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Muons from extensive air showers appear as rings in images taken with imaging atmospheric
Cherenkov telescopes, such as VERITAS. These muon-ring images are used for the calibration of
the VERITAS telescopes, however the calibration accuracy can be improved with a more efficient
muon-identification algorithm. Convolutional neural networks (CNNs) are used in many state-of-
the-art image-recognition systems and are ideal for muon image identification, once trained on a
suitable dataset with labels for muon images. However, by training a CNN on a dataset labelled
by existing algorithms, the performance of the CNN would be limited by the suboptimal muon-
identification efficiency of the original algorithms. Muon Hunters 2 is a citizen science project that
asks users to label grids of VERITAS telescope images, stating which images contain muon rings.
Each image is labelled 10 times by independent volunteers, and the votes are aggregated and used
to assign a ‘muon’ or ‘non-muon’ label to the corresponding image. An analysis was performed
using an expert-labelled dataset in order to determine the optimal vote percentage cut-offs for
assigning labels to each image for CNN training. This was optimised so as to identify as many
muon images as possible while avoiding false positives. The performance of this model greatly
improves on existing muon identification algorithms, identifying approximately 30 times the
number of muon images identified by the current algorithm implemented in VEGAS (VERITAS
Gamma-ray Analysis Suite), and roughly 2.5 times the number identified by the Hough transform
method, along with significantly outperforming a CNN trained on VEGAS-labelled data.
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1. Introduction

Imaging atmospheric Cherenkov telescopes (IACTs) detect high-energy gamma radiation from
astrophysical sources by imaging the Cherenkov light from extensive air showers (EAS) produced
when the gamma rays interact with the Earth’s atmosphere. As well as gamma rays, IACTs are also
able to detect high-energy cosmic ray particles, which form a large source of background for the
telescope. While most of this background is treated as noise, signal from muon particles, which are
by-products of the EAS of cosmic ray particles, may be used for calibration purposes. The cone of
Cherenkov light from an individual muon particle produces a ring-shaped image in an IACT. The
Cherenkov opening angle (ring radius) and number of photons emitted per unit path are dependent
on the energy of the muon. Therefore by determining the radius of the ring and measuring the
amount of signal in that ring in the telescope, this can be compared with the amount of signal
expected based on the ring size. By performing this comparison with many different muon rings,
an average calibration factor for each telescope may be determined, which is used to correct for the
light which is lost on the way to each telescope camera. To carry out this procedure, a large number
of muon images must be identified. With advances in machine learning and particularly in image
classification through the use of convolutional neural networks (CNNs), it is possible for the rate of
automatic detection of muon images to be improved dramatically over existing algorithms.

2. VERITAS Array

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of 4
IACTs based at the Fred Lawrence Whipple Observatory in Arizona and operates in the energy range
of 85 GeV to 30 TeV. The array consists of four 12 m diameter telescopes arranged in a roughly
rectangular pattern, each a distance of about 100 m apart. The telescopes have Davies-Cotton
segmented mirrors, each consisting of 350 individual hexagonal mirrors, with a total mirror area
of 110 m2. Each telescope’s PMT camera has 499 pixels and a field of view of 3.5◦. VERITAS
became operational in 2007 and is still operational currently. The array has a trigger system which
requires that at least 2 telescopes simultaneously pass their own telescope-level trigger in order for
each telescope in the array to record an image. This is largely to reject background events, including
muon events, which typically only trigger one telescope. Many muon images contain additional
Cherenkov light from the EAS from which they were produced in order to trigger the array.

3. Methods for the Identification of Muon Images

VEGAS is one of the two analysis packages used by VERITAS in analysing data from the
telescopes [1], and it includes a muon identification algorithm. It works based on the distribution of
signal in each image, determining the centroid of the signal and placing an annulus at the average
radius (known as muon radius) of signal out from the centroid. The annulus has a width of 3𝜎 of
the signal distance to the mean radius. If more than 70% of the signal in the image is within the
annulus it is classified as a muon image. While this method can identify full muon rings, there
are many rings which it doesn’t identify, such as partial muon rings, which occur when the muon’s
impact location is outside or near the edge of the telescope. This makes some photons miss the
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telescope and thus causes part of the ring to not show in the camera. VEGAS also doesn’t identify
truncated rings, where the ring is cut off by the edge of the camera due to the muon’s incident angle
with respect to the telescope’s optical axis being greater than 1.75◦, nor ring images which contain
signal other than the ring. These last two are currently not usable for calibration, however.

An algorithm called the Hough transform may also be used for muon identification [9]. This
algorithm is used to parameterise assumed shapes in digital images. This has been used to pa-
rameterise assumed circles in VERITAS images and then have cuts on these parameters applied to
determine the presence or absence of a muon ring. This has been shown to achieve better results
than the previously described VEGAS algorithm.

Convolutional neural networks (CNNs) [2] may also be used to identify muon-ring images.
CNNs are a type of machine learning algorithm commonly used in image classification tasks,
where they have shown very high performance. They take an image as input and pass it through
convolutional layers, pooling layers and finally fully-connected layers to produce a final output. In
a binary classification problem such as muon identification, there is a single output, taking a value
between 0 and 1. This number indicates the model’s prediction of how likely an image is to belong
to one of these classes as opposed to the other. CNNs learn to classify images by being trained on
a large dataset of relevant labelled images. Each image in a training set is labelled either with a 0
or a 1, depending on its true label. The CNN predicts a value between 0 and 1 for each image, and
based on how close its predictions are to the true labels, the parameters of the CNN are adjusted
using an algorithm known as gradient descent. Following training, a cut-off is chosen in order to
turn the outputs into classifications, typically taking a value of 0.5. Provided with a large labelled
dataset of muon and non-muon images, a CNN may be trained to perform muon ring identification.

CNN classification of VERITAS muon images has been done previously, first using a CNN
trained on VEGAS-labelled data [3], and then using data from the original Muon Hunter [4] project
to train a CNN [5]. However, the first of these used VEGAS-labelled data to both train and test
the model, which didn’t test the generalisability of the model. The second chose a single vote-
percentage cut-off (discussed further in section 4) for labelling Muon Hunter images as ‘muon’ or
‘non-muon’, without an analysis of what the best cut-offs would be. In this paper we both analyse
model performances to determine optimised vote-percentage cut-offs for the task and test the models
on a more independent dataset to better understand the generalisability of the model.

4. Training and Validation Dataset: Muon Hunters 2

Images labelled using the VEGAS algorithm may be used to create a labelled dataset for
training a CNN. However, in order to ensure that the CNN is able to identify muon images which
the VEGAS algorithm cannot identify, it is better to have a labelled dataset which includes these
types of images also in the muon data. One way of obtaining such a dataset with more accurate
labels is via human volunteers. For this reason the Muon Hunters 2 (MH2) [6] project was created.

Muon Hunters 2 is a citizen science project for gathering muon labels for VERITAS images,
hosted on Zooniverse.org. As a follow-on from the original Muon Hunter project [4], Muon
Hunters 2 was launched in March of 2019 with the aim of making the identification of muon
rings more efficient. In this project, a 6 × 6 grid of images is presented, and volunteers are
asked to classify all of these images simultaneously by clicking on all images belonging to the

3



Identification of Muon Rings with a MH2-trained CNN Kevin Flanagan

minority class in that grid (muon or non-muon). This works to reduce the number of clicks
required from volunteers. Figure 1 displays all possible scenarios. Volunteers are asked to identify
images which contain muon rings of any variety, be they full rings, partial rings or truncated
rings, and also regardless of whether there is any signal other than the ring present in the image.

Figure 1: Schematic of the possible scenarios a volunteer will en-
counter in the Muon Hunters 2 project.

Each grid of images is re-
tired once it has been classified
by 10 independent volunteers.
2.9 million images from real
VERITAS data were included
as part of the MH2 project,
along with 95,000 images gen-
erated from CORSIKA simula-
tions. For this study, a to-
tal of 605,057 labelled Muon
Hunters 2 images were available
and were used. The volunteer
votes were used to divide the
data into muon and non-muon
categories for the purposes of
training a CNN. Vote percentage cut-offs were used to assign images muon and non-muon la-
bels, such that an image was assigned a muon label if voted a muon by at least X% of volunteers and
non-muon if voted a muon by at most Y%. These cut-off values (X% and Y%) were determined
through testing on a different, independently labelled dataset (process explained in section 6). The
optimal cut-offs which were used to generate the labelled dataset for this study were a 20% muon
and 0% non-muon cut-off. A dataset of 10,000 muon images and 10,000 non-muon images was
selected and split into training, validation and test sets in a 65% : 17.5% : 17.5% split.

A VEGAS-labelled dataset was also produced, containing 10,000 muon images and 10,000
non-muon images. The same 65% : 17.5% : 17.5% split was also applied to this data. VEGAS-
labelled images had an extra condition that the muon radius 𝑟 must be greater than 0.5◦ in order to
increase the purity of the images, as it’s found that the algorithm does not perform well on images
with smaller muon radii than this.

Each image used as input to the CNN was a jpeg generated from the charge produced in the
telescope camera. This was different to the oversampling approach used by Feng et al. [3, 5] as that
method led to a stretching of the image which we wished to avoid.

5. CNN Training

Both the VEGAS-labelled and MH2 datasets were used to train a CNN for the identification
of muon images. The Python deep learning library keras1 with a Tensorflow2 backend was used to
implement the CNN model. A VGG16 [7] architecture was used for the CNN. This was pretrained
on the ImageNet [8] dataset, which is a large dataset of labelled images often used to benchmark

1https://keras.io

2https://www.tensorflow.org
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and pre-train image classification models. The same training parameters were used for each dataset.
Mini-batch stochastic gradient descent with momentum was used as the optimisation algorithm.
A learning rate of 0.005 and a momentum value of 0.9 were chosen, with a batch size of 64. A
binary-cross-entropy cost function was used. Training was carried out for 50 epochs (an epoch
being one full cycle of training on the entire dataset). The training and validation set cost values
were tracked during training. As the validation cost measures the model’s ability to generalise to
unseen data, the model weights which minimised this value were saved as the optimised weights.

6. Determination of Optimal Vote-Percentage Cut-Offs

As there are many ways to divide the MH2 data based on volunteer votes, it was necessary
to determine the best way to do this for training a CNN for muon identification. A large number
of different datasets were created using different pairs of vote-percentage cut-offs and models were
trained on each dataset. Each dataset consisted of 17,200 images, split evenly between images with
muon labels and non-muon labels. This dataset size was chosen in order to make each dataset the
same size, as this was the largest possible for all datasets produced via the vote-percentage cut-offs.
These datasets were further divided into training (10,320 images), validation (3,440 images) and
test sets (3,440 images) each with equal numbers of muon and non-muon images. The performance
of each model was tested using an independent test dataset with expert labels produced by one
of the authors of this study. This test set contained 2,000 muon-labelled images and 2,000 non-
muon-labelled images. It was found that overall accuracy (fraction of images classified correctly)
on the independent test set was maximised by training the CNN on a dataset generated with (20,0)
vote-percentage cut-offs. This means that a cut-off of 20% was applied for labelling muon images
(images were labelled as muon images if their muon vote-percentage was 20% or higher) and a
cut-off of 0% was applied for labelling non-muon images (images were labelled as non-muon if their
muon vote-percentage was 0%). This model achieved a test set accuracy of 97.1%, with 43 false
positives and 73 false negatives. It was also found that by adjusting the classification boundary on
the (20,0) model output (from the default 0.5, where an output ≥ 0.5 gives a non-muon classification
and an output < 0.5 gives a muon classification) that this model could achieve 0 false positives
while retaining a higher overall accuracy than other models which achieved 0 false positives. This
is an important factor in choosing this model as we particularly wished to avoid false positives.

The (20,0) model achieving the best performance on the test data can likely be explained by
aspects of volunteer labelling ability and the presence of ambiguous muon images. It is generally
easier for volunteers to label non-muon images correctly rather than muon images due to the
presence of more difficult-to-identify muon images which volunteers may miss. These can contain
partial and truncated rings, sometimes partially obscured by other signal in the image. This leads
to many muon images only being labelled as containing a muon ring by volunteers a small number
of times. This means that higher vote-percentage cut-offs for non-muons would lead to non-muon
datasets that are contaminated by some of these more ambiguous muon images, which would
confuse any model. Therefore a vote-percentage cut-off of 0% produces what is closest to a pure
set of non-muon images obtainable in this manner. The high performance of the low (20%) muon
cut-off likely comes down to increasing how representative the dataset is. The higher the muon
vote-percentage used to generate the muon dataset, the less representative the dataset will be of
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all of the types of muon images that exist, as the muon images that are identified correctly by
volunteers a large amount of the time are likely to be very clear-cut muon images. Therefore
the model will only learn to identify these more obvious images. If a smaller vote-percentage

Figure 2: Fraction of images at each muon vote-
percentage which contain expert-classified muon
rings, based on 1,000 random images at each muon
vote-percentage. Note the large increase at 20%.

is used to generate the muon dataset, the images
become more representative of all muon image
types, so the model will be better able to identify
all muon images. While the level of contami-
nation from non-muon images in the muon set
also increases, it appears that the benefits of the
increase in representativity of the data outweigh
this. Figure 2 highlights how even at the low
vote-percentage of 20% roughly 7 out of 10 im-
ages contain muon rings according to expert la-
bels, while the datasets become fully composed
of expert-labelled muons from 60% and above.
This displays the prevalence of more ambiguous
muon images which volunteers found harder to
identify at low vote-percentages.

7. Final Model Performances

The performances of the models trained on VEGAS-labelled and MH2-labelled data were
evaluated on a final 10,000 image (50% muon, 50% non-muon) test dataset which again had expert
labels produced by one of the authors. The results are displayed in Table 1.

Model Accuracy (%) Maximum number of pure muons
VEGAS 69.9 551 (11%) (boundary = 0.024)

MH2 95.7 3892 (78%) (boundary = 0.064)

Table 1: Summary of VEGAS-trained and MH2-trained model performances on the expert-labelled test set.

The VEGAS-trained model achieves a moderate accuracy score, while the MH2-trained model
achieves a significantly higher score, correctly classifying over 95% of images. The most important
metric to consider for these models is the ‘maximum number of pure muons’ which the model is able
to retrieve. The number is obtained by adjusting the decision boundary of the output (increasing
the confidence which the model must have to make a muon classification) until the model produces
no false positive muon classifications on the test dataset. This represents the approximate portion
of muon images which the model would be able to reliably detect without producing false positives.
If one of these models was implemented in the VERITAS telescope, the decision boundary on the
model would be adjusted to at least this minimum confidence level in order to obtain pure sets of
muon detections. The MH2-trained model was able to detect a significantly larger pure set of muon
images than the VEGAS-trained model, with ∼78% detected vs ∼11%.

Although a direct application and comparison was not made with the Hough Transform algo-
rithm, a comparison with the results reported in a previous study by Tyler et al. [9] was made. In
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that paper, a similar analysis was performed on the percentage of muon images identified by the
algorithm (muon efficiency). The Hough Transform study also used a set of images examined by
eye and estimated that about 6.5% of images in a typical observation run were muon images, which
agrees very closely with this study’s evaluation when creating labelled test data (also 6.5%). This
indicates that the test datasets used in each study likely have a similar make-up. Upon application of
the Hough transform however, they achieved 29% muon efficiency with no false positives, whereas
the MH2 CNN in this study achieves 78% muon efficiency with no false positives, indicating a
substantial increase in ability to detect muon images over the Hough Transform method also.

The performance of the MH2-trained model was also compared with the original VEGAS
algorithm. A set of 481,819 images from a VERITAS observation run were taken and each muon
detection method was applied to these images. The CNN models were each applied with the
muon/non-muon output cut-off value which resulted in the largest pure set of muons being isolated
from the expert-labelled test dataset. The number of muon images identified by these models was
compared with the number detected by the VEGAS algorithm (with a 𝑟 ≥ 0.5◦ cut-off applied). The
numbers are displayed in Table 2. The VEGAS-trained CNN does show an improvement over the

Identification method Number of muon images identified
VEGAS algorithm 728

VEGAS-trained CNN 3071
MH2-trained CNN 23748

Table 2: Number of muon images identified by each method out of the 481,819 images in the dataset.

original algorithm, showing generalisation from the CNN training, however the MH2-trained CNN
far exceeds this, identifying ∼32 times more muon images than the VEGAS algorithm.

8. Conclusion

This study has investigated the use of CNNs for muon identification in VERITAS images. Tests
were carried out to determine the best way of using the volunteer votes from the Muon Hunters 2
project to generate labels, and a CNN trained on these labelled images outperformed a CNN trained
on VEGAS-labelled data. Both CNNs were compared with the current VEGAS muon detection
algorithm, and both achieved a higher rate of detection of muon images. This was especially
true for the MH2 CNN, identifying approximately 32 times the number of muon images that the
VEGAS algorithm did. This was achieved with the output value cut-off of the CNN adjusted so
as to eliminate false positives from the muon images identified. Certain muon images may be
used for calibration of the VERITAS telescopes. However, as the MH2-trained CNN is trained to
identify all types of muon images, including those which are not usable for calibration such as those
with truncated rings and with signal other than the ring, some extra work is needed to extract only
images which are suitable for calibration. This may be similar to what is currently done with the
VEGAS algorithm where certain extra quality cuts are applied. As a significantly larger number of
muon images are identified by the MH2-trained CNN overall, it should also be the case that a larger
number of images suitable for calibration are identified as well.
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