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Abstract
Objective: To describe the frequency of open science practices in a contemporary sample of studies developing prognostic models us-
ing machine learning methods in the field of oncology.

Study design and setting: We conducted a systematic review, searching the MEDLINE database between December 1, 2022, and
December 31, 2022, for studies developing a multivariable prognostic model using machine learning methods (as defined by the authors)
in oncology. Two authors independently screened records and extracted open science practices.

Results: We identified 46 publications describing the development of a multivariable prognostic model. The adoption of open science
principles was poor. Only one study reported availability of a study protocol, and only one study was registered. Funding statements and
conflicts of interest statements were common. Thirty-five studies (76%) provided data sharing statements, with 21 (46%) indicating data
were available on request to the authors and seven declaring data sharing was not applicable. Two studies (4%) shared data. Only 12 studies
(26%) provided code sharing statements, including 2 (4%) that indicated the code was available on request to the authors. Only 11 studies
(24%) provided sufficient information to allow their model to be used in practice. The use of reporting guidelines was rare: eight studies
(18%) mentioning using a reporting guideline, with 4 (10%) using the Transparent Reporting of a Multivariable Prediction Model for In-
dividual Prognosis Or Diagnosis statement, 1 (2%) using Minimum Information About Clinical Artificial Intelligence Modeling and
Consolidated Standards Of Reporting Trials-Artificial Intelligence, 1 (2%) using Strengthening The Reporting Of Observational Studies
In Epidemiology, 1 (2%) using Standards for Reporting Diagnostic Accuracy Studies, and 1 (2%) using Transparent Reporting of Evalu-
ations with Nonrandomized Designs.

Conclusion: The adoption of open science principles in oncology studies developing prognostic models using machine learning
methods is poor. Guidance and an increased awareness of benefits and best practices of open science are needed for prediction research
in oncology. � 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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What is new?

Key findings
� The adoption of open science principles in ma-

chine learning studies in oncology is poor.

What this adds to what was known?
� Study registration and making protocols available

is rare for studies developing machine learning
prognostic models in oncology.

� Despite having the aim to develop models for indi-
vidualized estimates of prognosis, very few studies
make their model available in a useable format.
Reporting guidelines exist for prognostic model
studies (such as the Transparent Reporting of a
Multivariable Prediction Model for Individual
Prognosis Or Diagnosis (TRIPOD) Statement) but
are infrequently used.

What is the implication and what should change
now?
� Open science is linked to transparency, trustworthi-

ness, and research integrity as it promotes the
sharing of study materials, ensuring that scientific
processes are accessible, reproducible, and
accountable.

� Specific areas for improvement include study
registration, making study protocols available,
sharing data (and making data sharing statements
meaningful), sharing of analysis code (including
code to implement prognostic models for indepen-
dent evaluation and implementation), and adher-
ence to reporting guidelines such as the TRIPOD
Statement.
1. Introduction

Open science principles advance scientific research by
promoting collaboration, transparency, and accessibility
[1]. Access to research outputs such as data sets, code, and
methodologies, open science principles stimulate innova-
tion, reduce redundancy, and address disparities in scientific
information access. Open science is linked to transparency,
trustworthiness, and research integrity as it promotes the
sharing of study materials, ensuring that scientific processes
are accessible, reproducible, and accountable [2].

Open science is more than making study materials such
as data and code available. It is about transparency in all
aspects of the research process, including (but not limited
to) declarations of conflicts of interest, funding statements,
study registration, access to protocols, disclosure of author-
ship contributions, and transparent reporting of study
design, conduct, and findings [3]. Transparent reporting
means readers should be explicitly told by authors why they
carried out a piece of research, how they carried it out, what
the findings were, and what those findings mean, along with
any limitations of the research. Sharing data can be futile if
the steps leading to its curation (e.g., study design) are not
sufficiently described. Reporting guidelines provide authors
with a set of recommendations for essential information to
report and are a key element of open science [4]. They can
also be used as a mechanism for promoting open science in
published research by recommending that authors describe
the availability of their data, code, and protocols.

In oncology, prognostic models are increasingly used to
aid health care providers in estimating a patient’s future risk
of developing cancer, predicting outcomes and prognosis,
and guiding treatment decisions [5e10]. There has been
an exponential rise in the number of prediction models pub-
lished each year, particularly with increasing interest in
applying artificial intelligence powered by machine
learning methods. Concerns have been raised about the lack
of transparency and reproducibility in the field of machine
learning [11,12] and oncology [13,14].

The aim of this study is to describe open science prac-
tices in studies developing a prognostic model using ma-
chine learning methods in oncology and to highlight areas
where guidance is needed.
2. Methods

The study protocol is available on the Open Science
Framework (https://doi.org/10.17605/OSF.IO/6DX9Y),
and was posted prior to data collection. Searching MED-
LINE via the OVID platform, we identified prognostic
model studies in oncology that were added to PubMed
within the calendar month of December 2022. The search
strategy was adapted from an existing search developed
by a senior information specialist [11,15]. It included rele-
vant MeSH subject headings and free-text terms searched in
the title, abstract, or keyword fields, covering specific ma-
chine learning modeling terms (such as ‘‘classification
and regression tree’’, ‘‘decision tree’’, ‘‘random forest’’,
‘‘na€ıve bayes’’, ‘‘neural networks’’, ‘‘support vector ma-
chine’’, ‘‘gradient boosting machine’’, and ‘‘K nearest
neighbor’’), cancer-related terms (such as ‘‘cancer’’,
‘‘neoplasm’’, or ‘‘tumor’’), and prediction terms (such as
‘‘predict’’, ‘‘prognosis’’, or ‘‘risk’’). Modeling, cancer,
and prediction search terms were combined to retrieve pub-
lications satisfying all three sets of search terms. A date re-
striction was added to limit the search to studies added to
PubMed in December 2022 ensuring a contemporary sam-
ple of studies. No other search limits were applied. The full
search strategy for the MEDLINE database is provided in
Supplementary Table 1. The reporting of the search fol-
lowed the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses-S recommendations [16].

https://doi.org/10.17605/OSF.IO/6DX9Y
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2.1. Eligibility criteria

Studies were included if they described the development
of a prognostic model in the field of oncology, developed
using machine learning methods. Publications were eligible
for this review based on the following inclusion and exclu-
sion criteria.

2.1.1. Inclusion criteria

� Models developing

o using machine learning methods (as defined by the
authors)

o using two or more predictors in combination

� English language studies
2.1.2. Exclusion criteria

� External validation studies
� Prognostic marker studies
� Diagnostic prediction models
2.2. Data extraction

Two researchers (G.S.C., and M.M.S.) independently
screened the titles and abstracts of the identified publica-
tions using Zotero. Two researchers, from a combination
of three reviewers (G.S.C., M.M.S., and G.S.B.), indepen-
dently reviewed the full text of potentially eligible publica-
tions and performed a double data extraction of eligible
publications. Data were extracted using a standardized data
extraction form in Excel (available at https://osf.io/6dx9y/).
After the extracted data were reconciled between pairs of
reviewers (G.S.C., M.M.S., and G.S.B.), another researcher
(R.W.) checked a random sample of 10 studies, with differ-
ences reconciled between G.S.C. and R.W. No additional
data were sought from the authors of the included studies.

2.3. Data items

The following study characteristics were extracted: first
author, title, journal, publisher, 2022 journal impact factor,
date manuscript received, accepted, and published, and
country of lead author. Basic details on the prognostic
model were collected, as follows: type of cancer, predicted
outcome, and modeling approach. Data relating to broad
open science research and publication practices were
collected. Publication practices included authorship contri-
bution statement, author Open Researcher and Contributor
ID (ORCID) identifiers, funding details, conflicts of interest
statement, whether there was open peer review, whether the
study was published open access, and if so the open access
licence. Research practices included protocol details, study
registration, data sharing statement, code availability, prog-
nostic model availability, prognostic model format, supple-
mentary material details, and whether a reporting guideline
was mentioned. Where information was not reported in the
paper (e.g., availability of any open peer review reports),
we tried to locate this information on the article’s page
on the journal website. Where a link was reported to data
or code we followed the link to confirm their existence.

2.4. Data analysis

Data were summarized using descriptive statistics (fre-
quency, and percentages, median and interquartile range).
A narrative synthesis was used to describe the open science
practices. The Clopper-Pearson exact method was used to
calculate 95% confidence intervals. All analyses were car-
ried out in R (version 4.3.1), using the DescTools package.
3. Results

Our search identified 618 unique publications added to
PubMed database between December 01, 2022, and
December 31, 2022, and indexed in the MEDLINE data-
base. We excluded 514 publications during abstract
screening and 58 publications during full-text screening
for not meeting the eligibility criteria. Reasons for exclu-
sion were primarily not predicting a prognostic outcome
or using a method not defined as machine learning by the
authors (Fig. 1). We extracted data from 46 publications
published in 37 journals [17e61] (Supplementary Table 2).

3.1. Study characteristics

Patient groups for whom most prognostic models had
been developed were lung (n 5 9)
[17,18,31,39,41,49,50,61,62], gynecological (n 5 6)
[21,38,44,46,58,63], and breast (n 5 5) [28,34,35,51,56]
cancer patients (Table 1). Most studies had a first author
from China (n 5 20), followed by the United States
(n 5 7). The median time from submission to publication
was 131 days (range 34e817 days; IQR 87, 185 days). Lo-
gistic regression (n 5 21) [18,22,26e28,
30,32,37,38,40e42,44,45,47e49,53,58,61,63] and random
forests (n 5 21) [20,22,23,27,28,30,32,35,37,38,
41,42,44e46,48,51,52,55,57,58] were the most common
model-building methods, followed by support vector ma-
chines (n 5 20) [22,23,27,28,33e35,37,38,41,44,
46,48,51e53,57,58,61,63], deep learning
(n 5 15) [18,19,21,24,27,29,31,32,35,43,54,59,60,61,63],
and XGBoost (n 5 14) [18,23,27,28,30,32,
37,44,46,52,57,58,61]. Twenty-three studies (50%) devel-
oped models using two or more model-building ap-
proaches, with one study investigating 35 approaches [22].

3.2. Open science: publication practices

Most studies reported an authorship contribution state-
ment (n 5 38, 83%). Few studies reported ORCID identi-
fiers for all authors (n 5 3, 7%) [17,18,45]. Most

https://osf.io/6dx9y/


Fig. 1. PRISMA flow diagram of studies included in the systematic review.
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reported no ORCID identifiers (n 5 27, 59%), while two or
more authors were reported in 16 studies (35%) see Table 2.
Three studies (7%) had open peer review reports available
on the article page on the journal website.

Thirty-three articles (72%) were published open access,
primarily with a CC BY 4.0 open access license (n 5 27).
Funding statements were reported in most studies (n 5 37,
80%), even for studies that received no funding (n 5 4)
[34,36,46,49]. A conflict of interest statement was reported
for all but one of the included studies [43] (n 5 45, 98%).

3.3. Open science: research practices

Data sharing statements were reported for 35 studies
(76%). However, only two studies (4%) [actually] shared their
data, in this case by providing a link to GitHub [20] or making
it available in the supplementary material [31]. Twenty-one
studies (46%) stated that data were available upon request
[17,19,22,25,26,30,33,34,37e40,42,47e49,52e54,57,58],
and six studies stated that the data were not available
[18,23,28,44,55,63] (see Table 3). One study reported
‘‘not applicable’’ under the data sharing section [51]. Two
stated that all data generated or analyzed for the study were
included within or alongside the published article, yet no
2 NIH National Cancer Institute Surveillance, Epidemiology, and End

Results (SEER) programme (seer.cancer.gov).
data, only results, were included in the article and no down-
load link could be found on the journal website. Two studies
linked to the the Surveillance, Epidemiology, and End
Results2 website and one to the Cancer Genome Atlas Pro-
gram (Supplementary Table 3) [21,46,59].

Code sharing statements were only reported in twelve
studies (26%) [18e20,26,27,31,39,40,42,48,52,61]. Of
these, eight studies (17%) made their code available on Gi-
tHub [18e20,27,39,40,52,61], two stated that code was
available upon request [26,42], and two made the code avail-
able in the supplementary material or through a provided
link [31,48]. Eleven studies (24%) provided
enough information for implementing the model in practice
(i.e., enabling predictions for new individ-
uals) [18,26,27,31,32,40,43,44,47,48,57]. Of those that did
provide enough information, most presented their models
as a web calculator (e.g., shiny app) (n 5 6)
[26,27,32,44,48,57] (although the web address was not
accessible for one study [48]) or nomogram (n 5 3)
[26,43,47].

A protocol was made available for only 1 (2%) study
[23]. It was also the only study to provide details of study
registration.



Table 1. Characteristics of included studies (n 5 46)

Characteristic n (%)

Cancer

Lung 9 (20%)

Gynecological 6 (13%)

Breast 5 (11%)

Liver 4 (9%)

Colon/rectal 4 (9%)

Bladder 2 (4%)

Brain 2 (4%)

Esophageal/gastric 2 (4%)

Other 7 (15%)

Multiple cancers 5 (11%)

Country of first author

China 20 (43%)

US 7 (15%)

Japan 3 (7%)

South Korea 3 (4%)

Canada 2 (4%)

Iran 2 (4%)

Egypt, France, Germany, India,
Ireland, Taiwan, Thailand, UK,
China/US (all n 5 1)

9 (18%)

Common modeling approachesa

Logistic regression 21 (46%)

Random forest 21 (46%)

Support vector machine 20 (43%)

Deep learning 15 (33%)

XGBoost 14 (30%)

Decision tree 8 (17%)

Na€ıve Bayes 6 (13%)

k-nearest neighbor 5 (11%)

Cox regression 3 (7%)

Time from submission to publication;
median (IQR), range

131 days (IQR 87, 185);
Range 34e817 days

a Only includes the most commonly reported modeling ap-
proaches. Some studies also fit other models.

Table 2. Summary of studies adhering to open science principles:
publication practices (n 5 46)

Open science practice Frequency % (95 CI)

Authorship contribution statement
reported

38 83% (69e92%)

ORCID identifiers reported 19 41% (27e57%)

Yes, all authors 3 7% (1e18%)

Yes, some authors 16 35% (21e50%)

Funding statement reported 37 80% (66e91%)

Conflict of interest statement reported 45 98% (88e100%)

Availability of open-peer review reports 3 7% (1e18%)

Article published open access 33 72% (57e84%)

Open access licence

CC BY 4.0 27 59% (43e73%)

CC BY-NC 4.0 3 7% (1e18%)

CC BY-NC-ND 4.0 3 7% (1e18%)

Table 3. Summary of studies adhering to open science principles:
research practices (n 5 46)

Open science practice Frequency % (95 CI)

Data sharing statement 35 76% (61e87%)

Available upon request 21 46% (31e61%)

Explicitly not shared 6 13% (5e26%)

Links to a website (e.g., SEER) 3 7% (1e18%)

Reported as available in the
article but not

2 4% (0e15%)

Available (in supplementary
material)

2 4% (0e15%)

‘Not applicable’ 1 2% (0e12%)

Code sharing statement 12 26% (14e41%)

GitHub 8 17% (8e31%)

Available upon request 2 4% (0e15%)

Other (e.g., supplementary
material)

2 4% (0e15%)

Protocol availability 1 2% (0e12%)

Study registration 1 2% (0e12%)

Reporting guideline used 8 17% (8e31%)

MI-CLAIM and CONSORT-AI 1 2% (0e12%)

STARD 1 2% (0e12%)

STROBE 1 2% (0e12%)

TREND 1 2% (0e12%)

TRIPOD 4 9% (2e21%)

Abbreviations: STARD, standards for reporting diagnostic accuracy
studies; STROBE, strengthening the reporting of observational studies
in epidemiology; TREND, transparent reporting of evaluations with non-
randomized designs; TRIPOD: transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis; MI-CLAIM, Min-
imum Information about CLinical Artificial Intelligence Modelling;
CONSORT-AI, CONsolidated Standards Of Reporting Trials-Artificial
Intelligence.
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Reporting guidelines were described as being used in
eight (17%) studies [18,19,23,25,40,46,54,56]. The most
used reporting guideline was the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD [64]) statement, used by four
studies [18,40,46,54]. All other reporting guidelines were
each used by one study: the Strengthening the Reporting
of Observational Studies in Epidemiology ([65]) statement
(n 5 1) [25], the Standards for Reporting Diagnostic Accu-
racy Studies ([66]) checklist (n 5 1) [56], and Transparent
Reporting of Evaluations with Nonrandomized Designs
(TREND [67]) statement (n 5 1) [23]. One study [19] used
both Minimum Information about CLinical Artificial Intel-
ligence Modelling [68] and CONsolidated Standards
Of Reporting Trials-Artificial Intelligence [69].
Of the studies that mentioned using a reporting guideline,
only three provided a completed checklist in the supple-
mentary material (two for TRIPOD [40,54]; one for
TREND [23]).
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4. Discussion

4.1. Summary of findings

In this review, we assessed the frequency of open sci-
ence practices in studies added to PubMed in December
2022 that describe the development of prognostic models
in the field of oncology. In terms of open sciences practices
related to research, we found that only one study was re-
ported as being registered; however, we were unable to
verify the registration details [23]. Only one had a protocol
available [23], two shared data [20,31], ten shared analysis
code [18e20,27,31,39,40,48,52,61], and eight mentioned
using a reporting guideline [18,19,23,25,40,46,54,56]. Only
fifteen studies (33%) met at least 1 of these five open sci-
ence practices. Only 1 study adhered to three practices
[23], which was the highest adherence level seen.

Although most studies reported an authorship contribu-
tion statement, which is often a requirement for journal
submission, many did not provide ORCID identifiers
(www.orcid.org). The ORCID identifier was established
over 10 years ago to allow authors to be reliably connected
with their work, preventing mistaken identity and
improving author recognition. While many major manu-
script submission systems now integrate ORCID into the
manuscript submission process, it is not usually a require-
ment for all authors to provide them.

Data sharing is critical in advancing research knowledge
[70]. We found that data sharing statements were provided
in over two-thirds of the articles reviewed (n 5 35), yet on-
ly two studies made their data directly available. Numerous
studies have shown that authors claiming their data are
accessible upon (reasonable) request [14,71e76] (in our
study n 5 21) holds little worth. These statements usually
play mere lip service to editorial requirements, as data
sharing is infrequently practiced [74]. Rowhani-Farid and
Barnett [71] found that of those that stated in the British
Medical Journal that data were available on request only
16% provided the data when requested. Similarly, when
Savage and Vickers [72] contacted authors who had pub-
lished in PLoS Medicine or PLoS Clinical Trials, only 1
out of ten authors contacted provided an original data set.
Data sharing statements are often a requirement of a jour-
nal’s submission process, but in practice, they are meaning-
less if inadequately implemented. There are understandable
challenges in sharing data and not all data are shareable,
such as registry or electronic health records. However,
much more can be done to both increase data sharing when
possible and provide data sharing statements that are honest
and have clear instructions about data access.

Sharing code not only facilitates replication and reproduc-
ibility, but also aids understanding of the analysis. Study de-
scriptions in articles are often fraught with ambiguities or
missing details. In contrast, the code used to analyze the data
will list all the analysis steps, including any seeds, prepro-
cessing, and parameter tuning. Only twelve studies (26%)
included a code sharing statement in our study: eight released
code on GitHub and two indicated that codewas available on
request from the authors. We only noted the reported claims
of code availability, which were often opaque in description,
and confirmed that the code existed. We did not inspect the
contents of the code.

The ‘product’ of a prediction model study is the model
that can be used to obtain predictions. These models should
be made available for researchers to evaluate in their own
data and potentially use in clinical practice [77]. Models
can be made available in many formats, such as an equa-
tion, web calculator, nomogram, or software object [78].
However, not all formats facilitate an external validation
in new data. External validation requires the actual model,
for example as an equation or software object, so that it can
be applied to make predictions in new individuals. We
found that prognostic models in only 11 studies (24%)
included in our review could in principle be used to obtain
a prediction for an individual. Very few of the developed
models were presented in a format or made available
(e.g., equation, code) to allow external validation by inde-
pendent researchers. For example, the regression coeffi-
cients for all predictors in a regression model should be
reported, along with the intercept value for a logistic regres-
sion model or baseline survival at 1 or more time points of
interest for a survival model. Twenty-four studies in our re-
view implemented a regression model. Alternatively, code
to implement the model should be made available, which
is distinct from the analysis code to reproduce the manu-
script’s findings. However, there is no shareable equation
for nonregression models such as a random forest or deep
learner. Although studies reporting such models must make
the code or a software object available to allow other re-
searchers evaluate the model, this was rarely observed in
the studies included in this review.

Sharing data and code to reproduce and understand the
methods and study findings only has relevance if the details
about the study design and conduct that gave rise to the data
are completely and clearly reported, so that readers can un-
derstand their provenance and robustness. Not all readers
have the technical expertize to read analysis code, and code
only lists the steps in the analysis. Reporting guidelines un-
derpin and enhance transparency, replication, and research
integrity, fostering good research practice and underpinning
all aspects of open science. Complete and transparent re-
porting of all aspects of the study is therefore critical.
The TRIPOD statement published in 2015 provides recom-
mendations for reporting the development and validation of
clinical prediction models [64,79]. Only 10% of the publi-
cations included in the review reported using the TRIPOD
statement, with a further 8% using an alternative reporting
guideline. Reporting recommendations are in preparation
for models developed using machine learning methods
(TRIPOD þ AI), which also includes recommendations
on reporting open science practices [80,81].

http://www.orcid.org
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4.1.1. Current literature
The inclusion of data sharing statements does appear to

be rising. However, most of these statements are not
proving to be valuable and do not lead to the data being
available or shared. Hamilton et al. [14] investigated how
data and code were made available in cancer research pub-
lished in 2019. They found that although a fifth of articles
declared that data were publicly available, only 16% were
available when investigated, and less than 1% complied
with the FAIR principles for sharing research [82]. They
also found that only 4% of reported codes to be available.
The low level of code sharing has been noted elsewhere,
including studies of artificial intelligence [83,84] and sys-
tematic reviews [76,85] and across different study designs
in oncology [14]. Our findings are also consistent with
those observed by Walters et al. [13] who concluded open
science was absent from a random sample of published
oncology studies between 2014 and 2018.

Open-access publishing is on the rise: 67% of the arti-
cles reviewed here were open access, whereas Hua et al.
[86] found that only 58% of oncology articles published
in December 2014 were open access. Similarly, Piwowar
et al. [87] found that the prevalence of open access in gen-
eral increased between 2009 and 2015, with 44.7% of arti-
cles published open access in 2015. Although publishing
with open access is beneficial for improving the reach of
research and for transparency, it often has huge cost impli-
cations. These costs are not feasible for some researchers,
particularly those conducting unfunded research and those
from lower- and middle-income countries. However, the
recent increased use of preprint websites could alleviate
this problem, ensuring a nonpeer-reviewed version of the
manuscript is publicly available [88].
4.2. Strengths and limitations

While we searched MEDLINE, a major database for
studies developing clinical prognostic models, we may
have missed some eligible publications. We also only
examined articles added to PubMed in December 2022,
which might not generalize outside this window. However,
our aim was to describe a contemporary sample of publica-
tions reflecting current practice rather than finding all avail-
able existing evidence. Additional studies would unlikely
change the conclusions of this review.
4.3. Future research

The importance of a study protocol cannot be stressed
enough [89]. A protocol describes the design, conduct,
and data analysis but can be used to prompt researchers up-
front on how they will embrace open science. For example,
data and code sharing, along with any restrictions, dissem-
inating the search, and using reporting guidelines to ensure
complete and transparent reporting of all aspects of the
study can all be planned before the research has been
conducted. Future studies could build on our findings by
focusing on research protocols and checking the consis-
tency of what is proposed in the protocols to what was actu-
ally reported after study completion.
5. Conclusions

Publications describing the development of prognostic
models using machine learning methods in the field of
oncology rarely follow open science practices. Guidance
and an increased awareness of best practices are needed,
outlining the benefits of open science for research transpar-
ency and engendering trust in research findings. Focus is
needed on providing meaningful data and code sharing
statements and adhering to reporting guidelines.
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