
olicies based on pipe deterioration profiles. A risk-oriented perspective
as been adopted for the study of natural gas distribution systems in
taly (Leoni et al., 2019). By considering the relevant risks, authors
re able to optimise the maintenance time for the components of the
nalysed gas monitoring stations.

Maintenance planning of power networks has also received signifi-
ant attention. Customer requirements and long-term economic savings
re considered in microgrids (Moradi et al., 2019). Researchers propose
multi-attribute decision making model that enables identification of

ritical components and their failure rate over time. Focusing more
n power distribution networks, another proposal considers not only
aintenance planning but also day-ahead scheduling (Matin et al.,
022). In their work, authors demonstrate that an approach, based
n the Epsilon-constraint method, can lead to significant reductions
n operating costs and improved reliability of multi-microgrids. Au-
hors of Rocchetta et al. (2019) study a deep reinforcement learning
ramework for planning maintenance and operations of a power grid
ystem. An agent was trained to select the combined operations and
aintenance actions. Solutions were found to be comparable with true

ptimals for a scaled-down grid scenario.
Approaching the maintenance problem as a Markov Decision Pro-

ess has enabled researchers to use reinforcement learning (RL) al-
orithms. Researchers have developed a RL model based on neural
etworks for the maintenance of pavement (Yao et al., 2020). The

ingle-agent deep Q-learning solution approach achieves long-term
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Table 1
Summary of reviewed works covering multi-asset infrastructure maintenance planning and selected works using reinforcement learning.

Reference Type of system Planning objectives Solution approach System characteristics

Frangopol and Liu (2007) Bridge Network Safety and cost objectives Multi-objective Optimisation
Two-phase Dynamic programming
& Monte Carlo.

Six-bridge regional network

Li et al. (2014) Water distribution
networks

Asset (pipe) replacement & costs Grouping Optimisation & Genetic
algorithms

Adjacent pipelines

Moradi et al. (2019) Microgrids Critical components, failure rate
& budget

Multi-attribute decision making 46-component network

Matin et al. (2022) Multi-Microgrids Operating costs & Minimise
interruptions

Bi-level Epsilon-constraint method 69-bus distribution network

Leoni et al. (2019) Natural gas distribution
systems

Optimising maintenance time Bayesian Risk-oriented method 59 Gas monitoring stations

Wang et al. (2022) Vehicle fleets maintenance downtime, workload,
costs & No. of failures.

Multi-objective evolutionary
algorithm

20 vehicles (Taxi) with 2
workshops

Yao et al. (2020) Pavement maintenance Long-term cost-effectiveness Single-agent deep Q-learning 1974 segments of expressways
with no network-level constraints.

Chen and Wang (2023) K-component mechanical
systems

Lifecycle costs reduction Deep Q-learning Structural dependencies

Zhang and Si (2020) Multi-component systems Cost minimisation with dependent
competing risks

Deep reinforcement learning 2-component & 12-component
systems mentioned

Lei et al. (2022) Regional deteriorating
bridges

Minimise risks & costs Optimising
regional strategy

Deep Q-networks Highway infrastructure with slab,
T-shaped and beam bridges.

Kuhnle et al. (2019) Parallel production systems Downtime reductions &
opportunity costs

Holistic approach with
Multi-agent Q-learning

Identical machines with upstream
buffers.

Rodriguez et al. (2022) Parallel production systems Uncertainty of multiple machine
failures

Markov game with Proximal
Policy Optimisation MARL

3 &5 Identical machines

Thomas et al. (2021) Radio access networks Costs and Network availability Multi-Agent Actor Critic MAAC 9-asset single grid topology

Rocchetta et al. (2019) Scaled-down power grid Maximise expected profit with
random uncertainties.

Deep Q-Networks 2 generators, 5 cables, 2 sources
and 2 loads.

Bukhsh et al. (2023) Water distribution system optimise average costs and reduce
failure probability

Deep Q-Networks 16-pipe system

Mohammadi and He
(2022)

Railway Network Long-term cost effectiveness &
risk reduction

Double Deep Q-Networks with
prioritised replay

Class I freight railroad of
discretised 4000 miles.
cost-effectiveness in the context of Ningchang and Zhenli expressways.
Deep Q-learning is also applied in a K-component mechanical systems
with structural dependencies, being able to bring policies that reduce
system lifecycle costs (Chen and Wang, 2023). Multi-component sys-
tems are also approached using Deep Reinforcement Learning (Zhang
and Si, 2020). These authors incorporate dependent and competing
risks to the problem formulation. Deep Q-networks (DQN) model
is also applied for planning maintenance of regional deteriorating
bridges (Lei et al., 2022). Their model optimises regional life-cycle
strategies according to various budget constraints.

So far, there is a limited volume of works that have adopted a
multi-agent perspective, particularly in the maintenance planning of
nationwide infrastructure. A multi-agent environment is considered for
the optimisation of the maintenance of parallel homogeneous working
machines (Kuhnle et al., 2019). In this work, opportunistic agents learn,
via proximal policy optimisation, when to trigger maintenance actions
as close as possible to breakdown hence reducing downtime and main-
tenance costs. Although the paper considers interdependencies and
interactions between the different machines in the production system,
the topology studied is simple, based on parallel machines. Another
multi-agent approach is used to coordinate maintenance scheduling
among a set of partially-observed machines (Rodriguez et al., 2022).
A mix of sequential/parallel and centralised/distributed agent architec-
tures are analysed. The problem is approached as a Markov game that
is tackled with the proximal policy optimisation algorithm. Likewise,
the Multi-Agent Actor Critic (MAAC) framework has been used to
plan the maintenance of radio access networks with a single grid
topology (Thomas et al., 2021). Although network dependencies in a
particular network are considered, there is no indication of how this
3

could work in different network configurations.
Based on this review, the maintenance of multiple assets has gener-
ated more interest in the context of some civil infrastructures such as
bridges, power networks and less attention in other infrastructures such
as telecommunications. The summary of works reviewed is presented
in Table 1. Although network structures are implied when identify-
ing dependencies, the topologies analysed are usually simple, with
limited number of assets or simple sequential/parallel structures in
the multi-asset systems. Furthermore, there is still limited research on
the assessment of the benefits and trade-offs of different maintenance
approaches for networked multi-asset systems.

3. Network maintenance problem

The goal of the maintenance planner is to identify the optimal plan
for maintaining a portfolio of assets. In a network setting, not only the
characteristics of the assets (network elements) but also the structure
of the connections among assets (network topology) become relevant
when considering the potential impact of the maintenance plan. The
optimal plan should consider minimum maintenance costs but also
minimum impact on the quality of services enabled by the assets. For
simplification, this study considers a network of assets, where the asset
heterogeneity is limited to the speed of the deterioration patterns, but
following a common linear deterioration function. The focus is on the
role of network topology, the effect on throughput, as the key quality
indicator, and the overall cost per cycle. The total maintenance cost
function is made up of the downtime cost, labour cost, lost life cost
and cost of parts. Pérez Hernández et al. (2022) provide a detailed
description and discussion of the cost function and the parameters used

in this study.
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To tackle this problem, well-known corrective and preventive ap-
proaches can be used to support decisions from an individual perspec-
tive of the assets. Beyond that, multi-asset approaches can incorporate
the dynamics of multiple assets into the decision problem, however
these approaches do not capture in detail the network properties of the
system.

The following sections introduce two approaches that exploit those
properties, enabling solutions that are tailored to every network of
assets. For the sake of clarity, the approaches are explained in the
context of a Telecommunications network, however, the abstractions
used and solution approach enable to capture the dynamics of other
complex network systems such as nationwide critical infrastructures
i.e. transport, water, energy or others. Note this problem focuses on the
network perspective of the multi-asset systems. This approach enables
the formulation and use of techniques for analysis that are common
to multiple domains, however, a comprehensive planning requires also
elements that are specific of the domain.

4. Network-wide approach

This approach assumes complete observability of the relevant fea-
tures of network. A centralised optimiser is fed, periodically, with
snapshots of the condition of individual assets and the state of the traf-
fic flows during a time window. In a Telecommunication network, the
traffic flows pertain to the data packets being transported across multi-
ple network equipment from the source of the data, i.e. servers, camera
feeds, sensors, etc, to the consumers e.g. mobile phones, industrial
computers, laptops, tv, cars, etc.

We represent the telecommunication network as nodes 𝑣 ∈ 𝑉 linked
by arcs 𝑎 ∈ 𝐴 with a set {(𝑘, 𝑙)} corresponding to services, where traffic
low starts from a source node 𝑘 and ends at a destination node 𝑙. Nodes

that are likely to fail are denoted by 𝑉 ⊂ 𝑉 . A number of control
ariables are defined to model traffic flow and maintenance decisions
s follows:

𝑥𝑡𝑘,𝑙,𝑎 - traffic amount flowing through arc 𝑎 at time 𝑡 from source 𝑘
to destination 𝑙,

𝑡
𝑣 =

⎧

⎪

⎨

⎪

⎩

1, if node 𝑣 ∈ 𝑉 is shut down for predictive maintenance at time 𝑡,

0, otherwise,

𝑡
𝑣 =

{

1, if predictive maintenance job on node 𝑣 ∈ 𝑉 starts at time 𝑡,
0, otherwise.

To guarantee that decision variables behave as desired, the fol-
owing constraints need to be introduced. Constraints (1) ensure that
he sum of all traffic coming from node 𝑘 is equal to traffic demand
𝑡
𝑘𝑙 for each service. The sum of traffic coming from any intermediate
ode does not exceed the sum of traffic flowing to this node, see
onstraints (2). Constraints (3) imply that the sum of traffic going
hrough arc 𝑎 cannot exceed its capacity 𝑐𝑎𝑝𝑎, as well as that traffic
low is not permitted on those arcs that are incident with the node
ndergoing maintenance (i.e. when 𝑤𝑡

𝑣 = 1).
A node 𝑣 ∈ 𝑉 on maintenance is shut down for the duration

f predictive maintenance job 𝑡𝑝𝑟𝑒𝑑𝑣 , see (4). In this model we con-
sider continuous maintenance without pre-emption as represented by
constraints (5).
∑

𝑎∈𝑜𝑢𝑡(𝑘)
𝑥𝑡𝑘,𝑙,𝑎 = 𝑑𝑡𝑘𝑙 , (1)

∑

𝑎∈𝑖𝑛(𝑣)
𝑥𝑡𝑘,𝑙,𝑎 ≥

∑

𝑎∈𝑜𝑢𝑡(𝑣)
𝑥𝑡𝑘,𝑙,𝑎 ∀𝑣 ≠ 𝑘, 𝑙, (2)

∑

𝑘,𝑙
𝑥𝑡𝑘,𝑙,𝑎 ≤ (1 −𝑤𝑡

𝑣)𝑐𝑎𝑝𝑎 ∀𝑎 ∈ 𝑖𝑛(𝑣) ∪ 𝑜𝑢𝑡(𝑣), (3)

(

∑

𝑤𝑡
𝑣 − 𝑡𝑝𝑟𝑒𝑑𝑣

)

𝐼𝑇𝑣 = 0, 𝐼 𝑡𝑣 =
𝑡−1
∑

𝑧𝑠𝑣, (4)
4

𝑡 𝑠=0
𝑧𝑡𝑣 ≥ 𝑤𝑡
𝑣 −𝑤𝑡−1

𝑣 ∀𝑡 ≥ 1, 𝑧0𝑣 ≥ 𝑤0
𝑣,

∑

𝑡
𝑧𝑡𝑣 = 1. (5)

The optimisation model aims to identify the best values of decision
variables defined earlier that minimise the total cost consisting of
maintenance cost, cost of traffic loss and rerouted traffic cost:

Minimise 𝐽 =
∑

𝑣∈𝑉

∑

𝑡
𝑝𝑡𝑣𝐼

𝑡
𝑣𝐶

𝑝𝑟𝑒𝑑
𝑣 +

∑

𝑣∈𝑉

∑

𝑡
𝑝𝑡𝑣(1 − 𝐼 𝑡𝑣)𝐶

𝑐𝑜𝑟𝑟
𝑣

+
∑

𝑣∈𝑉

∑

𝑡
𝑝𝑡𝑣(1 − 𝐼 𝑡𝑣)

∑

(𝑘,𝑙)

∑

𝑎∈𝑖𝑛(𝑣)∪𝑜𝑢𝑡(𝑣)

𝑡+𝑡𝑐𝑜𝑟𝑟𝑣
∑

𝑠=𝑡
𝑥𝑠𝑘,𝑙,𝑎

+
∑

𝑡

∑

(𝑘,𝑙)

∑

𝑎∈𝐴
𝑤𝑎𝑥

𝑡
𝑘,𝑙,𝑎

(6)

where 𝑝𝑡𝑣 is failure probability of node 𝑣 ∈ 𝑉 .

5. Local-networks (localised) approach

Due to scalability of assets in the network or specific deployment
limitations, there are cases where full observability of the network
cannot be guaranteed or there is not enough capacity to process and
compute timely the data collected from the entire network. In these
cases, alternative approaches considering only partial network infor-
mation are necessary. The Local-networks (Localised) approach defines
the network maintenance problem as a Multi-Agent Reinforcement
Learning (MARL) problem.

The reinforcement learning framework enables an agent to learn,
from the interactions with the environment, a sequence of actions
that maximise a given cumulative reward (Sutton and Barto, 2018).
A RL problem is formally defined as a Markov Decision Process (MDP)
and RL algorithms aim to find a policy that drives the agent-decision
making process (Sutton and Barto, 2018). MARL is an extension of
the single-agent reinforcement learning (RL) problem where multiple
agents are interacting with the environment and taking actions, hence
potentially having influence on each other (Busoniu et al., 2010).

The overall network maintenance plan is built from the localised
maintenance decisions that independent agents take, based on the
observability of their local networks. Agents observe their environ-
ment and learn decentralised policies that seek to maximise individual
rewards. Collectively, the aggregation of individual rewards yields a
system-level reward. The idea of applying this approach is to determine
the ability of agents to learn an acceptable policy and understand
the magnitude of the compromise that maintenance planning decision-
maker faces when a Network-wide approach is not feasible. The ra-
tionale for this approach is to reduce the dependency on the full
network information to drive maintenance decisions. Mathematically
the problem can be formulated as an adaptation of the stochastic game
definition (Busoniu et al., 2010), as follows:

𝛤 = ⟨𝑆,𝑍,𝑈, 𝑓 , 𝑟⟩ (7)

where 𝛤 is the environment, of which 𝑆 are the possible states, from
which a number of 𝑛 agents observes 𝑍𝑖 (See Section 5.1), such as

= 𝑍1, 𝑍2,… , 𝑍𝑛. Every agent is able to take actions 𝑈 , note that
riginal MARL definition is simplified by assuming that 𝑈1 = 𝑈2 =

⋯𝑈𝑛, in other words, all the agents have the same action space, which
s discrete with 𝑢0 :Do nothing and 𝑢1 : Start maintenance. Likewise,
𝑓 and 𝑟 are functions that capture the transition probabilities and
represent the collective reward, respectively. In this case the collective
reward is a simple aggregation of the individual rewards of every agent:
𝑟 =

∑𝑛
𝑖=1 𝑅𝑖.

5.1. Networked asset state

The environment state is formed by continuous, discrete and net-

work representation components. This is defined by the tuple: 𝑍𝑖 =
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𝑅

Fig. 1. Local network observation process. Local networks are extracted for each node of the network, representing assets and their links. Then agents are trained using information
about nearby unavailable assets (red nodes) to learn when maintenance is more detrimental, according local network robustness metrics.
t
m

𝐿

s
a

⟨𝑥, 𝑝, 𝑔⟩, where 𝑥 is the current condition of the asset, 𝑝 is the indi-
idual tracker of the maintenance state of the asset (up, down or on
aintenance) and 𝑔 is the local network state. Every agent is assumed

o have visibility of the local network of the asset. This also known
s an ego-centric perspective or egonet (Scott and Carrington, 2011).
here is more information available (𝑥 and 𝑝) for the ego (focal)
ode and the number of nodes of the egonet varies depending on
he depth. Both the size of the egonet and the information shared by
eighbours are limited to control the communication overhead required
n the learning process. As every agent is computing the maintenance
lan for an egonet, this subnetwork serves as a limit for the quantity
f assets considered in every maintenance plan. Similar approaches
f using limited-range network centrality measurements have been
sed to address the complexity of characterising the structure of large
etworks in other domains (Ercsey-Ravasz and Toroczkai, 2010).

Fig. 1 illustrates the local network observation process. Starting with
he identification of the 𝑒𝑔𝑜𝑛𝑒𝑡𝑠 (left) to the exploration of different
cenarios where the neighbouring nodes are undergoing maintenance
right), every agent observes the individual maintenance tracker of the
ocal network of assets. This allows the agent to determine what assets
re undergoing maintenance (red nodes in the figure) and uses this
nformation to drive the policy learning process. Following a standard
einforcement learning process with Deep Q-learning, the agents are
rained by observing their network state, taking individual actions and
eceiving rewards according to the state–action pair. As one of the main
rivers of this approach is to offer a low-overhead localised alternative,
he state space is transformed to a uniform continuous space. This
s possible by computing the ‘‘health’’ of the local network based on
he available edges at every time. This metric is regarded as network
ensity (Newman, 2018): 𝛿 = 𝑒∕𝑣(𝑣 − 1) which corresponds to the
onnected edges 𝑒 over the possible connections 𝑣(𝑣− 1). The rationale
f using this metric is that it can inform the agent about the impact of
oing to maintenance at time 𝑡 at local network level. Note there is no
onsideration of flows in the state space, this is also a design decision
o reduce the overhead as live traffic is also computationally expensive
o collect and process.

.2. Reward function

The reward function of every agent (𝑅𝑖,𝑡) at a time step 𝑡 is inversely
erived from the cost function (Section 3). Moreover, an additional
erm is added to account for the local network information. When
he 𝑢1 (Start maintenance) action is selected, the agent is penalised
roportionally according to the density of the egonet at the current
tep. This is multiplied by a factor 𝛽 that considers the importance of
he egonet information in the agent’s reward. Accordingly the function
s defined as:

𝑖,𝑡 = −1 ⋅
(

𝐶𝑖,𝑡 + 𝛽 ⋅
(

1 −
𝛿𝑡

))

, 𝛿∗ > 0, 𝛿𝑡 ∈ [0, 𝛿∗] (8)
5

𝛿∗ p
where 𝐶𝑖,𝑡 is the total cost of maintenance calculated according to
Section 3. The density 𝛿𝑡 of the (egonet) subnetwork at time 𝑡, is in-
fluenced by the condition of the assets that are part of the subnetwork.
Particularly, if assets have failed, 𝛿𝑡 will be lower than the expected
density 𝛿∗ when all assets are working. The expected effect of this
function is that the agent learns to balance the decision of when the
maintenance is due because the asset condition has deteriorated while
also discouraging maintenance when there are other assets, within its
local network, on maintenance or failed.

5.3. Independent DQN

A reinforcement learning (RL) algorithm finds the set of actions,
namely policy 𝜋, that maximises the agent’s cumulative reward. Al-
gorithms are normally suited for a particular environment, including
specific action and state spaces. Independent Deep Q-Networks (I-
DQN) (Tampuu et al., 2017) is a foundational algorithm that has been
used in multi-agent environments with discrete action spaces. I-DQN is
a multi-agent adaptation of the single-agent DQN algorithm that has
been benchmarked in different environments (Mnih et al., 2015). As
expected, in a multi-agent environment, this algorithm does not provide
guarantees for convergence to an optimal global policy due to non-
stationarity. However, similar approaches have been successfully used
in two-player games (Foerster et al., 2016). This algorithm was selected
for the suitability for the discrete action space, its simplicity and the
decentralised nature which is aligned to the aim of learning a policy
based only on the local subnetworks.

Algorithm 1 is derived from the multi-agent I-DQN adapted by Tam-
puu et al. (2017). It aims to find the policy 𝜋 starting with the
observation of the current environment state. Every agent selects an
action by using the 𝑄-value function that estimates the quality of each
action 𝑢𝑖,𝑡 at the given state 𝑠𝑡. To allow for exploration, instead of
always picking the action that maximises the 𝑄-value, the 𝜖-greedy
method allows to pick random actions with some frequency. This
selection can be adjusted using the 𝜖 parameter. After taking each
action agents store their experiences –reward obtained and new state–
in an experience buffer 𝐷. The experiences are then sampled and used
o approximate the 𝑄 function with non-linear neural networks that
inimise a loss function which is defined by:

(𝜃) = E

[

(

𝑟 + 𝛾 ⋅max
𝑎′

𝑄(𝑠′, 𝑢′; 𝜃′) −𝑄(𝑠, 𝑢; 𝜃)
)2

]

(9)

Here the Q-value prediction is subtracted from the Q-value target.
This algorithm addresses the problem of learning instability by

ampling uniformly from an experience buffer (replay memory) hence
voiding local minima by considering uncorrelated experiences (Tam-
uu et al., 2017).
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Algorithm 1: Independent DQN. Derived from (Tampuu et al.,
017). Starting from observation of the environment state,
gents estimate 𝑄-value of the actions and select one, keeping
ecord of their experiences every time. Then deep neural net-
orks are used to approximate the 𝑄 function by minimising

he loss 𝐿(𝜃).
Data: Environment 𝛤
Result: policy 𝜋

1 Initialise experience buffer 𝐷;
2 Initialise parameters for Q-networks (weights 𝜃) of each agent;
3 for 𝑡 = 1 to max_steps do
4 𝑆𝑡 ← Obtain present state ;

// For each agent obtain action
5 for 𝑎𝑖 ∈ 𝐴 do
6 𝑍𝑖 ← observe 𝑆𝑖 ;
7 𝑢𝑖,𝑡 ← Select action based on 𝜖-greedy policy using

𝑄𝑖(𝑠𝑡, 𝑢𝑖,𝑡; 𝜃𝑖) ;
8 push 𝑢𝑖,𝑡 to 𝑈𝑡 ;
9 end
10 (𝑟𝑡, 𝑆𝑡+1) ← execute 𝑈𝑡 ;
11 𝐷 ← store (𝑟𝑡, 𝑆𝑡+1,𝑈𝑡) ;
12 sample 𝐷 ;
13 for 𝑎𝑖 ∈ 𝐴 do
14 Approximate Q-function by minimising 𝐿(𝜃) (Eq. (9)) ;
15 Update Q-networks ;
16 end
17 end

The I-DQN algorithm is used for the particular Network Main-
enance problem, by training the algorithm with different random
etworks varying in their size and topology. Egonet density metrics are
alculated and composed as part of the environment state observed by
he training agents. Once agents are trained offline, the maintenance
lan is obtained by evaluating their policies in a set of specific networks
nd using these plans in an agent-based simulation model.

. Reinforcement learning in the multi-asset agent-based model

NAssets.jl is an agent-based model and simulator (ABMS) intro-
uced in Pérez Hernández et al. (2022) that enables modelling and
imulation of networked multi-assets systems. This model represents
ssets as agents whose condition deteriorates along the time, follow-
ng a defined model. Likewise, NAssets.jl allows for configuration of
etwork topologies identifying assets as vertices and the edges among
hem enable traffic flows. This simulator enables the introduction of an
gent-based control system that manages the maintenance operations
nd routing of the underlying network of assets. This control systems
ould be defined by a single agent or by several arranged in their own
ontrol network. As part of this work, NAssets.jl model is extended
o enable integration of offline Network-specific approach described in
ections 4 and 5.

Network-specific maintenance approaches rely on an offline plan-
ing phase, which uses available network data to determine the mainte-
ance plan. Network topology and condition deterioration functions are
sed as starting points in both Network-wide and Localised approaches.
n the Localised approach the complete topology is only necessary when
valuating the learned policy on the network of interest, thus subnet-
orks are obtained around every critical asset. Once the maintenance
lan is generated the NAssets.jl model simulates traffic and condition
eterioration dynamics during a defined observation time.

The integration of Reinforcement Learning approaches into Agent-
ased Models (ABMs) has been identified as a way to support decision-
aking processes within the simulation of complex systems. Similar
6

techniques have been explored in domains different to network mainte-
nance planning, for example in Vargas-Pérez et al. (2023) and Lee et al.
(2017). For network maintenance, MARL processes are integrated into
ABM according to the flow presented in Fig. 2.

There are two main phases in this flow. During the first Offline
Planning phase, the MARL agents are trained according to the process
described in Section 5.3. Thus, the networks of interest are pushed
to the agents that use the reward (Section 5.2) function to drive the
policy learning process that determines the maintenance actions. Once
a policy is learned by the agents, test networks are used to generate
maintenance plans for a required period. Resulting plans are consoli-
dated in a single plan with the form of a 𝑚 × 𝑛 binary matrix, with 𝑚
assets and 𝑛 time steps and set to 1 when maintenance is due.

During the Network Dynamics Simulation phase, the consolidated
plan is loaded into NAssets.jl which is also configured according to the
network topology, the service portfolio supported by each network, the
condition deterioration model for the assets and the traffic dynamics
parameters. At start, the ABM configures maintenance activities and
traffic re-routing as events in line with the input plan. The agent-based
control system monitors asset’s condition and acts according to events
planned.

7. Case study: Multi-asset networks in nationwide digital infras-
tructure

The nationwide digital infrastructure is a multi-asset system where
routers, mobile antennas, ad hoc computing resources and many other
devices enable data packet transport along the country. This infras-
tructure is also a large complex network of networks that is carefully
designed considering several requirements such as performance, qual-
ity, reliability and cost-efficiency. Particularly, it is expected that data
packets across the network only travel a few hops until the destination,
this is known as the small-world effect (Newman, 2018). Likewise,
others have highlighted that traffic flows within these type of networks
follow a scale-free model (Pastor-Satorras and Vespignani, 2004).

The infrastructure makes possible the transport of data between
providers and consumers. Service requirements specify data transfer
expectations from individual and business customers. Likewise, mobile
or broadband operators use the nationwide digital infrastructure to
support their own service portfolio (Amin et al., 2000). There is a
Service Level Agreement (SLA) for each service that also includes Key
Performance Indicators (KPIs), facilitating evaluation of the delivered
quality of service against specification (Kosinski et al., 2008). As mul-
tiple KPIs are monitored depending on the service, the focus of this
case is on one of the most common: Throughput, which indicates the
rate of data packets delivered over time from end to end (providers to
consumer).

Although the network perspective is not constrained to a particular
planning level, the case focus is on the tactical maintenance planning.
This planning assumes a stable network of assets and a set of fixed
contracted services according to the network capacity for a medium
term period, e.g. six to twelve months. A challenging task at this level is
to balance the maintenance costs while keeping an adequate quality of
service across the infrastructure, built from geographically distributed
assets. The infrastructure follows a hierarchical architecture organised
in network segments with different technologies and protocols (Tanen-
baum, 2003). Access networks enable users, either data providers or
consumers, to join the network, while metro/regional networks con-
nect specific geographical areas to the core/backbone network which
ensures national long-distance data packet transfer (Stavdas, 2010).

The environment for evaluation of the localised maintenance ap-
proach is motivated by the characteristics and dynamics of the UK’s
nationwide digital infrastructure. At the small scale, random networks
are generated to resemble some of the networks present in this infras-
tructure. Particularly, the Barabasi–Albert (BA) model (Barabási and

Albert, 1999) facilitates the generation of scale-free networks and the
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Fig. 2. Integration of Models: Multi-Agent Reinforcement Learning (MARL) of network maintenance plans and networked multi-asset agent-based (ABM) simulation. MARL agents
are trained offline to learn a policy that is later used to generate maintenance plans of specific test networks. These plans are pushed to the ABM simulator enabling examination
of networked multi-asset system dynamics for the given plan.
Fig. 3. Nationwide backbone network. Nodes are network elements distributed ge-
ographically across the country. Exact geographic location of the nodes has been
randomised.
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Watts–Strogatz (WS) model (Watts and Strogatz, 1998) is used for
networks that exhibit the small-world properties. At the large scale, the
UK’s metro-core network presented in Fig. 3 is used as an example of
a backbone network existing in the digital infrastructure. This network
comprises 92 nodes and 131 links. Note that spatial location of nodes
has been randomised.

The evaluation considers quality and cost requirements across the
networks identified. These networks facilitate the analysis by compar-
ing performance of the network-wide maintenance approach (Pérez
Hernández et al., 2022), as well as the individual corrective and pre-
ventive approaches. For every network, a set of services is created,
such that every service requires the data packet transport between a
source and a destination at a given expected rate. The quality indicator
is then based on the reduction of throughput owing to the mainte-
nance activities. The cost is calculated according to the parameters
presented in Section 3, with values 5, 10 and 20 for three levels (low,
medium and high) for each cost component. The Localised approach
is implemented using Julia Reinforcement Learning library (Tian and
other-contributors, 2020). The parameters of the training process are
presented in Table 2.
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Fig. 4. Impact of maintenance activities on service quality. Extreme example of throughput (packets/time) reduction against expected (Grey line) in a simulated service. Due to
the lack of alternative paths when active network elements are on maintenance, throughput drops to 0. Differences in timing of maintenance according to each approach.
Table 2
Independent DQN training process parameters.

Parameter Value Units

Inner neural network layers 2 × 64
Initialisation Glorot normal
𝜖-greedy policy 0.06
Episode length 1000 steps
Episodes training 30 × 106 steps
Batch size 600
Learning rate 0.01
Target network update frequency 150 steps
Replay history 1000
Input network topologies 10 × random BA

10 × random WS

8. Results & discussion

Maintenance activities might affect the availability of the network
elements and hence the routes used to transport data. Unavailable
network elements –e.g. routers or switches– can cause packets to be
dropped or delayed and ultimately affect the quality of the services.
Thus, maintenance activities have different impact on the overall ser-
vice throughput depending on the availability of alternative paths to
reroute traffic and the timing of the maintenance activities. The most
serious impact of the maintenance activities is presented in Fig. 4 when
due to the lack of backup paths, the service throughput drops to zero.
The figure shows the different timing of the maintenance activities,
according to each approach. For example, if maintenance starts too
early and there are no alternative paths, more maintenance activities
are required during the same time frame as shown in the preventive
approach.

The descriptive statistics of the throughput reduction due to main-
tenance, in the networks studied, are presented in Table 3. Moreover,
Figs. 5–6 show the throughput reduction for 10 BA and 10 WS random
networks. Each point in the plots represents the reduction of through-
put of one of the services provisioned within one random network.
As expected, the Network-wide approach yields the minimum average
8

Table 3
Descriptive statistics of throughput reduction due to maintenance, grouped per type of
network.

Barabasi–Albert Watts–Strogatz Backbone core

mean std mean std mean std

Network-wide 0.115 0.084 0.221 0.097 0.143 0.095
Localised 0.241 0.130 0.257 0.128 0.156 0.102
Preventive 0.158 0.118 0.276 0.117 0.179 0.124
Corrective 0.180 0.112 0.311 0.109 0.229 0.156

impact on the throughput with a mean of only 0.12 (reduction of the
expected throughput) for BA networks and 0.22 for WS. The standard
deviation shows the dispersion of the measured impact, of a given
maintenance approach, among networks of similar characteristics. For
the network-wide approach the standard deviation is 0.084 for BA and
0.097 for WS networks, showing significant dispersion of the measured
impact although lower than the standard deviation observed in other
approaches. This shows that impact of this maintenance approach is
slightly more consistent than others, across the various sets of ser-
vices and networks analysed. Although not fully shown in the plots,
in few cases only, the Network-wide approach causes higher impact,
on specific services running in BA networks, than other approaches.
Particularly, the corrective approach is the best one in these cases. This
might be due to the greater availability of alternative paths for certain
nodes in BA networks hence the path chosen after a node fails leads
to lower throughput reduction than the anticipated path chosen in the
network-wide approach. More details are presented in Pérez Hernández
et al. (2022).

For the BA networks, the greater throughput reductions are ob-
tained by the Localised and Corrective approaches, respectively with
0.24 and 0.18 less throughput than expected. For WS random networks,
the performance of the Network-wide decreases, making the Localised
approach an acceptable alternative, slightly better than the preventive
approach. However, the standard deviation is the highest with 0.12
for both types of networks. Note that as per statistics in Table 3, the
performance of the Localised approach is stable across BA and WS



Engineering Applications of Artificial Intelligence 127 (2024) 107362M. Pérez Hernández et al.
Fig. 5. Reduction of service throughput owing to maintenance operations in 10 Barabási–Albert networks.
Fig. 6. Reduction of service throughput owing to maintenance operations in 10 Watts–Strogatz networks.
networks. This might be explained as both types of networks were used
when training the agent that yields plans according to this approach.
Note also that standard deviation is high in comparison to the ranges
of the reductions obtained, which limits the power to generalise the
behaviours observed. This needs to be investigated further and could be
due to throughput reduction being more specific to the characteristics
of the selection of services simulated and the network configuration
used.

The cross-network analysis shows that average throughput reduc-
tion, as a measure of the impact of the maintenance approach, is higher
9

in random networks created with the WS model than those created with
the BA model. Extreme Low reduction or no reduction at all in some
services is due to the availability of backup plans that can be used to
re-route traffic during maintenance operations. This is evidenced by
the overlapping markers close to 0.0 for several services and across
all approaches in Fig. 5. The lack of backup paths seems to affect the
performance of the Network-wide approach while it does not show
substantial impact in the Localised approach. Overall, the Network-
wide approach performs better, on average, than the alternatives, with
larger differences in the BA networks. These results show that in BA
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Fig. 7. Reduction of service throughput owing to maintenance operations in the backbone network.
Fig. 8. Sensitivity to downtime and lost life cost parameters of the maintenance costs per cycle for the network models analysed.
networks the maintenance planner is better off using an individual
preventive or corrective approach, in case the Network-wide is not
possible. In WS, the differences among approaches is only 0.09 of
reduction, however the Localised approach offers performance close
to the Network-wide with lower overhead. Likewise, the distribution
of the throughput reduction for the Localised approach in the WS
networks shows a close-to-normal shape, which is useful to enable
assumptions looking at wider simulation scenarios.
10
The comparative performance of the approaches in the Backbone
(Metro-core) network is presented in Fig. 7 and the descriptive statistics
also in Table 3. The trend is similar to that observed in the WS random
networks. The Network-wide has the lowest impact on the services with
only 0.14 of throughput reduction, the next best performance is by
the Localised with 0.15. In this case the standard deviation is slightly
higher for the individual approaches and lower in the Network-wide
and Localised approaches.
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The results of the maintenance costs per cycle, indicate that the
sensitivity among approaches was minimal for the parts costs. Likewise
the labour costs behaviour was similar to the downtime costs. For the
sake of clarity, only downtime and lost life costs for the three types of
networks analysed are presented in Fig. 8.

The positive slope of the preventive approach confirms that this
approach is highly sensitive to lost life cost. It is the most expensive
when lost life costs increase, as shown by the blue lines above others at
right side of the subplots. When downtime costs are high (20x) and lost
life costs are medium (5x) or low (1x), the corrective approach shows
the highest maintenance costs, which is expected. Costs patterns for all
the approaches are similar to WS and BA networks. Network-wide and
Localised approach show medium-low sensitivity to both lost life and
downtime costs as can be observed for the slope of the lines and the
minimum shift to the top from left to right in the plot grid.

As a result of the cases studied, the Network-wide approach is the
one that leads to average lowest impact on the quality of the services
and the most cost-effective. Cost-wise, there are minimal difference
between the Network-wide and the Localised approach for the cost
parameters analysed. This is explained as both approaches are designed
to optimise, or learn the policy that optimises, the defined cost function.
The spread of the data obtained suggests that specific analysis is
required for different portfolio of services and network configurations.
This analysis discourages the use of an asset’s individual preventive
approach for networked assets as the costs and impact on quality
are higher than the Network-specific approaches. Individual corrective
causes the highest impact on the quality and the cost per cycle, is only
as low as network-specific alternatives when the downtime costs are
also low. However, corrective is the simplest approach to implement.
Hence, when there is tolerance to quality reduction and downtime costs
are low, the corrective approach seems an acceptable alternative.

The Network-specific approaches are more complex to implement.
Particularly, as the Network-wide requires a comprehensive view of
the network assets’ state, the maintenance plan generation is more
computationally demanding than individual approaches. In this case
the planning process is highly sensitive to the scale the network,
because the greater the number of assets to consider the higher the
computational resources needed to both store condition trajectories of
every asset and calculate alternative paths along a large network. The
Localised approach although also computationally demanding for the
training phase, is not as sensitive to the scale as the Network-wide as
the scale of the subnetwork of assets, considered for planning, is capped
to the size of the egonet with a fixed depth. This reduces and breaks
down the demand of computational resources, compared to computing
the plan for the entire network and then offers an acceptable alternative
for networks when the topology shows small-world properties (WS
model).

The Localised approach still shows room of improvement as only
one Independent DQN algorithm was evaluated, while this is an active
area of research. Likewise, alternative approaches for the approxima-
tion of the agent policy can be based on Graph Neural Networks (Cap-
part et al., 2021) which are naturally suited to represent local network
state. Although this approach seems promising for the network main-
tenance problem, additional computational and environment design
overhead must be also considered when using these approaches.

9. Conclusion and future work

This paper explores the use of network properties to plan the main-
tenance of multi-asset systems, aiming to reduce the impact of mainte-
nance operations on the quality of services and the overall costs. Two
network-specific maintenance planning approaches are introduced: A
Network-wide and a Localised approach. The former considers the
network topology and the dynamic traffic flows of the multi-asset
system to jointly plan maintenance operations and re-route traffic
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flows accordingly while optimising impact reduction and costs. The
latter approach, identifies local subnetworks and uses the Independent
Deep Q-Learning Networks (I-DQN) algorithm, to learn a policy that
generates the maintenance plan for each local subnetwork. The purpose
of this latter approach is to reduce the overhead of considering the full
network topology, the flows and every asset’s condition when planning
maintenance operations by providing an alternative, working in smaller
subnetworks with a fixed size.

The performance of the proposed approaches is evaluated against
individual corrective and preventive approaches over twenty random
networks and an example of the UK’s nationwide digital infrastructure
backbone network. For evaluation of the Localised approach, an ap-
proach for integration of Multi-Agent Reinforcement Learning (MARL)
and a Multi-asset agent-based model is also introduced. The Network-
wide approach yields, on average, the lowest reduction on service
throughput across all approaches and networks analysed. In networks
with small-world properties, particularly the random networks gen-
erated from the Watts–Strogatz model and the backbone core, the
Localised approach shows a performance close to the Network-wide
with less overhead. Cost analysis across all networks and covering
various combinations of parameters show minimal differences between
the network-specific approaches, which are less sensitive to network
and parameter changes, in contrast to individual approaches.

The current work sets the basis for the design of network-specific
maintenance approaches using, agent-based modelling, mathematical
optimisation and multi-agent reinforcement learning. Further work is
required to evaluate approaches in a wider mix of network topologies
and dynamics as the standard deviation of the results obtained in
this study is high. Moreover, the Localised approach shows promising
results and alternative MARL algorithms should be evaluated. More
complex scenarios where assets have heterogeneous capacity and traffic
can be distributed among more than one assets deserve further explo-
ration as these resemble more closely existing nationwide infrastructure
networks.
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