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1
Introduction

We are interested in the Yamabe problem: given some Riemannian manifold (M, g)

of dimension n ≥ 3, can we find a pointwise conformal metric whose scalar curvature

is constant? We will write the conformal metric as

g̃ := u
4

n−2 g

where u is some strictly positive smooth function on M . The scalar curvature changes

according to the following equation

Sg̃ = u−
n+2
n−2 (−cn∆gu+ Sgu)

where cn := 4(n−1)
n−2

and Sg and Sg̃ refer to the scalar curvatures of the corresponding

metrics. Asserting, as we would like, that Sg̃ ≡ K for some constant scalar curvature

K, we obtain the Yamabe equation

− cn∆gu+ Sgu = Ku
n+2
n−2 . (1.1)

The analysis of this semilinear PDE will be central to our understanding of the

Yamabe problem. We refer to the operator −cn∆g + Sg as the conformal Laplacian.

The Yamabe problem was first considered by Hidehiko Yamabe in his paper “On

a deformation of Riemannian structures on compact manifolds” in 1960 ([Yam60]).

Since then, the Yamabe problem, as well as its many variations and related questions,
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has been the subject of a great deal of research and represents an important area of

geometric analysis and the study of nonlinear PDEs. The breadth of the progress

made on the topic of the Yamabe problem is too vast for a single introductory survey

and so we direct the reader to the surveys of [LP87, Aub98, KMS09, BM11] and the

references therein.

In the case that the manifold (M, g) in question is compact, the problem was

eventually resolved over a number of years following Yamabe’s work (see [Yam60],

[Tru68], [Aub76] and [Sch84]). This DPhil project focuses on the case that (M, g) is

a non-compact manifold. This setting for the Yamabe problem has seen significant

progress in the literature (for example, see [LN74, AM88, CGS89, ACF92, Mar08,

AILA18] and references therein); however, the overall understanding of the Yamabe

problem in the non-compact setting is far from complete and remains a topic of active

research.

Throughout this section, we will give an introduction to the Yamabe problem and

the work of this DPhil project. In Section 1.1, we will provide a brief discussion

of the much celebrated solution of the Yamabe problem for compact manifolds. In

Section 1.2, we will discuss the Yamabe problem in the non-compact setting and

review progress in the literature on non-compact manifolds of negative curvature

type, which will be the focus of our studies in this thesis. We then make clear the

particular goals and motivating questions which guided the work of this project in

Section 1.3. Finally, having made our goals for this project clear, we provide an

overview of a number of new results that we prove in this thesis in Section 1.4; there,

we will discuss the ways that these results address our motivating questions and

how they contribute to the wider literature on the Yamabe problem for non-compact

manifolds.
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1.1

The Yamabe Invariant and the Resolution
of the Yamabe Problem in the Compact
Setting

In the case that M is a compact manifold, the Yamabe problem has been resolved.

Over a number of years, the combined work of Yamabe [Yam60], Trudinger [Tru68],

Aubin [Aub76] and Schoen [Sch84] eventually proved that, given any compact Rie-

mannian manifold (M, g), one may always find a pointwise conformal metric to g

which has constant scalar curvature.

A key observation in the compact case is that we can realise the Yamabe equation

as the Euler-Lagrange equation for the normalised Hilbert-Einstein functional

Q(g̃) =

∫
M
Sg̃ dVg̃(∫

M
dVg̃
)n−2

n

.

We call the infimum of Q over all conformal metrics g̃ of g the Yamabe invariant

λ(M, g). We note that the value of λ(M, g) depends on the conformal class of g,

rather than the metric g itself. Understanding the properties of this invariant plays

a fundamental role in the solution of the Yamabe problem in the compact setting. A

simple but fundamental fact about the Yamabe invariant due to Aubin (see [Aub76])

is that λ(M, g) ≤ λ(Sn), where Sn is the round sphere.

It has been well noted that the Yamabe invariant carries important information

about the conformal class of g. For example, on any compact manifold (M, g), one

can show that there always exists a representative from the conformal class of g

whose scalar curvature has the same sign as the Yamabe invariant (see, for example,

[Sch89]). This fact will provide important perspective on the non-compact setting,

where the availability of an equivalent formulation of a Yamabe invariant is less clear.
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Following the initial attempt at a proof by Yamabe, a study of the Yamabe in-

variant became of central importance to solving the Yamabe problem. First progress

was made by Trudinger in [Tru68], who was able to complete Yamabe’s proof in the

cases that λ(M, g) < 0 or that λ(M, g) = 0.

The first progress in the case that λ(M, g) > 0 was made by Aubin in [Aub76]

who was able to show that, if λ(M, g) is less than the Yamabe invariant of the round

n-sphere, then the Yamabe problem is solvable. Furthermore, he demonstrated that

this strict inequality holds if n ≥ 6 and (M, g) is not locally conformally flat.

The final steps in solving the Yamabe problem were made by Schoen in [Sch84];

he was able to show that λ(M, g) < λ(Sn) (unless (M, g) is actually conformal to Sn)

in the remaining cases untreated by the work of Aubin. As a consequence of these

two works above, λ(M, g) = λ(Sn) if and only if (M, g) is conformally equivalent to

the sphere, thereby completing the solution of the Yamabe problem in the compact

case.

As can be seen from the timeline above, the problem splits into the now more

straightforward cases in which λ(M, g) < 0 and λ(M, g) = 0 and the more involved

case where λ(M, g) > 0. For further detail on the solution in the compact case, see

the survey by Lee and Parker [LP87].

1.2

The Yamabe Problem on Non-Compact
Manifolds

As discussed, the focus of this thesis has been on the Yamabe problem in the case that

the manifold in question is non-compact, where more work remains to be done. Early

examples of the Yamabe problem being posed for non-compact manifolds include

[Yau82] and [Kaz85].
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This non-compact setting demands further assumptions on the manifold as, unlike

in the compact case, there exist counter-examples to the existence of solutions to

the non-compact Yamabe problem. Some such counter-examples are constructed in

[Jin88], [Max05]; we point out here how these examples highlight some ways in which

the non-compact case differs from the compact case.

We will explore the counter-examples due to Jin in [Jin88]. Jin constructs a set of

examples of non-compact manifolds which arise via puncturing a compact manifold

(M0, g0) by the removal of a finite number of distinct points {p1, . . . , pk} ∈ M0 to

define the manifold M := M0 \ {p1, . . . , pk}. We may then construct a complete

metric on M in the conformal class of g0 via some conformal factor which blows up

sufficiently rapidly at the puncture points. Jin is able to show that, for these examples,

if the underlying compact manifold has a Yamabe invariant satisfying λ(M0, g0) < 0,

then there exists no complete metric conformal to g on M which has constant scalar

curvature.

An important point to note from these counter-examples involves the particular

modes by which the Yamabe problem fails to be true. In the case that the target

constant scalar curvature is negative, central to the proof is a removable singularity

result (see [Vér81] and also [Avi82]) which is used to show that any solution of the

Yamabe equation (1.1) on the punctured manifold M must extend continuously to

M0; consequently, the corresponding conformal metric fails to be complete on M . In

the case that the target constant scalar curvature is non-negative, Jin shows that the

Yamabe equation has no positive solution at all. Thus, the example demonstrates the

importance in the non-compact setting of the Yamabe problem of both the solvability

of the Yamabe equation itself as well as the completeness requirement; the latter

obstacle is not present in the compact setting, where completeness is automatic.

The nature of the Yamabe problem with a prescribed singular set as in the above

example has seen significant attention in the literature. The so-called singular Yamabe

problem considers compact manifolds with a prescribed singular set where the solution
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of the Yamabe equation is required to blow up (in the case that this manifold is a

domain in Euclidean space, this is also known as the Loewner-Nirenberg problem).

It has been shown that the existence of a solution to the problem is dependent on the

dimension d of the singular set; in particular, in the negative constant scalar curvature

case, in [LN74], Loewner and Nirenberg proved that a solution exists provided that

d > n−2
2

and that there is no solution if d < n−2
2

(thus explaining the observations

in Jin’s example above). Loewner and Nirenberg also conjectured that no solution

existed in the critical case d = n−2
2

which was shown to be true in [Vér81] and [Avi82].

As for the positive curvature case, the work of Schoen and Yau in [SY88] combined

with the work of Mazzeo and Pacard in [MP96] showed that, in contrast, a solution

exists in this case if and only if d < n−2
2

.

In the compact case, as discussed earlier, it has been well noted that the Yamabe

problem splits on the sign of the Yamabe invariant λ(M, g) into the cases λ(M, g) < 0

and λ(M, g) = 0 which are easier to solve and then the more difficult case that

λ(M, g) > 0. We note again that, in the compact case, there always exists a rep-

resentative from the conformal class of g with scalar curvature of everywhere the

same sign as λ(M, g). In the non-compact case, while it is difficult to make a precise

definition corresponding to “the sign of λ(M, g)”, we can certainly continue to make

assumptions on the sign of the scalar curvature of a given representative from the

conformal class and so we shift to this perspective from here on.

As the negative case was the first case to be solved in the compact setting of the

Yamabe problem, and paved the way for the eventual solution of the problem in the

remaining cases, we are motivated to study the Yamabe problem for non-compact

manifolds of negative curvature type (in a sense we make precise in the following)

which still remains unresolved in full generality.

We do not attempt to address the Yamabe problem on any non-compact manifolds

of positive curvature type in this thesis and so it will not be mentioned further. There,

the analysis is of a different nature, for example note the difference in the condition on
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the dimension of the singular set in the singular Yamabe problem mentioned earlier.

To highlight progress in the area, we direct the reader to the works [CGS89, Mar08,

XZ20] and references therein.

We will be interested in obtaining conformal changes to constant negative scalar

curvature and so, asserting that Sg̃ ≡ −n(n − 1), we get the specific case of the

Yamabe equation (1.1)

− cn∆gu+ Sgu = −n(n− 1)u
n+2
n−2 . (Ya)

From here on in our discussion of the Yamabe problem, we will be focused, in par-

ticular, on finding a solution of the equation (Ya) above for which the corresponding

conformal metric is complete.

A number of important existence results for non-compact manifolds of negative

curvature type have been established in the literature (see Allen, Isenberg, Lee and

Allen [AILA18], Andersson, Chruściel and Friedrich [ACF92], Aviles and McOwen

[AM85, AM88], Chruściel and Pollack [CP08], Finn [Fin99], Jin [Jin88], Loewner

and Nirenberg [LN74], Mazzeo and Pacard [MP99, MP01], Ni [Ni82] and references

therein). We now provide a brief overview of some of the progress made which is of

particular relevance to our discussion in this introduction; we defer a more detailed

review of these important works to the introductions of Chapters 3 and 4.

We first discuss the work of Aviles and McOwen in [AM88]. There, they es-

tablished the existence of complete conformal metrics of constant negative scalar

curvature on arbitrary non-compact manifolds provided that Sg ≤ −ε < 0 outside of

some compact set and either:

1. Sg ≤ 0 globally on M or

2. There exists a negative first eigenvalue for the conformal Laplacian on some

compact domain in M .
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They additionally demonstrated, via their Example 6.1 of [AM88], that there exist

manifolds for which the Yamabe problem cannot be solved that satisfy Sg ≤ −ε < 0

outside of a compact set but not conditions 1 or 2 above. That is to say, it is

insufficient to assume only that Sg ≤ −ε < 0 outside of some compact set to conclude

that there exists a solution to the Yamabe problem.

In addition, they were able to address the case that the scalar curvature is asymp-

totically negative but decaying to zero via additional restrictions on the Ricci curva-

ture. However, this is not directly related to our main goals for this project (detailed

in the next section) and so we do not discuss this result further.

A great deal of the progress made in the non-compact Yamabe problem in this

negative curvature setting has been in the context of manifolds which admit a confor-

mal compactification (for a definition of this notion see Chapter 3, we also refer the

reader to [LeB82, FG85, PR86] for further discussion). A fundamental and pioneering

work in this setting is of Loewner and Nirenberg in [LN74]. Among other topics, the

authors addressed the case that the conformal compactification of the manifolds in

question can be realised as a bounded domain in Euclidean space, in which case their

work provides us with an existence result for the Yamabe problem. The progress

made in this work laid the foundation for further progress in the setting of confor-

mally compactifiable manifolds; in particular, those manifolds which are asymptotic

to the hyperbolic space.

A major milestone in the study of the Yamabe problem on asymptotically hy-

perbolic manifolds is the work [ACF92] of Andersson, Chruściel and Friedrich. In

their paper, the authors were able to provide an existence theorem for a wider class

of asymptotically hyperbolic manifolds where the conformal compactification needn’t

be realised as a domain in Euclidean space. Furthermore, they provided a highly

detailed understanding of the asymptotic behaviour of the conformal factor arising as

the solution of (Ya) in their setting. We additionally highlight the more recent work

of Allen, Isenberg, Lee and Stavrov Allen in [AILA18] which extended the progress
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made above by weakening the restrictions needed on the regularity of the conformal

compactification.

As we have seen, due to the existence of counter-examples, an understanding of

the solvability of the Yamabe problem in the non-compact setting demands some

kind of additional geometric condition on the Riemannian manifold. Furthermore, in

solving the problem we need not only find a solution to the Yamabe equation, but

also to understand the asymptotic behaviour of the solution so as to ensure that the

corresponding conformal metric is complete. Despite these challenges, substantial

progress has been made on the Yamabe problem in the non-compact setting, as de-

tailed above. However, the progress towards a full understanding of the non-compact

Yamabe problem, even in this negative curvature setting, has stalled. Over the last

20–30 years, a satisfying set of results have been achieved for the asymptotically hy-

perbolic case; however, outside of this specific setting, some work has been done (see

for example [ZX04], [Zha05]) but limited progress has been made since the paper

[AM88] of Aviles and McOwen. We hope via our exploration of the problem, we may

be able to uncover some new perspective that may offer a direction for new progress.

1.3

Goals and Motivating Questions of this
DPhil Project

As mentioned previously, our focus will be on the Yamabe problem on non-compact

manifolds of negative curvature type; before discussing our goals and motivating

questions, we make this notion clear.

In light of our discussion regarding the Yamabe invariant in the compact case and

its equivalence to a sign condition on the scalar curvature, our natural starting point is

to consider those manifolds (M, g) which admit a representative g̃ from the conformal
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class of g which is complete and has asymptotically negative scalar curvature. To be

precise, we mean that they satisfy a condition of the type

lim supSg̃ ≤ −ε < 0

for some ε > 0 and where the limit is taken along any divergent sequence in the

manifold. As we have seen in the literature review of the section above, such a

condition is true both in the work of Aviles and McOwen in [AM88] and in the work on

asymptotically hyperbolic manifolds. However, in both cases additional requirements

are needed in order to establish the existence of a solution to the Yamabe problem.

Throughout the document, we simply assume that the metric g itself is a represen-

tative of the conformal class which satisfies the asymptotic negative scalar curvature

condition. The question of when, given an arbitrary metric, the conformal class ad-

mits such a representative satisfying the negativity condition is an interesting one,

but it will not be the main focus of our work. However, we are naturally led to a

result of this type in Section 3.3 where we study the conformal classes of warped

product metrics.

Our goal will be to try and understand what additional requirements are needed

on top of the asymptotic negativity of the scalar curvature in order to solve the

Yamabe problem. As mentioned in the previous sections, Example 6.1 of [AM88]

demonstrates that some additional condition must be required in general. We outline

here some motivating questions we feel would be useful in providing insight into the

nature of this gap.

• Considering a restricted class of manifolds which have a negative scalar curva-

ture end described as a warped product, can we find a condition on the warping

function such that the Yamabe problem can be solved? Conversely, can we find

a corresponding condition for non-existence? To what extent can we expand our

analysis to include metrics which asymptote to reference metrics in this warped

product class? Do these conditions provide any insight into the restrictions on

the existence of a solution in the general case?
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• It is known that a negative first eigenvalue for the conformal Laplacian on some

compact domain can be used to obtain a solution to the Yamabe equation on

the entire manifold. Given the relationship between the first eigenvalue of the

Laplacian and the isoperimetric inequality, can we find a similar type of volume

ratio type condition that implies the existence of a negative first eigenvalue and

so a solution to the Yamabe problem? If we can find such a condition and

corresponding existence result, can we establish a sharp version?

• Can we find a weaker condition on the first eigenvalue? For example, what can

we say if the first eigenvalue of the conformal Laplacian is less than that of the

first eigenvalue of the conformal Laplacian for the hyperbolic space?

• Can we deduce existence for the problem given, in addition to the asymptotic

negativity of the scalar curvature, a bound (possibly pinched) on the Ricci

curvature outside of a compact set?

In the work of this thesis, we tackle the first two points in the list above, with the

first point being our main focus in Chapter 3 and the second point being the focus of

Chapter 4; an overview of our progress on each is given in the next section, however

we briefly expand on the motivation behind these two questions below.

Our first question is motivated by an attempt to address our main goal of under-

standing what additional requirements are needed alongside the asymptotic negativity

of the scalar curvature, but in a restricted setting. Many of the results discussed from

the literature on asymptotically hyperbolic manifolds have an asymptotically warped

product structure and so there is already progress in this direction. Additionally, the

non-existence Example 6.1 of Aviles and McOwen in [AM88] gives an explicit warped

product metric with asymptotic negative scalar curvature but on which we cannot

solve the Yamabe problem. From this perspective, we may reframe our main goal of

understanding what conditions are required on top of the asymptotic negativity of
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the scalar curvature in terms of conditions on the warped product reference metrics

and the corresponding asymptotic decay.

The second question is more open ended than the first and there does not appear

to be much work in the literature focusing on this issue. In particular, the connection

of the negativity of the first eigenvalue of the conformal Laplacian to the solvability

of the Yamabe problem, as demonstrated by Aviles and McOwen in [AM88], begs

the question of what kind of a geometric condition might guarantee the negativity of

the eigenvalue on some compact region. A geometric condition which could establish

a result in this direction may provide further insight into the Yamabe problem for

non-compact manifolds and guide further study.

1.4

A Summary of New Results

We now overview and discuss our main results of the thesis. Our work splits into

two parts corresponding broadly to the two main questions discussed in the previous

section.

1.4.1 The Yamabe Problem on Asymptotically Locally Hy-
perbolic Manifolds

In our first setting, we study those manifolds with an asymptotically warped prod-

uct structure at infinity and which satisfy our asymptotic negativity condition on

the scalar curvature. A particular class of the above type are asymptotically locally

hyperbolic manifolds; these manifolds have received significant attention in the lit-

erature independently of the Yamabe problem, see for example [CH03], [CGNP18]

and references therein. As discussed, significant progress on the Yamabe problem has

been made in this direction via the study of conformal compactifications.
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In our approach, we choose to focus on a warped product structure and intrin-

sic definition of asymptotic hyperbolicity instead of the more standard conformal

compactification approach for two reasons. The first reason is in order to mesh our

discussion more clearly with our goal of understanding the Yamabe problem on the

wider family of asymptotically warped product manifolds. The second reason is to

make as few extra assumptions on top of the asymptotic negativity of the scalar

curvature on the manifold as possible; the conformal compactification approaches al-

ready existing in the literature make additional requirements on the curvature of the

manifold. We will discuss this difference in approach in detail in Chapter 3.

To make things precise, our model spaces will be Riemannian manifolds (M, g)

satisfying the following conditions:

• M is the union of a compact interior region and an exterior region M+ =

R≥0 ×N , with N some compact Riemannian manifold,

• g is asymptotic (in a way made precise in Chapter 3) to a locally hyperbolic

metric g̊ which is assumed to have the form

g̊ = dr2 + f 2
k (r + r0)̊h

for some r0 > 0 where h̊ is a metric on N of constant scalar curvature (n −

1)(n− 2)k for k ∈ {−1, 0, 1} and fk is such that Sg̊ = −n(n− 1).

We refer to such metrics g as asymptotically locally hyperbolic. Given an arbitrary

positive warping function f in place of fk, we then refer to the metric g̊ as a warped

product metric. We provide full details of our definitions, notation and terminology

in Section 3.1.

We will now overview the results of Chapter 3; more detailed discussion of the

results can be found in Section 3.1.3.

Our first theorem is our main result for asymptotically locally hyperbolic mani-

folds. The theorem is the culmination of new existence results and results about the

behaviour of the conformal factor.
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Theorem A. Suppose (M, g) is an asymptotically locally hyperbolic manifold of order

α ∈ (0, n] in the sense of Definition 3.1.1. If the scalar curvature satisfies

Sg ≤ −n(n− 1) + Ce−αr on M (1.2)

for some constant C > 0, then there exists a positive smooth solution u to (Ya) on M

satisfying u ≥ 1 − O(e−αr) if α ∈ (0, n) and u ≥ 1 − O(re−nr) if α = n. Therefore,

there exists a complete conformal metric g̃ such that Sg̃ ≡ −n(n− 1) on M .

In addition, if the scalar curvature satisfies the stronger condition

|Sg + n(n− 1)| ≤ Ce−αr on M, (1.3)

then u = 1 +O(e−αr) if α ∈ (0, n) and u = 1 +O(re−nr) if α = n and u is maximal

in that any solution ũ of (Ya) satisfies ũ ≤ u. Furthermore, if α ∈ (0, n), the

corresponding conformal manifold (M, g̃) is also asymptotically locally hyperbolic of

the same order α.

We will now briefly discuss the ways in which this result contributes to the existing

literature and addresses our main goals of the project.

The major theme of the contribution of Theorem A is the significantly weaker

asymptotic requirements on the curvature of the manifold. In particular, we see that

our result only require conditions on the scalar curvature; this is in contrast to the ex-

isting literature (see [ACF92, AILA18]) where the various conformal compactification

approaches all have in common the higher order decay of all sectional curvatures to a

negative constant. Additionally, we demonstrate that, in order to solve the Yamabe

problem, one need only control the scalar curvature decay from one side (as in (1.2)).

We are also able to make some progress in reproducing similar uniqueness results

as established elsewhere in the literature but in our weaker setting. We establish

an a priori upper bound on the behaviour of the conformal factor at infinity which

allows us to conclude that the solution obtained in Theorem A is maximal. Though
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this represents progress in that direction, a full uniqueness result was not obtainable

within the time constraints of the project.

We recall our main goal for this chapter of understanding what additional require-

ments are necessary to obtain existence for the Yamabe problem in the case that our

manifold is asymptotically of warped product type. In summary, our Theorem A

addresses the specific case that our manifold is asymptotically locally hyperbolic and

obtains existence under weaker requirements than in the existing literature. In partic-

ular, the theorem demonstrates that, in this case, we need only control the behaviour

of the scalar curvature in order to obtain existence. We now turn to the more general

setting of asymptotically warped product manifolds.

We allow, in place of fk in the definition of asymptotically locally hyperbolic

manifolds above, an arbitrary warping function f and allow an arbitrary compact

cross section (N, h). We refer to such manifolds as asymptotically warped product

manifolds. Our work in this area is most clearly split into two goals; firstly, a study of

the conformal classes of the reference warped product metrics and, secondly, a study

of the asymptotic requirements for solvability of the Yamabe problem on metrics

which asymptote to one of these reference metrics.

Before attempting to generalise our approach in Theorem A to the wider class

of asymptotically warped product manifolds, it is important to understand when the

conformal class of the reference warped product metric

g̊f = dr2 + f 2(r)h

admits a representative which is locally hyperbolic. In this case, we may perform a

conformal change and then apply our Theorem A directly. We are thus led to our

next main result of Chapter 3.

Theorem (Theorem 3.3.1). A metric g̊f with a warped product end is conformal to

a metric with a locally hyperbolic end if and only if∫ ∞
0

1

f(s)
ds <∞. (1.4)
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We are, furthermore, able to show that those warped product metrics not satisfy-

ing (1.4) are conformal to a complete metric of finite volume. As these finite volume

metrics are very different in character from the asymptotically locally hyperbolic case,

we focus our efforts of the rest of this chapter in applying our Theorem A to those

asymptotically warped product manifolds whose reference metric has warping factor

satisfying (1.4); evidently, there are a very large class of warped product metrics

satisfying this condition. We contrast this, for example, to Example 6.2 of [AM88]

which proves existence for exactly warped product manifolds under the much stronger

conditions that f is strictly increasing and

lim
r→∞

f(r) = lim
r→∞

f ′(r)

f(r)
= lim

r→∞

f ′′(r)

f(r)
= +∞.

For our final main result of this chapter, we study the particular conformal factor

obtained in the previous theorem above. We will use this conformal factor to provide

conditions for which a solution to the Yamabe equation exists on those manifolds

whose metrics asymptote to one of the reference warped product metrics. In particu-

lar, defining the quantity H(z) :=
∫∞
z

1
f
, we consider asymptotically warped product

metrics

gf = g̊f + εzadzdθ
a + εabdθ

adθb

on some exterior region R≥0 ×N , with perturbation coefficients satisfying

εab = O
(
f 2Hα

)
,

∂zεab = O
((
f 3H + f ′f + fH−1

)
Hα
)
,

∂cεab = O
(
f 2Hα

)
,

εza = O (fHα) ,

∂zεza = O
((
f 2H + f ′ +H−1

)
Hα
)
,

∂cεza = O (fHα)

(1.5)

and warping functions satisfying∣∣∣∣ 1

fH

∣∣∣∣+

∣∣∣∣f ′f
∣∣∣∣ ≤ C and

∣∣∣∣f ′′f
∣∣∣∣ ≤ CH−α. (1.6)

We are than able to apply our Theorem A to prove:
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Theorem (Theorem 3.3.9). Let (M, gf ) be a manifold with an asymptotically warped

product end with perturbation coefficients satisfying (1.5) for some α ∈ (0, n). Suppose

additionally that the warping function satisfies (1.4) and (1.6).

If the scalar curvature satisfies

Sgf ≤ Sg̊f + C
Hα−2

f 2
on M+

for some constant C > 0, then there exists a positive smooth solution uf of the Yamabe

equation for gf on M satisfying

lim inf
r→∞

(
uf −

1

fH

)
≥ 0

and the corresponding conformal metric g̃ is complete and has constant scalar curva-

ture Sg̃ ≡ −n(n− 1) on M .

In addition, if the scalar curvature satisfies the stronger condition

|Sgf − Sg̊f | ≤ C
Hα−2

f 2
on M+,

then ∣∣∣∣uf − 1

fH

∣∣∣∣ −→ 0 as r →∞

and uf is maximal in that any solution ũf of the Yamabe equation for gf on M satisfies

ũf ≤ uf . Furthermore, the corresponding conformal manifold (M, g̃) is asymptotically

locally hyperbolic of order α.

This theorem represents the culmination of our work on asymptotically warped

product manifolds. We have been able to produce a number of additional constraints

on the warping function and asymptotic behaviour in order to guarantee the exis-

tence of a solution to the Yamabe equation. As we have discussed in the case of an

asymptotically locally hyperbolic manifold, we are able to significantly weaken the re-

quirements for existence of a solution to the Yamabe problem, focusing on conditions

only involving the scalar curvature.
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1.4.2 Volume Ratio Conditions

In this sub-section we provide a brief overview of our main results of Chapter 4. Once

again, a more detailed discussion may be found throughout the introduction of the

chapter itself in Section 4.1.

We recall our second main question which motivates our work in Chapter 4. We

ask what conditions, in addition to the asymptotic negativity of the scalar curvature,

are required to deduce the existence of some compact domain on which the first

eigenvalue of the conformal Laplacian is negative. As discussed, if we can find such a

domain with negative first eigenvalue, we may then argue the existence of a solution

to the Yamabe problem.

To this end, we explore possible geometric conditions which may be natural to

consider in order to establish the existence of such a negative eigenvalue. When con-

sidering the first eigenvalue for the Laplacian, it has been well noted in the literature

that an isoperimetric inequality is equivalent to a lower bound on the first Dirichlet

eigenvalue for the Laplacian (see for example [Oss78]). We are consequently lead to

consider volume ratio type conditions which are similar in feeling to conditions one

may see when considering isoperimetry. Our main existence result of this chapter is

the following:

Theorem C. Let (M, g) be a Riemannian manifold and suppose there exist two open

sets Ω1 ⊂ Ω2 with C1 boundary which satisfy, for some R > 0, that

dg(x, ∂Ω2) = R for each x ∈ ∂Ω1,

that
V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ sinh2

(√
n(n− 2)

2
R

)
and that the scalar curvature satisfies Sg ≤ −n(n− 1) on Ω2. Suppose, furthermore,

that Sg ≤ −ε < 0 everywhere outside of some compact set for some constant ε > 0.

Then there exists a complete metric g̃ conformal to g on M with constant scalar

curvature −n(n− 1).
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We highlight that the above existence theorem does not make any assumptions

on the asymptotic structure of the manifold, in contrast to the results of the previous

chapter.

As discussed, we arrive at our main existence result by a study of the role of

these volume ratio type conditions in estimating the first eigenvalue of the conformal

Laplacian. In particular, we have our second main theorem of the chapter:

Theorem B. Let (M, g) be a Riemannian manifold and suppose there exist two open

sets Ω1 ⊂ Ω2 with C1 boundary which satisfy the conditions of the previous theorem.

Then, the conformal Laplacian −cn∆g + Sg for (M, g) has a negative first eigenvalue

on Ω2.

The goal of the remainder of our work in this chapter is to establish a concrete set

of questions and supporting examples to motivate further work into this alternative

perspective which does not appear to have received much attention in the literature

thus far. We achieve this through the study of a class of multiply warped product

manifolds which generalise the warped product manifolds discussed in the previous

chapter.

Through this study, which can be found in Section 4.3, we provide a large class of

manifolds to which we can apply our existence theorem, thus demonstrating that the

volume ratio condition is not vacuous. Furthermore, this set of examples will contain

manifolds which fall outside the scope of the existence results of Chapter 3.

This study of multiply warped products also yields a class of examples which

demonstrate the fact that the volume ratio condition

V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ sinh2

(√
n(n− 2)

2
R

)
required for the proof of Theorem B is actually sharp for the existence of a negative

first eigenvalue for the conformal Laplacian on Ω2 (which was unexpected to the

author, see Remark 4.3.4). More detail on the precise nature of this sharpness will

be discussed in Chapter 4.
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In summary, we are able to find a geometric condition which provides us with

the desired negativity of the first eigenvalue and, in conjunction with our natural

asymptotic negative scalar curvature condition, shows the existence of solutions to

the Yamabe problem. This result is quite different to much of the existing literature on

the non-compact Yamabe problem in simultaneously lacking any global requirements

on (M, g) whilst making no asymptotic restrictions other than on the scalar curvature

itself. We have provided an exploratory set of examples and questions which we hope

will motivate further attention in the study of these volume ratio type conditions and

their implications for the Yamabe problem on non-compact manifolds of negative

curvature type.

1.5

Structure of the Thesis

We overview the structure of this thesis for the convenience of the reader. Chapter

2 will review the technical details of work from the literature that is used in our

approach. We split our own work into two main chapters as already mentioned;

Chapter 3 will cover our work and new results in the study of asymptotically locally

hyperbolic manifolds and Chapter 4 will cover our new approach to the Yamabe

problem via a study of volume ratio conditions. In Chapter 5 we conclude our work by

overviewing some further questions we feel are interesting or important but which fell

outside the scope of this DPhil project. Finally, we include a number of appendices

containing further literature review or additional work supplementary to the main

body of the thesis.
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2
An Existence Theorem of Aviles
and McOwen

In this chapter, we review a particular part of the work of Aviles and McOwen in

[AM88] which is of importance in both of our main Chapters 3 and 4. In particular,

we will detail the proof of the following theorem:

Theorem (Aviles, McOwen [AM88]). If (M, g) is a complete Riemannian manifold

with scalar curvature Sg satisfying

Sg(x) ≤ −ε < 0 on M, (2.1)

then there is a complete conformal metric g̃ with Sg̃ ≡ −1.

Of particular importance in our work is the sub- and super-solution method that

Aviles and McOwen employ to establish, from the existence of a suitable sub-solution,

the existence of a smooth, positive solution of the Yamabe equation on a non-compact

manifold. For the convenience of the reader, we summarise their argument here:

1. Firstly, one establishes the existence of a global sub- solution u− ∈ H1(M).

2. One reduces to solving a problem on a bounded domain by considering an

exhaustion M =
⋃∞
k=1 Ωk, where each Ωk is bounded and Ωk ⊂ Ωk+1.
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3. One finds a weak solution uk > 0 of (Ya) on each compact domain Ωk using the

method of sub- and super-solutions.

4. One uses elliptic regularity theory to show that each uk ∈ C∞.

5. One establishes an a priori uniform interior supnorm bound for solutions of (Ya)

on compact domains.

6. Fixing a compact domain Ωi on which we would like to gain convergence, one

considers a sequence of solutions above uk = ui,k = uk|Ωi and uses the a priori

bound to get uniform control on the supnorms on the larger domain Ωi+2 (and,

consequently, uniform Lp control).

7. One then uses Lp estimates for elliptic equations to obtain W 2,p control on Ωi+1.

8. One can then use Sobolev embeddings, choosing p > n, to obtain C1 control

on Ωi+1. Then, one can use Schauder interior estimates and the Arzela-Ascoli

theorem to obtain a C2 convergent subsequence ui,k → ui, where ui solves the

PDE on Ωi.

9. One now considers a diagonal sequence ui,i and defines

u(x) := lim
i

ui,i(x) = lim
i

ui|Ωi(x) (2.2)

which, using the C2 convergence, provides a solution to (Ya) on all of M .

10. Finally, one uses a lower bound on u to deduce completeness of the correspond-

ing g̃.

We note that the role of the global non-positivity assumption in Aviles and

McOwen’s theorem is in obtaining a sub-solution with which to begin the above

argument. Much of the nature of the existence parts of our work in this thesis will

involve finding weaker conditions under which we can still find a suitable sub-solution

with which to begin the argument above.
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For the sake of the completeness of this thesis, in Sections 2.1 and 2.2 we will

carefully review the details and provide proofs of the techniques used in the argument

of Aviles and McOwen outlined above. However, these techniques are, by now, quite

standard in the literature and so the reader may safely skip the remainder of this

chapter and proceed to Chapter 3.

2.1

The Monotone Iteration Scheme

In this section we provide details of the monotone iteration scheme used in the sub-

and super-solution approach of Aviles and McOwen discussed in the next section. In

particular, we will prove:

Proposition 2.1.1. Let Ω be a bounded open subset of M where (M, g) is some

Riemannian manifold. Suppose there exist u−, u+ ∈ H1(Ω) with u− ≤ u+ that are

weak sub- and super- solutions resp. to the PDE problem{
∆gu = f(u, x) in Ω

u = h on ∂Ω in the trace sense
(2.3)

where h ∈ H1(Ω) and f ∈ C1(R×Ω) satisfying |fz| < C for some constant C. Then

there exists u ∈ H1(Ω) solving (2.3) satisfying u− ≤ u ≤ u+.

We have chosen to state the proposition with fairly restrictive properties on f

and limited additional conclusions regarding the solution u in order to encapsulate

the fundamental idea. More general equations can fit into these constraints with

adjustments made to the problem itself (see approach in part 1 of the proof of

Theorem 2.2.1) but, without somehow being able to bound the derivative of f , the

argument below fails.
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Proof. Define F by

F (z, x) := f(z, x)− Cz (2.4)

so that F satisfies Fz < 0. Problem (2.3) is then equivalent to{
∆gu− Cu = F (u, x) in Ω ,

u = h on ∂Ω .
(2.5)

Now consider the operator T : L2(Ω)→ H1(Ω) defined by Tu = (∆g−C)−1
h (F (u, x))

where we define (∆g − C)−1
h (ϕ) for ϕ ∈ L2 to be the unique H1(Ω) solution of{

∆gw − Cw = ϕ in Ω ,

w = h on ∂Ω .
(2.6)

A fixed point Tu = u implies that u is a solution of our original equation.

We show that T is monotone. For u1 ≤ u2, we obtain

(∆g − C)(Tu2 − Tu1) = F (u2)− F (u1) ≤ 0. (2.7)

We may then apply the weak maximum principle [GT01, Theorem 8.1 p.179], noting

that C > 0 implies the condition (8.8) of [GT01] in our particular case, to conclude

that

Tu2 ≥ Tu1 (2.8)

and so T is monotone.

We now construct the desired fixed point u as the limit of the sequence uk+1 := Tuk

with u0 := u−.

We first establish that the sequence uk is monotone increasing. We have already

shown that T is monotone and so, by induction, we have that if uk ≥ uk−1 then

uk+1 = Tuk ≥ Tuk−1 = uk. Thus, we need only show that u− = u0 ≤ u1 to conclude

that the sequence is monotone increasing. To see this, note that u− weakly satisfies

∆gu− − Cu− ≥ f(u−, x)− Cu− = F (u−) . (2.9)
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Using this, we see that the difference u1 − u− weakly satisfies

(∆g − C)(u1 − u−) = (∆g − C)(∆g − C)−1
h (F (u−))− (∆g − C)u−

= F (u−)− (∆g − C)u−

≤ F (u−)− F (u−) = 0

and so, again by the weak maximum principle, we obtain that

u1 − u− ≥ inf
∂Ω

(u1 − u−) ≥ 0 (2.10)

where the final inequality comes from the fact that u1 = h on ∂Ω and u− ≤ h on ∂Ω.

Therefore we have shown that the sequence uk is monotone increasing.

We now show that the sequence is bounded above by u+. We assume inductively

that uk−1 ≤ u+, noting that by assumption we have u0 = u− ≤ u+. Taking a similar

approach to the above we have that the difference u+ − uk satisfies

(∆g − C)(u+ − uk) = (∆g − C)u+ − (∆g − C)(∆g − C)−1
h (F (uk−1))

= (∆g − C)u+ − F (uk−1)

≤ F (u+)− F (uk−1) ≤ 0

where the last inequality comes from the fact that F is non-increasing. Then we

conclude that u+ ≥ uk in the same way as above.

We have now shown

u0 ≤ u1 ≤ ... ≤ u+ (2.11)

and so we can define the pointwise limit

u(x) := lim
k
uk(x) . (2.12)

Certainly u− ≤ u ≤ u+. We improve our pointwise convergence by using the fact that

|u − uk|2 ≤ 2 max(|u−|2, |u+|2); the RHS of the latter is integrable so we can apply

the dominated convergence theorem to conclude that uk → u in L2. As T : L2(Ω)→

H1(Ω) is continuous, Tuk → Tu in H1. On the other hand, Tuk = uk+1 → u in L2.
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We conclude that Tu = u as required and so obtain a solution u ∈ H1(Ω) of our

problem satisfying u− ≤ u ≤ u+.

2.2

Aviles and McOwen’s Theorem for
Existence on Non-Compact Manifolds of
Negative Scalar Curvature

In this section we provide a detailed review of the sub- and super-solution argument

of Aviles and McOwen in [AM88] as their approach is of special relevance to our work.

We recall that we will present a detailed proof of the following theorem which

solves the Yamabe problem in the most restrictive setting of [AM88] (a small simpli-

fication of Theorem A in [AM88]) which we feel demonstrates with most clarity the

fundamentals of their argument.

Theorem 2.2.1 (Aviles, McOwen [AM88]). If (M, g) is a complete Riemannian

manifold with scalar curvature Sg satisfying

Sg(x) ≤ −ε < 0 on M, (2.13)

then there is a complete conformal metric g̃ with Sg̃ ≡ −1.

To reiterate, our goal is to find a smooth solution u > 0 of

cn∆gu = u
n+2
n−2 + Sgu (2.14)

on all of M such that g̃ = u
4

n−2 g is complete. As discussed in the overview at the

start of this chapter, we will use the iteration scheme of the previous section with a

sub-solution of the equation above to solve the equation on compact domains which

form an exhaustion of M . The remaining work is in showing convergence to a solution

on the entire manifold.
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Proof.

1 Existence of a positive weak solution on some bounded Ω ⊂M .

We apply the approach of sub- and super-solutions proved in the previous Section

2.1. To apply the result, we need to adjust our f to satisfy the bounded derivative

requirement and to find suitable sub- and super-solutions and to decide an appropriate

boundary condition.

For our f(z, x) = C[z
n+2
n−2 + Sg(x)z] it is clear that we can only hope for the

derivative in z to be bounded if we restrict |z| to be bounded (note that Sg is smooth

thus bounded on Ω meaning the second term is unproblematic). In other words, we

would like to ensure that the solution we would obtain would be bounded in absolute

value, this would certainly be the case if we can find bounded u− and u+. If we can

find such sub- and super-solutions, we can then cut-off f in the z variable and solve

the equivalent problem via the proposition above directly.

To obtain the sub- and super-solutions we desire, we analyse directly the RHS

f(u, x). In particular, utilising the fact that −m ≤ Sg(x) ≤ −ε on Ω (using in the

first inequality that Sg is smooth and in the second our main assumption) we get

C[u
n+2
n−2 −mu] ≤ f(u, x) ≤ C[u

n+2
n−2 − εu] . (2.15)

Thus, we can choose a constant u− (u+) with |u−| sufficiently small (resp. large)

so that 0 ≥ f(u−, x) (resp. f(u+, x) ≥ 0) with u− < u+ from which we find∫
Ω

∇u− · ∇v = 0 ≤
∫

Ω

f(u−, x)v (2.16)

(and vice versa). Picking h(x) = u− as our boundary condition we conclude that u−,

u+ are valid sub and super solutions and, of course, satisfy the boundedness condi-

tions we required to cut-off f . Thus we obtain a solution to the problem u− ≤ u ≤ u+

with u ∈ H1(Ω). In the above it is clear that we are free to choose u− > 0 and so we

have, furthermore, that u is positive.
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2 Bootstrapping with elliptic regularity to deduce smoothness of u

We use standard elliptic regularity theory on Ω to conclude higher regularity on

u. In particular, we use Theorem 8.12 of [GT01, p. 186] with k = 1, noting that

f(z, x) ∈ C∞(R×M) provided z > 0 so that, in particular, f(u, ·) ∈ H1(Ω) as u > 0

and u is bounded. Thus, Theorem 8.10 gives us that u ∈ H3(Ω) and we can repeat

the above inductively with k = 3, 5, ... to obtain u ∈ C∞(Ω).

3 Uniform boundedness for an approximating sequence

Let {Ωk}∞k=1 be an exhaustion of M (that is, ∪∞k=1Ωk = M) with Ωk open, bounded,

with C2 boundary and Ωk ⊂ Ωk+1. Step 1 provides, on each Ωk, a positive smooth

solution uk to (Ya). Our goal will be to show that, as k → ∞, the sequence uk

converges to some smooth u locally in C2. This u will be our desired solution to (Ya)

on all of M . We note that the upper bounds provided by construction in 1 for

each uk may deteriorate as k →∞. The following provides the required local uniform

boundedness of uk.

Proposition 2.2.2. Let (M, g) be a Riemannian manifold and Ω ⊂M some bounded

domain. For every compact X ⊂ Ω, there a exists a constant C0 such that for any

non-negative weak solution u ∈ H1(Ω) of ∆gu ≥ uα + Sgu in Ω for α > 1,

sup
X

u ≤ C0 . (2.17)

Proof. Let {BR(yi)}mi=1 be a finite cover of X, where we choose R > 0 sufficiently

small so that each B2R(yi) is contained in a chart. A key result will be the de

Giorgi-Moser-Nash Theorem (see, for example, Theorem 8.17 of [GT01, p. 194]). By

smoothness of Sg, we have that ∆gu ≥ −
(
supB2R(yi)

Sg
)
u on B2R(yi) and so the de

Giorgi-Moser-Nash Theorem gives us that,

sup
X

u ≤ sup
BR(yi)

u ≤ CR−n/p‖u‖Lp(B2R(yi)) (2.18)
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where the first inequality is true for at least one yi, p > 1 and C depends only on n,

p, supB2R(yi)
Sg and the ellipticity constants for ∆g in the corresponding local charts.

We would now like to use that u weakly satisfies ∆gu ≥ uα + Sgu. We note that,

for ϕ ∈ C∞0 (Ω) and ϕ ≡ 1 on B2R(yi), ϕ ≥ 0,

‖u‖pLp(B2R(yi))
≤
∫

Ω

upϕq (2.19)

and so we test against up−αϕq for some q ≥ 0 to be fixed to obtain,∫
Ω

upϕq ≤ −
∫

Ω

∇u · ∇(up−αϕq) +M

∫
Ω

up−α+1ϕq =: A (2.20)

where we used that Sg(x) ≥ −M once again.

In the computations that follow, p could be taken as any value satisfying p ≥ α+1.

For ease of exposition we take p = α + 1. Expanding the term ∇(up−αϕq) we obtain

A = −q
∫

Ω

uϕq−1∇u · ∇ϕ−
∫

Ω

ϕq|∇u|2 +M

∫
Ω

u2ϕq . (2.21)

By the Cauchy-Schwarz inequality we can bound the first term on the RHS of (2.21)

as follows

− q
∫

Ω

uϕq−1∇u · ∇ϕ ≤
∫

Ω

ϕq|∇u|2 +
q2

4

∫
Ω

uϕq−2|∇ϕ|2 . (2.22)

Hence

A ≤ q2

4

∫
Ω

u2ϕq−2|∇ϕ|2 +M

∫
Ω

u2ϕq . (2.23)

We next use Hölder’s inequality to absorb the remaining terms containing u into

the LHS of (2.20). We choose q = 2(α+1)
α−1

so that

(u2ϕq−2)
q
q−2 = u

2q
q−2ϕq = upϕq . (2.24)

We hence have

A ≤
(∫

Ω

upϕq
) q−2

q

[
q2

4

(∫
Ω

|∇ϕ|q
) 2

q

+M

(∫
Ω

ϕq
) 2

q

]
. (2.25)
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Putting back into (2.20), we get∫
Ω

upϕq ≤

(
q2

4

(∫
Ω

|∇ϕ|q
) 2

q

+M

(∫
Ω

ϕq
) 2

q

) q
2

=: C1 . (2.26)

This, together with (2.18) and (2.19) gives

sup
X

u ≤ CR−n/p‖u‖Lp(B2R(yi)) ≤ CR−
n
p

(∫
Ω

upϕq
) 1

p

≤ CC
1
p

1 R
−n
p =: C0

as required.

4 Take a sequence of solutions on an exhaustion of M

We restrict to each Ωi and consider the solutions uk restricted to Ωi for k ≥ i+ 3.

By Proposition 2.2.2 we have

sup
k
‖uk‖L∞(Ωi+2) ≤ Ci , (2.27)

where we have taken X = Ωi+2.

Note that our sequence of solutions uk are all smooth on Ωi+2 and solve (Ya) with

K ≡ −1, which can be written in the form

(Luk =)cn∆guk − Sg(x)uk = u
n+2
n−2

k (= fk) . (2.28)

As the uk are smooth, uniformly bounded and x 7→ x
n+2
n−2 is C1, the fk are uniformly

bounded in Lp for any p. Thus we can apply Theorem 9.11 of [GT01] (the coefficients

of L more than satisfy the requirements) to obtain

‖uk‖W 2,p(Ωi+1) ≤ C(‖uk‖Lp(Ωi+2) + ‖fk‖Lp(Ωi+2)) ≤ Ci . (2.29)

Furthermore, taking p > n, Sobolev embeddings allow us to conclude that ‖uk‖C1,α(Ωi+1) ≤

Ci for some α ∈ (0, 1).

Using that ‖fk‖C0,α(Ωi+1) ≤ ‖fk‖C1(Ωi+1) ≤ Ci (as uk are uniformly C1 bounded),

now we can apply the Schauder interior estimate of Theorem 6.2 in [GT01] to obtain

‖uk‖C2,α(Ωi) ≤ C(‖uk‖C0,α(Ωi+1) + ‖fk‖C0,α(Ωi+1)) ≤ Ci . (2.30)
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Now by the Arzela-Ascoli theorem we have shown that, on any Ωi, we can take a C2

convergent subsequence of the uk (whose limit necessarily solves (Ya) there). We now

construct our solution via a diagonal argument. In particular, we define our global

solution u successively on our exhaustion as follows: First we take a subsequence ukj

as above on Ω1, writing

u1
j := ukj

C2(Ω1)−−−−→ u1 =: u|Ω1

and continue inductively taking more subsequences so that

uij := ui−1
kj

C2(Ωi)−−−−→ ui =: u|Ωi

noting that ui and ui−1 agree on Ωi−1 and so u is well defined. We then define

u(x) := lim
i
uii(x) (2.31)

we can eventually use the C2 convergence obtained for each Ωi to deduce that the

above limit is well defined anywhere in M and that u ∈ C2(M) solves (Ya) on all

of M . As uk ≥ u− > 0, as shown in 1 , the limit u is strictly positive via the C2

convergence.

5 Completeness of g̃

To see, finally, that g̃ = u
4

n−2 g ≥ u
4

n−2

− g = Cg is complete, we note that the length

of a curve γ satisfies Lg̃(γ) ≥ C ′Lg(γ). Thus, for any divergent γ, completeness of g

implies γ has infinite length with respect to g and so also with respect to g̃, thus g̃ is

complete.

To conclude this section, we remark here that the above argument depended on

the strict negativity condition (2.13) only in parts 1 , in determining the existence

of a subsolution, and 5 , in establishing completeness of the resulting g̃. We will

see in the remaining sections of this document that these two goals will be the main

obstacles in weakening the heavy restrictions required for existence theorem above.
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3
The Yamabe Problem on
Asymptotically Hyperbolic
Manifolds

In this chapter, we study solvability and uniqueness for the Yamabe problem on

asymptotically hyperbolic manifolds and then go on to relate this model case to

the wider question of solvability on manifolds which have an asymptotically warped

product end. We recall that our goal in this section is to try and understand when we

can solve the Yamabe problem without any assumptions on the metric in an arbitrary

interior region and with the scalar curvature being negative in the exterior region;

in this chapter we add the simplifying assumption that the exterior region can be

expressed in a warped product structure.

In Section 3.1 we provide an introduction of the particular model spaces we will

use, give a review of relevant literature and overview our new results and their im-

plications regarding the wider goals and questions of the thesis. In Section 3.2, we

obtain new existence results in the well studied asymptotically locally hyperbolic set-

ting, in particular we weaken the curvature requirements of the asymptotically locally

hyperbolic end to involve only the scalar curvature. Finally, in Section 3.3, we pro-

vide supplementary results relating a wider class of asymptotically warped product

manifolds satisfying a particular criterion on the warping factor to the asymptotically

locally hyperbolic setting.
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3.1

Introduction

We recall from Chapter 1 that we consider complete non-compact manifolds (M, g)

which may be separated into a compact interior region M0 and an exterior region M+

and that we will not make any assumptions about the behaviour of g on M0. Our

goal is to find a conformal metric to g which is complete and has constant negative

scalar curvature on all of M . As discussed in the introduction of this thesis, we make

the natural additional assumption that the scalar curvature Sg satisfies a negativity

condition of the type

lim supSg ≤ −ε < 0

for some ε > 0 in the exterior region M+.

In this chapter, we aim to provide some insight into the Yamabe problem in

the setting above with some simplifying assumptions on the structure of M+. In

particular, we suppose that M+ can be written as the product manifold R≥0 × N

where N is some compact manifold. Additionally, we consider those metrics which

are asymptotic to a warped product of the radial factor above and some fixed metric

h̊ on N . We consider various such metrics throughout the chapter and make their

definitions precise in due course.

We note here that we may choose, without loss of generality, that the metric h̊ has

constant scalar curvature on N ; this is a consequence of the already mentioned fact

that the Yamabe problem has been solved in the affirmative for any compact Rieman-

nian manifold (N, h̊) and so we may always take a representative in the conformal

class of (M+, g) which has a constant scalar curvature cross-section (N, h̊).

To summarise, on a given non-compact Riemannian manifold (M, g) which has

an exterior region on which the metric is asymptotic to a warped product metric, we

would like to find a complete metric g̃ conformal to g with constant negative scalar
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curvature. If we write the metric as g̃ = u
4

n−2 g for some smooth function u > 0, then

u must satisfy the Yamabe equation

−cn∆gu+ Sgu = −n(n− 1)u
n+2
n−2 on M. (Ya)

Our goal in making the above simplifying assumptions is to first try and find some

condition on the warping function of the asymptotically warped product end which

will allow us to conclude existence of a solution to the Yamabe problem. We note

that, as we have seen in the discussion regarding Example 6.1 of [AM88], the asymp-

totically negative scalar curvature alone is insufficient to conclude that a solution to

the Yamabe problem exists. Once we have found such an additional condition on the

warping function, we can then hope that a study of this condition may yield some

further insight into the Yamabe problem in a wider setting.

Our explorations in this setting lead us to consider the particular class of such

warped product manifolds which are asymptotically locally hyperbolic. The Yamabe

problem on asymptotically hyperbolic manifolds is well studied in the literature as

discussed in Chapter 1; we review relevant details of the significant progress already

made later in the introduction. We highlight here that our goal above leads us to

diverge from the definitions of asymptotic local hyperbolicity found in the literature.

In particular, we avoid requiring decay of the full curvature tensor to −1 and rely

only on a negativity condition on the scalar curvature.

In Section 3.1.1, we define our notion of asymptotically locally hyperbolic metrics

and make clear the relevant notation and terminology. In addition, Section 3.1.1 also

provides a comparison of the conformally compact models used in the literature for

asymptotically hyperbolic manifolds with our own weaker definition. We then provide

a literature review of the existing progress on the problem in various related settings

in Section 3.1.2. Finally, we conclude the introductory section with an overview of

our new results in Section 3.1.3 and discuss their place in the literature.
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3.1.1 Definition of Asymptotic (Local) Hyperbolicity

We will consider manifolds which may be decomposed as a unionM = M0∪M+, where

M0 is some compact interior region, M+ is a non-compact exterior region and both

parts are disjoint apart form their common boundary. We assume further that we may

express M+ = R≥0×N where N is some (n− 1)-dimensional compact manifold. On

the end R≥0×N , we denote by r a coordinate on the R≥0 fibre. Additionally, we denote

the coordinates on any local (angular) chart on N with a θa, where a = 1, . . . , n− 1,

and we use a, b, c, . . . to index angular coordinates. When referring to the full set of

coordinates on M+ we use the notation x1 = θ1, . . . , xn−1 = θn−1, xn = r and we use

i, j, k, . . . to index over all coordinates.

We define a reference locally hyperbolic metric g̊ on the exterior region M+ to be

g̊ = dr2 + f 2
k (r + r0)̊h (3.1)

for some r0 > 0 where h̊ is a metric on N of constant scalar curvature (n− 1)(n− 2)k

for k ∈ {−1, 0, 1} and

fk(r) =


sinh(r) k = 1,

er k = 0,

cosh(r) k = −1.

In particular, when k = 1 and N = Sn−1 in the above, one recovers the standard

hyperbolic metric from g̊.

Note that the scalar curvature of a warped product metric like g̊ may be computed

via the formula

Sg̊ = −2(n− 1)
f ′′k
fk
− (n− 1)(n− 2)

(
f ′k
fk

)2

+
Sh̊
f 2
k

.

From this we may readily compute that Sg̊ ≡ −n(n − 1) for each k in the above

definition.

For the next definition below, we choose a finite set of preferred charts Ui covering

N , each with a preferred choice of local coordinates {θ1, . . . , θn−1}. We extend these

charts to M+ by defining Vi = R≥0×Ui with coordinates {r, θ1, . . . , θn−1} and fix them

35



from hereon. For a function ϕ on the end R≥0×N we use the notation ϕ = Ok(e−αr)

to indicate that ϕ and all of its first k derivatives in the coordinates defined above

decay as e−αr, that is there exists a constant C > 0 such that ϕ satisfies

|ϕ|+ |∂βϕ| ≤ Ce−αr

where β indicates any multi-index with |β| ≤ k.

We may now state our definition of asymptotically locally hyperbolic manifolds

which is in line with other definitions in the literature (for example, see [CH03]); we

will highlight important comparisons between the setting we use and those seen in

the literature later in this section.

Definition 3.1.1 (Asymptotically locally hyperbolic). We say a Riemannian mani-

fold (M, g) is asymptotically locally hyperbolic of order α for some α > 0 if we can

write M = M0 ∪ (R≥0 ×N) and we can write the metric g on R≥0 ×N as

grr = g̊rr = 1 (3.2)

gab = g̊ab +O1(e−(α−2)r) (3.3)

gra = O1(e−(α−1)r) (3.4)

where g̊ is a reference locally hyperbolic metric defined in (3.1). If (N, h̊) is the round

sphere then we drop the word locally and simply say that g is asymptotically hyperbolic.

It is clear that if (M, g) is asymptotically locally hyperbolic of order α then it is

also asymptotically locally hyperbolic of order α′ for any 0 < α′ < α.

We comment here that one interpretation of the above asymptotic conditions is as

imposing a type of “asymptotic orthogonality”. In particular, considering the frame

on the exterior region M+ defined by {∂r, e−r∂1, ..., e
−r∂n−1} which is, in a sense,

“asymptotically of unit size” with respect to the reference metric g̊ in each direction,

the conditions (3.2)–(3.4) ensure that if {∂r, e−r∂1, ..., e
−r∂n−1} are orthogonal with

respect to g̊ then they “remain” orthogonal with respect to the perturbed metric g

up to an error term of size O(e−αr).
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In the remainder of this document, we will make regular use of the coordinate

function r corresponding to the R≥0 fibre of the exterior region M+. We note that

the particular choice of r is not unique, in that the reference metric g̊ defined above

may be expressed in the form (3.1) for arbitrarily many choices of coordinate function

r via diffeomorphism of M+ or by an altogether different choice of splitting of M into

the interior and exterior regions M0 and M+. To avoid this frustration, whenever we

speak of an asymptotically locally hyperbolic manifold as defined above, we implicitly

assume that there is a pre-chosen r.

Before we compare our definition with those found in the literature, we provide

the following computational lemma establishing the corresponding decay of the metric

inverse and Christoffel symbols which will be useful to us later in this chapter.

Lemma 3.1.2. Suppose (M, g) is an asymptotically locally hyperbolic manifold of

order α. Then,

grr = 1 +O1(e−2αr)

gra = O1(e−(α+1)r)

gab = g̊ab +O1(e−(α+2)r)

and

Γrrr = O
(
e−αr

)
,

Γarr = O
(
e−(α+1)r

)
,

Γrar = O
(
e−(α−1)r

)
,

Γabr = Γ̊abr +O
(
e−αr

)
,

Γrab = Γ̊rab +O
(
e−(α−2)r

)
,

Γabc = Γ̊abc +O
(
e−αr

)
,

where we use the notation Γ̊ to denote the Christoffel symbols of the reference locally

hyperbolic metric g̊ which satisfy

Γ̊rab = O
(
e2r
)
, Γ̊abr = O (1) , Γ̊abc = O (1) .

Proof. As h̊ is positive definite, there exists a non-singular B such that h̊ = BTB and

so we may write g̊ = ATA where
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
1

fk(r)B

0

0
A = .

We may then write g = AT (I + ε)A where
0

O1(e−αr)

O1(e−αr)

O1(e−αr)
ε = .

Consequently, we may write

g−1 = A−1
(
I + ε)−1(A−1)T = A−1(I − ε+O(ε2)

)
(A−1)T

= g̊−1 − A−1ε(A−1)T + A−1O(ε2)(A−1)T

from which the decay of the inverse components follows. Having established the decay

of the inverse, the decay of the Christofell symbols can be computed directly.

We now relate our definition above to definitions of asymptotically locally hyper-

bolic manifolds found in the literature, for example in [CH03]. In the definition found

there, the manifold M is defined in an equivalent way with a corresponding reference

metric on the exterior region defined as

g̊ =
dx2

(x+ x0)2 + k
+ (x+ x0)2̊h

where k ∈ {−1, 0, 1} corresponds to the sign of the constant scalar curvature metric

h̊ and we use x to denote their alternative coordinate on R≥0. The equivalence of the

two definitions remains only to be seen in the change between the ‘radial’ coordinates

r and x. We define x = fk(r + r0)− x0 so that dx = f ′k(r + r0)dr and we obtain

g̊ =
(f ′k(r + r0))2

f 2
k (r + r0) + k

dr2 + f 2
k (r + r0)̊h.

For the two definitions to agree, we require that (f ′k(r))
2 = f 2

k (r) + k, the solutions

of which correspond directly to the fk in (3.1).

38



Elsewhere in the literature, asymptotically hyperbolic manifolds are often defined

in terms of a sufficiently regular conformal compactification of the metric, often C1,1

or better. In particular, in many works (for example in [ACF92]), the error terms

(3.3) and (3.4) involve some sense of decay in the second derivatives. Even when the

regularity of the compactification is allowed to be weaker, for example as in [AILA18],

the definitions used still require a decay of the full curvature tensor to −Id. In our

definition, as we choose a warped product model and make our definition of asymp-

totically locally hyperbolic purely intrinsic, we do not require direct assumptions on

the regularity of such a conformal compactification. In particular, we require no con-

trol of the second derivatives of the metric components at infinity and, furthermore,

do not directly impose any conditions on decay of the curvature tensor aside from on

the scalar curvature.

Additionally, we note that we do not assume h̊ is Einstein (and so neither is g̊)

and so g does not asymptote to an Einstein metric as required in other definitions

used in the literature, for example in [ACF92] and [AILA18].

We provide an example of an asymptotically locally hyperbolic manifold in the

sense of Definition 3.1.1 which does not fit into the usual definitions taken in the

literature concerning the Yamabe problem in this setting.

Example 3.1.3. Consider the warped product manifold M3 = R≥0 × T2 where T2

is the 2-dimensional flat torus with metric (dx1)2 + (dx2)2 and standard coordinates

{xa}. We endow M3 with the diagonal metric

g = dr2 + e2r
(
p(r)(dx1)2 + p−1(r)(dx2)2

)
.

This metric is asymptotically locally hyperbolic in the sense of Definition 3.1.1 pro-

vided, for example,

p(r) = 1 +O(e−αr)

p′(r) = O(e−αr)
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which we assume in this example. The metric g has Ricci curvature

Rrr = −2− 1

2

(
p′

p

)2

,

R11 = e2rp

(
−2 +

1

2

(
p′

p

)2

− p′

p
− 1

2

(
p′′

p

))
,

R22 = e2rp−1

(
−2− 1

2

(
p′

p

)2

+
p′

p
+

1

2

(
p′′

p

))
.

We see that the Ricci curvature does not necessarily decay to a constant multiple of

the metric (note the presence of the p′′ term in R11 and R22). In contrast, the metric

g has scalar curvature

Sg = −6− 1

2

(
p′

p

)2

= −6−O(e−αr). (3.5)

The example above demonstrates a class which does not satisfy the requirements

(discussed in more detail in the following section) in [ACF92] or [AILA18] but which

falls under Definition 3.1.1. There are certainly many such p which behave wildly

in C2 and so have poor behaviour of the Ricci curvature, for example take p(r) =

1 + e−2αr sin(eαr).

The question in general of when intrinsic definitions of non-compact asymptoti-

cally locally hyperbolic manifolds imply the existence of a C1,1 conformal compacti-

fication is addressed, for example, in [BG11] and [Gic13]. However, in these papers

the various intrinsic assumptions required impose stronger conditions than we will

require, for example again decay to a negative constant of all sectional curvatures.

3.1.2 Literature Review

We now overview existence theorems known in the literature. We first briefly discuss

the work of [AM88] in this context. We then review the significant progress made

regarding the Yamabe problem in the specific case of asymptotically locally hyperbolic

manifolds via a conformal compactification approach.
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3.1.2.1 The Sub- and Super-Solution Argument of Aviles and McOwen

As already mentioned in Chapter 1, Aviles and McOwen [AM88] provided existence

results on a broad class of negatively curved manifolds. For example, they are able

to prove existence given either:

1. Sg ≤ 0 globally on M and Sg ≤ −ε < 0 outside of some compact set,

2. There exists a negative first eigenvalue for the conformal Laplacian on some

compact domain in M .

Though their results are robust enough to apply to a large class of manifolds, they

are not well suited to asymptotically hyperbolic manifolds as condition 1 requires a

global assumption of at least non-positivity of the scalar curvature and it is known that

condition 2 cannot be true in the model hyperbolic space itself. For more discussion

into the first eigenvalue approach, see Chapter 4 of this thesis.

Central to our existence proof will be certain techniques developed by Aviles and

McOwen in [AM88] covered in Chapter 2 where we provided an overview of the sub-

and super-solution argument used in their proof. Their argument establishes the

existence of a positive smooth solution to the Yamabe equation on a non-compact

Riemannian manifold given the existence of a non-negative sub-solution and a global

non-positivity condition on the scalar curvature.

We take a moment to again highlight the key difference between this result and

results for asymptotically hyperbolic manifolds to be discussed next, is that the result

above relies upon the global condition on the non-positivity of the scalar curvature.

In removing this global non-positivity of the scalar curvature, the obstacle to directly

applying the argument from Chapter 2 is in establishing the existence of a sub-solution

to (Ya). This will be the focus of the existence part of our Theorem A.
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3.1.2.2 Conformal Compactification and Existence Results for Asymp-
totically Locally Hyperbolic Manifolds

We now briefly review major milestones in the progress toward understanding the

Yamabe problem for asymptotically locally hyperbolic manifolds, from early pioneer-

ing work through to recent advancements.

As mentioned in Chapter 1, an important notion involved in the study of asymp-

totically hyperbolic manifolds is that of a conformal compactification model (see e.g.

[FG85], [GL91]). In this case, g is assumed to be conformal to an underlying metric

ḡ on a compact manifold M with boundary via some defining function for the bound-

ary ρ, namely we write g = ρ−2ḡ. Here, a defining function is some non-negative

function ρ whose zero set coincides with ∂M and which satisfies |dρ| 6= 0. From this

perspective, one can view the Yamabe problem as equivalent to finding a conformal

metric g̃ of constant negative scalar curvature such that the conformal factor ũ on M

blows up at the boundary ∂M .

In the case that the conformal compactification M above is a Euclidean domain,

the existence of such a ũ was established in an early pioneering work of Loewner

and Nirenberg, see [LN74, Sections 2–5]. In their work, they demonstrated that the

condition that ũ blows up at the boundary of M is related to a notion of regularity

of the boundary; this notion of regularity at the boundary is in fact shown to depend

solely on the Hausdorff dimension of the boundary.

In the case that g exhibits a C2 conformal compactification (i.e. the underly-

ing metric ḡ is a C2 metric on M), Andersson, Chruściel and Friedrich solved the

existence problem in [ACF92]. In comparison to Definition 3.1.1, we note that the

existence of such a conformal compactification requires at least boundedness of all

radial derivatives of the metric components as we approach the conformal boundary

(in our definition, as r →∞).

A further extension of the work above is in the recent work [AILA18] of Allen,

Isenberg, Lee and Stavrov Allen. In this work, similar results are obtained under
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weaker conditions on the regularity of the conformal compactification. In particular,

their Weakly Asymptotically Hyperbolic manifolds have a C0 conformal compactifica-

tion, the metric components are bounded in some suitably weighted C2 norm which

in particular implies that decay of the scalar curvature is equivalent to decay of all of

the sectional curvatures of g decaying to −1.

We will compare our results to those overviewed above in the following section;

however, we briefly note here that our notion of asymptotically locally hyperbolic in

Definition 3.1.1 is equivalent to a C1 conformal compactification. However, for our

existence theorem we make no assumptions on the decay of any curvatures, as pointed

out earlier we require only a one sided inequality on the scalar curvature

Sg ≤ −n(n− 1) + Ce−αr.

3.1.3 Overview and Discussion of Main Results

We now overview the results of this chapter and discuss their implications and place

in the literature.

Our main result focuses on extending progress made in the case that the manifold

in question is asymptotically locally hyperbolic. In particular, we show

Theorem A. Suppose (M, g) is an asymptotically locally hyperbolic manifold of order

α ∈ (0, n]. If the scalar curvature satisfies

Sg ≤ −n(n− 1) + Ce−αr on M (3.6)

for some constant C > 0, then there exists a positive smooth solution u to (Ya) on M

satisfying u ≥ 1 − O(e−αr) if α ∈ (0, n) and u ≥ 1 − O(re−nr) if α = n. Therefore,

there exists a complete conformal metric g̃ such that Sg̃ ≡ −n(n− 1) on M .

In addition, if the scalar curvature satisfies the stronger condition

|Sg + n(n− 1)| ≤ Ce−αr on M, (3.7)
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then u = 1 +O(e−αr) if α ∈ (0, n) and u = 1 +O(re−nr) if α = n and u is maximal

in that any solution ũ of (Ya) satisfies ũ ≤ u. Furthermore, if α ∈ (0, n), the

corresponding conformal manifold (M, g̃) is also asymptotically locally hyperbolic of

the same order α.

The result above adds to the existing literature in a number of ways. A cen-

tral theme throughout these contributions is the weaker setting in which they are

established where curvature restrictions are made only on the scalar curvature. We

contrast this to the existence results in the similar settings of [ACF92] and [AILA18]

where, as discussed in the previous Section 3.1.2.2, their definition of asymptotically

locally hyperbolic manifolds means the scalar curvature decay is equivalent to full

decay of the curvature tensor to −Id. We highlight that Example 3.1.3 demonstrates

that there is a wide class of asymptotically locally hyperbolic manifolds in the sense

of Definition 3.1.1 which have decay of the scalar curvature to −n(n− 1) sufficient to

apply our Theorem A, but which fall outside the scope of the results in [ACF92] and

[AILA18]; in particular, Example 3.1.3 demonstrates this via the poor behaviour of

the Ricci curvature.

In Theorem A, we first establish the existence of solutions to the Yamabe problem

in this weaker setting and furthermore show that only an upper bound on the lim sup

of the scalar curvature is needed.

Secondly, we make progress towards establishing uniqueness of solutions in our

weaker setting, in line with what has been observed elsewhere in the literature, by

showing maximality of the obtained solution. We show this via an a priori upper

bound on solutions to the Yamabe equation for this class of asymptotically locally

hyperbolic manifolds which we are, again, able to establish while making assumptions

only on the behaviour of the scalar curvature.

Lastly, we establish higher order decay in the second derivatives of the conformal

factor obtained in solving the Yamabe problem which allows us to conclude that the
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conformal metric of constant scalar curvature remains asymptotically locally hyper-

bolic.

Having shown this main result, we supplement our work in view of our initial

motivating goal by studying the wider class of asymptotically warped product ended

manifolds (the precise definition of which we make in Section 3.3). In particular, we

aim to study the conformal class of such manifolds in the hope of finding a conformal

asymptotically locally hyperbolic metric to which we may then apply Theorem A to

address the Yamabe problem.

To this end, we first study the reference warped product metrics

g̊f = dz2 + f 2(z)̊h

generalising the reference locally hyperbolic metrics g̊ in (3.1). In particular, we first

address the question of when these reference warped product metrics are conformal

to locally hyperbolic metrics. We prove:

Theorem (Theorem 3.3.1). A metric g̊f with a warped product end is conformal to

a metric with a locally hyperbolic end if and only if∫ ∞
0

1

f(s)
ds <∞. (3.8)

We take a moment to compare this to Example 6.2 of [AM88] which also considers

manifolds with warped product ends and notes that their existence result for the

Yamabe problem does not, in general, apply in this case (due to the lack of a global

negativity condition on the scalar curvature). They briefly provide an existence proof

using their sub- and super- solution technique under the conditions that f is strictly

increasing and

lim
r→∞

f(r) = lim
r→∞

f ′(r)

f(r)
= lim

r→∞

f ′′(r)

f(r)
= +∞

which are clearly much more restrictive than condition (3.8). However, in light of

our Theorem 3.3.1 stated above, any such warped product metric is conformal to a

metric with a locally hyperbolic end and so the existence of a solution to the Yamabe
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problem for these warped product ended manifolds follows from existence results in

the literature (e.g. [ACF92]) while requiring only the condition (3.8).

We are then able to apply our Theorem A to the larger class of asymptotically

warped product manifolds which have a metric satisfying

gf = g̊f + εzadzdθ
a + εabdθ

adθb

on some exterior region R≥0 ×N . We establish conditions on the perturbation coef-

ficients above in order for gf to be conformally asymptotically locally hyperbolic in

the sense of Definition 3.1.1 and then additional constraints on the warping function

sufficient to allow us to control the scalar curvature of the conformally asymptotically

locally hyperbolic manifold by controlling the scalar curvature of gf . In particular,

defining H(z) :=
∫∞
z

1
f
, we require

εab = O
(
f 2Hα

)
,

∂zεab = O
((
f 3H + f ′f + fH−1

)
Hα
)
,

∂cεab = O
(
f 2Hα

)
,

εza = O (fHα) ,

∂zεza = O
((
f 2H + f ′ +H−1

)
Hα
)
,

∂cεza = O (fHα)

(3.9)

and ∣∣∣∣ 1

fH

∣∣∣∣+

∣∣∣∣f ′f
∣∣∣∣ ≤ C and

∣∣∣∣f ′′f
∣∣∣∣ ≤ CH−α. (3.10)

We may then combine our Theorem 3.3.1 with our Theorem A to prove:

Theorem (Theorem 3.3.9). Let (M, gf ) be a manifold with an asymptotically warped

product end with perturbation coefficients satisfying (3.9) for some α ∈ (0, n). Suppose

additionally that the warping function satisfies (3.8) and (3.10).

If the scalar curvature satisfies

Sgf ≤ Sg̊f + C
Hα−2

f 2
on M+ (3.11)

for some constant C > 0, then there exists a positive smooth solution uf of the Yamabe

equation for gf on M satisfying

lim inf
r→∞

(
uf −

1

fH

)
≥ 0
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and the corresponding conformal metric g̃ is complete and has constant scalar curva-

ture Sg̃ ≡ −n(n− 1) on M .

In addition, if the scalar curvature satisfies the stronger condition

|Sgf − Sg̊f | ≤ C
Hα−2

f 2
on M+, (3.12)

then ∣∣∣∣uf − 1

fH

∣∣∣∣ −→ 0 as r →∞

and uf is maximal in that any solution ũf of the Yamabe equation for gf on M satisfies

ũf ≤ uf . Furthermore, the corresponding conformal manifold (M, g̃) is asymptotically

locally hyperbolic of order α.

This result ties our main Theorem A into our driving question regarding solvability

for the Yamabe problem on asymptotically warped product manifolds. We note in

particular that, in a similar way to in Theorem A, we see that the requirements on the

perturbation coefficients and the warping function do not obstruct the Ricci curvature

from having poor asymptotic behaviour.

3.2

The Main Result

We recall that we write the conformal metrics of g as g̃ = u
4

n−2 g where u is some

positive smooth function. For Sg̃ ≡ −n(n − 1) on M , u must solve the Yamabe

equation

− cn∆gu+ Sgu = −n(n− 1)u
n+2
n−2 on M, where cn = 4

n− 1

n− 2
. (Ya)

Our main result of this chapter is Theorem A which we restate here for the reader’s

convenience.
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Theorem A. Suppose (M, g) is an asymptotically locally hyperbolic manifold of order

α ∈ (0, n]. If the scalar curvature satisfies

Sg ≤ −n(n− 1) + Ce−αr on M (3.13)

for some constant C > 0, then there exists a positive smooth solution u to (Ya) on M

satisfying u ≥ 1 − O(e−αr) if α ∈ (0, n) and u ≥ 1 − O(re−nr) if α = n. Therefore,

there exists a complete conformal metric g̃ such that Sg̃ ≡ −n(n− 1) on M .

In addition, if the scalar curvature satisfies the stronger condition

|Sg + n(n− 1)| ≤ Ce−αr on M, (3.14)

then u = 1 +O(e−αr) if α ∈ (0, n) and u = 1 +O(re−nr) if α = n and u is maximal

in that any solution ũ of (Ya) satisfies ũ ≤ u. Furthermore, if α ∈ (0, n), the

corresponding conformal manifold (M, g̃) is also asymptotically locally hyperbolic of

the same order α.

Remark 3.2.1. Regarding uniqueness of the solution in Theorem A, we note that the

completeness requirement is necessary to obtain uniqueness; for example, consider

the disk model of the hyperbolic space endowed with the standard hyperbolic metric

on a disk of larger radius. We were not able to establish whether completeness is a

sufficient condition for uniqueness as at this time we require the additional restriction

that lim inf |x|→∞ u(x) ≥ 1. For further discussion, see sub-section 3.2.2.3.

Remark 3.2.2. In our Definition 3.1.1, if we were to assume additionally the decay

of the second derivatives of the metric components, (3.14) automatically holds.

We outline here the proof of Theorem A which will be carried out through a series

of results throughout this section. As a base for our approach, we use the sub- and

super-solution argument of Aviles and McOwen. Our work will use this approach and

focus on points 1 and 10 of the sketch proof in the beginning of Chapter 2 which are, in

a sense, interlinked. In particular, we must first be able to find such a sub-subsolution
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with which to begin the argument. For the point 10, to establish completeness we

must use assumptions on the geometry of (M, g) and the particular sub-solution.

Provided we can establish these points, the argument of Aviles and McOwen yields

a smooth solution u of (Ya) satisfying u− ≤ u on M and a corresponding complete

metric g̃ conformal to g. We produce a particular sub-solution under assumption

(3.13) satisfying the requirements above in Lemma 3.2.3.

Having established the existence of a solution u of (Ya) on M , to prove the

first part of Theorem A it remains to ensure that u is strictly positive and that the

corresponding conformal metric g̃ is complete which, we prove in Lemma 3.2.5.

In order to prove the second part of Theorem A, we gain finer asymptotic control

using a global super-solution to (Ya) which we produce in Lemma 3.2.12 and derive

the corresponding asymptotics of the solution u in Lemma 3.2.13. From there, we

use elliptic theory to obtain decay in higher derivatives, shown in Lemma 3.2.15 and

finally establish that this decay is sufficient to show that g̃ is asymptotically locally

hyperbolic of the same order as g in Lemma 3.2.16, completing the proof.

Our presentation of the proof of Theorem A is split into three parts as follows.

Part I establishes the existence part of Theorem A when the scalar curvature satisfies

(3.13). Part II studies an upper bound on solutions satisfying a lower bound on the

scalar curvature. Finally, in part III we establish asymptotic decay and uniqueness

of the solution established in the first part of the theorem under assumption (3.14).

3.2.1 Part I: Existence for the Yamabe Problem on Asymp-
totically Locally Hyperbolic Manifolds

In this sub-section, we establish the first part of Theorem A, namely the existence of

a solution to the Yamabe problem. More specifically, we reiterate that we would like

to establish the existence of a positive smooth solution u of the Yamabe equation (Ya)

such that the corresponding conformal metric g̃ = u
4

n−2 g is complete. As mentioned,

we will apply the approach of Aviles and McOwen discussed in the previous sub-

section. To this end, we start by constructing an explicit sub-solution.
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We first consider the case that the manifold is asymptotically locally hyperbolic

of order α < n.

Lemma 3.2.3. Let (M, g) be asymptotically locally hyperbolic of order α < n and

Sg ≤ −n(n − 1) + Ce−αr for some constant C. For any 0 < β < min(n − 1, α),

there exist constants 0 < δ < 1, close to 1, and θ > 0, large, such that the function

u− ∈ H1
loc(M) defined by

u− :=


1− C(θ, δ)e−αr on {rδ ≤ r} ×N
1− θe−βr on {rθ ≤ r ≤ rδ} ×N
0 on M0 ∪ {r ≤ rθ} ,

where rδ := 1
β

log
(

θ
1−δ

)
, rθ := 1

β
log (θ) and

C(θ, δ) = (1− δ)
(

θ

1− δ

)α
β

,

is a subsolution of (Ya) on M which is positive outside of some compact set.

r

u−(r)

M0

0 rθ rδ

1

δ

We note here that the choice of C(θ, δ) ensures that u− is continuous and therefore

belongs to H1
loc(M). We have a sub-solution of the form u− = u−(r) so we are led to

consider the ODE arising immediately from (Ya)

−cn
(
1 +O(e−2αr)

)
u′′− − cn

(
(n− 1)

f ′k
fk

+O(e−αr)

)
u′−

−
(
n(n− 1) +O(e−αr)

)
u− ≤ −n(n− 1)u

n+2
n−2

− . (3.15)

Remark 3.2.4. We note that the addition of the change at rδ is necessary in the

proof to extend the result to include asymptotically locally hyperbolic ends of order

n− 1 ≤ α < n.
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Proof. Fix some 0 < β < min(n − 1, α). To establish that u− is a sub-solution, we

must show that (3.15) holds on {rθ ≤ r ≤ rδ} and {rδ ≤ r} and check the following

transmission conditions at rθ and at rδ, in this case that is to ensure that

lim
r↗rθ

u′−(r) ≤ lim
r↘rθ

u′−(r) (3.16)

and

lim
r↗rδ

u′−(r) ≤ lim
r↘rδ

u′−(r). (3.17)

See Appendix A for an appropriate formulation of the transmission conditions. Con-

dition (3.16) is immediately clear as β > 0. Condition (3.17) holds true as β < α.

To establish (3.15) it suffices to show, for some constant C1 > 0 depending only

on g, that there exist θ and δ (possibly depending on β) such that

L−u− :=− cnu′′− − cn
(

(n− 1)
f ′k
fk
− C1e

−αr
)
u′−

−
(
n(n− 1)− C1e

−αr)u− + C1e
−2αr|u′′−|

≤ −n(n− 1)u
n+2
n−2

−

(3.18)

holds on {rθ < r < rδ} and {rδ < r}. We note here that u′− ≥ 0 for all r.

In the following, we write C to indicate a constant changing from line to line but

depending only on g. For {rθ < r < rδ}, we have that n(n−1)u
n+2
n−2

− ≤ n(n−1)δ
4

n−2u−

as 0 ≤ u− ≤ δ. We compute

L−u− + n(n− 1)u
n+2
n−2

− < cnθ

(
β2 − (n− 1)β +

1

4
n(n− 2)(1− δ

4
n−2 )

)
e−βr

+ C(e(β−α)r + θe−αr + θe−2r︸ ︷︷ ︸
A

)e−βr

where we used that
f ′k(r+r0)

fk(r+r0)
> 1 − Ce−2r (see Section 3.1.1) and u′− ≥ 0. Note first

that, for δ close to 1, the first term of the RHS of the above is a negative multiple of

e−βr. In addition, as β < α we have, for r ≥ rθ, that

|A(r)| ≤ A(rθ) ≤ C(θ1−α
β + θ1− 2

β ).
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Consequently, for θ sufficiently large, the first term on the RHS dominates and we

have, for all δ sufficiently close to 1,

L−u− + n(n− 1)u
n+2
n−2

− < 0 in {rθ < r < rδ}.

We choose such a θ and fix it from here on.

On {r > rδ}, note that we have δ ≤ u− ≤ 1. As∣∣∣∣xn+2
n−2 − 1− n+ 2

n− 2
(x− 1)

∣∣∣∣ =

∣∣∣∣∫ 1

x

4
n+ 2

(n− 2)2
t−

n−6
n−2 (x− t) dt

∣∣∣∣
< 4

n+ 2

(n− 2)2
δ−

n−6
n−2 (x− 1)2

for δ < x ≤ 1. We have,

n(n− 1)u
n+2
n−2

− < n(n− 1)− cn
n

4
(n+ 2)C(θ, δ)e−αr

+cn
n(n+ 2)

(n− 2)
δ−

n−6
n−2C(θ, δ)2e−2αr .

Using that, again,
f ′k(r+r0)

fk(r+r0)
> 1− Ce−2r and u′− ≥ 0, we obtain

L−u− + n(n− 1)u
n+2
n−2

− ≤ cne
−αrC(θ, δ)

[
α2 − (n− 1)α− n

+ C
(
δ−

n−6
n−2C(θ, δ)e−αr + e−αr + e−2r +

1

C(θ, δ)︸ ︷︷ ︸
B

)]
. (3.19)

As α < n, α2 − (n− 1)α− n < 0.

We note that B(r) is non-increasing. We have for r > rδ.

0 < B(r) < B(rδ) =

[
δ−

n−6
n−2 (1− δ) +

(
θ

1− δ

)−α
β

+

(
θ

1− δ

)− 2
β

+
1

C(θ, δ)

]
→ 0 as δ ↗ 1.

It follows that for δ close to 1,

L−u− + n(n− 1)u
n+2
n−2

− < 0

as required.
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As seen in the proof above, if α = n the leading term in (3.19) vanishes and so

we are unable to complete the proof in this case. Consequently, we now include the

case that α = n in the following adjustment of Lemma 3.2.3.

Lemma 3.2.3 ′. Let (M, g) be asymptotically locally hyperbolic of order α = n and

Sg ≤ −n(n − 1) + Ce−nr for some constant C. For any 0 < β < n − 1, there exist

constants 0 < δ < 1, close to 1, and θ > 0, large, such that the function u− ∈ H1
loc(M)

defined by

u− :=


1− C(θ, δ)re−nr on {rδ ≤ r} ×N
1− θe−βr on {rθ ≤ r ≤ rδ} ×N
0 on M0 ∪ {r ≤ rθ} ,

where rδ := 1
β

log
(

θ
1−δ

)
, rθ := 1

β
log (θ) and

C(θ, δ) =
β(1− δ)

β−n
β θ

n
β

log( θ
1−δ )

,

is a subsolution of (Ya) on M which is positive outside of some compact set.

Proof. Again, we fix some 0 < β < n−1. We follow the same proof as that of Lemma

3.2.3 to establish that (3.15) holds on {rθ ≤ r ≤ rδ}.

It remains to check that u− is a sub-solution on {rδ ≤ r} and that transmission

conditions (3.16) and (3.17) hold at rθ and at rδ.

Condition (3.16) is immediately clear as β > 0. Condition (3.17) holds true

provided that β < n− 1
rδ

which holds for all 1 > δ > δ0 for some δ0. In this case, we

also have that u′− ≥ 0 for all r.

On {r > rδ}, note that we have δ ≤ u− ≤ 1. As∣∣∣∣xn+2
n−2 − 1− n+ 2

n− 2
(x− 1)

∣∣∣∣ =

∣∣∣∣∫ 1

x

4
n+ 2

(n− 2)2
t−

n−6
n−2 (x− t) dt

∣∣∣∣
< 4

n+ 2

(n− 2)2
δ−

n−6
n−2 (x− 1)2

for δ < x ≤ 1. We have,

n(n− 1)u
n+2
n−2

− < n(n− 1)− cn
n

4
(n+ 2)C(θ, δ)re−nr

+cn
n(n+ 2)

(n− 2)
δ−

n−6
n−2C(θ, δ)2r2e−2nr .
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Using that, again,
f ′k(r+r0)

fk(r+r0)
> 1− Ce−2r and u′− ≥ 0, we obtain

L−u− + n(n− 1)u
n+2
n−2

− ≤ cne
−nrC(θ, δ)

[
− (n+ 1)

+ C
(
δ−

n−6
n−2C(θ, δ)r2e−nr + re−2r +

1

C(θ, δ)︸ ︷︷ ︸
B

)]
.

We note that limδ↗1 rδ = ∞ and so, for δ close to 1, B(r) is non-increasing. We

have for r > rδ.

0 < B(r) < B(rδ) =

[
δ−

n−6
n−2 (1− δ) log

(
θ

1− δ

)
+

(
θ

1− δ

)− 2
β

log

(
θ

1− δ

)

+
1

C(θ, δ)

]
→ 0 as δ ↗ 1.

It follows that for δ close to 1,

L−u− + n(n− 1)u
n+2
n−2

− < 0

as required.

We may now use the above sub-solutions to prove the first existence part of The-

orem A.

Proposition 3.2.5. Let (M, g) be asymptotically locally hyperbolic of order α ≤ n

with Sg ≤ −n(n − 1) + Ce−αr for some constant C. There exists a positive smooth

solution u of (Ya) on M satisfying

u ≥ 1− Ce−αr (u ≥ 1− Cre−αr if α = n)

for some C > 0. Consequently, there exists a complete conformal metric g̃ such that

Sg̃ ≡ −n(n− 1) on M .

Proof. By Lemma 3.2.3 and 3.2.3 ′ there exists a sub-solution u− of (Ya) which satisfies

u− ≥ 1−Ce−αr (or u− ≥ 1−Cre−αr if α = n). The sub- and super-solution argument

of Aviles and McOwen ([AM88], also see Section 3.1.2.1) yields a smooth solution u

of (Ya) satisfying u ≥ u− on M . It remains to show that u is positive on all of M ;
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once this is established, we will have obtained a conformal metric g̃ = u
4

n−2 g which is

complete, from the sub-solution lower bound, and has constant scalar curvature.

As u ≥ u−, u is non-negative and positive outside of some compact set. Let B be

a large ball on which u 6≡ 0 and outside of which u > 0. On B, the scalar curvature

Sg ≤ A for some constant A > 0. Consequently, taking a sufficiently large constant

C > 0 such that u satisfies

cn∆gu− Cu ≤ [u
n+2
n−2 + Au]− Cu ≤ 0,

we can apply the strong maximum principle ([GT01, Theorem 3.5]) to deduce that,

as u 6≡ 0 on B, u is strictly positive in B and so on all of M .

Remark 3.2.6. It appears to the author that, owing to the fact that we can construct

sub-solutions which are identically zero everywhere off the asymptotic end, the above

proof should carry over with minimal adaptation to the case that (M, g) is a non-

compact manifold with multiple different asymptotically locally hyperbolic ends. That

is to say, the fact that (M, g) has a single end does not appear to be fundamental in

the above approach.

3.2.2 Part II: An Upper Bound on Solutions at Infinity

Before establishing the second part of Theorem A, we turn to the question of the

asymptotic behaviour of solutions to the Yamabe equation in the asymptotically

locally hyperbolic setting. Our discussion is motivated by the aim of establishing

uniqueness of solutions to the Yamabe problem, that is of solutions to (Ya) for which

the resulting conformal metric is complete. In particular, we consider what conditions

we may need to impose in addition to the completeness requirement of the conformal

metric, if any, to conclude that our solution is unique. It has been well established

in the literature (for example in [LN74] and [ACF92]) that solutions to the Yamabe

problem for asymptotically hyperbolic manifolds of a more restrictive type to our

Definition 3.1.1 must “asymptote to 1 at infinity” in a sense that we make precise
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in the following. We are thus led to consider the asymptotic behaviour of solutions

along the asymptotically locally hyperbolic end in our weaker setting.

Asymptotic boundary conditions arise naturally in the study of PDE problems on

non-compact manifolds; for example, in [SY94], Schoen and Yau establish uniqueness

of harmonic functions on negatively curved manifolds when fixing the values on the

so-called geometric boundary which they are able to construct as equivalence classes of

diverging geodesic curves. In our setting, there is a natural candidate for the boundary

“at infinity” via the warped product ended structure of the manifold. In particular,

we say that a function u achieves a particular boundary condition ϕ ∈ C∞(N) if for

any θ ∈ N , we have

lim
r→∞

u(r, θ) = ϕ(θ).

The definition above coincides with the more general definition of the geometric

boundary condition.

We will establish an a priori upper bound on solutions to the Yamabe equation

for asymptotically locally hyperbolic manifolds in the sense of Definition 3.1.1. A key

point for our discussion will be to compare the Laplacian of the perturbed metric g

to that of the reference metric g̊. In particular, where we use ∇ and ∇̊ to denote the

covariant derivative with respect to g and g̊ respectively, we compute directly that

∆gϕ = gij∇i∇jϕ = gij∇̊i∇̊jϕ+ gij(∇i∇jϕ− ∇̊i∇̊jϕ)

= g̊ij∇̊i∇̊jϕ+ (gij − g̊ij)∇̊i∇̊jϕ+ gij(Γkij − Γ̊kij)∂kϕ

= ∆g̊ϕ+ aij∇̊ijϕ+ bi∇̊iϕ (3.20)

where aij := gij − g̊ij and bi := gjk(Γijk − Γ̊ijk) satisfy |aij| = O1(e−(α+2)r) and |bi| =

O(e−αr) using the estimates for the Christoffel symbols found in the proof of Lemma

3.1.2.

In the following, we first address the simpler case that the (M, g) is asymptot-

ically hyperbolic (that is, N = Sn−1 and g̊ is the hyperbolic metric in Definition
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3.1.1). Then, in the next sub-section 3.2.2.2, we prove the upper bound for an arbi-

trary asymptotically locally hyperbolic manifold. We choose to include the proof in

the simpler asymptotically hyperbolic case so as to demonstrate the ideas motivat-

ing the both more general and more technical proof of Proposition 3.2.9 for general

asymptotically locally hyperbolic manifolds.

We will make use of the following consequence of the strong maximum principle.

Lemma 3.2.7. Let u > 0 be a bounded smooth solution to the Yamabe equation on

Ω ⊂M and ū > 0 be a smooth super–solution to the Yamabe equation on Ω satisfying

ū(x)→∞ as x→ ∂Ω. Then necessarily u < ū on Ω.

Proof. Due to the facts that ū → ∞ as x → ∂Ω, u is bounded and both u > 0 and

ū > 0, there must exist some C > 0 such that the difference wC := Cū − u satisfies

that wC ≥ 0 and achieves 0 at some point in Ω. We claim that C < 1. If C ≥ 1, then

wC would satisfy,

−cn∆gwC − n(n− 1)wC ≥ −n(n− 1)
(
Cū

n+2
n−2 − u

n+2
n−2

)
≥ −n(n− 1)

(
(Cū)

n+2
n−2 − u

n+2
n−2

)
= −n(n− 1)c(x)wC .

where

c(x) :=

{
(Cū)

n+2
n−2−u

n+2
n−2

Cū−u for wC 6= 0,
n+2
n−2

(Cū(x))
4

n−2 if wC = 0.

We could then apply the strong maximum principle to the linear differential inequality

−cn∆gwC − n(n− 1) (1− c(x))wC ≥ 0,

noting that the sign of (1− c(x)) does not matter as the value of the minimum

in question is 0, see [GT01, Section 3.2]. We would then have that wC ≡ 0, a

contradiction as wC →∞ at the boundary. We conclude that C < 1 as claimed and

so u < ū in Ω.
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3.2.2.1 The Model Case of an Asymptotically Hyperbolic Manifold

This subsection addresses only the case that the (M, g) is asymptotically hyperbolic

for the purpose of motivating the ideas used to treat the general case in the next

sub-section 3.2.2.2. We prove the following:

Proposition 3.2.8. Suppose (M, g) is asymptotically hyperbolic in the sense of Def-

inition 3.1.1 (in particular, (N, h̊) is the round sphere) and satisfies, for some fixed

x0 ∈M ,

lim inf
r(x)→∞

Sg(x) ≥ −n(n− 1). (3.21)

Then all solutions u of (Ya) on (M, g) must satisfy

lim sup
r(x)→∞

u(x) ≤ 1.

The idea in the following proof can be most clearly seen when (M, g) is exactly the

hyperbolic space on which we briefly provide an argument to show that any solution

u of the Yamabe equation must satisfy u ≤ 1. We follow the ideas present in, for

example, [LN74] and [ACF92]. We conveniently express the hyperbolic space as the

disk model (B1, ghyp) where B1 is the Euclidean unit ball. Suppose u is a solution to

the Yamabe equation for (B1, ghyp) i.e.

−cn∆ghypu− n(n− 1)u = −n(n− 1)u
n+2
n−2 on B1.

Consider some ball BR ⊂ B1 and let uR be the conformal factor such that u
4

n−2

R ghyp

is the standard hyperbolic metric on BR. Necessarily uR →∞ at the boundary ∂BR

and uR solves

−cn∆ghypuR − n(n− 1)uR = −n(n− 1)u
n+2
n−2

R on BR.

We have that as uR →∞ and so we may apply Lemma 3.2.7 to conclude that u < uR

on BR. We now take the limit R↗ 1 so that uR → 1 and so we conclude that u ≤ 1.

In the following proof, we adapt the argument above to provide an asymptotic

upper bound in the asymptotically hyperbolic case.
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Proof of Proposition 3.2.8. Recall that the exterior region M+ of M is the product

R≥0 ×N . It suffices to show that, for every R > 0, u satisfies

lim sup
r(x)→∞

u(x) ≤
(

1

tanhR

)n−2
2

.

We first rewrite equation (Ya) in the exterior region as a perturbation of an

elliptic equation with respect to the reference hyperbolic metric g̊, writing ∆g as

a perturbation of ∆g̊ as in (3.20). In particular, we have that u solves

− cn∆g̊u+ Sgu+ n(n− 1)u
n+2
n−2 + aij∇̊iju+ bi∇̊iu = 0. (3.22)

where |aij| = O1(e−(α+2)r) and |bi| = O(e−αr).

We now fix some arbitrary R > 0 and consider a geodesic ball B̊R(x0) with respect

to the reference metric g̊ at some point x0 such that B̊R(x0) ⊂ M+. Take standard

reference coordinates (z, θ) on B̊R(x0) in which

g̊ = dz2 + sinh2(z)ds2
n−1

so that B̊R(x0) corresponds to {z < R}. We note here that this step makes direct

use of the homogeneity of the hyperbolic space.

Let uR be given by

uR(z, θ) :=

(
tanhR

tanh2R− tanh2 z

)n−2
2

(3.23)

which is the unique solution to{
−cn∆g̊uR − n(n− 1)uR + n(n− 1)u

n+2
n−2

R = 0 on {z < R},
uR(z, θ)→∞ as z → R.

(3.24)

We will now create a super-solution by rescaling uR. Consider

ū := AuR
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for some A > 0 to be fixed. We can then compute directly that

−cn∆g̊ū+ Sgū+ n(n− 1)ū
n+2
n−2 + aij∇̊ijū+ bi∇̊iū

= −cn∆g̊ū− n(n− 1)ū+ n(n− 1)ū
n+2
n−2 + aij∇̊ijū+ bi∇̊iū+ (Sg + n(n− 1))ū

= n(n− 1)(A
n+2
n−2 − A)u

n+2
n−2

R + A
(
aij∇̊ijuR + bi∇̊iuR + (Sg + n(n− 1))uR

)
≥ n(n− 1)(A

n+2
n−2 − A)u

n+2
n−2

R − Aε(r(x0))
(
|u′′R|+ |u′R|+ |uR|

)
where ε(r) ≥ 0 and limr→∞ ε(r) = 0; here we have used (3.21) as well as the asymp-

totic hyperbolicity.

Direct computation from the explicit form of uR gives that |u′′R| + |u′R| + |uR| ≤

Cu
n+2
n−2

R in BR where C > 0 is a constant depending only on R and n. Therefore,

−cn∆g̊ū+ Sgū+ n(n− 1)ū
n+2
n−2 + aij∇̊ijū+ bi∇̊iū

≥ n(n− 1)
(
A

n+2
n−2 − A

(
1 + Cε(r(x0))

))
u
n+2
n−2

R

and so we can now choose A = 1 + C̃ε(r(x0)) with a sufficiently large constant C̃ > 0

depending only on R and n so that ū is a strict super–solution to (3.22).

Consequently, we may apply Lemma 3.2.7 to conclude that u < ū on B̊R(x0). In

particular, at x0 we have

u(x0) <
(

1 + C̃ε(r(x0))
)( 1

tanhR

)n−2
2

.

As x0 was chosen arbitrarily other than the condition that B̊R(x0) ⊂ M+, we may

take r(x0) arbitrarily large and therefore obtain that

lim sup
r(x)→∞

u(x) ≤
(

1

tanhR

)n−2
2

.

We send R→∞ and the proposition immediately follows.

3.2.2.2 The General Asymptotically Locally Hyperbolic Case

We now generalise the result of the previous sub-section where we now allow the

manifold to be asymptotically locally hyperbolic.
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Proposition 3.2.9. Let (M, g) be asymptotically locally hyperbolic in the sense of

Definition 3.1.1 and suppose that, for some fixed x0 ∈M

lim inf
r(x)→∞

Sg(x) ≥ −n(n− 1). (3.25)

Then all solutions of the (Ya) on (M, g) satisfy

lim sup
r(x)→∞

u(x) ≤ 1. (3.26)

We note that, in the argument made for the asymptotically hyperbolic case in the

previous subsection, we used the fact that the solutions uR for the Yamabe equation

(3.24) on BR(x0) given by (3.23) are independent of x0. If we attempt to directly

apply this argument more generally, even in the case that g is exactly equal to one

of the locally hyperbolic reference metrics g̊, the obtained solution uR is necessarily

dependent on x0 since the underlying reference metric is no longer homogeneous.

To circumvent this issue, we switch our domains from balls to annuli and study

a family of approximate solutions on the annuli in place of the explicit solutions on

balls. The choice of switching to annuli has the advantage that the dependence on

the centre x0 is reduced to a dependence only on the radial coordinate r(x0), which

can be tracked using certain conformal properties of the equation (see (3.32)). In the

following Lemmas 3.2.10 and 3.2.11 below, we establish the existence of such a family

of approximate solutions which we then use to provide a proof of Proposition 3.2.9

above.

Lemma 3.2.10. There exists a positive solution u1 of the equation

− cn (u′′1 + (n− 1)u′1)− n(n− 1)u1 + n(n− 1)u
n+2
n−2

1 = 0 on (−1, 1) (3.27)

satisfying u1(r) → ∞ as r → ±1 and there exists a constant C > 0 depending on n

such that u1 satisfies

1

C
(1− |r|)−

n−2
2 ≤ u1(r) ≤ C(1− |r|)−

n−2
2 ,

u′1(r) ≤ C(1− |r|)−
n
2 ,

u′′1(r) ≤ C(1− |r|)−
n+2
2 .

(3.28)
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Proof. This result is essentially due to [ACF92]. Consider the model locally hyper-

bolic manifold (R × Tn−1, gδ) where (Tn−1, h̊) is the flat Torus. Define the annulus

A1 := {|r| ≤ 1} ⊂ M . We note here that any solution of (3.27) would automatically

be a solution of the Yamabe equation

−cn∆gδu1 − n(n− 1)u1 + n(n− 1)u
n+2
n−2

1 = 0

on the annulus in this particular model space. From [ACF92, Theorem 1.2], we know

that, on the annulus A1, there exists a unique solution u1 of the Yamabe equation

satisfying u1 →∞ at the boundary ∂A1. Additionally, from Theorem 1.3 of [ACF92],

we know the behaviour of u1 at the boundary satisfies (3.28).

We note that the Yamabe equation is invariant under symmetries of the Torus

and so, by uniqueness, u1 must be radial and so the Yamabe equation reduces to the

ODE

−cn (u′′1 + (n− 1)u′1)− n(n− 1)u1 + n(n− 1)u
n+2
n−2

1 = 0

as desired.

Equation (3.27) has the following important scaling property that we will make

use of: if we define the family {uR} by

uR(r) =

(
(e2 − 1)eR

e2+R + e2R+r − e2+r − eR

)n−2
2

u1

(
log

(
(e2R − 1)er+1

e2+R + e2R+r − e2+r − eR

))
,

(3.29)

then each uR provides a solution of the ODE

− cn (u′′R + (n− 1)u′R)− n(n− 1)uR + n(n− 1)u
n+2
n−2

R = 0 on (−R,R). (3.30)

Furthermore, by (3.28) of u1 we have that each uR satisfies that uR(r) → ∞ as

r → ±R and, for some constant CR > 0 depending on R and n, that

1

CR
(R− |r|)−

n−2
2 ≤ uR(r) ≤ CR(R− |r|)−

n−2
2 ,

u′R(r) ≤ CR(R− |r|)−
n
2 ,

u′′R(r) ≤ CR(R− |r|)−
n+2
2 .

(3.31)

We now establish locally uniform convergence of this family to 1 as R→∞.
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Lemma 3.2.11. The family {uR}R>0 of positive solutions of the equation (3.30)

defined above is decreasing with respect to R and satisfies uR ↘ 1 uniformly on

compact sets as R→∞.

Proof. If R1 < R2, we may apply Lemma 3.2.7 on the annulus AR1(0) to see that

uR2 < uR1 . Consequently, {uR} is monotone decreasing.

Define the point-wise limit u∞(r) := limR→∞ uR(r). We now show that {uR}

converges locally in C2 to u∞. To this end, a locally uniform bound on the first

derivative will suffice, as from this we immediately obtain local boundedness of u′′R

and u′′′R (the latter after differentiating the ODE once). The Arzela-Ascoli theorem

then provides the desired convergence. To obtain such a bound on the first derivative,

note that on any compact domain [−R0, R0] and for R > R0 + ε, where ε > 0 is some

small positive constant, we have that, due to the fact {uR} is monotone decreasing,

u′′R + (n− 1)u′R =
n(n− 2)

4

(
u
n+2
n−2

R − uR
)

is bounded in [−R0, R0] uniformly as R→∞. Integrating the above from some point

s ∈ [−R0, R0] to r ∈ [−R0, R0] we obtain that u′R(r)− u′R(s) is bounded in [−R0, R0]

uniformly as R → ∞. Integrating the above, now in s, from −R0 to R0 we see that

u′R is bounded in [−R0, R0] uniformly as R→∞.

We proceed to show that u∞ is constant by using the scaling property used in

defining the family uR. In particular, for any R, S > 0 we can verify, by (3.29), that

uR(r) =

(
(e2S − 1)eR

e2S+R + e2R+r − e2S+r − eR

)n−2
2

uS

(
log

(
(e2R − 1)er+S

e2S+R + e2R+r − e2S+r − eR

))
.

(3.32)

Consider the value of uR at r = 0. We then have

uR(0) =

(
(e2S − 1)eR

e2S+R + e2R − e2S − eR

)n−2
2

uS

(
log

(
(e2R − 1)eS

e2S+R + e2R − e2S − eR

))
then writing R = S + Λ

uS+Λ(0) =

(
e3S+Λ − eS+Λ

e3S+Λ + e2(S+Λ) − e2S − eS+Λ

)n−2
2

uS

(
log

(
e3S+2Λ − eS

e3S+Λ + e2(S+Λ) − e2S − eS+Λ

))
.
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Taking the limit as S →∞ while keeping Λ fixed we then obtain that for all Λ

u∞(0) = u∞(log
(
eΛ
)
) = u∞(Λ).

Consequently, u∞ ≡ C∞ for some constant C∞ ≥ 0.

Recall that uR converges locally in C2 to u∞ and so u∞ solves the Yamabe equa-

tion. Consequently, as u∞ is constant, either u∞ ≡ 0 or u∞ ≡ 1.

It then suffices to show that u∞(0) > 0 to conclude the proof. We take the limit

in (3.29) as R→∞ at r = 0 to obtain

lim
R→∞

uR(0) = lim
R→∞

(
(e2 − 1)e−R

)n−2
2 u1

(
1− (e2 − 1)e−R +O(e−2R)

)
and we note also that

1− (e2 − 1)e−R +O(e−2R)→ 1.

Then, from the asymptotic rates (3.28) for u1, we conclude that

u∞(0) = lim
R→∞

uR(0) ≥ lim
R→∞

C
(
(e2 − 1)e−R

)n−2
2
(
(e2 − 1)e−R +O(e−2R)

)−n−2
2 = C > 0.

Consequently, we conclude that u∞ ≡ 1.

Having established the properties of the family uR above, we now prove Propo-

sition 3.2.9 by showing that these functions can be used to generate super-solutions

with the desired properties in the general asymptotically locally hyperbolic case.

Proof of Proposition 3.2.9. We will use the family of solutions from Lemma 3.2.11 to

provide a bound on the limsup of a solution to the Yamabe equation on an arbitrary

asymptotically locally hyperbolic manifold (M, g) with reference metric g̊.

First, we rewrite the Yamabe equation for g as a perturbation of an elliptic equa-

tion with respect to the reference metric g̊ as in (3.20). In particular, we have that

any solution u of the Yamabe equation for g satisfies

− cn∆g̊u+ Sgu+ n(n− 1)u
n+2
n−2 + aij∇̊iju+ bi∇̊iu = 0. (3.33)
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where |aij| = O1(e−(α+2)r) and |bi| = O(e−αr).

Fix R > 0 and consider some point x0 ∈ M+ such that r0 := r(x0) > R. To

bound the value of u at x0, we define the annulus ΩR := Ω(R, r0) = {x ∈ M+ :

|r(x)− r0| < R} and define a candidate super-solution to (3.33) on ΩR,

ū(x) := AuR(r(x)− r0)

where uR is defined in (3.29) and A > 0 is some constant to be determined. In the

argument below, all implicit constants in various O terms are independent of both A

and R.

We first note that

−cn∆g̊ū = −cn (∂rrū+ (n− 1)qk(r)∂rū) = A
(
−cn (u′′R + (n− 1)u′R) +O(e−2r|u′R|)

)
where

qk(r) =


coth(r) k = 1,

1 k = 0,

tanh(r) k = −1,

where k corresponds to that in the definition of the reference metrics in (3.1) and we

use only that qk = 1 +O(e−2r).

Consequently, from (3.30), we have that ū satisfies

−cn∆g̊ū− n(n− 1)ū+ n(n− 1)ū
n+2
n−2 = n(n− 1)

(
A

n+2
n−2 − A

)
u
n+2
n−2

R + AO
(
e−2r|u′R|

)
for the reference metric g̊ on ΩR ⊂M+ and ū blows up as x→ ∂ΩR. If follows that

−cn∆g̊ū+ Sgū+ n(n− 1)ū
n+2
n−2 + aij∇̊ijū+ bi∇̊iū

= −cn∆g̊ū− n(n− 1)ū+ n(n− 1)ū
n+2
n−2 + aij∇̊ijū+ bi∇̊iū+ (Sg + n(n− 1))ū

= n(n− 1)
(
A

n+2
n−2 − A

)
u
n+2
n−2

R + A
(
aij∇̊ijuR + bi∇̊iuR + (Sg + n(n− 1))uR

)
≥ n(n− 1)

(
A

n+2
n−2 − A

)
u
n+2
n−2

R − Aε(r(x0)) (|u′′R|+ |u′R|+ |uR|)

where ε(r) ≥ 0 and limr→∞ ε(r) = 0; here we have used (3.25) as well as the asymp-

totic local hyperbolicity.
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From the asymptotic rates in (3.31), we see that there exists a constant CR > 0

depending on R such that |u′′R|+ |u′R|+ |uR| ≤ CRu
n+2
n−2

R near the boundary. Therefore,

−cn∆g̊ū+ Sgū+ n(n− 1)ū
n+2
n−2 + aij∇̊ijū+ bi∇̊iū

≥ n(n− 1)
(
A

n+2
n−2 − A (1 + CRε(r0))

)
u
n+2
n−2

R .

We can now choose A = 1 + C̃ε(r0) with a sufficiently large constant C̃ independent

of x0 so that the RHS above is positive and so ū is a strict super-solution to (3.33).

We may now apply Lemma 3.2.7 to conclude that u < ū on ΩR and so we have

shown that any solution to the Yamabe equation u satisfies

u(x0) < (1 + C̃ε(r0))uR(0).

Consequently, as x0 was arbitrary and ε(r)→ 0 as r →∞, we may take r0 arbitrarily

large to obtain

lim sup
r(x)→∞

u(x) ≤ uR(0).

As R > 0 was arbitrary, we may now take the limit as R → ∞ to conclude, from

Lemma 3.2.11, that

lim sup
r(x)→∞

u(x) ≤ 1

as desired.

3.2.2.3 Discussion of Uniqueness and an A Priori Lower Bound

In this sub-section, we briefly discuss ideas which may lead towards a proof of a lower

bound for solutions to (Ya) on asymptotically locally hyperbolic manifolds. Though

some progress was made, the author was unable to complete a proof of a lower bound

within the time constraints of this DPhil project.

We again provide a motivating argument for a lower bound in the case that our

manifold is the hyperbolic space, in a similar way to the motivating discussion in

sub-section 3.2.2.1. Again, the proof strategy summarised below is present in the

literature, for example in [LN74] and [ACF92]. Once more, we conveniently express
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the hyperbolic space as the disk model (B1, ghyp) where B1 is the Euclidean unit ball

and suppose u is a solution to the Yamabe equation for (B1, ghyp) i.e.

−cn∆ghypu− n(n− 1)u = −n(n− 1)u
n+2
n−2 on B1.

We may construct a sub-solution to (Ya) by taking some larger ball BR ⊃ B1 and

letting gR denote the hyperbolic metric on BR such that the restriction of gR to B1

can be written gR = u
4

n−2

R ghyp, the hyperbolic metric on BR. We now consider the

prospective solution g̃ = u
4

n−2 ghyp = ( u
uR

)
4

n−2 gR on B1. We deduce from completeness

that u
uR
→ ∞ as g̃ is assumed to be complete and so we may apply our previous

argument to see that u
uR
≥ 1 and so u ≥ uR. Letting R ↘ 1 gives uR → 1 and so

u ≥ 1.

The author believes the approach used to treat the model case outlined above will

also yield a lower bound on the value of a solution u to (Ya) for an asymptotically

locally hyperbolic manifolds in the sense of Definition 3.1.1 with the requirement that

the corresponding conformal metric is complete. This has been the case for similar

settings presented in [ACF92] and [AILA18], albeit under stronger conditions on the

curvature decay.

We finally note that an a priori lower bound of 1 on solutions of (Ya) satisfying

the completeness requirement would allow us, via a maximum principle argument,

to improve the maximality of the solution u in Theorem A (established in the next

section) to uniqueness of solutions for the Yamabe problem on asymptotically locally

hyperbolic manfiolds.

3.2.3 Part III: Asymptotic Behaviour of the Conformal Fac-
tor at Infinity

We now turn to the second part of Theorem A, namely to establish the particular

asymptotic behaviour of the solution obtained in the Section 3.2.1 when additionally

given a full decay of the scalar curvature.
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We begin by creating a particular super-solution on M . The following super-

solution will provide an asymptotic upper bound on our solution obtained in Propo-

sition 3.2.5 and will allow us to conclude that the conformal metric remains locally

asymptotically hyperbolic to the same order (up to an additional factor of r in the

critical case that α = n). We first address the case that α < n.

Lemma 3.2.12. Let (M, g) be asymptotically locally hyperbolic of order α < n and

Sg ≥ −n(n− 1)− Ce−αr for some constant C > 0. There exist constants A > 0 and

R > 0 such that the function u+ ∈ H1
loc(M) defined by

u+(r) :=

{
1 + Ae−αr on {r ≥ R}
1 + Ae−αR on M0 ∪ {r < R}

,

is a super-solution to (Ya) on M .

In the same way as in Lemma 3.2.3, we must establish the inequality

−cn
(
1 +O(e−2αr)

)
u′′+ + cn

(
(n− 1)

f ′k
fk

(r + r0) +O(e−αr)

)
u′+

−
(
n(n− 1) +O(e−αr)

)
u+ ≥ −n(n− 1)u

n+2
n−2

+ . (3.34)

Proof. We need to find large A and R such that (3.34) holds in the two regions r ≤ R

and r > R and establish transmission conditions.

We first note that the transmission condition

0 = lim
r↗R

u′+(r) ≥ lim
r↘R

u′+(r) = −αAe−αR

certainly holds.

We proceed similarly as in the proof of Lemma 3.2.3 with the difference that (as

u+ > 1) we can estimate directly on the RHS that

−n(n− 1)u
n+2
n−2

+ ≤ −n(n− 1)

(
1 +

n+ 2

n− 2
(u+ − 1)

)
.

In the following the value of C may change from line to line but always depends only

on g and we choose R larger if necessary so that R > 1. We compute for r > R, using
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that
f ′k
fk

(r + r0) > 1− Ce−2r (see Section 3.1.1) and u′+ < 0,

−cn∆gu+ + Sgu+ + n(n− 1)u
n+2
n−2

+ ≥ −cnAe−αr
[
α2 − (n− 1)α− n

+ Ce−αr + Ce−2r +
C

A

]
.

Thus, we must choose A and R such that

[
α2 − (n− 1)α− n

]
+ Ce−αR + Ce−2R +

C

A
≤ 0. (3.35)

As α2− (n− 1)α− n < 0 we can select an A0 and R such that the RHS of the above

is positive for all A > A0. Fix R from hereon. It remains to find an A > A0 such

that (3.35) holds on r ≤ R.

To establish that u+ is a super-solution on M0 ∪ {r < R}, note that there exists

an A > A0 sufficiently large such that

C1

(
1 + Ae−αR

)
≤ n(n− 1)

(
1 + Ae−αR

)n+2
n−2 ,

where C1 := supM0∪{r<R} |Sg|. Consequently we have that, on M0 ∪ {r < R},

−cn∆gu+ + Sgu+ ≥ −C1(1 + Ae−αR) ≥ −n(n− 1)(1 + Ae−αR)
n+2
n−2

and so u+ is also a super-solution on M0 ∪ {r < R}.

Once again, as in the proof of Lemma 3.2.3, we find that the leading term α2 −

(n − 1)α − n in (3.35) vanishes and so we are unable to complete the proof. We

address this deficiency with the adjustment in the lemma below.

Lemma 3.2.12 ′. Let (M, g) be asymptotically locally hyperbolic of order α = n and

Sg ≥ −n(n−1)−Ce−nr for some constant C. There exist constants A > 0 and R > 0

such that the function u+ ∈ H1
loc(M) defined by

u+(r) :=

{
1 + Are−nr on {r ≥ R}
1 + ARe−nR on M0 ∪ {r < R}

,

is a super-solution to (Ya) on M .
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Proof. The proof is the same as in Lemma 3.2.12 with the only difference being in

choosing R so that the transmission conditions hold and that u+ satisfies (3.34) for

r > R.

We first note that the transmission condition

0 = lim
r↗R

u′+(r) ≥ lim
r↘R

u′+(r) = A(1− nR)e−nR

certainly holds for R > 1
n
.

We proceed in the same way as in the proof of Lemma 3.2.12. We compute for

r > R, using that
f ′k(r+r0)

fk(r+r0)
> 1− Ce−2r (see Section 3.1.1),

−cn∆gu+ + Sgu+ + n(n− 1)u
n+2
n−2

+ ≥ −cnAe−nr
[
− (n+ 1) + Cre−2r +

C

A

]
.

Thus, we must choose A and R such that

− (n+ 1) + CRe−2R +
C

A
≤ 0. (3.36)

It is then clear that the RHS of the above is positive for A and R large enough. We

can then complete the proof that u+ is a super-solution on M0∪{r < R} in the same

way as in the proof of Lemma 3.2.12, thus completing the proof.

Having established the super- solutions above, we use them to gain control on the

solution u obtained in the previous section.

Lemma 3.2.13. Let (M, g) be asymptotically locally hyperbolic of order α ≤ n with

|Sg + n(n − 1)| ≤ Ce−αr for some constant C. Then the smooth solution u of (Ya)

on M obtained in Proposition 3.2.5 is of the form u = 1 + û where

û =

{
O(e−αr) if α < n,

O(re−nr) if α = n.

Furthermore, u is maximal in the sense that any solution ũ of (Ya) satisfies ũ ≤ u.
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Proof. From Proposition 3.2.5, we have that u ≥ u− ≥ 1 − Ce−αr where u− is the

sub-solution constructed in Lemma 3.2.3 (or correspondingly u ≥ u− ≥ 1 − Cre−nr

with u− from Lemma 3.2.3 ′ if α = n). Additionally, Proposition 3.2.9 gives that

lim supr(x)→∞ u ≤ 1. Consequently, we have that limr(x)→∞ u(x) = 1 and it remains

only to control the decay from above.

To this end, we will use the super-solution u+ ≤ 1 +Ce−αr constructed in Lemma

3.2.12 (or correspondingly u+ ≤ 1+Cre−nr from 3.2.12 ′ if α = n). We will show that

u ≤ u+.

For the sake of contradiction, we suppose that inf u+
u

= 1
C
< 1 for some constant

C > 1. As limr(x)→∞
u+(x)
u(x)

= 1, the infimum would have to be achieved and so we

could define the function v := Cu+ − u which would satisfy v ≥ 0 and would achieve

0 at some minimum. We could then apply the same maximum principle argument as

in Lemma 3.2.7. In particular, as C > 1, v satisfies

−cn∆gv − n(n− 1)v =− n(n− 1)

(
Cu

n+2
n−2

+ − u
n+2
n−2

)
> −n(n− 1)

(
(Cu+)

n+2
n−2 − u

n+2
n−2

)
= c(x)v,

where

c(x) =

 (Cu+)
n+2
n−2−u

n+2
n−2

Cu+−u for v 6= 0,
n+2
n−2

(Cu+(x))
4

n−2 if v = 0.

We could then apply the strong maximum principle to the linear differential inequality

above, noting that the sign of the zero order term (n(n− 1) + c(x)) does not matter

as the value of the minimum in question is 0, see [GT01, Section 3.2]. We would then

have that v ≡ 0, a contradiction as v → C − 1 > 0 as r(x) → ∞. We conclude that

inf u+
u
≥ 1 and so u ≤ u+ as desired.

Consequently, we can certainly write u in the form u = 1 + û with û = O(e−αr)

(û = O(re−nr) if α = n) as an immediate consequence of the asymptotic decays of

u− and u+.

Given another solution ũ > 0 of (Ya), we know that lim supr(x)→∞ ũ(x) ≤ 1 again

from Proposition 3.2.9, and so we have that lim infr(x)→∞
u
ũ
≥ 1 as limr(x)→∞ u(x) = 1.
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Consequently, if inf u
ũ
< 1 then the infimum must be attained and so we may apply

the same maximum principle argument above to conclude that ũ ≤ u.

Remark 3.2.14. One may also use the method of sub- and super-solutions directly

using Lemmas 3.2.3, 3.2.3 ′, 3.2.12 and 3.2.12 ′ in order to prove the existence of a

solution with the asymptotic behaviour above. The question of whether this solution

is the same as the solution obtained in Proposition 3.2.5 has not been resolved within

the time constraints of this thesis (see the discussion on a priori lower bounds and

uniqueness in Section 3.2.2.3).

We are almost ready to complete the proof of Theorem A. However, in order to

ensure that the corresponding metric to our conformal factor u (= 1 + û) is asymp-

totically locally hyperbolic, we must first establish stronger C2 decay of û.

Lemma 3.2.15. Let (M, g) be asymptotically locally hyperbolic of order α < n with

|Sg + n(n− 1)| ≤ Ce−αr for some constant C > 0. Suppose ϕ = O(e−αr) satisfies

− cn∆gϕ+ Sg(1 + ϕ) = −n(n− 1)(1 + ϕ)
n+2
n−2 (3.37)

on M . Then ϕ satisfies ∣∣∣∇̊ϕ+ ∇̊2ϕ
∣∣∣̊
g

= O
(
e−αr

)
or equivalently

∂rϕ = O
(
e−αr

)
, |∇h̊ϕ|̊h = O

(
e−(α−1)r

)
,

∂rrϕ = O
(
e−αr

)
, |∇h̊ (∂rϕ) |̊h = O

(
e−(α−1)r

)
, |∇2

h̊
ϕ|̊h = O

(
e−(α−2)r

)
.

In the following we use the notation of [GT01] to denote certain interior norms of

which those needed in the following we outline here for the convenience of the reader.

In particular, we will use the following weighted Ck and Ck,α norms on a bounded

Euclidean domain W :

|f |(σ)
k;W =

k∑
j=0

sup
x∈W
|β|=j

dk+σ
x |∂βf(x)|,

|f |(σ)
k,α;W = |f |(σ)

k;W + sup
x,y∈W
|β|=k

dk+α+σ
x,y

|∂βf(y)− ∂βf(x)|
|x− y|β

,
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where β is some multi-index and dx and dx,y denote the distance from x to the

boundary of W and the minimum distance from the boundary of x and y, respectively.

When σ = 0 we use the notation | · |∗k,β;W := | · |(0)
k,β;W and if additionally k = 0 also

we simply write | · |0;W for the sup-norm on W . When the domain W in question is

clear, we will omit it in this notation.

Our approach will be to apply Schauder estimates to (3.37) on neighbourhoods

further and further along the asymptotic end. This is related to treatments in [ACF92]

and [AILA18]. More precisely, we will rewrite equation (3.37) as a perturbation of a

fixed elliptic operator on a Euclidean domain via a “rescaling” of the cross-sectional

coordinates. This allows us to apply standard Schauder estimates to this fixed oper-

ator and then track the dependence on the distance along the asymptotic end in the

perturbation coefficients and the rescaling of the cross-sectional coordinates.

Proof. Take an arbitrary point x0 = (r0, θ0) in the exterior region M+ = R≥0 × N

with r0 := r(x0) � 1. Fix a finite set of coordinate patches {Ui ⊂ N} which cover

N . Given x0, we choose one such chart containing θ0 which maximises the distance

dhθ0 with respect to the metric h̊ from θ0 to the boundary of the coordinate chart Ui.

Consequently, as {Ui} is an open covering and N is compact, there must exist a δ > 0

independent of θ0 so that dhθ0 > δ; if this were not the case, a sequence minimising

maxUi3θ0 d
h
θ0

would have an accumulation point in N which would have zero distance

to the boundary of any chart Ui containing it, a contradiction. From here on write

U = Ui and define Uδ ⊂ U to be the set of all points in U that are at least a distance

δ, with respect to h, away from the boundary.

We fix a coordinate system {θa} on U where θa : U → Rn−1; without loss of

generality, by shrinking the original choice of charts slightly, we assume that the

coordinates are defined in an open neighbourhood of Ū so that h̊ab is positive definite

on Ū . For simplicity, we identify U with a subset of Rn−1 via the coordinates θa.

Consider the neighbourhood Ω of x0 by Ω := (r0−1, r0 +1)×U and define a mapping

Ψ(r, θ) = (r̃, θ̃) := (r − r0, e
r0θ).
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We define Ũ := {θ̃ : θ ∈ U}, Ũδ := {θ̃ : θ ∈ Uδ} and Ṽ := Ψ(Ω) = (−1, 1) × Ũ .

We consider Ṽ as a subset of Rn and (r̃, θ̃) as coordinates on Ω. We denote partial

derivatives in these coordinates by ∂̃, that is we write ∂
∂r̃

= ∂̃r and ∂
∂θ̃a

= ∂̃a. We note

here that ∂̃r = ∂r and ∂̃a = e−r0∂a.

We first note that, in the (r̃, θ̃) coordinates, ∆g̊ can be expressed in non-divergence

form as

∆g̊ = ∂̃rr +
e2r0

f 2
k

h̊ab∂̃ab + (n− 1)qk∂̃r +
e2r0

f 2
k

∂̃a

(̊
hab
√
h̊
)

√
h̊

∂̃b =: L̃,

where fk = O(er) is as in the definition of the reference locally hyperbolic metric

(3.1) and

qk(r) =
f ′k(r)

fk(r)
=


coth(r) k = 1,

1 k = 0,

tanh(r) k = −1.

As the coordinates θa are defined on an open neighbourhood of Ū , L̃ defined above

has a uniform (in r0) lower bound on the ellipticity constant and uniform upper bound

on the Hölder norms of the coefficients with respect to the Euclidean metric.

We now write ∆g as a perturbation of ∆g̊ as in (3.20) to obtain

∆gϕ−∆g̊ϕ = aij∇̊ijϕ+ bi∇̊iϕ = O
(
e−αr0

(
|∂̃2ϕ|+ |∂̃ϕ|

))
where aij := (gij − g̊ij), bi := gjk(Γijk − Γ̊ijk), and the modulus is taken with respect

to the Euclidean metric on Ṽ and the final equality is a consequence of the decay

established in Lemma 3.1.2. Consequently, we may rewrite (3.37) as

−cnL̃ϕ− nϕ = R(ϕ) + cϕ+O
(
e−αr0

(
|∂̃2ϕ|+ |∂̃ϕ|

))
= R(ϕ) +O

(
e−αr0

(
|∂̃2ϕ|+ |∂̃ϕ|+ |ϕ|

))
︸ ︷︷ ︸

=f

where c = Sg + n(n− 1) and we define

R(x) := (1 + x)
n+2
n−2 − 1− n+ 2

n− 2
x.
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We now apply the Schauder estimates of [GT01, Theorem 6.2] to the equation

above on Ṽ . We obtain that, fixing some arbitrary β > 0,

|ϕ|∗2,β ≤ C1(|ϕ|0 + |f |(2)
0,β) (3.38)

where all norms are taken on Ṽ and C1 depends only on the ellipticity constant of

L̃, the Hölder norms of the coefficients of L̃, n and β. Consequently, as established

earlier, this means that C1 is independent of r0.

We estimate

|f |(2)
0,β ≤ |R(ϕ)|(2)

0,β + Ce−αr0
∣∣∣|∂̃2ϕ|+ |∂̃ϕ|+ |ϕ|

∣∣∣(2)

0,β

≤ |R(ϕ)|(2)
0,β + C2e

−αr0 |ϕ|∗2,β

where C2 depends only on g and the coordinate choice but again not on r0. For the

first term, we write the error in the Taylor expansion as

R(ϕ) = C

∫ ϕ

0

(1 + t)
6−n
n−2 (ϕ− t) dt = O(ϕ2).

Differentiating the above yields

|∂̃R(ϕ)| ≤ C

∫ ϕ

0

(1 + t)
6−n
n−2 |∂̃ϕ− t| dt

≤ C|∂̃ϕ|
∫ ϕ

0

(1 + t)
6−n
n−2 dt+ C

∫ ϕ

0

|t|(1 + t)
6−n
n−2 dt

≤ O(ϕ)|∂̃ϕ|+O(ϕ2)

so that

|R(ϕ)|(2)
0,β ≤ |R(ϕ)|0 + [∂̃R(ϕ)]

(2)
0

≤ O(e−2αr0) +O
(
e−αr0

)
|ϕ|∗2,β.

In summary, we now have

|ϕ|∗2,β ≤ C1(|ϕ|0 + |f |(2)
0,β) ≤ Ce−αr0|ϕ|∗2,β + Ce−αr0
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where C is independent of r0. We then absorb the |ϕ|∗2,β term on the RHS of the

above by taking x0 far into the asymptotic region so that r0 is very large. We obtain

|ϕ|∗2,β ≤ Ce−αr0

on Ṽ with C independent of r0.

It remains to convert the bound on |ϕ|∗2,β into a bound at x0 on the partial deriva-

tives ∂iϕ(x0) in our original coordinates on Ω. We first establish a bound on the

partial derivatives ∂̃iϕ(x0) in the coordinates on Ṽ at x0. To this end, we fix a

neighbourhood

W̃ :=

(
−1

2
,
1

2

)
× Ũδ ⊂ Ṽ

which certainly contains x0 by the definition of δ. From the definition of the norm

| · |∗2,β and defining d̃x to be the Euclidean distance to the boundary of x on Ṽ , we see

that

‖ϕ‖C2(W̃ ) ≤
(

inf
x∈W̃

d̃x

)−2

|ϕ|∗2,β ≤ Ce−αr0
(

min

(
1

2
, δfk(r)

))−2

≤ Ce−αr0

where C remains independent of x0 for r0 sufficiently large as fk(r) = O(er).

Recalling that ∂̃r = ∂r and ∂̃a = f−1
k (r)∂a we then finally obtain that, on Ω we

have that

∂rϕ(x0) = O(e−αr0), ∂aϕ(x0) = O(e−(α−1)r0),

∂rrϕ(x0) = O(e−αr0), ∂raϕ(x0) = O(e−(α−1)r0), ∂abϕ(x0) = O(e−(α−2)r0).

The conclusion follows directly from the above.

The lemma above allows us to improve Lemma 3.2.13 to have û decay to zero in

the full C2 norm. We are now ready to prove Theorem A.

Lemma 3.2.16. Suppose (M, g) is an asymptotically locally hyperbolic manifold of

order α ∈ (0, n). In addition, suppose that the scalar curvature satisfies the stronger

condition

|Sg + n(n− 1)| ≤ Ce−αr,
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for some constant C > 0, then there exists a smooth positive solution u = 1 +

O(e−αr) of (Ya) and the corresponding conformal metric is also asymptotically locally

hyperbolic of order α.

Proof. As a consequence of the Proposition 3.2.5 and Lemma 3.2.13, we have the

existence of a conformal factor u = 1 + û where û = O(e−αr) such that the metric

g̃ = u
4

n−2 g satisfies Sg̃ ≡ −n(n − 1) on all of M . It remains to show that g̃ is

asymptotically locally hyperbolic of order α. We note that we may apply Lemma

3.2.15 to û to obtain that

∂rû = O(e−αr), ∂aû = O(e−(α−1)r),

∂rrû = O(e−αr), ∂raû = O(e−(α−1)r), ∂abû = O(e−(α−2)r).

We write explicitly g̃ = u
4

n−2

(
dr2 + sinh2(r + r0)̊h+ εradθ

adr + εabdθ
adθb

)
where

εab = O1(e−(α−2)r) and εra = O1(e−(α−1)r). Consider the new coordinate

z := r +

∫ ∞
r

(
1− u

2
n−2

)
ds .

First note that ∫ ∞
r

(
1− u

2
n−2

)
ds = O(e−αr)

and so O(e−αr) = O(e−αz). We compute that

dz = u
2

n−2dr −
(∫ ∞

r

2

n− 2
u

4−n
n−2∂aû ds

)
dθa

and so we have

u
4

n−2dr2 = dz2 + 2

(∫ ∞
r

2

n− 2
u

4−n
n−2∂aû ds

)
dθadz

+

(
2

n− 2

)2(∫ ∞
r

u
4−n
n−2∂aû ds

)(∫ ∞
r

u
4−n
n−2∂bû ds

)
dθadθb.

Substituting this into the expression for g̃ allows us to write

g̃ = dz2 + sinh2(z + r0)̊h+ ε̃zadθ
adz + ε̃abdθ

adθb

77



where

ε̃za = 2

(
2

n− 2

)(∫ ∞
r

u
4−n
n−2∂aû ds

)
+ u

2
n−2 εra

and

ε̃ab =

(
2

n− 2

)2(∫ ∞
r

u
4−n
n−2∂aû ds

)(∫ ∞
r

u
4−n
n−2∂bû ds

)
+

(
2

n− 2

)
u

2
n−2

(∫ ∞
r

u
4−n
n−2∂bû ds

)
εra

+
(
u

4
n−2 sinh2(r + r0)− sinh2(z + r0)

)
h̊ab + u

4
n−2 εab.

To conclude that g̃ is asymptotically locally hyperbolic in the sense of Definition

3.1.1, it remains to show the appropriate decay properties of εza and εab. Using the

fact that ∂z = (1 +O(e−αz)) ∂r, the C2 decay of û from Lemma 3.2.15 and the fact

that

sinh2(r + r0) = sinh2(z + r0) +O1(e−(α−2)z)

yields, via direct computation, that ε̃za = O1(e−(α−1)z) and ε̃ab = O1(e−(α−2)z) as

desired.

In summary, in Section 3.2.1 we established the existence part of Theorem A and

we have now completed the proof of the second part of Theorem A as a combination

of Lemma 3.2.13 and Lemma 3.2.16.

3.3

The Yamabe Problem for Asymptotically
Warped Product Manifolds

We now return to our original motivating goal of understanding when a solution to

the Yamabe problem for manifolds with Sg ≤ −n(n− 1) outside of some compact set

exists. Having proved Theorem A, we extend our class of manifolds by considering

asymptotically warped product manifolds.
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Once again, we suppose that we can write (M, g) in two parts, M = M0 ∪M+,

where M0 is some compact manifold with boundary, M+ = R+×N with (N, h̊) some

compact manifold. We suppose that the metric g on M+ is asymptotic (in a sense to

be made precise in the subsequent sections) to the reference warped product

g̊f = dz2 + f 2(z)̊h (3.39)

where f is some positive function, usually referred to as the warping function. We

note again the useful formula for the scalar curvature of such a warped product metric

Sg̊f = −2(n− 1)
f ′′

f
− (n− 1)(n− 2)

(
f ′

f

)2

+
Sh̊
f 2
. (3.40)

We suppose that ∂M0 corresponds directly to the set {0} × N ⊂ M+. We refer

to such a manifold with the exact reference metric g̊ as having a warped product end

and to g as having an asymptotically warped product end. This notion generalises

the class of asymptotically locally hyperbolic metrics discussed in earlier sections.

We first make a remark regarding the approach used in the proof of Theorem A and

how it may be applied to a broader class of asymptotically warped product manifolds.

A key element of the proof of Theorem A is the construction of the sub-solution in

Lemma 3.2.3. In the proof of Lemma 3.2.3, we note that the only properties of the

underlying reference metrics (see Definition 3.1.1 and preceding discussion for details)

that were used were their particular warped product form g̊ = dr2 + f 2
k (r)̊h and that

their warping functions fk satisfied

lim inf
r→∞

f ′k
fk
≥ 1. (3.41)

While the approach of Theorem A could likely be adapted to asymptotically warped

product manifolds satisfying the above condition, we find that we are able to en-

compass a significantly larger class by first constructing a conformal change to an

asymptotically locally hyperbolic metric and then applying our Theorem A to this

conformal metric.
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In particular, in Section 3.3.1, we prove that a necessary and sufficient criterion

for a metric g̊ of a warped product end to be conformally locally hyperbolic is that f

satisfies ∫ ∞
0

1

f
<∞. (3.42)

We highlight that, while we will go on to construct radially symmetric conformal

factors to prove the sufficiency of the above, we do not assume that the conformal

factors must be radially symmetric in proving the necessity of the above condition.

We note here that condition (3.41) implies the criterion (3.42) and, furthermore,

the latter is significantly weaker than condition (3.41) (for example, including warping

functions of the form f(z) = zα for α > 1).

Furthermore, in Section 3.3.2, we address the yet broader class of those metrics g

which asymptote to a warped product satisfying the criterion above; we provide the

asymptotic properties of the constructed coordinate change and conformal factor as

well as rates for the asymptotic decay corresponding to those required in our main

Definition 3.1.1 of asymptotic local hyperbolicity.

3.3.1 A Necessary and Sufficient Criterion for Conformal
Equivalence to a Locally Hyperbolic End for Warped
Product Ended Manifolds

We consider the metric g̊f as in (3.39). In this subsection we prove a necessary and

sufficient condition on f for g̊f to be conformal to the corresponding locally hyperbolic

metric (3.1). In particular, we will show that

Theorem 3.3.1. A metric g̊f with a warped product end as in (3.39) is conformal to

a metric with a locally hyperbolic end if and only if∫ ∞
0

1

f(s)
ds <∞. (3.43)

We will establish the theorem above as a consequence of Lemmas 3.3.2, 3.3.4 and

3.3.5 proved in this subsection.
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We begin our work to prove Theorem 3.3.1 by establishing that (3.43) is sufficient

to show that g̊f is conformal to a metric with a locally hyperbolic end.

Consider a change of coordinates r = K(z) for some strictly increasing K, po-

tentially only on the tail [z0,∞) × N of the warped product end for some z0 > 0.

We would like to choose K so that, in the new coordinate system, the metric (3.39)

is manifestly conformal to the reference locally hyperbolic metric (3.1). For conve-

nience, we choose K(z0) = 0. In order to preserve the non-compact radial factor for

the desired locally hyperbolic end R≥0 ×N , we first need that K satisfies

K(∞) := lim
z→∞

K(z) =∞.

In this coordinate system g̊f is written as

g̊f = (K ′(z))−2
(
dr2 + (K ′(z)f(z))2̊h

)
.

It is then readily seen that, for the metric to then be conformal to the reference

metric, we would require that K solves

f(z)K ′(z) =


sinh(K(z) + r0) k = 1,

eK(z)+r0 k = 0,

cosh(K(z) + r0) k = −1,

for z ≥ z0.

We establish the existence of a solution to the above with the desired properties

under condition (3.43) on the warping factor f in the following lemma.

Lemma 3.3.2. Let (M, g̊f ) be a manifold with a warped product end as in (3.39).

Suppose additionally that ∫ ∞
0

1

f(s)
ds <∞. (3.44)

Then there exists a conformal metric g̃ of g̊f such that (M, g̃) has a locally hyperbolic

end.
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Proof. We first solve the ODEs

f(z)K ′(z) =


sinh(K(z) + r0) k = 1,

eK(z)+r0 k = 0,

cosh(K(z) + r0) k = −1.

for z ≥ z0 with the initial condition K(z0) = 0. As the equations above are separable,

we arrive immediately at the following solutions

K(z) =



2 arctanh

(
tanh

(r0

2

)
exp

(∫ z

z0

1

f(s)
ds

))
− r0 k = 1,

log

(
1

er0 −
∫ z
z0

1
f(s)

ds

)
+ r0 k = 0,

2 arctanh

(
tan

(
1

2

∫ z

z0

1

f(s)
ds+ arctan

(
tanh

(r0

2

))))
− r0 k = −1.

To conclude, we need to show that, for each k = 1, 0,−1, there exist r0 and z0 so

that the solutions above are defined for all z ≥ z0 and the remaining requirements

that K(z) is increasing and K(∞) =∞ hold.

For k = 1, in order to see that K(z) is well defined for all z ≥ z0 we require that

tanh
(r0

2

)
exp

(∫ ∞
z0

1

f(s)
ds

)
= 1.

As
∫∞

0
1
f
<∞, we may set z0 = 0 and choose a corresponding r0 so that the above is

true. That K is increasing is clear as r0 > 0.

For k = 0 we have that K(z) is increasing for any choice of r0 and z0. Again using

that
∫∞

0
1
f
< ∞, it is clear that, by setting z0 = 0 and taking a corresponding r0 so

that

er0 −
∫ ∞

0

1

f(s)
ds = 0

we obtain that K(z) is well defined for all z ≥ z0 and K(∞) =∞ as desired.

Finally, for k = −1, we can see that K(z) is well defined for all z ≥ z0 and

K(∞) =∞ provided that

1

2

∫ ∞
z0

1

f(s)
ds+ arctan

(
tanh

(r0

2

))
=
π

4
.
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As
∫∞

0
1
f
< ∞, we may choose z0 sufficiently large that

∫∞
z0

1
f(s)

ds < π
2

and a corre-

sponding r0 such that the above is true. It is evident that K(z) is increasing for any

choice of r0 and z0.

Remark 3.3.3. During the course of this project, we originally proved the above via

an alternative, non-explicit method. Though we chose the above, more concise proof

over this alternative proof, the latter does have some benefits in that it makes the

similarity between the asymptotic behaviour of the conformal factor in the three cases

k = −1, 0,+1 (which will be used later) more obvious than in the explicit solutions

above. Furthermore, the alternative argument addresses a more general set of ODE

problems and so it’s conceivable that it could be of independent interest in this regard.

For these reasons, we choose to include the argument in Appendix B, although this is

non-essential content for the reader.

Having established the sufficiency of condition (3.43) for g̊f to be conformal to a

metric with a locally hyperbolic end, we now provide two lemmas that will allow us

to also show its necessity, and so prove Theorem 3.3.1.

To this end, we will establish a connection between the quantity
∫∞

0
1
f

and the

completeness and volume of the conformal metrics to g̊f . First, in the case that∫∞
0

1
f

= ∞, we proceed in a similar manner to the previous lemma and explicitly

construct a conformal metric to g̊f which is complete and has finite volume.

Lemma 3.3.4. Let (M, g̊f ) be a manifold with a warped product end as in (3.39).

Suppose additionally that ∫ ∞
0

1

f(s)
ds =∞. (3.45)

Then there exists a conformal metric ǧ of g̊f such that (M, ǧ) is complete and of finite

volume.

Proof. Using that
∫∞

0
1

f(s)
ds = ∞, we will construct an explicit conformal factor

between g and a particular complete, finite volume metric

ǧ = dž2 + e−2žh̊.
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In particular, define

K(z) := log

(
1 +

∫ z

0

1

f(s)
ds

)
so that

K ′(z) =
1

f(z)
(

1 +
∫ z

0
1

f(s)
ds
) .

We then define a new coordinate ž = K(z) so that

g̊f = dz2 + f 2(z)̊h = (K ′(z))
−2
(
dž2 + (K ′(z)f(z))2̊h

)
= (K ′(z))

−2
(
dž2 + e−2žh̊

)
and so g̊f is conformal to dž2 + e−2žh̊ which can readily be seen to be both complete

and of finite volume on M+.

Having shown the above lemma, we now show that the integral
∫∞

0
1
f

diverging

is in fact necessary for a metric g̊f with a warped product end to be conformal to a

complete metric of finite volume. In particular, any metric ǧ conformal to g̊f with

finite volume will fail to be complete unless
∫∞

0
1
f

=∞.

Lemma 3.3.5. Let (M, g̊f ) be a manifold with a warped product end. Suppose that

the metric g̊f is conformal to a complete, finite volume metric ǧ. Then, necessarily,

f must satisfy ∫ ∞
0

1

f(s)
ds =∞. (3.46)

Proof. We recall that, on the exterior region M+, we can write g̊f = dz2 + f 2(z)̊h,

where we write z : [0,∞) → M+ as a coordinate on the R≥0 fibre of M+. By

assumption, there exists some conformal factor u(z, θ) such that

ǧ = u
4

n−2 (z, θ)̊gf .

We will show that the finite volume metric ǧ can only be complete if
∫∞

0
1

f(s)
ds =

∞. Consider the divergent curves γθ : [0,∞)→M+ defined by

γθ(t) = (z(t), θ) .
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Note that γ̇θ(t) = ∂z. We compute directly the length

Lǧ(γθ) =

∫ ∞
0

√
ǧ (γ̇θ(t), γ̇θ(t)) dt

=

∫ ∞
0

u
2

n−2 (z(t), θ)
√
g̊f (∂z, ∂z) dt =

∫ ∞
0

u
2

n−2 (z, θ) dz.

Consequently, we may write∫
N

Lǧ(γθ) dθ =

∫
N

∫ ∞
0

u
2

n−2 (z, θ) dz dθ

=

∫
N

∫ ∞
0

(
u

2
n−2 (z, θ)f

n−1
n (z)

)
f−

n−1
n (z) dz dθ

≤
(∫

N

∫ ∞
0

u
2n
n−2 (z, θ)fn−1(z) dz dθ

) 1
n
(∫

N

∫ ∞
0

1

f(z)
dz dθ

)n−1
n

= V olǧ(M
+)

1
nV olh(N)

n−1
n

(∫ ∞
0

1

f(z)
dz

)n−1
n

.

By the assumptions on ǧ we have both that V olǧ(M
+) <∞ and Lǧ(γθ) =∞ and so,

as the LHS of the above is infinite, we must have that
∫∞

0
1

f(s)
ds =∞.

The combination of the two lemmas above is sufficient to prove our main theorem,

which we now show.

Proof of Theorem 3.3.1. The sufficiency of the condition
∫∞

0
1
f
<∞ is established in

Lemma 3.3.2.

The only remaining step is to apply Lemma 3.3.4 and Lemma 3.3.5 to establish

the necessity of the condition
∫∞

0
1
f
<∞. A consequence of Lemma 3.3.4 and Lemma

3.3.5 is that any two warped product metrics g̊f1 and g̊f2 with
∫∞

0
1
f1

< ∞ and∫∞
0

1
f2

= ∞ cannot be conformal, as one is conformal to a complete metric of finite

volume, by Lemma 3.3.4, and the other cannot be, by Lemma 3.3.5. We can compute

for the reference locally hyperbolic metrics in (3.1), that∫ ∞
0

1

fk(s)
ds <∞

for each k = −1, 0, 1 and so any metric conformal to one of the reference locally

hyperbolic metrics must have
∫∞

0
1
f
<∞ as required.
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3.3.2 A Corresponding Existence Result for the Yamabe Prob-
lem on Manifolds with an Asymptotically Warped Prod-
uct End

Given the necessary and sufficient criterion for conformal equivalence to the locally

hyperbolic end established for manifolds with a warped product end in the previous

sub-section, we now look to the implications of this equivalence for existence to the

Yamabe problem for asmyptotically warped product manifolds.

Remark 3.3.6. As established early on in the goals of this thesis, we are interested

at all times in proving existence for the Yamabe problem for manifolds that have a

representative in their conformal class that satisfies some kind of asymptotic negativity

condition on the scalar curvature in the nature of lim supr(x)→∞ Sg ≤ −n(n − 1).

We note here that Theorem 3.3.1 of the previous section provides a criteria for the

existence of such a representative within the conformal class of a warped product end,

potentially showing a connection between negative scalar curvature conditions and the

condition
∫∞

0
1

f(s)
ds <∞.

We first make precise our definition of an asymptotically warped product end and

establish a corresponding condition on the scalar curvature to ensure the required

negativity condition of the scalar curvature on the corresponding conformally asymp-

totically locally hyperbolic end. In particular, we consider a Riemannian manifold

(M, gf ) which can be written M = M0 ∪ (R≥0 ×N) and we can write the metric gf

on R≥0 ×N as

gf = g̊f + εzadzdθ
a + εabdθ

adθb (3.47)

where g̊f again is a reference warped product metric of the form dz2 + f(z)2̊h and εij

is a perturbation satisfying, for some α ∈ (0, n),

εab = O
(
f 2Hα

)
,

∂zεab = O
((
f 3H + f ′f + fH−1

)
Hα
)
,

∂cεab = O
(
f 2Hα

)
,

εza = O (fHα) ,

∂zεza = O
((
f 2H + f ′ +H−1

)
Hα
)
,

∂cεza = O (fHα) ,

(3.48)
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where we have assumed
∫

1
f
< ∞ and defined H(z) :=

∫∞
z

1
f(s)

ds. These are chosen

so that gf is conformal to an asymptotically locally hyperbolic metric in the sense of

Definition 3.1.1. In particular, we provide the following proposition:

Proposition 3.3.7. Let (M, gf ) be a manifold with an asymptotically warped product

end M+ on which gf is defined as in (3.47) with perturbation coefficients satisfying

(3.48) for any α ∈ (0, n) and whose warping function satisfies∫ ∞
0

1

f
<∞. (3.49)

Then (M, gf ) is conformal to an asymptotically locally hyperbolic manifold (M, g̃) in

the sense of Definition 3.1.1.

Proof. We first define the coordinate change r = K(z) and take the conformal factor

κ(z) := K ′(z) where K corresponds to the coordinate change obtained in the proof

of Lemma 3.3.2 so that

g̃ := κ2g = dr2 + f 2
k (r + r0)̊h+ κ2εab dθ

adθb + κεza drdθ
a

= dr2 + f 2
k (r + r0)̊h+ ε̃ab dθ

adθb + ε̃ra drdθ
a

where, in the first line, we used that dz = κ−1dr and we define ε̃ab := κ2εab and

ε̃ra := κεza. For g̃ to satisfy Definition 3.1.1, it remains to show that the perturbation

terms in the above satisfy the corresponding bounds in Definition 3.1.1, that is ε̃ab =

O1

(
e−(α−2)r

)
and ε̃ra = O1

(
e−(α−1)r

)
. We note the fact that

r(z) = O
(

log

(
1

H

))
and κ = O

(
1

fH

)
(they are exactly equal in the Sh̊ ≡ 0 case) and so we compute directly that

O(e−αr) = O (Hα) .

Additionally, we have that ∂r = κ∂z and so, computing the required derivatives of the

terms ε̃ab and ε̃ra, we obtain the required bounds directly from the bounds in (3.48)

on εab, εza and their derivatives.
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Having established the existence of a conformal metric g̃ of gf which is asymptoti-

cally locally hyperbolic, we require only an equivalent to the negative scalar curvature

requirement

Sg̃ ≤ −n(n− 1) + Ce−αr

in order to apply Theorem A and provide a solution to the Yamabe problem for

(M, g). We provide here a criterion for g̃ to satisfy the desired scalar curvature decay.

In particular, we obtain

Lemma 3.3.8. Under the hypotheses of Proposition 3.3.7, suppose further that there

exists a constant C > 0 such that the warping function satisfies∣∣∣∣ 1

fH

∣∣∣∣+

∣∣∣∣f ′f
∣∣∣∣ ≤ C and

∣∣∣∣f ′′f
∣∣∣∣ ≤ CH−α. (3.50)

Then, the scalar curvature of the conformal asymptotically locally hyperbolic metric g̃

obtained in Proposition 3.3.7 satisfies

Sg̃ ≤ −n(n− 1) + Ce−αr provided Sgf ≤ Sg̊f + C
Hα−2

f 2
on M+, (3.51)

and likewise

Sg̃ ≥ −n(n− 1) + Ce−αr provided Sgf ≥ Sg̊f + C
Hα−2

f 2
on M+. (3.52)

Proof. Define g̃ := κ2gf to be the asymptotically locally hyperbolic metric of order α

obtained in Proposition 3.3.7 where again we define the coordinate change r = K(z)

and the conformal factor κ = K ′(z) where K is the coordinate change obtained in the

proof of Lemma 3.3.2 in the previous section. We note here that, as a consequence

of this lemma, we have that g̊f = κ−2g̊.

Defining v := κ
n−2
2 , we have the following formula

Sg̃ = v−
n+2
n−2

(
−cn∆gfv + Sgfv

)
= −n(n− 1) + v−

n+2
n−2

(
−cn

(
∆gfv −∆g̊fv

)
+
(
Sgf − Sg̊f

)
v
)
. (3.53)
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where the second equality comes from the fact that v
4

n−2 g̊f has scalar curvature equal

to −n(n− 1).

To conclude, we need only estimate the difference ∆gfv−∆g̊fv. As gf = κ−2g̃ and

g̊f = κ−2g̊, we have that

∆gfv = ∆κ−2g̃v = κ2(z(r))

(
∆g̃v + (n− 2)g̃rr∂r

(
log

(
1

κ(z(r))

))
∂rv

)
and

∆g̊fv = ∆κ−2g̊v = κ2(z(r))

(
∆g̊v + (n− 2)̊grr∂r

(
log

(
1

κ(z(r))

))
∂rv

)
.

Consequently, we obtain

∆gfv −∆g̊fv = κ2(z(r))

(
∆g̃v −∆g̊v + (n− 2) (g̃rr − g̊rr) ∂r

(
log

(
1

κ(z(r))

))
∂rv

)
= κ2(z(r))

(
(g̃rr − g̊rr) ∂rrv +

(
g̃ab − g̊ab

)
Γ̊rab∂rv + g̊jk

(
Γrjk − Γ̊rjk

)
∂rv

+ (n− 2) (g̃rr − g̊rr) ∂r
(

log

(
1

κ(z(r))

))
∂rv

)
where we use that g̃ is asymptotically locally hyperbolic to use (3.20) to compare the

Laplacian of g̃ to that of the reference locally hyperbolic g̊ and we use Γijk and Γ̊ijk to

refer to their corresponding Christofell symbols as in earlier sections. From here we

use that ∂r = κ∂z and the decay of quantities for the corresponding asymptotically

locally hyperbolic metric g̃ established in Lemma 3.1.2 to obtain

∆gfv −∆g̊fv = O
(
H2α

)
∂zzv +O (Hα) ∂zv.

The conditions (3.50) give us that |κ| ≤ C, |κ′| ≤ C and κ′′ ≤ CH−α; consequently,

|∂zv| ≤ C and ∂zzv ≤ CH−α and so

∆gfv −∆g̊fv ≤ CH−α.

Substituting the above bound for ∆gfv −∆g̊fv into (3.53) we obtain

Sg̃ = −n(n− 1) +O(Hα) +
(
Sgf − Sg̊f

)
O
(
f 2H2

)
from which the conclusions of the lemma are apparent.
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Having established conditions which allow us to compare a wide class of asymp-

totically warped product manifolds to conformal asymptotically locally hyperbolic

manifolds, we are now able to apply our Theorem A in this more general setting to

obtain:

Theorem 3.3.9. Let (M, gf ) be a manifold with an asymptotically warped product

end with perturbation coefficients satisfying (3.48) for some α ∈ (0, n). Suppose

additionally that the warping function satisfies (3.49) and (3.50).

If the scalar curvature satisfies

Sgf ≤ Sg̊f + C
Hα−2

f 2
on M+ (3.54)

for some constant C > 0, then there exists a positive smooth solution uf of the Yamabe

equation for gf on M satisfying

lim inf
r→∞

(
uf −

1

fH

)
≥ 0

and the corresponding conformal metric g̃ is complete and has constant scalar curva-

ture Sg̃ ≡ −n(n− 1) on M .

In addition, if the scalar curvature satisfies the stronger condition

|Sgf − Sg̊f | ≤ C
Hα−2

f 2
on M+, (3.55)

then ∣∣∣∣uf − 1

fH

∣∣∣∣ −→ 0 as r →∞

and uf is maximal in that any solution ũf of the Yamabe equation for gf on M satisfies

ũf ≤ uf . Furthermore, the corresponding conformal metric (M, g̃) is asymptotically

locally hyperbolic of order α.

Proof. As an immediate consequence of Proposition 3.3.7, gf is conformal to an

asymptotically locally hyperbolic metric g satisfying Definition 3.1.1. We will write

the conformal factor from the proof of Proposition 3.3.7 again as κ so that κ2gf = g

and note again that κ = O
(

1
fH

)
.
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We may then apply Theorem A, using Lemma 3.3.8 to convert conditions (3.54)

and (3.55) to their corresponding conditions for the scalar curvature of g, to obtain a

solution u to the Yamabe equation for g with corresponding conformal metric g̃. We

then have that u
4

n−2

f gf = g̃, where uf := κ
n−2
2 u, and so uf must solve the Yamabe

equation for gf and the remaining conclusions of Theorem A translate directly.
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4
Volume Ratios, Eigenvalue
Estimates and the Yamabe
Problem

In this chapter, we present a new perspective on the Yamabe problem via a study

of volume ratio conditions of particular compact domains; we present a new result

regarding eigenvalue estimates for the conformal Laplacian and explore its implica-

tions for existence of solutions to the Yamabe problem. From this new perspective,

we begin to motivate further study through a series of examples and questions.

In Section 4.1, we provide an introduction of the concepts discussed in this chap-

ter and an overview of our main results and their place in the literature. In Section

4.2, we prove our main results and a number of useful corollaries. Section 4.3 pro-

vides a number of motivating examples providing context for further study, as well as

demonstrating the sharpness of the condition for our main eigenvalue estimate. Ad-

ditionally, Section 4.3 also provides a comparison of the scope of the existence results

in this chapter with that of the previous chapter on asymptotically locally hyperbolic

manifolds.
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4.1

Introduction

Recall, again, that we would like to find, on a given non-compact Riemannian manifold

(M, g), a complete metric g̃ = u
4

n−2 g conformal to g with constant negative scalar

curvature via a solution of the Yamabe equation

−cn∆gu+ Sgu = −n(n− 1)u
n+2
n−2 on M. (Ya)

One may also desire an understanding of the asymptotic behaviour of such a conformal

factor u; however, given the constraints of this DPhil project, in this chapter our

priority will be to establish conditions for the existence of such a conformal factor for

which the corresponding constant scalar curvature metric is complete, without regard

for the particular asymptotic behaviour of the corresponding conformal factor.

As discussed in Chapter 1, our goal is to understand what additional requirements

are needed on manifolds satisfying the natural negativity condition that Sg ≤ −ε < 0

on some exterior region, in order to provide a solution to the Yamabe problem. In

this chapter, our work is guided by an interest in the role of the first eigenvalue of

the conformal Laplacian −cn∆g +Sg on bounded domains, with respect to the homo-

geneous Dirichlet boundary conditions, in the existence of solutions to the Yamabe

problem.

It has been shown by Aviles and McOwen in [AM88], that we can establish the

existence of a solution to (Ya) if we can find some compact domain in M on which the

first eigenvalue of conformal Laplacian is negative. Our aim will be to find a geometric

condition, in addition to the negativity of the scalar curvature, under which we can

find a compact domain Ω ⊂M which exhibits such a negative first eigenvalue.

We first establish definitions and terminology in Section 4.1.1, after which we

briefly motivate our geometric condition of interest in Section 4.1.2. Finally, we

discuss our main result and its implications in Section 4.1.3.
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4.1.1 Definitions and Terminology

We recall that, for any given Riemannian manifold (M, g), we refer to the elliptic

operator −cn∆g + Sg as the conformal Laplacian. Central to our discussion will be

the first eigenvalue λ of the conformal Laplacian with Dirichlet boundary data on

some bounded domain Ω. We recall the variational formulation for λ; in particular,

we may define

λ := inf
ϕ∈H1

0 ,
‖ϕ‖L2=1

∫
Ω

cn|∇gϕ|2 + Sgϕ
2dVg. (4.1)

We note here, as this will be relevant in our main proof of this chapter, that a

consequence of the above variational formulation is that we may show that λ < 0 for

some domain Ω if we can exhibit any test function ϕ ∈ H1
0 (Ω) such that∫

Ω

cn|∇gϕ|2 + Sgϕ
2dVg < 0. (4.2)

In the following, a central quantity will be the ratio of the volumes of two sets Ω1

and Ω2 which are separated by a fixed distance R > 0, that is

dg(x, ∂Ω2) = R for each x ∈ ∂Ω1.

More specifically, we will be interested in the size of the ratio between the inner region

Ω1 and the outer region between Ω1 and Ω2, that is the quantity

V olg(Ω2 \ Ω1)

V olg(Ω1)
. (4.3)

We will refer to conditions on the above quantity simply as volume ratio conditions.

4.1.2 Motivation

We consider here, why we might be interested in these volume ratio conditions dis-

cussed above as a natural geometric condition that one can impose to establish the

existence of a negative first eigenvalue for the conformal Laplacian. A natural connec-

tion between the first eigenvalue and the geometry of the underlying manifold occurs

in the equivalence between the isoperimetric inequality and the Sobolev inequality
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(see [Tal76], [Oss78], [Oss79], [BNT10]). In particular, we see that the isoperimetric

inequality can be recovered from the Sobolev inequality via a series of approxima-

tions to the indicator function on a given domain and the converse can be seen via

the coarea formula. In turn, the Sobolev inequality provides a direct link to the first

eigenvalue of the Laplacian. For example, an application of the Poincaré inequality

leads us to a first straight-forward but important lemma prohibiting the existence of

a negative first eigenvalue for the Laplacian at small scales.

Lemma 4.1.1. For any Riemannian manifold (M, g) there exists, for each x ∈ M ,

an R > 0 such that for any r < R the least eigenvalue of the conformal Laplacian

−cn∆g + Sg on Br(x) is strictly positive.

In particular, we remark that the above lemma leads us naturally to consider only

“large” domains within the manifold.

Proof. Bearing in mind formulation (4.1) for the eigenvalue problem we note that, by

the Poincaré inequality for H1
0 functions on a ball,∫

Br

[
cn|∇gϕ|2 + Sgϕ

2
]
dVg ≥

∫
Br

(
C

r
+ Sg

)
ϕ2dVg > 0

with the last inequality certainly being true for r < R where R > 0 is some constant

depending on n and Sg.

Our general philosophy will be to consider similar volume ratio type conditions

in the spirit of the isoperimetric inequality in establishing our desired negative first

eigenvalue. In particular, our goals of this chapter will be focused around a few central

questions:

• Can we establish the existence of a negative first eigenvalue for the conformal

Laplacian on a bounded domain (e.g. on a ball or annulus) with negative scalar

curvature in an arbitrary manifold (M, g) by imposing a condition only of the

volume ratio type as in (4.3)?
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• If such a condition exists, can we find a sharp bound on the size of the volume

ratio past which a negative first eigenvalue in general does not exist on the

domain of interest?

• What is the optimal volume ratio bound required to deduce existence of solu-

tions to the Yamabe problem?

We are able to address the first two questions in this chapter, in particular we

will be able to find a sharp condition on the volume ratio for existence of a negative

first eigenvalue for the conformal Laplacian. The third question is unresolved in this

DPhil project, see Section 5.2.2 for a discussion of this question.

4.1.3 Overview and Discussion of Main Results

We now provide an overview of the new results obtained in this section, discuss the

implications of these results for the Yamabe problem and compare the scope of our

new results with existing literature and our results obtained in Chapter 3.

Our main result provides a condition on the volume ratio between two sets Ω1 and

Ω2 as in (4.3) under which we may deduce the existence of a negative first eigenvalue

of the conformal Laplacian on Ω2. However, in line with the overarching goals of this

DPhil project, we first state the corresponding existence theorem for the Yamabe

problem which will follow as a consequence of our main result. In particular, we

prove:

Theorem. Let (M, g) be a Riemannian manifold and suppose there exist two open

sets Ω1 ⊂ Ω2 with C1 boundary which satisfy, for some R > 0, that

dg(x, ∂Ω2) = R for each x ∈ ∂Ω1,

that
V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ sinh2

(√
n(n− 2)

2
R

)
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and that the scalar curvature satisfies Sg ≤ −n(n− 1) on Ω2. Suppose, furthermore,

that Sg ≤ −ε < 0 everywhere outside of some compact set for some constant ε > 0.

Then there exists a complete metric g̃ conformal to g on M with constant scalar

curvature −n(n− 1).

We highlight a characteristic of the existence theorem above. In particular, the

existence result does not make any restrictions on the asymptotic behaviour of the

manifold aside from on the scalar curvature. We contrast this to our existence result

in Chapter 3, and to other existence results in the literature reviewed in Section 3.1.2,

where significant additional asymptotic restrictions are required. In Section 4.3.3, we

will provide examples of manifolds for which the existence theorem above holds but

which fall outside the class of manifolds addressed in Chapter 3. It should also be

noted, in line with our goal of the thesis as discussed previously, we do not make a

global non-positivity condition on the scalar curvature.

On the other hand, there are many natural examples which do not exhibit domains

satisfying the volume ratio condition required to apply our existence theorem above,

most strikingly the hyperbolic space which is the natural model in the asymptotically

hyperbolic setting in which most progress has been achieved on the non-compact

Yamabe problem. As an example demonstrating the failure to meet the volume ratio

condition in this case, we consider concentric geodesic balls in hyperbolic space which

we may estimate directly that the volume ratio (for large R) behaves like

V olHn(B2R)

V olHn(BR)
≈ e(n−1)R.

This is in contrast to the exponential rate of
√
n(n− 2) required in our existence

result, which is less than n − 1. To demonstrate that the theorem is not vacuous,

we provide examples of multiply warped product manifolds in Section 4.3 to which

our theorem applies, as well as in Section 4.3.3 where we provide examples which fall

outside the scope of Chapter 3 as already mentioned. We discuss speculation on the

nature of this gap between the results of Chapter 3 and this chapter in Section 5.2.2.
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Our existence theorem discussed above is a direct consequence our second main

theorem which provides an eigenvalue estimate based on a volume ratio condition in

combination with the work of Aviles and McOwen in [AM88]. In particular our main

theorem of this chapter is the following:

Theorem B. Let (M, g) be a Riemannian manifold and suppose there exist two open

sets Ω1 ⊂ Ω2 with C1 boundary which satisfy, for some R > 0,

dg(x, ∂Ω2) = R for each x ∈ ∂Ω1,

and
V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ sinh2

(√
n(n− 2)

2
R

)
and that the scalar curvature satisfies Sg ≤ −n(n − 1) on Ω2. Then, the conformal

Laplacian −cn∆g + Sg for (M, g) has a negative first eigenvalue on Ω2.

We highlight that, in the important example of the hyperbolic space discussed

above, there exists no bounded domain which has negative first eigenvalue for the

conformal Laplacian with Dirichlet boundary conditions.

Remark 4.1.2. In light of Lemma 4.1.1, we know that our theorem is necessarily

vacuous as R → 0 and this is reflected in the degeneration of the bound on the LHS

of (4.6).

As will be discussed in Section 4.2.3, the existence of such a negative first eigen-

value for the conformal Laplacian as established in our theorem above can be used, in

conjunction with a negativity condition on the scalar curvature on an exterior region,

to establish the existence of a solution to the Yamabe problem via the work of Aviles

and McOwen in [AM88].
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4.2

Proof of the Main Results

In this section we prove the main results which motivate this chapter which provide

an estimate for the first eigenvalue of the conformal Laplacian and corresponding

existence result for the Yamabe problem. In particular, we provide a condition on the

volume ratios discussed in Section 4.1.1 such that a negative first eigenvalue exists on

the corresponding compact domain. Later examples in this chapter will demonstrate

that the condition on the volume ratio obtained is in fact sharp, at least up to the

exponential rate, for the existence of a negative first eigenvalue. We then discuss the

implications of this result for existence of solutions to the Yamabe problem.

Before we can prove our eigenvalue estimate, we first review some tools from the

literature which will play an important role in the proof.

4.2.1 Sup-Norm Minimization Problems

In this section, we review tools from the literature on sup-norm minimisation prob-

lems. The section summarises certain excerpts from the paper [Aro65] which will be

needed in our work.

By a sup-norm minimisation problem we mean the following. Fix some interval

[0, R] ⊂ R and, for some function ϕ : [0, R] → R which is absolutely continuous and

satisfies the boundary conditions ϕ(0) = 0 and ϕ(R) = 1, define the functional

H(ϕ) := sup
0≤r≤R

F (ϕ(r), ϕ′(r)) .

We will refer to the set of all ϕ satisfying the requirements above by A. We are

interested in finding

inf
ϕ∈A

H(ϕ).

Problems such as the above were first addressed in a series of papers by Gunnar

Aronnson, although for our needs the first of them ([Aro65]) shall suffice. To state the
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result which we will use in our work, we must first define some additional quantities

and make some restrictions on F .

In particular, we suppose that F (y, z) satisfies the following conditions:

1. F is well defined and continuous for all y, z ∈ R.

2.
∂F

∂z
exists for all y, z ∈ R and

∂F

∂z


> 0 if z > 0,

= 0 if z = 0,

< 0 if z < 0.

3. lim
|z|→∞

F (y, z) =∞ for all y ∈ R.

Given the above, we then define the following quantities (defined for M > F (y, 0))

ΦM(y) := inf{z : z > 0, F (y, z) = M} (4.4)

and

L(M) :=

∫ 1

0

1

ΦM(t)
dt. (4.5)

We may now state the result of Aronsson which will be required in our proof. For

the sake of brevity, we state only the existence part of Theorem 4 of [Aro65] as the

uniqueness of the minimiser will not be required in our work.

Theorem ([Aro65], Theorem 4). Suppose that F satisfies conditions 1–3 above. Then

the solution of the minimisation problem infϕ∈AH(ϕ) is summarised in the following:

a) Given M , a necessary and sufficient condition for the existence of a function

ϕ ∈ A such that H(ϕ) = M is that L(M) ≤ R.

b) There is a number M0 such that L(M) ≤ R if and only if M ≥M0.

c) M0 = infϕ∈AH(ϕ).

d) There exists a C1 function ϕ̃ ∈ A which achieves the infimum.
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4.2.2 An Eigenvalue Estimate via a Volume Ratio Condition

For the convenience of the reader, we restate the main result of this section on the

existence of a negative first eigenvalue for the conformal Laplacian:

Theorem B. Let (M, g) be a Riemannian manifold and suppose there exist two open

sets Ω1 ⊂ Ω2 with C1 boundary which are separated by a fixed distance R > 0, that is

dg(x, ∂Ω2) = R for each x ∈ ∂Ω1,

which satisfy

V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ sinh2

(√
n(n− 2)

2
R

)
(4.6)

and that the scalar curvature satisfies Sg ≤ −n(n − 1) on Ω2. Then, the conformal

Laplacian −cn∆g + Sg for (M, g) has a negative first eigenvalue on Ω2.

To aid in our discussion regarding warped product and multiply warped product

type manifolds, we also provide the following corollaries of Theorem B for geodesic

balls and for annuli. In particular, for geodesic balls we have

Corollary 4.2.1. Let (M, g) be a Riemannian manifold and suppose there exist con-

stants α,R > 0 and some geodesic ball B(1+α)R which satisfies

V olg(B(1+α)R \BR)

V olg(BR)
≤ sinh2

(
αR
√
n(n− 2)

2

)
(4.7)

and on which the scalar curvature satisfies Sg ≤ −n(n − 1). Then, the conformal

Laplacian −cn∆g + Sg for (M, g) has a negative first eigenvalue on B(1+α)R.

In the case of a multiply warped product metrics (defined later, see (4.11)) which

have a radial fibre whose coordinate we denote by r, we fix some value r0 ∈ R and

define the annular region

AR(r0) = {x ∈M : |r(x)− r0| ≤ R}.

We may then obtain, again as a corollary of Theorem B,
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Corollary 4.2.2. Let (M, g) be a Riemannian manifold and suppose there exist con-

stants α,R > 0 and some annulus A(1+α)R(r0) which satisfies

V olg(A(1+α)R(r0) \ AR(r0)

V olg(AR(r0))
≤ sinh2

(
αR
√
n(n− 2)

2

)
(4.8)

and on which the scalar curvature satisfies Sg ≤ −n(n − 1). Then, the conformal

Laplacian −cn∆g + Sg for (M, g) has a negative first eigenvalue on A(1+α)R(r0).

The proofs of the two corollaries follow directly from Theorem B with the appro-

priate choices made for Ω1, Ω2 and R. We now prove Theorem B.

Proof of Theorem B. We would like to find a suitable test function ϕ ∈ H1
0 (Ω2) which

realises the inequality ∫
Ω2

cn|∇gϕ|2 + Sgϕ
2dVg < 0. (4.9)

We define the distance function r : Ω2 \ Ω1 → [0, R] by

r(x) := dg(x, ∂Ω2).

We will construct a test function ϕ(r) for (4.9). We presuppose that ϕ has the form

ϕ(x) =

{
1 x ∈ Ω1

ϕ̃(r(x)) x ∈ Ω2 \ Ω1

where ϕ̃ is a C1 function satisfying ϕ̃(0) = 0 and ϕ̃(R) = 1 to be determined. We

note that, as r is Lipschitz, these conditions on ϕ̃ ensure that ϕ ∈ H1
0 (Ω2) and so is

a valid test function.

Assuming this form, we can bound the LHS of (4.9) by∫
Ω2

cn|∇gϕ|2+Sgϕ
2dVg ≤

∫
Ω2

cn(ϕ′)2 − n(n− 1)ϕ2dVg

≤− n(n− 1)V olg(Ω1) +

∫
Ω2\Ω1

cn(ϕ̃′)2 − n(n− 1)ϕ̃2dVg

≤− n(n− 1)V olg(Ω1)

+ V olg(Ω2 \ Ω1) sup
0≤r≤R

(
cn(ϕ̃′(r))2 − n(n− 1)ϕ̃2(r)

)
.
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Consequently, we will have established (4.9), and so the existence of a negative first

eigenvalue for the conformal Laplacian, provided that we have

V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ n(n− 1)

(
sup

0≤r≤R
F (ϕ̃, ϕ̃′)

)−1

where we define F (y, z) := cnz
2 − n(n− 1)y2.

We have thus reposed our problem as a minimization problem as addressed in the

work of Aronsson in [Aro65] discussed in Section 4.2.1. In particular, we would like to

find a C1 interpolating function ϕ̃ which satisfies ϕ̃(0) = 0, ϕ̃(R) = 1 and minimizes

the functional

sup
0≤r≤R

F (ϕ̃, ϕ̃′).

We will appeal to Theorem 4 of [Aro65] (see Section 4.2.1) and first note that

our F clearly satisfies conditions 1, 2 and 3 from Section 4.2.1 required to apply the

result. In applying [Aro65, Theorem 4], we must compute the quantities (4.4) and

(4.5) for our particular F . We obtain

ΦM(y) := inf{z : z > 0, F (y, z) = M} =

√
M + n(n− 1)y2

cn

and

L(M) :=

∫ 1

0

dt

ΦM(t)
dt =

2√
n(n− 2)

arctanh

(√
n(n− 1)

M + n(n− 1)

)
.

Theorem 4 of [Aro65] then states that there exists a number M0 such that L(M) ≤

R if and only if M ≥M0 and furthermore, that this M0 satisfies

M0 = inf
ϕ̃(0)=0,
ϕ̃(R)=1

(
sup

0≤r≤R
F (ϕ̃, ϕ̃′)

)
and that there exists a ϕ̃ ∈ C1 with ϕ̃(0) = 0, ϕ̃(R) = 1 achieving the infimum above.

We use the first of the two statements above to compute M0. In particular, we

compute that L(M) ≤ R if and only if

n(n− 1) sinh−2

(
R
√
n(n− 2)

2

)
≤M

and so we have our value for M0 and the bound we are trying to show follows imme-

diately from the existence of a minimiser ϕ̃.
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Remark 4.2.3. Comparing the model barrier case of the hyperbolic space to our

result we see that, as the dimension grows, the two exponential rates converge (that is,√
n(n− 2)→ (n−1)). As no negative first eigenvalue can exist on a compact domain

in the hyperbolic space, this perhaps gives reason to think that, if we presuppose only

a bound on the volume ratio, there is already not much room for improvement on the

exponent in (4.6).

4.2.3 Consequences for the Yamabe Problem

We now discuss the implications of our eigenvalue result of Theorem B for the Yamabe

problem. In particular, we will prove the following existence result:

Theorem C. Suppose (M, g) is a Riemannian manifold satisfying the assumptions of

Theorem B and, furthermore, that Sg ≤ −ε < 0 everywhere outside of some compact

set for some ε > 0. Then there exists a complete metric g̃ conformal to g on M with

constant scalar curvature −n(n− 1).

We briefly provide an overview of the process of obtaining a solution to the Yamabe

problem from the existence of a negative first eigenvalue for the conformal Laplacian

on some compact domain. In particular, the proof of Theorem 4.2.3 above is a direct

consequence of our Theorem B and the following theorem of Aviles and McOwen:

Theorem ([AM88]). If (M, g) is a complete Riemannian manifold with some compact

domain Ω and function ϕ ∈ H1
0 (Ω) satisfying∫
Ω

cn|∇gϕ|2 + Sgϕ
2dVg < 0 (4.10)

on some compact set Ω, then there exists a conformal metric g̃ with constant negative

scalar curvature.

Furthermore, if the scalar curvature satisfies, outside of some compact set, Sg ≤

−ε for some ε < 0 then the conformal metric g̃ is also complete.
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We highlight here that, in the proof of the theorem of Aviles and McOwen above,

the requirements split into the criteria (4.10) for the existence of a positive solution to

(Ya) and then the additional curvature requirements which allow us to conclude that

the resulting conformal metric is complete. We also note that the role of condition

(4.10) is to allow the construction of a sub-solution with which to initiate the sub-

and super-solution argument of Aviles and McOwen discussed in Chapter 2.

Remark 4.2.4. We point out a consequence of the local nature of the volume ratio

condition on the exterior region in our existence Theorem C. In particular, if we

consider non-compact manifolds with multiple ends, then, as long as all of the ends

have asymptotically negative scalar curvature, only one of the ends need behave well

enough to exhibit domains satisfying the volume ratio condition in order to solve the

Yamabe problem on the entire manifold.

4.3

Multiply Warped Product Spaces and
Sharpness of the Volume Ratio Condition

In this section, we provide examples with two main goals in mind. Firstly, we would

like to show that there is a large family of model spaces which can be treated by our

existence result of Theorem C. These model spaces play a similar role to the model

locally hyperbolic spaces in that they provide a reference metric for the asymptotic

behaviour of manifolds on which we can aim to solve the Yamabe problem; we prove

such a result in Corollary 4.3.3. Secondly, having found a sufficient condition on

the volume ratio for the negativity of the first eigenvalue in Theorem B, we aim to

determine whether the condition is sharp given the assumption that Sg ≤ −n(n− 1).

A useful class of explicit examples will be of the following multiply warped product

form which are a generalisation of the warped product manifolds studied in Section

3.3 and provide a richer class necessary to achieve the two goals of this section.
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We consider the multiply warped product manifolds M = R×N1× . . .×Nm where

each Ni is a compact manifold of dimension ni with
∑

i ni = n − 1. We endow M

with a multiply warped metric g written

g = dr2 +
∑
i

p2
i (r)hi (4.11)

where pi : R→ (0,∞) and hi are warping functions and metrics, respectively, on each

of the m manifolds Ni. A computation shows that (M, g) has scalar curvature

Sg = −2
∑
i

ni
p′′i
pi
−
∑
i

ni(ni − 1)

(
p′i
pi

)2

− 2
∑
i<j

ninj
p′ip
′
j

pipj
+
∑
i

Shi
p2
i

, (4.12)

volume form

dVg =
∏
i

pnii dr dVh1 . . . dVhm , (4.13)

and Laplacian

∆g = ∂rr +
∑
i

ni
p′i
pi
∂r +

∑
i

1

p2
i

∆hi . (4.14)

In this section, our goal will be to study a number of examples of the above type

in order to provide model examples of manifolds exhibiting different volume ratios.

Furthermore, we will use some of this set of examples to demonstrate that, at least

up to the exponential rate
√
n(n− 2), the volume ratio condition in Theorem B is

sharp. That is, we will show that for any exponential rate β >
√
n(n− 2), there exist

examples of manifolds which exhibit equally distanced sets Ω1 and Ω2 satisfying

V olg(Ω2)

V olg(Ω1)
≤ CeβR

for some C independent of R as well as the negative scalar curvature condition, but

which do not have a negative first eigenvalue for the conformal Laplacian on Ω2. From

this, we observe that Theorem B demonstrates that the exponential rate
√
n(n− 2)

is somehow critical for the existence of a negative first eigenvalue for the conformal

Laplacian.

We first give some specific classes of multiply warped product and compute their

volume ratios in Section 4.3.1. We then provide an analysis of the first eigenvalue of
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the conformal Laplacian in these examples and demonstrate the sharpness of Theorem

B in Section 4.3.2. Lastly, in Section 4.3.3, we compare the scope of our main existence

result of this section with our existence results of Chapter 3.

4.3.1 Volume Ratios in Manifolds of Negative Scalar Curva-
ture

We now provide a number of examples of the multiply warped product form in (4.11)

which have negative scalar curvature and estimate the volume ratio of large balls in

these examples.

Our first example directly generalises the locally hyperbolic metric with a flat

torus cross-section (see (3.1) from Chapter 3) by choosing each warping function pi

to be exponentials of independent rates. In the terminology of the multiply warped

products (4.11) set out at the start of this chapter, we take each Ni = S1 (and so

M = R×N1 × . . .×Nn−1 = R× Tn−1).

Proposition 4.3.1. Let (M, g) be a multiply warped product as in (4.11) with each

Ni = S1 and pi = eαir for some αi ∈ R. Defining β :=
∑

i αi, we have that if

|β| <
√
n(n− 2) and the scalar curvature, which may be written

Sg = −2β2 + 2
∑
i<j

αiαj,

satisfies Sg ≤ −n(n−1) then there exists a solution to the Yamabe problem on (M, g).

We will use Corollary 4.2.2 of our existence theorem to prove the above, which

will require us to provide an estimate on the volume ratio of large balls in (M, g).

Before doing this, we first demonstrate that the above conditions on β and the scalar

curvature are not vacuous, i.e. that there exists a multiply warped product satisfying

the requirements of the proposition.

To see this, we observe that under the constraint
∑

i αi = β, the quantity −2β2 +

2
∑

i<j αiαj is unbounded below for αi ∈ R and so choices of αi such that Sg ≤

−n(n−1) certainly exist. Of additional interest is the fact that the only critical point
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(which, therefore, must be a maximum) of −2β2 + 2
∑

i<j αiαj under the constraint

is at αi = β
n−1

where Sg = − n
n−1

β2. Consequently, there exist choices of αi such that

Sg ≡ −C ≤ −n(n− 1) exactly provided that the maximum − n
n−1

β2 ≥ −n(n− 1), i.e.

if |β| ≤ n− 1 which is certainly true under the requirements of Proposition 4.3.1.

We now estimate the volume ratio on large balls for manifolds satisfying the

requirements of Proposition 4.3.1. Fixing some large R and taking some ball BR(p0),

writing p0 = (r0, x0), we have immediately that

BR(p0) ⊂ {p : |r(p)− r0| ≤ R}.

On the other hand, defining S0 := {r0} × Tn−1 we have that

dg(p, p0) ≤ dg(p, S0) + diam(S0) = r(p)− r0 + er0diam(Tn−1).

Consequently, writing A0 = er0diam(Tn−1), we have that

{|r − r0| ≤ R− A0} ⊂ BR(p0) ⊂ {|r − r0| ≤ R}

from which we obtain

V olg(B2R(p0)) ≤
∫
Tn−1

∫ r0+2R

r0−2R

eβrdr dx =
1

β
V ol(Tn−1)

(
eβ(r0+2R) − eβ(r0−2R)

)
and

V olg(BR(p0)) ≥
∫
Tn−1

∫ r0+(R−A0)

r0−(R−A0)

eβrdr dx =
1

β
V ol(Tn−1)e−βA0

(
eβ(r0+R) − eβ(r0−R+2A0)

)
from which we may estimate

V olg(B2R \BR)

V olg(BR)
≤ eβA0

eβ(r0+2R) − eβ(r0−2R)

eβ(r0+R) − eβ(r0−R+2A0)
− 1.

Consequently, manifolds satisfying the requirements of Proposition 4.3.1 satisfy the

following bound on the volume ratio for large balls

V olg(B2R \BR)

V olg(BR)
≤ CeβR

(
1 +O(e−2(n−1)R)

)
− 1 (4.15)
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and so, taking R large, we obtain

V olg(B2R \BR)

V olg(BR)
≤ CeβR.

for some large constant C > 0.

We note that, in the proposition discussed above, one of its two ends must have

finite volume (apart form in the case that β = 0). We now provide a version of

Proposition 4.3.1 where the warping functions are replaced by pi = cosh(αir) which

correspond to manifolds with infinite volume on both ends. We note that this choice

of pi means that, without loss of generality, we can set αi ≥ 0.

Proposition 4.3.2. Let (M, g) be a multiply warped product as in (4.11) with each

Ni = S1 and pi = cosh(αir) for some αi ≥ 0. We then have that, again defining

β :=
∑

i αi, if β <
√
n(n− 2) and Sg ≤ −n(n− 1) for r sufficiently large, then there

exists a solution to the Yamabe problem on (M, g).

To see that there exist multiply warped product manifolds satisfying the conditions

above, we need the additional lower bound requirement that β >
√

n(n−1)
2

. This arises

as a consequence of the fact that each αi ≥ 0 and so, as the scalar curvature in the

above may be written

Sg = −2β2 + 2
∑
i<j

(2− tanh(αir) tanh(αjr))αiαj,

we have that Sg ≥ −2β2. By taking large balls far along one of the ends of the

example above, the volume form will be comparable to that of Proposition 4.3.1

and so the volume ratio computations carry over into this case. We therefore note

that Proposition 4.3.2 contains examples of multiply warped product manifolds with

volume ratios satisfying (4.8) provided n > 3 (in the case that n = 3 we are in a

critical situation in that
√

n(n−1)
2

=
√
n(n− 2)).

Lastly, we demonstrate an example application of our theorem to provide a re-

sult for existence of solutions to the Yamabe problem for the manifolds which are

asymptotic to the multiply warped products in the two propositions above.
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Proposition 4.3.3. Consider (M, g) to have an asymptotically warped product end,

that is

g = g̊ + ε where ε = εrrdr
2 + εradrdθ

a + εabdθ
adθb

and g̊ is as in either Proposition 4.3.1 or Proposition 4.3.2. If Sg ≤ −n(n − 1) for

large r and det(g) → det(̊g) as r → ∞, then there exists a solution of the Yamabe

problem on (M, g).

Proof. As the volume form asymptotes to that of the volume form in Proposition

4.3.1 or Proposition 4.3.2, we may choose a large annuli far along the asymptotic

end and use the same argument to apply Corollary 4.2.2 to conclude that the desired

solution exists.

As we can see, as our approach only requires a condition on the volume ratios, we

are able to allow a large family of perturbations to the metric, only requiring that

the scalar curvature and volume form decay.

4.3.2 Eigenvalues for the Conformal Laplacian and Sharp-
ness of Theorem B

In this section, we explore for which of the examples of the previous section the

conformal Laplacian exhibits a negative first eigenvalue. In doing this, we will be

able to test the strength of Theorem B. Notably, we will be able to demonstrate

examples which show that the exponential rate in Theorem B is sharp.

We first discuss the family in Example 4.3.1 which fits more naturally into the

annuli setting. We note that, as

V olg(A2R \ AR)

V olg(AR)
≤ CeβR

for large R, we certainly satisfy the requirements of Corollary 4.2.2 provided β <√
n(n− 2) and R is sufficiently large and so we have that a negative first eigenvalue

for the conformal Laplacian must exist on A2R. We now use the explicit form for the
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Laplacian for a multiply warped product (4.14) to directly analyse the sign of the

first eigenvalue for different values of β.

We first show that, without loss of generality, we may assume that our candidate

eigenfunction ϕ is radial on A2R. In particular, suppose that ϕ is an eigenfunction

for the first eigenvalue λ of the conformal Laplacian, that is

−cn∆gϕ+ Sgϕ = λϕ.

As the eigenspace corresponding to the first eigenvalue λ is necessarily 1 dimensional,

we must have that ϕ is radial by virtue of the symmetry of the Torus. Consequently,

using formula (4.14) for the Laplacian, the PDE for ϕ reduces to the constant coeffi-

cient ODE

ϕ′′ + βϕ′ +
λ+ n(n− 1)

cn
ϕ = 0.

In order for the ODE for ϕ to have a positive solution which is 0 on the boundary

of some interval, we must have a complex root for the corresponding characteristic

equation. In particular, we require that

β2 − (n− 2)(λ+ n(n− 1))

(n− 1)
< 0

and so, if we impose that λ < 0, we must have β <
√
n(n− 2). Consequently,

we conclude that, at least up to the exponential rate, the bound (4.6) required in

Theorem B is in fact sharp in general.

We note that, again taking our annuli far along one of the ends, we can also

provide a similar argument as for Proposition 4.3.1, up to some perturbation terms,

for Proposition 4.3.2.

Remark 4.3.4. We remark that the above sharpness of the estimate was quite unex-

pected to the author. In particular, the method of sup-norm minimisation employed in

the proof of Theorem B, what one normally would consider as an L2-type inequality,

appeared as if it would be insufficient to obtain a good bound for the volume ratio

condition (4.6). The author’s intent was to try and improve (4.6) but, in attempting

to do so, the above sharpness was observed.
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4.3.3 Comparison with the Results of Chapter 3

We now compare our results to those obtained in Chapter 3 and elsewhere in the

literature for asymptotically locally hyperbolic manifolds; as discussed previously,

this setting is the area in which most progress on the non-compact Yamabe problem

for negative curvature type manifolds has been made in the last 20–30 years and so

any way that our new existence result of this chapter can address examples which fall

outside of this class would be of interest.

We first summarise the comparison between these two chapters. Firstly, as pre-

viously observed, the volume ratios of sets in the reference locally hyperbolic space

do not satisfy condition (4.6) and so our main existence result of this chapter does

not apply there. However, we are able to provide examples demonstrating a number

of interesting classes that fall outside the scope of the work in Chapter 3. Firstly, we

give a family of examples of warped product ended manifolds of the type studied in

Section 3.3.1 which satisfy
∫

1
f

=∞ and so are not conformal to a locally hyperbolic

metric (by Theorem 3.3.1) but for which we can solve the Yamabe problem.

For example, a very straightforward demonstration of a class of manifolds covered

by our new existence Theorem C is the following

Example 4.3.5. Consider a manifold (M, g̊f ) with a warped product end in the sense

of (3.39) with warping function

f(r) ≤ Ce−βr for some 0 ≤ β <

√
n(n− 2)

n− 1

and with cross-section (N, h) of constant negative scalar curvature. Then Sg̊f → −∞

as r →∞ and large annuli far along the warped product end satisfy the requirements

of Corollary 4.2.2. Consequently, we may solve the Yamabe problem on (M, g̊f ).

As discussed, this above example is not conformal to a locally hyperbolic ended

manifold by Theorem 3.3.1 as any f satisfying the conditions above satisfies
∫

1
f

=∞.

Consequently, the results of Chapter 3 do not apply in this case.
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Furthermore, given a model manifold of a type that exhibits the desired volume

ratios, we are able to show that our theorem encompasses a large class of pertur-

bations of this manifold, for example as in Proposition 4.3.3. In contrast to the

perturbations seen in the asymptotically locally hyperbolic case, these perturbations

needn’t necessarily even satisfy decay in C0 provided they preserve a decay condition

on the volume form and the negativity of the scalar curvature and certainly do not

make any direct restriction of higher derivative decay of the metric components.
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5
Directions for Further Study

Having established our main results in Chapter 3, extending results known in the well

studied asymptotically hyperbolic case, and provided some first exploratory results

for a new direction in Chapter 4, in this final chapter we overview some questions for

further exploration beyond the scope of this DPhil project.

As mentioned, my perspective on the work of Chapter 4 is that it forms an early

attempt to find a different perspective on the non-compact Yamabe problem and so

our goal at this time is to ask further questions with the aim of understanding what

implications the volume ratio type conditions might have on existence of solutions for

the problem. Additionally, one initial motivation for the work in Chapter 3 was to try

and find a condition on the restricted class of asymptotically warped product metrics

which would give existence or non-existence of a complete solution to the Yamabe

problem; we have gained some partial insight in this goal and also hope it may provide

direction for potential further work in the existence question for non-compact problem

in general.

This chapter is split into two sections, one on questions regarding Chapter 3 and

the other on Chapter 4.
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5.1

Asymptotically Locally Hyperbolic and
Warped Product Ended Manifolds

5.1.1 A Generalisation of the Quantity
∫

1
f dr in the Warped

Product Setting

As shown in Section 3.3, a key quantity in the asymptotically warped product setting

is ∫
M+

1

f(r)
dr, (5.1)

the boundedness of which represents the case that the reference warped product end

is conformally locally hyperbolic. Furthermore, we are able to use this condition to

find a condition on all manifolds which are of asymptotically warped product type

given which we can show that the conformal class admits an asymptotically locally

hyperbolic representative. In the case that the integral (5.1) diverges, we are in the

case that the warped product end is conformally complete and of finite volume of a

“hyperbolic cusp” type (see the proof of Lemma 3.3.4).

Two questions that follow our work above are the following. Firstly, can we ex-

tend these ideas to address the broader question (mentioned in the introduction of

this thesis) of when a given conformal class of a non-compact manifold admits a repre-

sentative with negative scalar curvature outside of a compact set? An understanding

of these types of conformal classes could provide insight, or a useful simplifying step,

in solving the Yamabe problem on non-compact manifolds of negative curvature type.

To the knowledge of the author, this question hasn’t received any treatment in the

literature.

The second question is concerning the quantity (5.1). In particular, we ask if this

quantity can be generalised, or if an equivalent quantity can be found for a more

general class of manifolds which are not of warped product type. As seen in the proof
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of Lemma 3.3.5 the condition is related to the connection between the volume and

the completeness of the manifold (in particular, this quantity must be infinite if the

manifold is both complete and of finite volume).

5.1.2 A Generalisation of our Approach to Multiply Warped
Product Manifolds

It would be interesting to consider whether the sub-solution approach used to prove

the existence part of Theorem A could be generalised to a multiply warped product

ended manifold. Not only would this be of independent interest, but it would also

provide a common ground on which to compare the results of Chapter 4 using lo-

cal eigenvalue conditions to the asymptotically hyperbolic type approach which, as

mentioned, does not satisfy the requirements of Chapter 4.

5.2

Volume Ratio Conditions

5.2.1 Understanding the Volume Ratios of Domains in Man-
ifolds with Negative Scalar Curvature

An important question is what types of manifolds with negative scalar curvature have

domains exhibiting different values for the volume ratios as defined in Chapter 4. In

particular we ask two specific questions of this nature:

1. Is there a restriction on the possible volume ratios of two equally spaced sets

Ω1 and Ω2 given the condition that the manifold has negative scalar curvature?

2. Can we characterise the class of manifolds which satisfy the assumptions of

Theorem B?

We can already provide some examples in this direction. For example, we can

immediately see that there exist manifolds with negative scalar curvature which do
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not contain concentric geodesic balls with a volume ratio satisfying condition (4.6)

of Theorem B. In particular, we analyse an example of Aviles and McOwen [AM88,

Example 6.2] of a negative scalar curvature manifold on which the Yamabe problem

cannot be solved.

Example 5.2.1 ([AM88, Example 6.1]). Let M = R × Tn−1 where Tn−1 is the flat

(n− 1)-dimensional torus. Consider the metric

g = dr2 + e−2r2dΘ2 (5.2)

where dΘ2 is the metric on Tn−1 and whose scalar curvature is

Sg = 4(n− 1)(1− nr2) . (5.3)

In this case, there does not exist a conformal metric g̃ of constant scalar curvature

−1 (even if we relax the condition that the conformal metric be complete).

One can readily compute that any ball far away from r = 0 (where the scalar

curvature is negative as required to apply Theorem B) exhibits volume ratios of size

≈ eR
2

for large, equally spaced sets and so we do not satisfy condition (4.6).

Other relevant examples have already been the subject of discussion in earlier sec-

tions; in particular, the hyperbolic space, which also does not have domains satisfying

the volume ratio condition (4.6), and Example 4.3.1, which includes a whole class of

manifolds with negative scalar curvature and which have domains satisfying (4.6).

5.2.2 A Sharp Volume Ratio Bound for Existence to the
Yamabe Equation

We ask the question: Given our assumption that Sg ≤ −n(n − 1) outside of some

compact set, what is the optimal bound Θ(R) such that, given two equally spaced

sets Ω1 and Ω2, the bound

V olg(Ω2 \ Ω1)

V olg(Ω1)
≤ Θ(R)
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implies that a complete solution to the Yamabe problem exists?

Our existing work establishes that Θ(R) ≥ sinh2

(√
n(n−2)

2
R

)
via Theorem C

and, as mentioned earlier, Example 5.2.1 shows that Θ(R) < eR
2
. We have seen

that the lower bound sinh2

(√
n(n−2)

2
R

)
is sharp as far as the existence of a neg-

ative first eigenvalue is concerned; therefore, it’s natural to explore more carefully

those manifolds which exhibit a solution for the Yamabe equation but which do not

have a negative first eigenvalue for the conformal Laplacian on any compact set, the

hyperbolic space being a clear example.

This ties interestingly into the question of whether the negativity of the first

eigenvalue of the conformal Laplacian can be relaxed to a weaker eigenvalue condition,

perhaps that the first eigenvalue is less than that of the hyperbolic space.

5.2.3 Exploring the Relation of the Volume Ratio Condition
with the Isoperimetric Inequality

As mentioned in the motivation section, volume ratio type conditions similar to those

we consider as an application to the first eigenvalue can be loosely motivated by

comparison to the implications of the isoperimetric inequality to the first eigenvalue.

It may be enlightening to try and obtain a better geometric understanding of these

volume ratio conditions and, in particular, explore its relation (if any) to the isoperi-

metric inequality and then, more broadly, the implications of these to the Yamabe

problem. We note an early computation in this direction although it is unclear to the

author whether any insight can be derived from what follows.

In particular, if we write

F (r) :=
V olg(B2r \Br)

V olg(Br)

and

G(r) :=
V olg(∂Br)

V olg(Br)
.

We note the similarity of G with the isoperimetric quotient V olg(∂Br)
n
n−1

V olg(Br)
and also the

Cheeger constant infA{V olg(∂A)

V olg(A)
: V olg(A) ≤ 1

2
V olg(M)} for finite volume manifolds,
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although we highlight that any connection with the two is highly speculative. F

satisfies the ODE

F ′(r) = (F (r) + 1)(G(2r)−G(r)).

In particular, we may write F in terms of G as

F (r) = A exp

(∫ 2r

r

G(s)ds−
∫ r

0

G(s)ds

)
− 1 (5.4)

with boundary condition F (0) = 2n− 1 (computed from the limiting Euclidean case)

F (0) = lim
r→0

A exp

(∫ 2r

r

G(s)ds

)
− 1 = lim

r→0
A exp

(∫ 2r

r

n

s
ds

)
− 1 = 2nA− 1, (5.5)

so

F (r) = exp

(∫ 2r

r

G(s)ds

)
− 1.

As pointed out, the above computation offers some apparently loose connection

to some quantities in the literature that may be worth further exploration.
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A
Transmission Conditions

We review a criterion that allows us to ”glue” a subsolution inside some domain

with a subsolution outside the domain together to create a subsolution on an entire

manifold. Specifically, we have:

Proposition A.0.1. Suppose (M, g) is a Riemannian manifold and Ω ⊂M is open,

bounded and has C2 boundary. Suppose that u1 ∈ C1(Ω̄), u2 ∈ C1(M \ Ω) subsolu-

tions of (Ya) in Ω and M \ Ω respectively. Define

u =

{
u1 in Ω ,

u2 in M \ Ω .
(A.1)

If u1|∂Ω ≡ u2|∂Ω and ∇u1 · n̂ ≤ ∇u2 · n̂ on ∂Ω (where n̂ is the unit outward pointing

normal on ∂Ω) then u ∈ H1
loc(M) and u is a subsolution of (Ya) on all of M .

Proof. We would like to show that∫
M

cn∇u · ∇ϕ+ Sguϕ+ n(n− 1)u
n+2
n−2ϕ dVg ≤ 0 (A.2)

for all ϕ ≥ 0, ϕ ∈ C∞c (M).

The above is immediately true for any ϕ supported away from the boundary of Ω

by the properties of u1 and u2. For functions with support including the boundary, we

can assume (via a partition of unity and the regularity of ∂Ω) that the support U of

ϕ is compactly contained in an open bounded Ũ with smooth boundary that admits
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local coordinates {x1, ..., xn} such that {xn = 0}∩ Ũ = ∂Ω∩ Ũ , {xn < 0}∩ Ũ = Ω∩ Ũ

and ∂xn coincides with the normal vector n̂ of ∂Ω on {xn = 0}.

Consider a sequence of ψk ∈ C0,1
c (Ũ) satisfying ψk ≡ 1 on {xn < −2/k} ∩ U ,

ψk ≡ 0 on {xn > −1/k} ∩ U and ∇ψk = k∂xn on {−2/k < xn < −1/k} ∩ U . We

compute

∫
M

cn∇u · ∇(ϕψk) + Sgu(ϕψk) + n(n− 1)u
n+2
n−2 (ϕψk) dVg

=

∫
M

cnψk∇u · ∇ϕ+ Sgu(ϕψk) + n(n− 1)u
n+2
n−2 (ϕψk) dVg +

∫
M

cnϕ∇u · ∇ψk dVg

=: (I) + (II) .

It’s clear that (I)→
∫

Ω
cn∇u · ∇ϕ+ Sguϕ+ n(n− 1)u

n+2
n−2ϕ dVg. As for (II), by the

choice of ψk we observe that, in the local coordinates

(II) =

∫
U

cnϕ∇u1 · ∇ψk
√
|g(x)| dx = cnk

∫
{−2/k<xn<−1/k}∩U

ϕ∂xnu1

√
|g(x)| dx

= cnk

∫ −1/k

−2/k

(∫
ϕ∂xnu1

√
|g(x)| dx1...dxn−1

)
dxn

k→∞−→ cn

∫
{xn=0}

ϕ∂xnu1

√
|g(x1, ..., xn−1, 0)| dx1...dxn−1 = cn

∫
∂Ω

ϕ∇u1 · n̂ dV̂g ,

where dV̂g is the volume form induced on ∂Ω (in the third identity we have used

Fubini’s theorem and in the convergence statement we have used the C1 regularity of

u1). Thus, we conclude that∫
M

cn∇u · ∇(ϕψk) + Sgu(ϕψk) + n(n− 1)u
n+2
n−2 (ϕψk) dVg

−→
∫

Ω

cn∇u · ∇ϕ+ Sguϕ+ n(n− 1)u
n+2
n−2ϕ dVg + cn

∫
∂Ω

ϕ∇u1 · n̂ dV̂g .

(A.3)

On the other hand, as ψkϕ is compactly supported in Ω, the fact that u1 is a subso-

lution gives that the LHS of (A.3) is ≤ 0 and so∫
Ω

cn∇u · ∇ϕ+ Sguϕ+ n(n− 1)u
n+2
n−2ϕ dVg + cn

∫
∂Ω

ϕ∇u1 · n̂ dV̂g ≤ 0 .
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Applying a similar argument to u2 and Ωc we obtain that∫
Ωc
cn∇u · ∇ϕ+ Sguϕ+ n(n− 1)u

n+2
n−2ϕ dVg − cn

∫
∂Ω

ϕ∇u1 · n̂ dV̂g ≤ 0 .

Summing the previous two inequalities gives∫
M

cn∇u · ∇ϕ+ Sguϕ+ n(n− 1)u
n+2
n−2ϕ dVg + cn

∫
∂Ω

ϕ(∇u1 −∇u2) · n̂ dV̂g ≤ 0 ,

and so if ∇u1 · n̂ ≤ ∇u2 · n̂ on ∂Ω we obtain that u is a subsolution on all of M .
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B
An ODE Result and Alternative
Proof for Lemma 3.3.2

Lemma B.0.1. Suppose F : [0,∞) → (0,∞) is smooth and either monotonically

non-increasing or monotonically non-decreasing, F (s) → 1 as s → ∞ and p :

[0,∞)→ R is smooth and satisfies∫ ∞
0

eP (s)ds <∞ where P (z) :=

∫ z

0

p(s)ds.

Then, there exists a smooth positive strictly increasing function K : [0,∞) → [0,∞)

solving the following boundary value problem{
K ′′(z) = F (K(z))(K ′(z))2 + p(z)K ′(z),
K(0) = 0, K(∞) =∞. (B.1)

Proof. We rewrite the second order ODE in (B.1) as a Ricatti-type equation in κ :=

K ′(z), {
κ′(z) = F (K(z))κ2(z) + p(z)κ(z)∫∞

0
κ(z) dz =∞.

(B.2)

We note that for any given function q(z) the general solution to the Ricatti equation

κ̄′ = qκ̄2 − pκ̄ is given by

κ̄(z) =
eP (z)

C −
∫ z
a
q(s)eP (s)ds

where C and a are arbitrary constants.
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Case 1: F is monotone non-increasing.

We will solve the problem by an iterative scheme. Let

κ0(z) =
eP (z)∫∞

z
F (0)eP (s)ds

which is a solution of the ODE

κ′0 = F (0)κ2
0 + pκ0.

Now define iteratively, for n ≥ 0

κn+1 :=
eP (z)∫∞

z
F (Kn(s))eP (s)ds

(B.3)

where Kn(z) :=
∫ z

0
κn(s)ds and note here that κn+1 solves

κ′n+1 = F (Kn)κ2
n+1 + pκn+1. (B.4)

We first establish that κn ≤ κn+1. Note that, as κ0 > 0, necessarily K0 > 0 and

so F (K0) ≤ F (0) and so κ0 ≤ κ1. In general, suppose κn−1 ≤ κn, then Kn−1 ≤ Kn

and so F (Kn−1) ≥ F (Kn) and therefore the formula (B.3) gives κn ≤ κn+1.

We now observe that, as F (x) ≥ 1, we have the upper bound

κn ≤
eP (z)∫∞

z
eP (s)ds

=: κ∗(z).

As a consequence, there exists a κ∞ such that κn(z)↗ κ∞(z) for all z ≥ 0. We also

note that the uniform upper bound κ∗ ensures that, via repeated differentiation of

the ODE (B.4), on any closed interval [0, R] the sequence {κn} is uniformly bounded

in Cm for any m. Consequently, the sequence converges in Cm
loc for any m to κ∞,

which belongs to C∞ and satisfies

κ′∞ = F (K∞)κ2
∞ − pκ∞

as desired.
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It remains only to check that K∞(z) =
∫ z

0
κ∞(s)ds → ∞. To see this note that

we have

κ∞ ≥ κ0 = − d

dz

(
1

F (0)
log

(∫ ∞
z

eP (t)dt

))
and so

K∞(z) ≥ 1

F (0)
log

(∫∞
0
eP (s)ds∫∞

z
eP (s)ds

)
→∞.

This completes the proof in the case that F is monotone non-increasing.

Case 2: F is monotone non-decreasing.

The argument is the same as above but now the sequence κn is non-increasing and

κ∗ provides a lower bound i.e. κn ≥ κ∗. The convergence of κn to κ∞ is obtained in

the same way, the only difference is in obtaining that K∞ →∞ which we now obtain

from the lower bound κ∞ ≥ κ∗ as

K∞ ≥
∫ z

0

κ∗(s)ds =

∫ z

0

eP (s)∫∞
s
eP (t)dt

ds = log

(∫∞
0
eP (s)ds∫∞

z
eP (s)ds

)
→∞.

We may now apply this lemma to prove our main result of this section.

Proposition B.0.2. Let (M, g) be a manifold with a warped product end. Then there

exists a conformal metric g̃ of g such that (M, g̃) has a locally hyperbolic end if and

only if ∫ ∞
0

1

f(s)
ds <∞. (B.5)

Proof. Consider a conformal factor κ > 0 which is radial on the warped product end,

that is κ(z, θ) = κ(z) on M+ and define g̃ := κ2g. Then the metric g̃ on M+ may be

written

g̃ = κ2dz2 + (κf)2̊h.

Define a corresponding coordinate change in z by

r :=

∫ z

0

κ(s)ds = K(z)
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so that dr2 = κ2dz2 and so we can equivalently write

g̃ = dr2 + (κ(z)f(z))2̊h.

We note here that the metric g̃ is complete provided∫ ∞
0

κ(s) ds =∞. (B.6)

For g̃ to be locally hyperbolic, we require that

f(z)κ(z) =


sinh(r + r0) = sinh(K(z) + r0) k = 1,

er = eK(z)+r0 k = 0,

cosh(r + r0) = cosh(K(z) + r0) k = −1,

(B.7)

where k corresponds to the sign of Sh̊ as in the definition of the reference locally

hyperbolic metrics (3.1). Taking the logarithm of both sides and differentiating, we

obtain corresponding ODEs for κ(z),

κ′(z) =


coth(K(z) + r0)κ2(z) + p(z)κ(z)

κ2(z) + p(z)κ(z)

tanh(K(z) + r0)κ2(z) + p(z)κ(z)

(B.8)

where p = −f ′

f
.

First suppose that
∫∞

0
1

f(s)
ds = ∞. For any choice of C > 0 and A > coth(r0),

the function

κ =
1

f(z)(C − A
∫ z

0
1

f(s)
ds)

provides a strict sub-solution to (B.8) for any k ∈ {1, 0,−1} and blows up as z ↗ Z

for some finite Z > 0. Consequently, for any solution of (B.8), we may choose C

sufficiently large that κ(0) ≤ κ(0) and therefore κ(z) ≤ κ(z) for all z ≥ 0 and so κ

must blow up as z ↗ Z for some finite Z > 0.

Now suppose that
∫∞

0
1

f(s)
ds < ∞. We would like to apply Lemma B.0.1 to the

ODEs above to conclude the proof. The conditions on F are certainly met and so we

need only check that
∫∞

0
eP (s)ds <∞; however, this is clear as

P (s) =

∫ s

0

p(t)dt =

∫ s

0

−f
′(t)

f(t)
dt = log

(
f(0)

f(s)

)
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and so ∫ ∞
0

eP (s)ds =

∫ ∞
0

f(0)

f(s)
ds <∞

by assumption. Therefore we may apply Lemma B.0.1 to obtain a solution κ with

the desired properties.
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