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Abstract. How can we infer the strategies that human participants
adopt to carry out a task? One possibility, which we present and dis-
cuss here, is to develop a large number of strategies that participants
could have adopted, given a cognitive architecture and a set of possible
operations. Subsequently, the (often many) strategies that best explain
a dataset of interest are highlighted. To generate and select candidate
strategies, we use genetic programming, a heuristic search method in-
spired by evolutionary principles. Specifically, combinations of cognitive
operators are evolved and their performance compared against human
participants’ performance on a specific task. We apply this methodol-
ogy to a typical decision-making task, in which human participants were
asked to select the brighter of two stimuli. We discover several under-
standable, psychologically-plausible strategies that offer explanations of
participants’ performance. The strengths, applications and challenges of
this methodology are discussed.

Keywords: Decision Making · Heuristic Search · Program Synthesis ·
Genetic programming.

1 Introduction

One aim of cognitive scientists is to understand the strategies (heuristics) that
human participants adopt in order to solve a problem; whether it is a ‘simple’
problem, such as deciding to accept or reject a bet, or a more complex problem,
such as planning the next move during a chess game.

Understanding which strategies participants use is an inferential problem. No
unique procedure exists to infer theories of cognitive capacities, and, in general,
this is a problem that can be addressed in several different ways. For instance,
based on previous data and on principles such as computability or parsimony, a
researcher may hypothesise a specific strategy and design experiments that test
qualitative or quantitative predictions of that strategy.



Another approach is to consider a large number of possible strategies and
select the best ones on the basis of principles such as goodness of fit and/or
simplicity. This process is known as a heuristic search in the space of possible
alternatives [19], a principle that AI pioneers Herbert Simon and Allen Newell
proposed as an explanation of how humans and computers solve problems and
make scientific discoveries.

Here we present and apply a methodology [3, 10, 2] that supports researchers
in considering a large range of strategies, built from a set of minimal building
blocks of cognitive processes. In this paper, strategies are represented as com-
puter programs, running on a virtual machine embodying a cognitive model of
human behaviour. First, a set of strategies is created at random; subsequently,
these strategies (i.e., computer programs) are modified using evolutionary tech-
niques, in order to minimise a fitness function. In the current case, fitness is
assessed using mean reaction time and mean choice. This yields many strategies
that quantitatively explain the data. After post-processing, the number of can-
didate programs is significantly reduced and insights can be gained regarding
the processes underlying the observed behaviour.

Automated theory/program/equation discovery based on evolutionary ap-
proaches and other algorithms for combinatorial search has a long history in
science [8, 2, 6]; however, applications to cognitive science are rare (but see [21,
16, 12, 20]), especially in the form of symbolic, more easily understandable, cog-
nitive architectures [3, 10]. In the following section, we present an application
of this methodology to a decision-making task. We are especially interested in
discussing the strengths, challenges and limitations of this methodology with
regard to aiding inference in cognitive science.

2 A value-sensitive decision-making task

We consider a typical decision-making task [17, 22, 13]; participants need to de-
cide which of two gray patches presented on a computer screen is brighter, Fig-
ure 1. Specifically, during each trial, participants are presented with a fixation
cross at the centre of the screen, and, equidistant from the fixation cross, two
stimuli, in the form of homogeneous, round, grey patches on a black background.
The brightness of each patch is sampled from a normal distribution and varies
from frame to frame. That is, the patches have momentary, normally distributed,
fluctuations in brightness - to make a choice, participants are assumed to inte-
grate evidence over time to decide which patch is brighter. In other words, to
decide which is brighter, participants build up an ‘average feel’ regarding the
brightness of each patch. Participants respond in their own time, meaning that
the patches remain on screen until they make a response. To select which alter-
native is brighter, participants press ‘left’ or ‘right’ on a keyboard. Shortly after
responding, participants are presented with a new trial.

Crucially, in diagnostic conditions, the two stimuli have identical brightness
– these conditions are labelled ‘equal alternatives’. Across ‘equal alternatives’
conditions, the experimenter varies the absolute brightness. That is, physical



Fig. 1. Stimuli example. Participants need to decide, by pressing one of two buttons
on a keyboard, which of the two stimuli patches is brighter. In this example, stimulus
patch size is exaggerated for visibility.

and psychological differences between stimuli are kept constant (i.e., zero, since
they are identical) while their absolute value is increased or decreased. Note that,
when deciding which of the two stimuli is brighter, their absolute brightness is ir-
relevant and the only relevant feature should be relative brightness. Nonetheless,
results show that decisions are made faster as absolute value is increased, even
though participants are required to choose the brighter of the two stimuli and
the difference between the two stimuli is null [18]. This result is replicated across
very different types of choices (e.g., between consumer items, foraging scenarios,
etc.) and species, such as non-human primates [17], and highlights a hard-wired
property of our decision architecture – value-sensitivity (for details on value-
sensitivity, see [18]). Note that ‘value’ is not to be confused with ‘reward’ – here
‘value’ only refers to the intensity or magnitude of the stimuli. Value-sensitivity,
in which decisions are made faster and more random (i.e., less accurate) as ab-
solute input value increases, challenges dominant theories of decision-making, in
which it is only the difference between alternatives that drives decision-making
[18], while absolute value is deemed irrelevant.

Here, we only model the ‘equal alternatives’ conditions from the original
dataset [17]. The original dataset contained four ‘equal alternatives’ conditions;
for simplicity we median-split these into low-value and high-value conditions.
The average reaction time for low-value equal conditions was 784 ms, and 704
ms for high-value conditions. We require that a response is made, but ignore
which response is given (i.e., left or right), since for equal alternatives responses
should be random, in the absence of a response bias. No bias is reported in the
data and analyses.

The two conditions had a mean brightness of .35 (low value) and .55 (high
value) on a 0-black to 1-white scale of brightness. We know from psychophysical
research [4, 22] that the psychological representation of brightness follows that
of the physical stimulus value to a power coefficient γ = 0.5; hence we assume
that participants ‘experience’ stimuli with intensity .35.5 ≈ .6 and .55.5 ≈ .75.

Our goal is to discover a set of candidate computer programs that achieve a
similar performance to that of human participants. We model the decision pro-
cess by assuming that participants extract samples of evidence from the stimuli



and combine them in order to trigger a response. A response is initiated when
model-current reaches the arbitrary threshold value of 1.2 and the threshold op-
erator is selected, setting model-response to 1. Note that no single sample of
evidence can reach a threshold, since samples have values of .6 and .75 (lower
than the 1.2 value needed) – in order to reach a threshold, the system would
need to perform operations on the samples (for instance, sum multiple samples)
so that a response can be initiated. For simplicity, we set the threshold hyper-
parameter to an arbitrary value that requires more than one sample of evidence
to trigger a choice. However, the value of the threshold could also be evolved as
part of the model development system.

As in the lab experiment [17], in our simulations, programs (i.e., our artifi-
cial participants) are presented with 360 random repetitions of stimuli for both
conditions, for a total of 720 trials.

In this study, we are interested in finding and comparing candidate models
when sampling is noiseless vs when sampling is noisy, so that we can compare
solutions for a noiseless system (i.e., perfect processing of sensory inputs) to
solutions for a system with gradual and noisy accumulation of evidence.

3 Model development system

We developed a simple symbolic cognitive architecture able to manipulate inputs
(a numeric representation of stimuli) into outputs (a response). The cognitive
architecture and other applications of the model development system are de-
scribed in depth in previous articles [3, 10, 2, 1] in which this methodology was
primarily applied to memory research in cognitive psychology.

There are some task-independent components: a three-slot short-term mem-
ory (STM) [5], a clock which records in-task time, a current value in working
memory, and a response value of the system. As explained above, stimuli are rep-
resented as numerical values. At the beginning of each trial, all task-independent
components are set to zero.

The aim of the system is to make a choice that minimises the discrepancy
between reaction time data and the model for the two conditions. A set of opera-
tors (Table 1) can manipulate the components of the cognitive architecture. For
instance, the system can extract samples of evidence from the stimuli, write their
values to short-term memory, and perform various other operations that would
lead the system to execute a response within the desired time window. These
operators, with timings derived from previous research [3, 10] or set arbitrarily,
are combined in sequence using genetic programming – these sequences de facto
represent a cognitive strategy to solve the problem at hand.

At the beginning of the search, a defined number of strategies are generated
at random; in later generations, genetic programming allows the combination
and modification of the programs via mechanisms such as mutation and cross-
over [9]. For in-depth details on genetic programming, readers should refer to
the literature on the topic [9].



Table 1. The operators used in our model development system. Operator timings are
as follows: input operators (100 ms), output operators (140 ms), cognitive operators
(70 ms), STM operators (50 ms), syntax operators (0 ms), time operators last as long
as declared (e.g., wait-25 lasts 25 ms, while-50 lasts 50 ms). Note that, in two separate
runs, participants use either sample or noisy-sample, but not both in the same run.

name function type

access-stm-X reads the value of slot X in STM. STM
Sets model-current to the value of the slot

compare-X-Y compares the values of the slots X and Y in STM. cognitive
If both are equal, it sets model-current to value in slot X,
otherwise it leaves model-current unchanged

sum-1-2 sets model-current to the sum of cognitive
the values of the slots 1 and 2 in STM

putstm pushes value in model-current to top of STM STM
sample extracts a sample (a reading) from input

the stimuli and sets model-current to that
noisy-sample extracts a sample (a reading) from input

the stimuli and sets model-current to that
with probability of .75, otherwise it sets model-current to 1

threshold sets model-response to 1 if model-current >1.2 output
or to 0 if not

wait advances model-clock (in ms): 25 50 100 200 1000 or 15000 time
donothing does nothing syntax
dotimesX repeats a program 2, 3 or 5 times syntax
prog-x a sequence of 2, 3 or 4 programs syntax
if-bigger if model-current is bigger than 1.2 perform action A

otherwise perform action B syntax

The aim of the genetic programming system is to generate strategies that
minimise the discrepancy between the data and the generated solutions – in our
case, this means minimising the difference in mean reaction times (for each of
the two conditions) and choice between the model and the data. The fitness
function includes three components: reaction times for the two conditions, and
choice. Recall that ‘choice’ is modelled as executing a response; which alternative
is selected is irrelevant given that alternatives are identical. The reaction times
component had a weight of .35 for each of the two conditions, while the choice
component had a weight of .30. We chose these values to give an approximate
equal weight to each of the three components of the fitness function.

We note here that the operators reported in Table 1 could give rise to so-
phisticated decision regimes. For instance, participants could extract multiple
samples of evidence, write them to short-term memory and then compare or
sum them to reach a threshold for a decision. Alternatively, since for equal al-
ternatives information about multiple samples is redundant, participants could
simply extract a single sample of evidence and apply a sequence of if-rules in
order to arrive at a decision.



Fig. 2. Fitness against generation. The plot shows the evolution of the overall fitness,
and of the sub-components of the fitness function (reaction time for the two conditions,
and choice).

After the search phase, the solutions need to be post-processed. Post-processing
removes operators that have no effect on the solution (also known as dead-code)
[7, 10]. For instance, consider an if-statement such as: ‘if 1>2, then action A is
performed, otherwise action B is performed’. In this case, action A will never be
performed; hence, post-processing would simplify the if-statement into simpler
syntax that executes action B only. The amount of dead-code is a function of the
number of generations and individuals used during the search phase, and can
account for a large percentage of operations included in the solutions generated
[7, 10]. Removing dead-code significantly improves the ease of interpretation of
the best solution(s), which is important when evaluating whether two models
are qualitatively similar, as is often the case [7, 10].

For the search, we evolved 500 individuals for 500 generations. The search
was performed using SBCL – the code used for the heuristic search is avail-
able by contacting the authors. For the GP implementation, we used mini-gp
(https://github.com/jorgetavares/mini-gp) with default values.

4 Results

4.1 Simulation 1: Noiseless sampling

In this simulation we used the sample operator, rather the noisy-sample opera-
tor. Overall, fitness approaches zero (i.e., perfect prediction) after approximately
250 generations, see Figure 2. That is, models after the 250th generation quan-
titatively explain the data well; as Figure 2 shows, each of the components of
the fitness function (reaction times, and choice), and the global fitness function
itself, reach a perfect prediction. Models (i.e., individuals) in the final generation
have low fitness values, approaching zero. Note the drop in fitness at generation



Fig. 3. Model similarity for models in the last generation. Despite all being ‘good’
enough models (i.e., fitness near zero), the models show low similarity (i.e., they are
dissimilar).

200 - models after generation 200 are better than those generated at random at
the beginning of the search.

Even though these models have a similar fitness value, they represent different
decision-making strategies (see Figure 3). That is, the data are well explained by
models that are dissimilar. The similarity between two models is computed by
breaking the program down into components and then measuring their similarity
using the Jaccard similarity coefficient.

Models include a high proportion of dead-code, an expected feature of GP –
program size increases as a function of the number of generations, Figure 4. At
generation 200 there is a drop in size that coincides with an increase in fitness -
this means that models become better and simpler. However, as common with

Fig. 4. Increase in program size as a function of generation.



Fig. 5. The frequency of dead-code for models in the final generation (i.e., proportion
of a model that is unnecessary).

GP, the programs ‘bloat’ after each generation. As shown in Figure 5, almost
half of the models in the final generation consist of about 40-60% of dead-code;
few models have a proportion of dead-code higher than 60%.

The best models are defined as models within a tolerance of 0.01 in fitness
value from the single best model with the lowest fitness. After post-processing,
66 best models were found; note that they all have identical fitness of 0.002.
As in Figure 3, we can show similarity across the best models; Figure 6 shows
that the best models have a very similar structure. Note that the fact that
models have an identical fitness of 0.002 is no guarantee that the models are
syntactically and/or semantically identical; in fact, very different models could
achieve a similar fitness.

A representative model from the best solutions is reported in Figure 7. Note
that some nodes in the tree are irrelevant (e.g., the first sum-1-2). The model can
be interpreted as follows: participants extract a single sample from the stimulus
(i.e., they extract a reading from the stimuli and set model-current to that
value), write that value to each of the three slots in STM, and then sum those
values until a threshold is reached. If it is a low value stimulus, they perform an
additional operation (put-stm), as shown in the right side of the if-statement.

We can further perform multi-dimensional scaling to generate a 2D repre-
sentation of similarity between models and highlight the presence of clusters of
models. Figure 8 shows that there are two distinct classes of models that explain
the data equally well. The main difference between the two classes is the use
of irrelevant operators, such as operators before the first sample or after the
threshold is reached. Note that the output of those operations is identical while
using different operators, and in fact the models have the same overall fitness,
and same fitness for each of the objectives of the fitness function. That is, the
models are semantically identical while syntactically different.



Fig. 6. Model similarity for the ‘best’ models, after post-processing. ‘Best’ models are
those within a difference of 0.01 from the single best model – note however that in our
case, the 66 best models have the same identical fitness of 0.002. The figure shows that
these models have a high degree of similarity.

Fig. 7. One of the solutions from the best generation. The strategy is represented using
a tree structure; this is standard for solutions from genetic programming. This strategy
achieves a fitness of 0.002 (0 is perfect fit), RTs of 780 ms and 710 ms for low and high-
value conditions, and a probability of responding of 1.

4.2 Simulation 2: Noisy sampling

In a second separate run of our model development system, we relaxed some of
the assumptions of the operators in order to increase the psychological plausi-
bility of the best-estimated models. In particular, we assumed that the operator
sample is noisy (hence the name noisy-sample) and it sets the value of model-
current to the value of the stimuli only 75% of the time – the remaining 25% of
the time the value of model-current is set to an arbitrary value of 1. The search
estimated a single best tree, reported in Figure 9.

Interestingly, the strategy reported in Figure 9 extracts multiple, separate
samples of evidence, writes them to STM and finally sums the values of STM
slots 1 and 2 to trigger a response. This model is qualitatively akin to what would



Fig. 8. Clusters for the best models in the final generation. MDS is short for multi-
dimensional scaling.

Fig. 9. The single best strategy across all strategies considered by the search algorithm
when the operator sample is noisy. The ‘empty’ symbol represents an operator that is
never executed, because it is dependent on a value of the model that is never met.

be predicted by an evidence-accumulation architecture [11]. Given the presence
of noise, multiple separate samples are extracted and integrated to arrive at
a decision – on the other hand, in the fully deterministic, noiseless model, a
single sample triggers a decision. Contrary to classical evidence-accumulation
models, the strategy reported in Figure 9 requires fewer iterations - in fact, in
evidence-accumulation models sampling lasts 1ms and a multitude of samples
are extracted to arrive to a decision. Here we find that such a strict requirement
may not be necessary.

The methodology presented here allows a wealth of additional analyses. Anal-
yses could focus on aspects such as varying the precision of the sampling oper-
ator across runs, estimating the best solution across different sets of operators,
highlighting sub-classes of best solutions for different participants rather than
considering averaged data or more. These are all exploratory/confirmatory anal-
yses that depend on the specific goal, focus and interest of the researcher. For



the remainder of our article, we decided to focus on the implications of this
methodology, rather than performing additional analyses.

5 Discussion

We have presented a methodology that allows a researcher, given a dataset and
a set of basic building blocks of cognition, to search a wide space of possible
strategies that participants may have adopted. To demonstrate the utility of
this approach, we applied it to a task in which participants select the brighter
of two stimuli. In the experiment, unbeknownst to the participants, conditions
of interest are those in which the brightness of the two stimuli are identical.

Our analyses focused on estimating the ‘best’ strategies in the absence vs
presence of noise in the operators. That is, we were interested in evaluating dif-
ferences in best strategies as a function of the parameterisations in our model
development system and underlying assumptions. We found that if we assume
a fully noiseless, deterministic strategy, participants extract a single sample of
evidence from the stimulus and essentially ‘boost’ the sample in order to reach
a threshold for a response. Intuitively, this is what would be expected in the
absence of noise – since a single sample of evidence provides perfect informa-
tion about the stimuli, it is unnecessary to sample more than once. On the
other hand, if sampling is noisy and unreliable, participants extract multiple
samples and combine them in order to arrive at a consensus for a response, in
an evidence-accumulation fashion. That is, if sampling is noisy, more than one
sample is needed to arrive at a decision. In both the noiseless and noisy case,
value-sensitivity is implemented via the operator if-bigger which, depending on
the value of model-current, executes one of two operators.

The methodology that we presented here is agnostic concerning applications
– while in this case it was applied to a single decision-making task, it has been
applied to different domains, such as research on working memory [10, 3]. That is,
the same discovery process can be adopted in different domains and applications.
Similarly, while for simplicity we applied the methodology to averaged data, this
methodology could be adopted to find strategies accounting for individual data.
For instance, researchers could use this methodology to infer individual and
average strategies during decision-making in order to estimate between-subject
similarities in decision strategies, and deviance of individuals from the strategy
that explains aggregated results. The same rationale applies to the cognitive
architecture and the operators - they can be adjusted by the researcher according
to their specific needs.

Even in the case of a typical decision-making task, there are many strategies
(virtually an infinite number) that could account for patterns in a dataset; as
the complexity of tasks or the number of operators increases, the number of
strategies increases exponentially and we believe that this methodology could aid
a first exploratory phase in which candidate alternative strategies are discovered.
Subsequently, other analyses or ad-hoc experimental work can be devised to
compare alternative explanations. For instance, previous work [10] used this



methodology for the Delayed Matched to Sample task (an experiment used to
study short-term memory) and, over multiple runs, found that three distinct
classes of models could explain the data equally well.

The task presented here is arguably a phenomenologically simple task. De-
spite this, several strategies could explain the simulated data since the decision
performance is determined by a large number of underlying factors. The fact that
a large number of models can explain any finite set of data is the well known
problem of underdetermination of theory from data – especially when both stim-
ulus representations and processes are unknown. However, the general approach
in cognitive science is to test predictions of one model/strategy or compare two
of them [14]. We believe that in the early phases of theory development, the
tool presented here could aid in the search for sensible theories to be considered,
beyond those proposed by the researcher’s intuition.

This methodology could be useful in multiple cases. Firstly, for researchers
who are interested in estimating optimal solutions for a specific problem, given
a set of basic cognitive processes. Estimating optimal solutions is hard [21] and
often mathematically prohibitive. As a search-based optimization technique, ge-
netic programming could be adopted to estimate optimal strategies for a specific
decision problem – this methodology allows researchers to evaluate a large range
of solutions and contrast and compare similarities and differences. An interest-
ing avenue for future research is to evaluate how optimal strategies vary when
aspects of the system, such as the number or precision of operators, are varied.

A second case in which this methodology could prove useful is to aid re-
searchers in developing hypotheses regarding which strategies could have gener-
ated data. For instance, this methodology could support a researchers’ hypoth-
esis if it is congruent with the best strategy estimated. On the other hand, if
the working hypothesis is not in line with the best strategy estimated, that may
lead to a reconsideration of theories.

6 Limitations and future directions

While researchers’ intuition may or may not be directly influenced by data when
generating theories, the methodology presented here is data-based. If data are
of poor quality, the resulting theory will be a theory that explains poor-quality
data. To mitigate this risk, this methodology should be applied to large datasets
across different types of tasks; if the best strategy simultaneously accounts for
datasets across domains, conclusions limited by the specifics of the experimental
procedure are less likely.

Crucially, this methodology relies on the operators, the building blocks of
cognition, to generate a theory. A current limitation of the methodology is that
the timings of operators are fixed, either to values from the literature [3] or, for
convenience, to arbitrary values. For instance, here we assume that sampling lasts
100 ms. Similarly, all memory operators have an arbitrarily fixed duration of 50
ms. While setting features of cognitive capacities to fixed values is often standard
practice, for instance in unified theories of cognition [15], one risk with this



approach is to perform computationally expensive model search between models
that are unreasonable to begin with, due to incorrect assumptions regarding the
timings of operators. However, assumptions, implicit or explicit, permeate every
theory of cognitive capacity – indeed, every theory in the empirical sciences.
A benefit of this approach is that it makes a wider number of assumptions
explicit (e.g., the timing of operators, the cognitive architecture) and it allows
the estimation of how changing specific assumptions changes what can be said
about cognitive capacities. Our current work is focusing on minimising the risk
of fixing certain features to arbitrary values, by varying parameters that we
previously kept fixed in our search. This is done by co-evolving crucial features
of our system that were hard-coded, such as the timings of operators or the
set of operators used as part of the search. That is, hyper-parameters which
we have set to arbitrary values in the current article can be evolved as part
of the search process. Some hard-coded parameters require extensive changes
to the code and architecture in order to be evolved – for instance, the number
of slots in short-term memory. Future work will focus on estimating solutions
while these hard-coded parameters are either manually varied across runs, or are
varied using grid search.

Recently, the use of machine learning has allowed statistical models to be
evaluated against large datasets in cognitive science [16]. The methodology de-
scribed here differs from statistical approaches – here we develop solutions in
terms of symbolic, information-processing architectures, and without a depen-
dence on large datasets needed to train statistical models. Crucially, compared
to statistical models based on machine learning approaches, solutions are easier
to explain and interpret since they are expressed as a symbolic architecture and
clearly defined operations performed by the architecture.

Opinions regarding the impact and role of methodologies that semi-automate
aspects of scientific discovery vary in the literature. However, one clear benefit of
these approaches is to provide an ‘existence proof’ – given a set of assumptions,
we can demonstrate the existence of candidate models for our experimental data.
This can then provide insights for the cognitive scientist to develop broader or
more understandable theories. The methodology presented here is a potentially
useful tool for cognitive scientists when developing theories of cognitive capaci-
ties. By generating a wide range of cognitive strategies/models, this methodology
aids the cognitive scientist in considering candidate models, as opposed to fixat-
ing on predictions of a single model or comparisons between two models [14].
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