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Abstract

The mammalian cell cycle is regulated by a well-studied but complex biochemical reaction

system. Computational models provide a particularly systematic and systemic description of

the mechanisms governing mammalian cell cycle control. By combining both state-of-the-

art multiplexed experimental methods and powerful computational tools, this work aims at

improving on these models along four dimensions: model structure, validation data, valida-

tion methodology and model reusability.

We developed a comprehensive model structure of the full cell cycle that qualitatively

explains the behaviour of human retinal pigment epithelial-1 cells. To estimate the model

parameters, time courses of eight cell cycle regulators in two compartments were recon-

structed from single cell snapshot measurements. After optimisation with a parallel global

optimisation metaheuristic we obtained excellent agreements between simulations and

measurements. The PEtab specification of the optimisation problem facilitates reuse of

model, data and/or optimisation results.

Future perturbation experiments will improve parameter identifiability and allow for test-

ing model predictive power. Such a predictive model may aid in drug discovery for cell cycle-

related disorders.

Author summary

While there are numerous cell cycle models in the literature, mammalian cell cycle models

typically suffer from four limitations. Firstly, the descriptions of biological mechanisms

are often inefficiently complicated yet insufficiently comprehensive and detailed. Sec-

ondly, there is a lack of experimental data to validate the model. Thirdly, inadequate

parameter estimation procedures are used. Lastly, there is no standardized description of

the model and/or optimization problem.
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To overcome these limitations, we combine best-in-class technology to address all four

simultaneously. We use a rule-based model description to provide a concise and less

error-prone representation of complex biology. By applying trajectory reconstruction

algorithms to existing data from highly multiplexed immunofluorescence measurements,

we obtained a rich dataset for model validation. Using a parallel global metaheuristic for

parameter estimation allowed us to bring simulations and data in very good agreement.

To maximize reproducibility and reusability of our work, the results are available in three

popular formats: BioNetGen, SBML, and PEtab.

Our model is generalizable to many healthy and transformed cell types. The PEtab

specification of the optimization problem makes it straightforward to re-optimize the

parameters for other cell lines. This may guide hypotheses on cell type-specific regulation

of the cell cycle, potentially with clinical relevance.

Introduction

Scientific research can be seen as a collaborative process of continuously refining models of

the world. Often, these refinements are driven by acquisition of new types of data, more accu-

rate data, better data analysis methods or novel ways to describe, communicate, explain or

interpret data and knowledge. In case of systems biology, we now have access to highly multi-

plexed measurements of biopolymer composition at single cell resolution [1–3], methods to

analyse [4–11], and formats to communicate and interpret these data [12–15]. However, these

methods and tools have not yet been fully exploited to refine existing models of the mamma-

lian cell cycle control system. Through an intricate interplay of protein synthesis, degradation,

phosphorylation and complexation, this cell cycle control system (1) ensures strictly alternat-

ing replication and segregation of DNA, (2) coordinates these processes with doubling of all

other cellular components, (3) checks for correct completion of critical steps and (4) remains

functional under a variety of perturbations [16]. Dysregulation of the cell cycle control system

is associated with multiple diseases, such as cancer and neurodegenerative disorders. [17]. The

complex nature of cell cycle regulation with multiple interconnected and nested feedback

loops combined with the known challenges of fitting the parameters of oscillatory systems to

experimental data [18] complicate the development of mechanistically detailed, yet compre-

hensive cell cycle models. Nevertheless, we here sought to leverage recent technological

advancements to improve on existing mammalian cell cycle models, especially with regard to

four dimensions: model structure, validation data, validation methodology and model reus-

ability. We approached the challenges of this endeavour by breaking down the problem in

achievable subproblems. First, we developed models of individual cell cycle transitions. Sec-

ond, we fused the cell cycle transition submodels to a model of the full cell cycle. Third, we

reconstructed time courses of cell cycle regulators from highly multiplexed single cell measure-

ment. Finally we cast this data and the cell cycle model into an optimisation problem and used

a powerful metaheuristic to fit the model to the data. In this manner we aggregated existing

knowledge about mammalian cell cycle dynamics to an executable model that explains the

dynamics of 16 observables in human retinal pigment epithelial-1 (RPE-1) cells. By combining

abstract model definition in the BioNetGen (BNG) language [14, 19] with an intuitive naming

convention using Human Genome Organization Gene Nomenclature Committee (HGNC)

short names, and by concretely describing the model, data and optimisation problem in the

PEtab format [15], we released the model in an easily contributable form to GitHub (https://

github.com/paulflang/cell_cycle_petab/).
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course reconstruction (https://github.com/

paulflang/cell_cycle_time_course/tree/e2d373

d15bea86565d38b70dcc207564edd08d6b) and

the presented model versions (https://github.com/

paulflang/cell_cycle_model/tree/b0a820288

bc98d62333acf8434174b6446df0574) are

provided throughout the text. saCeSS can be

accessed via https://bitbucket.org/DavidPenas/

sacess-library/branch/sacess_cell_cycle_petab.

Additionally, we generated DOIs on ZENODO for

the PEtab problems (https://doi.org/10.5281/

zenodo.7894097), the results of the time course

reconstruction (https://doi.org/10.5281/zenodo.

7700130) and the presented model versions

(https://doi.org/10.5281/zenodo.7700177).

Funding: JRB and DRP acknowledge support from

grant PID2020-117271RB-C22 (BIODYNAMICS)

funded by MCIN/AEI/10.13039/01100011033. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interest exists.

https://github.com/paulflang/cell_cycle_petab/
https://github.com/paulflang/cell_cycle_petab/
https://doi.org/10.1371/journal.pcbi.1011151
https://github.com/paulflang/cell_cycle_time_course/tree/e2d373d15bea86565d38b70dcc207564edd08d6b
https://github.com/paulflang/cell_cycle_time_course/tree/e2d373d15bea86565d38b70dcc207564edd08d6b
https://github.com/paulflang/cell_cycle_time_course/tree/e2d373d15bea86565d38b70dcc207564edd08d6b
https://github.com/paulflang/cell_cycle_model/tree/b0a820288bc98d62333acf8434174b6446df0574
https://github.com/paulflang/cell_cycle_model/tree/b0a820288bc98d62333acf8434174b6446df0574
https://github.com/paulflang/cell_cycle_model/tree/b0a820288bc98d62333acf8434174b6446df0574
https://bitbucket.org/DavidPenas/sacess-library/branch/sacess_cell_cycle_petab
https://bitbucket.org/DavidPenas/sacess-library/branch/sacess_cell_cycle_petab
https://doi.org/10.5281/zenodo.7894097
https://doi.org/10.5281/zenodo.7894097
https://doi.org/10.5281/zenodo.7700130
https://doi.org/10.5281/zenodo.7700130
https://doi.org/10.5281/zenodo.7700177


Results

The restriction point submodel

We start with a description of our cell cycle model, which consists of submodels for the restric-

tion point (RP), the G1/S transition, the G2/M transition and the metaphase/anaphase (M/A)

transition. All reactions (except for nuclear envelope breakdown) are modelled with mass

action kinetics. For the precise meaning of abbreviations for modelled molecular species,

please refer to Table A in S1 Appendix. The RP is a checkpoint in G1 that prevents cell cycle

progression, until it is lifted by continuous or pulse like mitogen signalling [20], which stimu-

lates cyclin D expression. The RP is defined as a point after which progression through the cell

cycle no longer requires mitogen signalling [21]. Here, we use cyclin D:Cdk4/6 complex

(CycD) as a proxy for mitogen signalling. The molecular basis of the restriction point is

described by the Rb/E2f pathway shown in Fig 1A [22, 23]. E2f is a transcription factor that

drives the transcription of cyclin E. Before the restriction point, E2f is kept inactive by binding

to Rb [24]. However, this binding is inhibited by phosphorylation of Rb, which is mediated,

for example, by CycD and CycE. The ordinary differential equations (ODEs) describing the

Rb/E2F pathway are listed in Equations A in S1 Appendix. Even without E2f autoactivation

(i.e. replacing the ODE for total E2f with tE2f = 0.5; Figs A-a and A-b in S1 Appendix) the

mutual inhibition of CycE and Rb, combined with the inhibitor ultrasensitivity conferred by

Rb allows for bistability in the Rb/E2f pathway. Transcriptional autoactivation of E2f (grey

arrows in Fig 1A) further increases the bistable range, and thus, the robustness of this network

with respect to variations in CycD concentration (Fig 1B). In agreement with the notion that

once the restriction point is passed, cell cycle progression becomes independent of mitogen

signalling [21], flipping the toggle switch to the high CycE state is a truly irreversible process in

our submodel. Reverting the system would require negative CycD concentrations. The time

course simulated with CycD just above the upper bifurcation point shows how Rb, CycE and

E2f approach the high CycE steady state (Fig A-c in S1 Appendix). The increasing concentra-

tions in CycE and E2f will trigger CycA accumulation by switching the G1/S toggle. Their val-

ues in the high CycE steady state will therefore set upper boundaries for the upper bifurcation

point in the G1/S submodel.

G1/S transition submodel

Like cyclin E, transcription of cyclin A is also activated by E2f. However, there is a delay

between the accumulation of CycE and CycA proteins that shall be captured by the G1/S tran-

sition submodel. In contrast to cyclin E, cyclin A is susceptible to polyubiquitination by the

Apc:Cdh1 complex. The high Apc:Cdh1 levels observed in G1 keep the CycA concentration

relatively low, while the CycE concentration already rises. However, CycE and CycA can phos-

phorylate Cdh1, thereby preventing its association with Apc [26, 27]. Additionally, E2f also

activates the transcription of Emi1 [28], which is a very slowly polyubiquitinated pseudosub-

strate of Apc:Cdh1. Tight binding of Emi1 to Apc:Cdh1 further inhibits Apc:Cdh1 [29] (Fig

1C). This ODEs for this G1/S transition network are described in Equations B in S1 Appendix.

As total Apc appears to be in excess of total Cdh1 and total Cdc20 [30], we assume in this sub-

model that all Cdh1 is bound to Apc. Similar G1/S transition submodels have been proposed

by Barr et al. [31] and Novak and Tyson [32]. The mutual inhibition between CycA and Apc:

Cdh1, combined with the inhibitor ultrasensitivity conferred by Emi1 allows for bistability in

this G1/S transition network. This is illustrated in Fig 1C, using E2f as bifurcation parameter.

Setting E2f to 0.7 AUE2F (i.e. just below its upper steady state in the RP submodel) and using

CycE as bifurcation parameter instead, Fig B-b in S1 Appendix shows that CycA can robustly
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maintain its high steady state independently of CycE. This is a critical feature of the G1/S

toggle switch, since the rising concentration of CycA after flipping the switch will lead to

CycE phosphorylation, marking it for SCF mediated polyubiquitination. Rising CycA

concentrations will facilitate cyclin B synthesis when merging the G1/S toggle with the G2/M

toggle.

Fig 1. Models of individual cell cycle transitions. a, b Reaction network and bifurcation diagram of the restriction

point. Lighter colour indicates reactions omitted in Figs A-a and A-b in S1 Appendix. c, d Reaction network and

bifurcation diagram of the G1/S transition. Lighter colour indicates reactions omitted in Fig B-b in S1 Appendix. e, f

Reaction network and bifurcation diagram of the G2/M transition as developed by Vinod and Novak [25]. tCycB: total

cyclin B. g, h Reaction network and bifurcation diagram of the combined G2/M and M/A transition. Lighter colour

represents a simplified schematic of the G2/M transition network shown in (e). In the reaction network diagrams

conversions are represented by full arrows and catalytic interactions by dashed arrows. Four circles indicate degraded

proteins. Red letters represent the species used as bifurcation parameters. In the bifurcation diagrams solid lines show

stable and dotted lines unstable steady states. Unphysiological regions are semi-transparent. Line endings within the

axes limits indicate disappearance of a steady state. For variable abbreviations please refer to Table A in S1 Appendix.

Cdh1 and Cdh1:Emi in the G1/S transition network correspond to (p)Apc:Cdh1 and (p)Apc:Cdh1:Emi1, respectively

in the full cell cycle model. Models incl. parameters are available in the /versions/v0.0.1/ directory of the

cell_cycle_model GitHub repository.

https://doi.org/10.1371/journal.pcbi.1011151.g001
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G2/M transition submodel

Cyclin B associates with Cdk1, which is kept inactive via Wee1 kinase mediated phosphoryla-

tion. Wee1 activity is counteracted by the phosphatase Cdc25. As Cdc25 is activated and Wee1

inactivated by CycB:Cdk1 (i.e cyclin B in complex with unphosphorylated/active Cdk1), this

kinase phosphatase system contains two positive feedback loops. Additionally, there is mutual

inhibition of CycB:Cdk1 and the phosphatase PP2A:B55 via the PP2A:B55/Ensa/Greatwall

pathway, and autoactivation of nuclear CycB, leading to multiple interlinked bistable switches

at the G2/M transition [33–39]. Here, we will use a model by Vinod and Novak [25], that

describes the G2/M transition with a single bistable switch. Like the models for the previous

cell cycle transitions, this model relies purely on mass action kinetics. According to this model,

the inhibitor ultrasensitivity conferred by phosphorylated Ensa does not allow for bistability if

only combined with the mutual inhibition between B55 and phosphorylated Ensa. Yet, robust

bistable behaviour can be observed if this inhibitor ultrasensitivity is combined with the

mutual inhibition between B55 and pGw, and/or B55 and CycB:Cdk1 (Fig 1F and Fig C in S1

Appendix). One critical property of the network is that the bifurcation parameter tCycB (i.e.

cyclin B in complex with active/unphosphorylated or inactive/phosphorylated Cdk1) is an

upper boundary of the system variable CycB:Cdk1 but not of B55. When reducing tCycB

below the upper bifurcation point, B55 remains bound to phosphorylated Ensa, while CycB:

Cdk1 almost linearly decreases with tCycB. As B55 inactivity can stabilise its inactive state

almost independently of tCycB, it is possible to reduce tCycB to very low levels without activat-

ing B55. This feature will be exploited to reset the high tCycB at the G2/M transition to basal

levels via the negative feedback loop represented by the M/A transition submodel.

M/A transition submodel

The major hallmarks of the M/A transition are chromosome segregation and cyclin B degrada-

tion. Both processes are mediated by pApc:Cdc20, which is kept inactive via association to

mitotic checkpoint proteins until all chromosomes are correctly attached to the microtubule

spindle apparatus. The phosphorylation of Apc requires a shift in the ratio between Apc kinase

and phosphatase activity. While it is well established that CycB:Cdk1 serves as Apc kinase [40],

this mechanism cannot be exploited to degrade cyclin B back to baseline levels, if combined

with the G2/M transition submodel and its parametrization from above. This is because CycB:

Cdk1 at the upper bifurcation point is higher than CycB:Cdk1 at the lower bifurcation point

(0.110 vs. 0.068; Fig 1F). Due to a negative feedback between pApc:Cdc20 and tCycB, CycB:

Cdk1 would either become too low to promote further cyclin B degradation when moving

down the upper branch of the steady state, or CycB:Cdk1 would become too high to allow fur-

ther tCycB accumulation when moving up the lower branch of the steady state. This problem

could theoretically be solved by introducing a spindle assembly checkpoint that keeps pApc:

Cdc20 inactive during the process of cyclin B:Cdk1 activation/dephosphorylation, thus decou-

pling cyclin B:Cdk1 activation/dephosphorylation from cyclin B degradation. However, intro-

ducing stochastic events, like the attachment of kinetochores to opposite spindle poles was

considered beyond the scope of the present model. Instead, we decided to implement phospha-

tase mediated regulation of the Apc phosphorylation state. While, not much is known about

phosphatases acting on Apc in particular, it has been put forth that B55 is one of the phospha-

tases for Cdk1 substrates [41]. In contrast to CycB:Cdk1, pEnsa:B55 at the upper bifurcation

point is (much) lower than the pEnsa:B55 at the lower bifurcation point (0.112 vs. 0.248;

Fig 1F). This circumstance permits oscillations (Fig 1H, Fig D in S1 Appendix) when combin-

ing the negative feedback from the MA transition submodel (Equations D in S1 Appendix)

with the G2/M switch (Fig 1G; Equations C in S1 Appendix.), in a similar way to what has
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already been shown by Ferrell [42]. However, these oscillations disappear when cyclin B syn-

thesis decreases below 0.03335 min-1 (Fig 1H). This feature will be exploited in the full cell

cycle model, where cyclin B synthesis will be reduced at the M/A transition to keep its concen-

tration low in G1 phase.

The core cell cycle model

Similar to previous work conducted by De Boeck et al. [43] we next fused the four submodels

to a stably oscillating cell cycle model (Fig 2A and 2B) in a stepwise manner, accounting for

additional species and reactions created through the fusion (Text A in S1 Appendix). To a

large extent, the time courses of the modelled species qualitatively resembled the data in the lit-

erature [22, 44, 45]. To further test whether the full cell cycle model still has a restriction point

after which cell cycle progression becomes independent of mitogen signalling, we paused the

simulation at 610 min and 620 min, respectively to reduce CycD as proxy for mitogen avail-

ability from 1 to 0 AUD (Fig 2C and 2D). After continuing the simulation, we observed that

cell cycle progression was halted if CycD was depleted at 610 min. However, consistent with

the presence of a restriction point between 610 and 620 min after simulation start, the current

round of the cell cycle was finished if CycD was depleted at 620 min. Finally, we wanted to test

if our model can qualitatively capture observations from knockout experiments. Specifically,

we tested if (a) CycE knockout cells can proliferate with elevated doubling time, as it has been

demonstrated in vivo in mice [46, 47] and (b) CycA depletion leads to CycE accumulation

without affecting doubling time [48]. Using the same parameter values as for the simulation of

Fig 2A–2D, and without losing CycD dependence of continued proliferation, Fig 2E and 2F

show that our model could reproduce both features.

Implementing a DNA damage checkpoint

After minor model refinements such as moving the initial conditions on the limit cycle trajec-

tory and rescaling time units (see Changelogs and model versions in Table B in S1 Appendix

and simulation comparison in Fig E-a in S1 Appendix), we aimed at extending the model by a

DNA damage checkpoint. However, due to the complexity of the model, extending the model

in its ODE-based form would be a painstaking and error prone task. Therefore, we decided to

work on a more abstract level and converted the ODE-based model to a rule-based model

defined in the BioNetGen (BNG) language [14, 19] (Fig E-b in S1 Appendix) from which the

ODEs are generated automatically. Using the BNG syntax, we further introduced a systematic

naming convention of all molecular species, based on Human Genome Organization Gene

Nomenclature Committee (HGNC) short names and known important phosphorylation sites.

This naming convention is explained in Text B in S1 Appendix, and the mapping to the names

used in the above models is shown in Table A in S1 Appendix. For instance, protein A with an

unoccupied binding site for protein B, an occupied binding site C and a phosphorylated resi-

due Res123 would be written as A(B, C!+, Res123*p). The representation of the model

in the BNG language facilitated introduction of a DNA damage checkpoint through inhibition

of cyclins via binding of unphosphorylated cyclin kinase inhibitor CDKN1A (also known as

p21). CDKN1A expression is controlled via TP53, a transcription factor that is activated by

DNA damage. Polyubiquitination by the SKP2-containing SCF complex marks CDKN1A for

degradation. Noteworthy, the mutual inhibition of CDKN1A and Cdks, combined with the

ultrasensitivity conferring stoichiometric binding, results in bistability of the DNA damage

checkpoint [49]. After adding CDKN1A, TP53, SKP2 and the rules coarsely described in

words above, TP53 provides an interface for activating a DNA damage response checkpoint

(version 3:1:0). Fig 3 shows TP53 induced reversible activation of DNA damage checkpoints
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in G1 and G2 phase. Closer inspection of the G1 checkpoint indicates that CDKN1A is not

fully reduced to baseline by the time the cell cycle continues, as indicated by rising CCNA/B

levels. In other words, the exit point of the proliferative cell cycle trajectory at t = 20 (CCNA�

CCNB� CDKN1A� 0, CCNE� 0.4) is not element of the re-entry trajectory (t between

41.667 h and approximately 55 h), as CDKN1A remains elevated for too long. We also observe

Fig 2. Time courses of the core cell cycle model. a, b Core cell cycle model at CycD = 1 AUD. c, d Simulation of mitogen deprivation. The full cell core

model was simulated as in (a, b) until 610 min (c) and 620 min (d), respectively. CycD as proxy for mitogen availability was then turned to 0 AUD and

the simulation was continued until 1500 min. e Full cell cycle model with CycE knockout. f Full cell cycle model with CycA knockout. Blue ticks at the

top indicate the approximate location of the M/A transition. All models use identical parametrization (except for CycD). For variable abbreviations

please refer to Table A in S1 Appendix. The model and parameters are available in the /versions/v1.0.0/ directory of the cell_cycle_model GitHub

repository.

https://doi.org/10.1371/journal.pcbi.1011151.g002
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high levels of the proliferative effector CCNE before CCNA/B levels rise, which may titrate

some CDKN1A away from CCNA/B. These simulation results are in good agreement with

Stallaert et al. [50], who found that the re-entry trajectory does not simply follow the exit tra-

jectory in reverse direction. Instead, they argue that the re-entry trajectory follows a different

path. In particular, the arrest state is not reversed through reduction of anti-proliferative effec-

tors, but overcome through elevated expression of proliferative effectors. However, any inter-

pretation of our simulation results must be treated with caution, as the simulation was

performed with arbitrarily chosen parameters and arbitrary units of concentration. To further

increase robustness of the bistability at the G1/S transition, we added CDKN1B as another

stoichiometric inhibitor of cyclins, leading to version 3.2.0 (Text C in S1 Appendix).

Introducing the notion of compartmentalisation

The model presented so far assumes uniform spatial distribution of the cell cycle regulators.

However, there is substantial evidence of nucleocytoplasmic shuttling of several cell cycle regu-

lators [51–54], including evidence that such translocation plays important roles in cell cycle

regulation, for instance as a source of bistability [35]. Such nucleocytoplasmic shuttling

through nuclear pores is carried out by the Ran-GTP cycle, which depends on nuclear export

and import signals on the transported proteins, which can be (de)activated by posttranslational

modifications [55].To enable more accurate representations of cell cycle control, we imple-

mented the capacity for nucleocytoplasmic shuttling of cell cycle regulators into the model

(Text D in S1 Appendix). This capability will later enable parameter optimisation algorithms

to tune import/export rate constants. If identifiable, these rate constants may point towards

translocation mechanisms of hard-to-observe species, such as complexes and certain phospho-

proteins. We confirmed sustained cell cycle oscillations by simulating for more than 100 dou-

bling times (Fig F in S1 Appendix). In addition, we implemented nuclear envelope breakdown

(Fig G in S1 Appendix). However, this led to significantly reduced simulation speed. There-

fore, nuclear envelope breakdown was switched off for parameter estimation.

Obtaining multiplexed and spatially resolved time course measurements of

cell cycle regulators

To estimate some of the 325 unknown parameters in the compartmental model of the cell

cycle, we were searching for highly multiplexed and spatially resolved time course measure-

ments of cell cycle regulators. We found that Stallaert and colleagues [50] published single-cell

Fig 3. Time courses with alternating TP53 levels. DNA damage was simulated by activating TP53. The first

activation corresponds to G1 phase, the second to G2 phase. Inactivation of TP53 allows continued proliferation. For

better visualisation the G1 checkpoint was lifted before the steady state was reached. Model available in the /versions/

v3.1.0/cell_cycle_v3.1.0.bngl file of the cell_cycle_model GitHub repository.

https://doi.org/10.1371/journal.pcbi.1011151.g003
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snapshot measurements of cell cycle regulators in asynchronously dividing human retinal pig-

ment epithelial-1 (RPE-1) cells. These measurements were obtained from iterative indirect

immunofluorescence imaging (4i) experiments [56]. To reconstruct pseudo-time courses from

such single-cell measurements, several cell trajectory reconstruction algorithms have been

developed over the last decade [6–11]. These algorithms calculate an average/typical trajectory

and rank cells according to how far they have travelled along this trajectory. For the particular

case of reconstructing cell cycle trajectories, we can calculate the cell cycle time from the rank

by (a) exploiting that the proliferative cell cycle trajectory forms a closed circle and (b) cell divi-

sion creates two cells from one. More precisely, Kafri et al. [6] have shown that we can describe

the probability that a randomly selected cell from a perfectly asynchronous cell population,

which moves along a single circular trajectory, had its last cell division event at time t, with

pðtÞ ¼ �k
1

2

� � t
T

; ð1Þ

where T is the doubling time, and �k is a scaling constant to ensure that the integral from 0 to T

is 1:

1 ¼ �k
Z T

0

1

2

� � t
T

dt:

We also know that the whole population size N is the area under the curve N � p(t). Therefore,

N ¼ k
Z T

0

1

2

� � t
T

dt;

and

k ¼
2N log 2

T
:

Thus, the number r of cells younger than t is

rðtÞ ¼ 2 � N 1 �
1

2

� � t
T

0

@

1

A:

Rearranging we obtain the cell cycle time from r as

t ¼
T

log 2
log

r
2N
� 1

� �
: ð2Þ

Testing the reCAT trajectory reconstruction algorithm on simulated data

To test cell cycle trajectory reconstruction with reCAT [9], 300 cells were sampled from model

version 2:1:4 (Fig 4A), such that cell density decreases exponentially over the cell cycle with

one cell cycle length half-life, i.e. follow Eq (1). First, all 49 model variables were provided for

trajectory reconstruction without adding noise (Fig 4B). reCAT was able to perfectly recon-

struct the cell cycle trajectory from this dataset (Person correlation coefficient: R = 1.0; Fig 4C

and 4D). As a next step, the input data was corrupted with lognormal(1, 0.82) noise. Despite

the substantial noise level, reCAT recovered the original cell cycle trajectory with near perfect

correlation (R = 0.997). This accuracy remained practically unchanged (R = 0.987) even after
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reducing the information content of the data by eliminating 40 variables from the reconstruc-

tion procedure (Fig H in S1 Appendix).

Reconstructing time courses from imaging data

Stallaert et al. [50] obtained spatially resolved measurements of 48 cell cycle regulators (leading

to a total of 292 cellular features) in thousands of RPE-1 cells. Using the dimensionality reduc-

tion method PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)

[57], they found that a significant proportion of RPE-1 cells exit the proliferative cell cycle tra-

jectory into a non-proliferative G0 arm. We discarded such G0 cells prior to trajectory recon-

struction (Fig I in S1 Appendix). For reasons outlined in Text E in S1 Appendix, we believe

that discarding G0 cells is sufficient to safely apply Eq (2) to calculate cell cycle pseudo-times

from ranks. After removal of such G0 cells, we performed trajectory reconstruction on 300

randomly selected cells (Methods). At a doubling time of 19 hours for RPE1 cells, this equates

to one datapoint every 3.8 minutes on average. reCAT was only provided with the 36 of the 40

most predictive cell cycle features identified by Stallaert et al. that did not contain missing val-

ues. The other features were ignored during reconstruction, as they may contribute more

noise than cell cycle information. Ranking the cells resulted in time courses of all 292 features,

12 of which are shown in Fig 5 (the full dataset is available in table 4i_stallaert/2021_Stallaert_

Fig 4. Cell cycle trajectory reconstruction from noise-free simulated data with reCAT. a 300 cells (i.e. discrete time points)

were sampled across one cell cycle model simulation (version 2:1:4). Of all 49 model variables, cyclin E, cyclin A and B55 are

shown. b Sketch of the reCAT algorithm showing the sampled cell population projected on the CycA-B55 plane. The true cell

cycle time was not provided. reCAT reconstructed the trajectory by grouping the cells into 8 clusters (sketched as blue ovals)

with a Gaussian mixture model and heuristically finding the shortest circular path that visits all cluster centers (sketched as red

arrow). c Reconstructed cell cycle trajectory. d Correlation between true and reconstructed cell cycle time for each cell.

https://doi.org/10.1371/journal.pcbi.1011151.g004
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cycling_reCAT/smoothened_data.xlsx of the cell_cycle_time_course GitHub repository, and

Kalman-smoothened data can be inspected with this interactive figure). Overall, the recon-

structed cell cycle trajectory corresponded well with known behaviour of cell cycle regulators.

For instance, CCNA accumulated in later cell cycle stages and was abruptly degraded in mito-

sis. CCNB followed the same pattern with a slight delay and DNA content doubled throughout

the cell cycle. Interestingly however, CCNE concentration appeared more stable across the cell

cycle compared to life cell imaging experiments in HeLa cells [31] and immunofluorescence

measurements in U2OS cells [58].

Parameter estimation with perfect simulated data

Having developed a compartmental model of cell cycle control and reconstructed spatially

resolved time courses of cell cycle regulators, we aimed to estimate the parameters of our

model. However, the optimization problem at hand involved several challenges, including:

unknown parameter bounds, high dimensional parameter space, unknown parameters in the

observation function that maps model states to fluorescent readout, unknown contributions to

and magnitude of measurement noise, presence of multiple local optima, and structural and

practical parameter unidentifiabilities. Managing these challenges is still a matter of ongoing

research [18, 59–62]. To nevertheless identify an algorithm that is capable of finding the glob-

ally optimal parameters of the cell cycle model, we first performed the optimisation on ideal-

ized simulated data. These data were generated by simulating one cell cycle and sampling 100

time points for all states without introducing noise. Using multistart optimization provided

with gradients obtained from adjoint-sensitivity analysis, we found 100 different and poor

solutions from 100 starting points, indicating a highly rugged objective function. To avoid

such premature attraction to local optima, we therefore switched to Cooperative enhanced

Scatter Search (CeSS), a hybrid global-local optimisation algorithm [63] (Methods) that

Fig 5. Time course of cell cycle regulators in RPE-1 cells. Proliferating cells of publicly available 4i measurements of

an asynchronously dividing RPE-1 population [50] were gated in PHATE space (Fig I in S1 Appendix). For better

visibility the variables are normalised to a mean of one, and axes are clipped. a Dot plot of 300 untreated RPE-1 cells. b-

d Reconstructed time course of the cell population from (a). reCAT was provided with 36 variables. Time was

calculated using Eq (2) and data was smoothened using a Kalman filter.

https://doi.org/10.1371/journal.pcbi.1011151.g005
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performed well in benchmark tests [64]. Optimisation took 10.7 hours using four cores of a

personal computer (Intel Core i7–8550U CPU @ 1.80GHz). This time, the ground truth

parameters used for generating the data were recovered with only minor deviations, except for

the initial conditions of Apc:Cdh and pCdh (Fig 6A). In the cell cycle model total Cdh is con-

stant. CeSS has recovered the correct amount for Apc: Cdh(t = 0) + pCdh(t = 0) = 0.87 up to

the second decimal digit, but estimated the initial condition of Apc:Cdh higher and pCdh

lower than their respective ground truth values. As the observation function was simply the

pure species abundance, this confusion of initial values increases the objective function value.

Therefore, the otherwise near perfect recovery of ground truth parameters indicates structural

identifiability of the posed problem. Had there been structural unidentifiabilities, that is per-

fectly flat valleys in the objective function, it would be a highly unlikely coincidence that CeSS

returns the ground truth parameters instead of any other point in the valley. Fig 6B shows the

practically perfect overlap between the time course of the noise-free simulated datapoints and

the simulation with estimated parameters.

Imitating real imaging data and speeding up optimisation

Having found CeSS as an optimizer that is capable of solving the cell cycle optimisation prob-

lem on idealized data using a personal computer, the next step was to speed up optimisation to

meet the demands of realistic data. To this end we used self-adaptive cooperative enhanced

scatter search (saCeSS). saCeSS improves on CeSS by successive adaptation of hyperpara-

meters, improving the cooperation strategy and timing, and combining fine- and coarse-

grained parallelisation on high performance computing hardware [65]. The version used for

this work is available in the sacess_cell_cycle_petab Bitbucket repository. To test saCeSS on

model version 3:0:0, the optimisation problem was updated to better mimic our experimental

data. In particular, the Stallaert et al. dataset includes five observables that are informative

for this version of the cell cycle problem: CCNE, CCNA, CCNB1, E2F1 and RB1(Ser807_

Ser811*p). The expected density of the 300 datapoints is exponentially decreasing over the

cell cycle, with a half-life of one doubling time. Importantly, the observables represent anti-

body fluorescent intensities in arbitrary units. Since antibodies differ in their affinity to their

Fig 6. Testing Cooperative enhanced Scatter Search (CeSS). 101 evenly spaced, simulated, noise-free datapoints of

41 variables were generated with model version 2.0.0 (circles). Dynamic parameters were estimated within a [0.1 � θtrue,
10 � θtrue] search window, where θtrue denotes the ground truth parameter vector. Initial conditions were estimated

within a [eps, 1.5 � θtrue] search window, where eps denotes machine epsilon (except for Apc, where the upper

boundary was 5). a Histogram showing distribution of all optimized parameters θ versus ground truth θtrue, except for

Apc: Cdh and pCdh (see text), and kDpE2f1 and kPhC25A (θtrue = 0 and θ� eps). b Simulated time courses for three of

the 41 variables, using the parameter vector θ found by CeSS.

https://doi.org/10.1371/journal.pcbi.1011151.g006
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target observables y map to model species concentration via

yk ¼ ok þ sk
X

i2K

xi; ð3Þ

where the index k denotes different antibodies, ok represents an offset constant, sk a scaling

constant, K the set of all species to which the kth antibody binds, and x their concentration. For

example, the observable for the fluorescent signal from the antibody against CCNE is the sum

of the model states for free CCNE and CCNE bound to (un)phosphorylated CDKN1A and

CDKN1B, times an antibody-specific scaling constant, plus an antibody-specific offset con-

stant. The resulting optimisation problem including the species-to-observable mapping from

Eq (3), observable noise, simulated data, and estimated parameters with bounds was specified

in the PEtab format and can be found in the /versions/v3.0.0/PEtab_PL_v3_0_0sim/ directory

of the cell_cycle_petab GitHub repository. The simulated observables were corrupted with

N ð1; 0:12Þmultiplicative noise and ok was set to zero for all k. Since several species are no lon-

ger directly observed and scaling constants are introduced as new parameters, the problem is

no longer expected to be structurally identifiable (i.e. the global optimum is a manifold of infi-

nitely many solutions. Therefore, no biologically meaningful conclusions can be drawn from

analyzing the values of unidentifiable parameters. Instead, the goal was to find a solution that

provides a good fit to the data. To this end two different local solvers were tested for the opti-

misation: Ipopt (via parPE and using adjoint sensitivity gradients) [62], and gradient-free

dynamic hill climbing (DHC).

PEtab problems specify the objective as posterior probability. Here, uniform priors and a

standard deviation for the measurement noise of 0.1 were used, rendering the problem equiva-

lent to least-squares optimisation constrained to parameter bounds. Both solvers went under

the objective function value of the ground truth parameters, indicating slight overfitting. As

expected, neither solver recovered the ground truth parameters, which can be attributed to

overfitting and parameter unidentifiabilities. The lowest objective function value was found

with the Ipopt local solver option in saCeSS. A simulation with the corresponding parameter

values and the convergence curve is shown in Fig J in S1 Appendix.

Parameter estimation with imaging data

Next, we exchanged the artificial data with real experimental data from Stallaert et al. This

required us to make five modifications to the optimisation strategy (Text F in S1 Appendix).

‘For instance, we had to fit over two cycles to enforce oscillatory behaviour, and allow the offset

parameters ok to deviate from zero. All these strategies were combined into a new problem

specification, using the parameters from the oscillatory but non-fitted model as initial guess.

The best performance was achieved with the DHC local solver option in saCeSS. The found

solution led to simulations that are in good agreement with experimentally observed time

courses. Fig K in S1 Appendix shows the convergence curve and directly compares nuclear

measurements and the simulation.

The optimisation procedure was repeated for model version 3:2:0, which contains relevant

variables to use three additional nuclear observables in the Stallaert [50] dataset: SKP2,

CDKN1A and CDKN1B. The corresponding PEtab problem can be found in the /versions/v3.

2.0/ directory of the cell_cycle_petab GitHub repository. Fig L in S1 Appendix compares the

simulation results using the estimated parameters to experimental measurements.

Finally, we estimated the parameters of model version 4:0:0 using nuclear and cytoplasmic

observables. Since the measurement noise in the cytoplasm was much lower than in the

nucleus, we allowed observable-specific noise by adding the following noise formula to the

PLOS COMPUTATIONAL BIOLOGY Rule-based cell cycle model explains compartment-resolved dynamics of 16 observables

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011151 January 8, 2024 13 / 24

https://github.com/paulflang/cell_cycle_petab/tree/d562d3d4d19921ff851c06d0854b8b3f05c63d85/versions/v3.0.0/PEtab_PL_v3_0_0sim
https://github.com/paulflang/cell_cycle_petab/tree/d562d3d4d19921ff851c06d0854b8b3f05c63d85/versions/v3.2.0/
https://github.com/paulflang/cell_cycle_petab/tree/d562d3d4d19921ff851c06d0854b8b3f05c63d85/versions/v3.2.0/
https://doi.org/10.1371/journal.pcbi.1011151


optimisation problem:

sk ¼ s1 þ s2k
� yk:

σ1 and s2k
were estimated as part of the optimisation problem and represent additive and

observable-specific multiplicative noise, respectively. yk denotes the kth observable and σk the

standard deviation of normally-distributed measurement noise. The corresponding PEtab

problem can be found in the /versions/v4.0.0/ directory of the cell_cycle_petab GitHub reposi-

tory. Even for this compartmental model of the cell cycle, saCeSS found a solution that leads to

simulations that are in excellent agreement with experimentally observed location and time

courses of the measured cell cycle regulators (Fig 7). While this solution was initially located at

an edge of the search window, shifting the search window and optimising for another 40 h did

not further improve the solution.

Fig 7. Model version 4.0.0 fitted to pseudo-time courses of RPE-1 cells. Experimental measurements and simulation

results using estimated parameters. For better visibility, only every 10th measurement is shown. a, c, e Nuclear

compartment. b, d, f Cytoplasmic compartment. g Convergence curve. PEtab problem incl. parameter table and SBML

file with optimized parameters are available in the /versions/v4.0.0/ directory of the cell_cycle_petab GitHub

repository.

https://doi.org/10.1371/journal.pcbi.1011151.g007
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Discussion

Cell cycle control is one of the most central mechanisms of life and dysregulation in mammals

results in various diseases such as cancer and neurodegenerative diseases [17]. Generating and

improving computational models of the cell cycle has therefore been a long-standing goal of

systems biology [66–73]. With the present work, we contribute the most complete mammalian

cell cycle model known to the authors that accurately explains time courses of experimentally

determined observables. In particular, we improved on comparable existing models (Table 1)

Table 1. Comparison of this work with existing cell cycle models.

Model Model structure

Organisms Checkpoints Compartments Species Reactions Parameters

Singhania et al. (2011) [68] Mammals None CE 4 + 61 16 19

Gauthier et Pohl (2011) [69] Mammals None CP, NU 428 - 332

Weis (2014) [70] Mammals None CE 25 73 136

Abroudi et al. (2017) [71] Mammals DNA damage CE 66 138 150

Mitra et al. (2019) [72] Yeast - CE 44 39 153

Version 4:0:0 Mammals DNA damage CP, NU 123 630 2942

Model Validation Data Validation methodology

Observables Time points Conditions Objective function Optimiser Selection criterion

Singhania et al. (2011) 2 >10000 1 - manual None

Gauthier et Pohl (2011) 03 1 - - manual None

Weis (2014) 3 * 40 3 - manual None

Abroudi et al. (2017) 0 0 0 - - None

Mitra et al. (2019) 104 17–245 16 Least squares 7 PyBioNetFit8 None

Version 4:0:0 16 300 1 Maximum likelihood9 saCeSS None

Model Model reusability

Representation Format Annotation Availability Remarks

Singhania et al. (2011) ODE/predetermined logical

sequence

- - - -

Gauthier et Pohl (2011) ODEs Word/Matlab None Supplementary material a

Weis (2014) Reactions SBML10 None BioModels b

Abroudi et al. (2017) Reactions SBML10,11 None BioModels c

Mitra et al. (2019) Reactions, Events SBML None GitHub -

Version 4:0:0 Rules or Reactions PEtab or BNGL or SBML HGNC GitHub -

CE: cell, CP: cytoplasm, NU: nucleus.
1 4 ODE states, 6 Boolean states.
2 Only estimated parameters are counted.
3 The model was calibrated to match summary statistics about the cell and the cell cycle.
4 mRNA instead of protein observables.
5 Exact number differed between cell cycle synchronisation method.
6 One condition with time course data plus 119 knock out conditions with qualitative data.
7 Penalties for qualitative constraint violations were added to the least squares objective.
8 Using a scatter search algorithm with a simplex local optimizer.
9 In a strict sense, we used a maximum posterior objective, as we used priors for selected offset, scaling and noise parameters.
10 Conversion to SBML performed by Ashley Xavier from the European Bioinformatics Institute.
11 Simulating the SBML model with zero DNA damage does not reproduce publication results.
a Very detailed resolution (e.g. 12 mRNA and protein species per gene).
b Oscillations are not stable. Simulation of SBML model crashes after 10.8397 time units.
c Based on Iwamoto (2011) [75]. Oscillations are not stable.

https://doi.org/10.1371/journal.pcbi.1011151.t001
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along the four dimensions of model structure (e.g. using the notion of compartmentalisation

and DNA checkpoints in the same model, all ultrasensitivity purely emerges from mass action

kinetics), validation data (i.e. using the largest number of densely sampled observables), valida-

tion methodology (i.e. using a probabilistically motivated objective function and a more repro-

ducible optimisation procedure) and reusability (i.e. providing the model and optimisation

problem in multiple community standards, including an easily extensible rule-based descrip-

tion, tracking significant parts of model development with git version control, exploiting

BNGL syntax and HGNC short names for concise semantics and releasing the model to the

interactive GitHub platform). Yet, the parameters of the model were structurally unidentifiable

and predictions for small molecule or genetic cell cycle perturbations could not be tested in

lack of appropriate experimental time course data. Generating such data will thus be the next

significant step towards improving and evaluating the model, with studies such as [74] already

going into the right direction. In addition, we invite the community to contribute suggestions

and improvements of any form via GitHub issues and pull requests.

Methods

Developing the core model

The core model and the transition models are formulated as systems of ODEs with species con-

centrations in arbitrary units. All parameters were chosen manually, except for kDi-
pEB55 = 0.0068 and kAspEB55 = 57 in the G2/M submodel, which were experimentally

determined by from Williams et al [76]. Criterion for the choice was to show that there exists a

parametrization for which the model shows the desired behaviour (i.e. bistability for the RP,

G1/S and G2M submodels, oscillations for the G2M/MA submodel, oscillations and cyclin D

dependent restriction point in all unfitted model versions from 1.0.0 onwards. For v3.1.0,

we additionally required a TP53 triggered G1 and G2 DNA damage checkpoint). The precise

values are available in the cell_cycle_model GitHub repository. Nullcline plots, bifurcation

diagrams and time courses where calculated with the freely available software XPP/XPPAUT

[77]. For steady state bifurcation analysis the bifurcation parameter was set to zero and XPP/

XPPAUT was started from the corresponding steady state. This steady state bifurcation analysis

also detects Hopf bifurcations. Periodic bifurcation analysis (Fig 1H) was started from the

Hopf bifurcation at kSyCb� 0.055 min-1. The biochemical reactions making up the RP, G1/S

and G2M submodels were chosen to comply with experimental observations of bistability [22,

31, 33, 34, 78] in these networks. These submodels where merged in a stepwise manner to yield

an RP-G1S, RP-G1S-G2M, G2M-MA and finally a full cell cycle model (RP-G1S-G2M-MA).

Additional reactions and species were added whenever necessary and to make the model more

comprehensive. Reaction parameters were chosen based on Williams et al. [76], where applica-

ble. For the remaining parameters, an attempt was made to fulfil the following criteria: (a)

Parameters shall be biologically reasonable compared to the parameters obtained by Williams

et al. (b) Parameters in the RP, G1/S and G2M submodels shall allow for bistability. (c) After

merging the submodels to the full model, parameters were adjusted to obtain sustained oscilla-

tions as observed in unperturbed cells, CycE [46] and CycA [48] knockouts to obtain model

version 1:0:0.

Including DNA damage response and compartmentalisation

Prior to interfacing with DNA damage response regulator and compartmentalisation, the

model underwent rescaling, minor changes and conversion to BioNetGen Language version

2.5.2 [19] using RuleBender version 2.3.1 [79] (Table B in S1 Appendix, versions

1:0:0 � 3:0:0). The precise changes after model version 3:0:0, including the implementation
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of DNA damage response and compartmentalisation were documented and tracked with Git

version control and made available on the cell_cycle_model GitHub repository.

Model verification

All relevant changes to the reaction network and all conversions between model description for-

mats were subject to model verification. Version 1:0:0 was checked by rewriting the ODEs in a

chemical reaction-based format using the freely available software COPASI [80]. The chemical

reactions were automatically converted to a system of ODEs that were used for manual proof-

reading of the XPP/XPPAUT code. Time course simulations of XPP/XPPAUT and COPASI lead

to identical results within a small margin of tolerance for numerical inaccuracy. Similarly, con-

version from chemical reactions (version 2:1:4) to reaction rules (version 3:0:0) lead to identical

simulation results within a small margin of tolerance. Starting with version 3:0:0, for all modifi-

cations to the reaction rules and molecule types, the expected new number of reactions generated

by each rule and the expected number of total species were documented in the cell_cycle_model

GitHub repository in files called /versions/v*/sim_log_expected.log, where the

asterisk is a placeholder for the version name (for v3.0.1 versions/v3.0.1/n_species_
reactions_expected.txt was used instead of a .log file). Equivalency with the auto-

generated number of reactions per rule and total species (files /cell_cycle_model/
versions/v�/sim_log.log) was confirmed by manually comparing relevant differences

with the Visual Studio Code (Microsoft) file comparison tool.

Major model assumptions

Major assumptions include: (1) All reactions (even non-elementary reactions) are best mod-

elled with mass action kinetics (exception: Hill function as phenomenological description of

nuclear pore phosphorylation by CCNB(CDK1_Thr14_Tyr15*u); see Table A and Text B

in S1 Appendix for the naming convention used). (2) Cyclin:Cdk complex concentration is

proportional to cyclin concentration. (3) The time for protein expression is negligibly small.

(4) The model environment provides all protein subunits, metabolites, components of the

transcription-translation and protein degradation machinery that are required by the reactions

described in the model. It also provides constant total levels of CCND(), RB1(), FZR1(),

ENSA_ARPP19(), PPP2R2B(), MASTL(), WEE1(), CDC25(), APC(), TP53() and

DNA (see Table A in S1 Appendix for alternative names of these proteins). (5) (De)phosphory-

lation of a protein is not changed by binding to another protein (exceptions: PPP2R2B
(ENSA_ARPP19) actively dephosphorylates ENSA_ARPP19(PPP2R2B!?, Ser62_
Ser67*p).FZR1(nTerm*u) phosphorylation is in the full model assumed to be

reduced due to putative steric hindrances within the

APC(FZR!1,FBXO5!2).FZR1(APC!1,FBXO5!3,nTerm*u).FBXO5(APC!2,
FZR1!3) complex).

(6) PPP2R2B (ENSA_ARPP19) is a putative APC phosphatase. (7) Phosphorylated

cyclin E and A are immediately degraded. (8) Effects of local enrichment of the modelled com-

ponents can be ignored.

Cleaning of experimental data

Outlier cells with respect to the following metrics were excluded from further analyses of the

publicly available data from Stallaert et al. [81]: nuclear area, DNA content, CDKN1A

(Thr145*p), cellular area, cytoplasmic DAPI stain in all rounds, and ratio between cellular

and nuclear area (indicating segmentation errors). Exact thresholds are available in the

curation directories of the respective datasets on the cell_cycle_time_course GitHub
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repository. Values are displayed by hovering the mouse over the dashed red line indicating the

threshold. Figures can be opened as described in the repository README.

Trajectory reconstruction with reCAT

reCAT was provided with 300 cells sampled across one cell cycle model simulation (version

2:1:4). Data were transformed as described in the publication of the algorithm [9], after rescal-

ing to a mean of 104. This rescaling was closer to the order of magnitude of the input data used

in the original publication and lead to excellent correlation of the reconstructed data with the

ground truth. More precisely, state variables were transformed according to

~v ¼ log
2

104 � v
1

n

Xn

i¼1
vi
þ 1

0

B
@

1

C
A;

where v denotes a state variable and n is the number of cells. reCAT was run with default set-

tings resulting in an ordered list of cells in a cycle. The direction and start of the cycle were

chosen automatically from patterns of cell cycle variables and corrected manually if necessary.

For the Stallaert dataset manual correction was informed by manual annotation of cell age and

phase. Raw (non-transformed) variables were divided by their mean. A Kalman filter was

applied to the time series, using the R programming language with functions StructTS and

tsSmooth. The time series was padded with the last 10% of the cell cycle at the beginning

and the first 10% of the cell cycle in the end. StructTS optimised the maximum likelihood

of the “level” model, where the evolution of variable x(t) is described by

xðt þ 1Þ ¼ xðtÞ þ �x; �x � N ð0; s2
xÞ

and the measurement y(t) by

yðtÞ ¼ xðtÞ þ �y; �y � N ð0; s2
yÞ:

Paddings were removed and the order of the cells was converted to pseudo-time via Eq (2).

Multistart optimisation and CeSS

Optimisation problems were specified and optimised as described by the software supplement

of Villaverde et al [64]. For CeSS, the following hyperparameters were chosen: opts.ndiverse=‘-

auto’; opts.maxeval = 5e6; opts.log_var=[]; opts.local.solver=‘fmincon’; opts.local.finish=‘fmin-

con’; opts.local.bestx = 0; opts.local.tol = 1; opts.local.n1 = 100; opts.dim_refset=‘auto’; opts.

prob_bound = 0.5; opts.n_threads = 8; opts.n_iter = 10;

opts.maxtime_cess = 1*3600. The hyperparameters for threads 1–8 were set to dim1 = 3;

bal1 = 0; n2_1 = 4; dim2 = 5; bal2 = 0.25; n2_2 = 7; dim3 = 5; bal3 = 0.25; n2_3 = 10;

dim4 = 7.5; bal4 = 0.25; n2_4 = 15; dim5 = 10; bal5 = 0.5; n2_5 = 20; dim6 = 12; bal6 = 0.25;

n2_6 = 50; dim7 = 15; bal7 = 0.25; n2_7 = 100; dim8 = 15; bal8 = 0.5; n2_8 = 10000000000.

AMICI was used for model simulations and gradient calculations [82].

Optimisation with saCeSS

All problems were specified in the PEtab format and can be found in the cell_cycle_petab

GitHub repository. saCeSS was interfaced with parPE v0.4.9 [62] and used AMICI

v0.11.28 for model simulations and gradient calculations (code available in the sacess_cell_

cycle_petab Bitbucket repository). Default settings of saCeSS and parPE were used (saCeSS

hyperparameters are automatically adapted based on the number of islands). The number of
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runs (coarse-grained parallelisation) and processors (fine-grained parallelisation) is docu-

mented in /versions/PEtab_PLang_problem_v43.xlsx of the cell_cycle_petab GitHub

repository.

Data visualisation and illustrations

Data were visualised using MATLAB (R2018a) and Python (v3.9.5 and v3.10.3) with the mat-

plotlib (v3.4.3 and v3.5.1) package. For plotting Fig F in S1 Appendix the first cell cycle was

eliminated from the simulation results as its initial conditions do not match the conditions at

the start of subsequent cycles. Interactive online figures were were created with the plotly

library (v4.9.1) in R (v3.6.1). Reaction Networks were drawn with Microsoft PowerPoint.

Supporting information

S1 Appendix. Supporting tables, equations, figures and notes. The Supporting Tables

describe the variables of the core model and the changelog of model versions. The ODE sys-

tems for each cell cycle submodel are provided in Equations A-D in S1 Appendix. The Sup-

porting Figures show additional analysis of the models, trajectory reconstruction and

parameter estimation. Supporting Texts in S1 Appendix. discuss merging of submodels, nam-

ing conventions in the BioNetGen model, adding CDKN1B to the cell cycle model, introduc-

ing compartmentalisation, considerations on the effect of cell cycle arrest and trajectory

reconstruction, and handling of real-world data in parameter estimation.

(PDF)
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