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Histopathological studies have revealed key processes of atherosclerotic plaque thrombosis. 

However, the diversity and complexity of lesion types highlight the need for improved sub-

phenotyping. Here we analyze the gene expression profiles of 654 advanced human carotid 

plaques. The unsupervised, transcriptome-driven clustering revealed five dominant plaque types. 

These plaque phenotypes were associated with clinical presentation and showed differences in 

cellular compositions. Validation in coronary segments showed that the molecular signature 

of these plaques was linked to coronary ischemia. One of the plaque types with the most 

severe clinical symptoms pointed to both inflammatory and fibrotic cell lineages. Further, we 

did a preliminary analysis of potential circulating biomarkers that mark the different plaques 

phenotypes. In conclusion, the definition of the plaque at risk for a thrombotic event can be fine-

tuned by in-depth transcriptomic-based phenotyping. These differential plaque phenotypes prove 

clinically relevant for both carotid and coronary artery plaques and point to distinct underlying 

biology of symptomatic lesions.

Introduction

The classical concept of the ‘vulnerable plaque’ that depicts plaque rupture as the 

major pathological substrate for acute cardiovascular events originated in the 1980s from 

observations in patients who died of coronary syndromes1,2. This recognition spawned a 

generation of research that led to a greater understanding of how complicated atherosclerotic 

plaques form and precipitate into thromboembolic events secondary to plaque rupture. 

Current evidence suggests that a sole focus on plaque rupture of atheromatous lesions in 

clinical and basic research may have oversimplified the complex collection of atherosclerotic 

diseases and obscured other mechanisms that may mandate different management strategies.

In addition to histology, molecular phenotyping using the whole transcriptome provides 

more resolution and allows an in-depth understanding and discovery of processes active 

in the diseased vascular tissue3–6. These studies successfully utilized gene co-expression 

networks or compared cases and controls. However, they did not attempt to redefine 

the plaque type definitions based on gene expression signatures. Unsupervised clustering 

analysis, based on transcriptomic datasets, can be used to group patients with similar 

molecular characteristics of the diseased tissue and has the potential to unravel disease 

phenotypes that fine-tune the patho-histological evaluation7–10. This approach is often used 

in cancer research and has led to the identification of novel tumor subtypes. We, therefore, 

hypothesized that unbiased clustering based on gene expression of human advanced 

atherosclerotic plaques would unveil distinct phenotypes of late-stage human atherosclerotic 

plaques.

Using a multi-layered approach, we created gene expression maps within a large biobank 

of advanced carotid lesions (n=654) and studied histological characteristics and the 

clinical presentation. We report that transcriptome-based analysis of human atherosclerotic 

lesions identified five plaque clusters linked to the occurrence of clinical events and 

biological processes. We highlight a plaque type that is enriched with ACTA2 as well as 

CD14 expressing cells and with the highest expression of genes involved in neutrophil 

degranulation, mTOR, iron uptake, and other pathways linked to active inflammatory 
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response and increased expression of genes involved in glycolysis. We verified these 

findings in coronary artery segments where this plaque type is correlated with coronary 

ischemic events. Finally, we performed a pilot study in search of circulating biomarkers that 

reflect these transcriptomic clusters. Our data demonstrate that transcriptome-based plaque 

characterization may have significant added value in phenotyping advanced atherosclerotic 

lesions that lead to clinical symptoms.

Results

The Athero-Express study cohort of carotid segments

After quality control, based on measures of RNA library complexity, we included 654 

patients for clustering analysis. From those patients, 632 had accessible clinical data. The 

baseline characteristics of patients from Athero-Express selected for this plaque study are 

provided in Supplementary Table 1. In total, 75.3% of included patients were males, 24.7% 

were females with a mean age of 68.4 years and a mean BMI of 26.6. 43.2% of included 

patients had a stroke, 24.2% had a transient ischemic attack, 17.3% of patients had ocular 

symptoms, and the remaining 15.3% were asymptomatic. In 3 years of follow-up, 13.1% 

of patients suffered major adverse cardiovascular events (MACE). Histologically, 30.0% 

of included plaques were classified as atheromatous, 32.3% as fibrous, and 37.7% as fibro-

atheromatous.

Transcriptome-defined molecular plaque types

To identify groups of patients with similar molecular signatures of advanced atherosclerotic 

lesion characteristics, we utilized 654 individual transcriptomes from plaques (Fig. 1a) that 

passed the QC filters and identified five major molecular plaque types - referred to as 

#0, #1, #2, #3 and #4 (Fig. 1b, Extended Data figure 1a–b). All five clusters contained 

samples with similar numbers of detected protein-coding genes (Extended Data Fig. 1c). 

Based on the principal component analysis (PCA) projection and correlation to the most 

similar sample (Extended Data Fig. 1a–c), type #3 contained more heterogeneous plaques 

while the other clusters demonstrated higher correlations between the samples. Overall, we 

did not observe clear boundaries between five plaque types (Fig. 1b, Extended Data Fig. 1a–

b). Different data integration and normalization methods11 and correction for the technical 

variables (sequencing batch and hospital) yielded similar clusters (Extended Data Fig. 2a–f). 

Permutation analysis with 90% of samples showed that, on average, in 84.8% of cases, the 

sample was assigned to a cluster that matched the original classification. Samples more 

frequently classified in non-matching clusters were mostly found at the border zone between 

clusters in UMAP projection (Extended Data Fig. 2g–h). This altogether suggests that the 

clustering was robust while also suggesting the presence of intermediate types.

The five transcriptomics-based plaque types differed vastly in the expression of numerous 

candidate marker genes (Fig. 1c, Supplementary Table 2), which supports that the clustering 

is robust and reflects different underlying biology. For instance, type #0 plaques showed 

increased expression of FGF13, LPIN1, and KYNU. Types #1 and #3 showed increased 

expression of inflammatory molecules and leukocyte markers (CXCL12, C1QA, CD14, 

CD73, or APOE), while #3 also showed a modestly increased expression of classical 
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smooth muscle cell markers (MYH11, MYH10, and ACTA2). Type #2 plaques showed 

increased expression of NOS1, SOD2, VDR, SLC35E3, and ATXN3, while they mostly 

lacked expression of immune cells and SMC markers. Finally, type #4 had the highest 

expression of classical smooth muscle cell markers (MYH11, MYH10, and ACTA2) and 

reduced inflammatory and leukocyte marker gene expression.

Next, to understand which molecular processes and pathways underlie the five molecular 

plaque types, we performed pathway analysis on genes upregulated (based on the differential 

gene expression analysis) in the individual clusters. Clusters representing plaque types #1, 

#3, and #4 showed significant enrichment in numerous pathways (Supplementary Table 3). 

Increased expression of genes involved in neutrophil degranulation, mTOR, iron uptake, and 

other pathways linked to active inflammatory-response-related processes overlapped with 

increased expression of glycolysis genes, specifically in type #3 (Fig. 1d–e, Supplementary 

Table 4). The same plaque-type showed decreased activity of genes involved in fatty acid 

oxidation, while the activity of the citric acid cycle (TCA cycle) was not significantly 

different between clusters. Similarly, the processes involved in an extracellular matrix 

organization (synthesis, organization, and degradation) and cell plasticity (endothelial-

mesenchymal transition - EMT) showed specific enrichment in individual plaque types.

The genes upregulated in plaque types #0 and #2 did not show significant enrichment in 

the pathway analysis. However, the projection of empirically selected pathways that involve 

some of the cluster-specific genes (for example, tryptophan catabolism, which involves 

L-kynureninase - KYNU) showed increased expression in these specific clusters (Fig. 1e).

Altogether, the transcriptome-defined plaque types differ in molecular signatures involving 

metabolism, the inflammatory response, and the processes involved in extracellular matrix 

(ECM) homeostasis.

Molecular plaque types differ in histological composition.

Since variation in the cellular composition of complex tissues is one of the main drivers of 

transcriptomic differences, we analyzed the histological features of the five molecular plaque 

clusters (Fig. 2a, Supplementary Table 5). Of interest, one specific plaque type (#3) was 

characterized by gene enrichment pointing to cell types and processes that are commonly 

used to differentiate between stable and unstable plaques (Fig. 2a). Type #3 showed high 

expression of genes specific for inflammatory cells (e.g., C1QA and CD14) and cells 

responsible for a fibrous phenotype (e.g. ACTA2). Clusters #0 and #4 were significantly 

enriched in fibrous plaques with lower fat content and increased expression for ACTA2. 

On the contrary, type #2 was more enriched in atheromatous plaques, high-fat content, and 

increased presence of CD68 positive cells. No clusters exhibited a distinct pattern for the 

presence of calcification, media remnants, collagen content, and intraplaque hemorrhage 

(IPH).

Even though the plaque types #0 and # 4 showed both absolute and relative increase in 

ACTA2 positive cells in the histological evaluation, only in type #4 was this followed by 

clear upregulation of classical SMC markers like ACTA2 or MYH11 in the transcriptomic 

data (Fig. 2b). Similarly, genes involved in ECM organization were downregulated in type 
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#0 compared to #4 and #3. While contractile SMC genes ACTA2 or MYH11 had the highest 

expression in plaque type #4, the molecular pathway term “smooth muscle contraction” 

(Reactome, R-HSA-445355) was the highest in plaque type #3. This term also contains 

genes involved in upstream signaling cascades and calcium handling. Specifically, genes 

involved in calcium transport or sensing (like annexins, dysferlin, or integrin ITGB3) 

were overexpressed in plaque type #3. Interestingly, this specific cluster was also enriched 

(though the trend is not statistically significant) in plaques with no evidence of calcification 

(Fig. 2a, Supplementary Table 5).

In line with the marker gene expression, genes overexpressed in type #0 did not show 

specific expression in ACTA2+ cells in single-cell transcriptomics data (Fig. 2c); instead, 

they seemed to be expressed in populations identified as “mixed cells” - a population 

without a clear cell type-defining expression profile. This mixed plaque type seemed to 

contain apoptotic myeloid and T cells12 and express some of the foam cell driver genes (e.g., 

LRP1B13). Altogether, the histologically scored numbers of ACTA2+ cells in plaque type 

#0, which resides in a highly fibrotic environment, seem to be overestimated or represent a 

less transcriptionally active population.

Similarly, the histological evaluation of plaque type #2 was associated with increased 

CD68+ cells. However, the expression of macrophage markers like CD14 and genes 

involved in inflammatory pathways was predominantly downregulated at the RNA level. 

Additionally, the expression of genes specific to the type #2 cluster project to a likely 

apoptotic “mixed cell” population. This suggests that the residing macrophages in type 

#2 plaques have decreased transcriptional activity, or their numbers in the histological 

evaluation are overestimated. Notably, plaque types do not seem to be strongly driven by the 

variation in NK-, B- or T-cell content (Fig. 2b–c).

These observations may also have implications for the interpretation and extrapolation of 

animal studies on mechanisms of atherosclerotic disease. After comparing the RNAseq data 

from ApoE−/− and Ldlr−/− mice and correlating them with the expression profiles of five 

human plaque types, cluster #3 is the closest match with murine models (Fig. 2d). This 

observation may have significant impact on the way we use and interpret atherosclerotic 

murine models, as they do not seem to cover all the phenotypic (transcriptomic) variability 

of human samples.

Transcriptome-defined plaque types reflect disease severity.

Next, to gain clinical insights into the distinct transcriptome-based plaque clusters, we 

explored the severity of clinical symptoms before the surgery. Clusters #2 and #3 had 

higher percentages of more severe symptoms – TIA or stroke (80.3%, 77.0%, respectively), 

compared to intermediate # 1 (68.3%) and less severe #0 and #4 (55.8% and 61.1% 

respectively) (p=0.001) (Table 1).

We have also analyzed the occurrence of MACE within 3 years from surgery among the 

clusters and found no significant difference in the frequency of MACE (p=0.629). This is 

somewhat surprising, considering that specific histological features correlate with MACE 

and the strong differences in clinical symptoms between clusters prior to sample collection. 
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Therefore to investigate whether gene expression data carry information that reflects the risk 

of MACE, we built a logistic regression model to predict adverse cardiovascular outcomes 

within a 3-year follow-up time. We achieved an AUC = 0.66 (95% CI: 0.58–0.72) by using 

only the histology data. By adding transcriptomic information (as PCs) the prediction model 

was significantly improved (AUC = 0.74, 95% CI: 0.67–0.80, p = 0.0111, NRI = 0.12) (Fig. 

3a). These results suggest that the plaque transcriptomes encompass significant added value 

for the association with clinically relevant atherosclerotic disease.

Next, we compared the baseline clinical characteristics, risk factors and medication before 

the inclusion in different clusters. We observed a non-random distribution of age in 

years±SD (mean 67.2±8.88, 69.1±8.80, 70.4±9.23, 67.5±8.80 and 68.9±8.30 in clusters #0, 

#1, #2, #3 and #4 respectively, p=0.019) and total cholesterol levels in mmol/L±SD (mean 

4.59±1.27, 4.48±1.24, 4.11±1.08, 4.58±1.32 and 4.44±1.11 in clusters #0, #1, #2, #3 and #4 

respectively, p=0.050) (Table 1).

The other risk factors (including sex of patients, smoking status, diabetes, hypertension, 

body mass index, triglycerides, LDL, HDL, hypertension) and medication were not 

significantly different between the transcriptome-driven plaque types.

Genetic differences contribute to molecular plaque types.

Atherosclerosis is a complex disease with a significant genetic component. In studies 

published during or before 2021, GWASs have identified over 163 independent genetic loci 

associated with atherosclerotic disease14. We hypothesized that the transcriptome-defined 

clustering reflects the genetic component of atherosclerotic disease and compared polygenic 

risk scores (PRS) for coronary artery disease (CAD)15. We observed a non-random 

distribution (p = 0.003) with the highest PRS in plaque type #3 (Fig. 3b), suggesting that 

this plaque type is at least partially driven by known genetic associations with CAD. The 

expression of genes genetically associated with CAD using gene-based testing (MAGMA16) 

showed a similar trend, with the highest expression of CAD-associated genes in plaque type 

#3 (Fig 3c).

Clustering in coronaries is associated with ischemia.

The five transcriptomic clusters were identified in carotid arteries. Therefore, confirming 

a similar phenomenon in other vascular beds would strengthen the translational potential 

of this concept. To investigate whether plaques from other relevant anatomical locations 

form clusters based on transcriptional profiles, we repeated the clustering analysis on 

transcriptomics datasets derived from coronary arteries isolated from heart transplant 

recipient or donor hearts17,18. We applied the same algorithm as for plaques from carotid 

arteries. In coronary artery segments, we were able to identify four distinct clusters (Fig. 

4a–b). Similar to carotids, the individual plaque types in coronary arteries showed specific 

gene expression profiles, molecular pathways, and processes (Fig. 4e). Finally, the four 

clusters identified in coronary arteries differed in percentages of samples from hearts with 

underlying ischemia (18.2%, 54.9%, 6.5 % and 0.0%, respectively; p < 0.001) (Fig. 4f). The 

cluster with the largest proportion of ischemic samples also showed increased expression 

of genes involved in ECM organization, neutrophil degranulation, TGF-beta signaling, and 
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glycolysis. Notably, these were the same pathways associated with clinical symptoms in 

bulk transcriptomic analyses of carotid plaques in plaque type #3 (Fig. 1d).

Since the coronary samples comprise the entire artery, including adventitial tissue, and 

differ in RNA quality - which can confound the comparisons, the four clusters identified in 

coronaries cannot be directly compared to the clusters from carotid arteries. Therefore, we 

performed integrative analysis to identify the most similar carotid sample for each sample 

from coronary arteries. We first employed the anchor-based data integration algorithm, 

which allows merging datasets with different confounders19. After the integration, we 

repeated the clustering and identified five clusters with similar gene signatures as in 

the carotid dataset (Extended Data Fig. 3ab). Next, we identified the best matching 

carotid sample to each coronary using Pearson correlation (Fig. 4c–d) and assigned the 

corresponding clusters from the original carotid data.

The samples assigned to the same clusters again showed the specific molecular pathway 

activity (like neutrophil degranulation or glycolysis, Fig. 4g) and correlated with clinical 

manifestation (Fig. 4h). Of note, plaque type #2 seems to be underrepresented in coronary 

artery data. The best matching coronary samples for the patients detected in the symptomatic 

carotid plaque type #3 were observed in coronary cluster #1 (Fig. 4d), which is the 

plaque type with the highest prevalence of ischemic cardiac disease. This suggests that 

plaques in different anatomical locations can be clustered in groups connected to the 

clinical manifestation. Some of those clusters also overlap between different anatomical 

localizations.

Circulating biomarkers correlate with plaque clusters.

The presented description and categorization of ‘vulnerable’ plaque types that goes beyond 

the scope of histopathological phenotyping is of great value to the scientific community in 

the field of vascular biology. However, the proposed type of patient and plaque stratification 

approach must also be translationally applicable – for example, throughout the identification 

of circulating biomarkers that can be measured in a clinical setting. Therefore, to explore 

these possibilities, we have utilized the measurements of circulating biomarkers, which were 

shown to associate with the disease severity (Supplementary Table 6), and correlated them 

to five plaque types. Out of 15 biomarkers, MRP8/MRP14 complex and osteopontin showed 

nominally significant uneven distribution between the clusters. Some others, like FABP4, 

CRP, IL8, or TNF alpha, showed interesting (not statistically significant) trends.

To approach this more systematically, we analyzed cardiovascular OLINK biomarker panels 

in available blood samples of 386 patients, searching for circulating biomarkers that 

associate with the different transcriptomic clusters. Out of 276 blood-derived biomarkers, 

we found that 8 were nominally associated (p<0.05) with patho-histological plaque 

type (atheromatous, fibroatheromatous, or atheromatous) and 11 with the presence of 

calcifications (Fig. 5a). However, 24 circulating biomarkers showed nominally significant, 

different levels among transcriptomic plaque clusters (Fig. 5a).

Only PAI (plasminogen activator inhibitor) remained significant after multiple testing 

corrections (FDR = 0.016) and was decreased in plaque type #4 patients. Studies have 
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shown that PAI inhibitors significantly reduce atherosclerosis formation in a murine 

model of obesity and metabolic syndrome, and pharmacological targeting of PAI inhibits 

macrophage accumulation and cell senescence in atherosclerotic plaques20. This altogether 

substantiates further studies to search for relevant circulating biomarkers specific to the 

transcriptome-defined plaque types.

Discussion

In the present study, using unsupervised clustering, we describe five transcriptomic 

clusters in carotid plaques that relate to biological pathways and clinical presentation 

(Fig. 6). Pathways that appeared overrepresented in a plaque type with more vulnerable 

patients pointed towards, among others, neutrophil degranulation, matrix organization, and 

glycolysis.

Pathology and transcriptome-based plaque characterization.

Our transcriptomic data indicate the existence of plaque types that partly overlap with the 

pathological characterization and are associated with clinical symptoms of ischemic stroke 

and myocardial ischemia. Our analyses also provide insight into cell-specific processes that 

can play a role in the destabilization of the plaque. Surprisingly, carotid plaques in plaque 

type #3, with the most severe symptoms and with the best match with symptomatic coronary 

plaques, showed enrichment of pathways and RNA-based cell types that are traditionally 

categorized in two distinct plaque categories. This plaque type revealed an abundance of the 

smooth muscle cell and macrophage-specific genes, cell types that in pathology and animal 

experimental categorizations are often considered as “stabilizing” and “destabilizing”, 

respectively. Our transcriptomic analyses confirm the existence of a complex landscape 

of atherosclerotic lesion phenotypes that associate with clinical symptoms. The inferences 

regarding the risk of clinical thrombotic events based purely on pathological findings 

therefore merit careful (re)consideration.

Plaque molecular types are associated with ischemic events.

In both carotid and coronary plaques, there was a strong distinction between clusters in 

the expression of genes annotated to different molecular pathways. Pathways indicating 

neutrophil activation, glycolysis, extracellular matrix organization, and iron uptake and 

transport were strongly over-represented in both arteries in the same cluster that was 

also associated with clinical events. This plaque type showed an overrepresentation of 

CXCL12, CD14, C1QA, CD63, CD74, and APOE; genes that are often observed in plaque-

derived macrophages. Indeed, the overlap with single-cell sequencing demonstrated that a 

significant proportion of the transcripts upregulated in this plaque type pointed to monocyte/

macrophage lineages (Fig. 2c).

The role of neutrophil activation in plaque stabilization has long been underestimated, but 

the discovery that neutrophil extracellular traps (NETs) may have a causal role in plaque 

destabilization confirms a potential role of genes indicating neutrophil activation21–23. 

Using in vivo and in vitro assays, Soehnlein and colleagues showed that activated SMCs 

in atherosclerotic plaques release chemotactic factors that attract neutrophils and trigger 
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the release of NETs containing histone H4, which has cytotoxic effects on SMCs24. In 

addition, it has been shown that neutrophil microvesicles accumulate at disease-prone 

regions of arteries exposed to disturbed flow patterns and promote vascular inflammation 

and atherosclerosis in a murine model25.

The role of metabolic pathways such as glycolysis26, fatty acid oxidation, and tryptophan 

catabolism may point to phenotype switching of vascular cells27. The differentiation of a 

contractile to a synthetic myofibroblast-like phenotype in smooth muscle cells is driven 

by switching from oxidative to glycolytic metabolism28. In endothelial cells, glycolysis 

is essential for ATP production and sprouting of vessels since the loss of the glycolytic 

activator PFKFB3 in ECs impairs vessel formation29. In addition, enhanced glycolysis has 

been recognized as a critical role in initiating endothelial or epithelial to mesenchymal 

transition (EMT) progression30. Smooth muscle cell and endothelial cell differentiation are 

mediated by local inflammation. The increased activity of the glycolysis pathway may 

thus relate to an active state of cell types that differentiate and acclimate to an unstable 

(inflammatory) environment.

Surprisingly, carotid plaques in cluster #3, with the most severe symptoms and with the 

best match for coronary plaques in ischemic hearts, showed enrichment of pathways and 

RNA-based cell types that are traditionally categorized in two distinct plaque categories. 

This cluster revealed an abundance of smooth muscle cell and macrophage-specific genes, 

cell types that in pathology and experimental animal categorizations are often considered 

as “stabilizing” and “destabilizing” respectively. It could be of great interest if plaque 

transcriptomic analyses would allow the identification of plaque types that point to a high 

incidence of mesenchymal cell transitions in atherosclerotic lesions as a possible explanation 

for the expression of genes that are normally applied for the identification of different cell 

types such as ACTA2 and CD14 as has been observed in a number of cell lineage tracing 

studies in mice. However, bulk RNAseq does not provide the resolution of cell-specific RNA 

expression data that are required to draw inferences in the context of cell transitions.

The role of iron uptake in atherosclerosis has been debated and is considered multifaceted. 

Iron can cause oxidative damage and regulated cell death by lipid peroxidation (known 

as ferroptosis), and oxidized lipoprotein can then be taken up by the LDL receptor on 

macrophages leading to their development into foam cells (reviewed in31). On the other 

hand, CD163+ alternative macrophages engulfing the hemoglobin-haptoglobin complexes 

(HH) were shown to augment hyaluronan synthesis in vascular SMCs and prevent vascular 

calcification32.

Genes overexpressed in the plaque transcriptomic type that predicted stroke and cardiac 

ischemia (like CD14) support the involvement of inflammation in this high-risk plaque. 

CXCL12 is a well-studied anti-inflammatory gene that is also associated with coronary 

artery disease through GWAS33. CD63 is a protein that is mainly associated with the 

membrane of intracellular vesicles and is also used as a marker for blood platelet 

activation34 as well as circulating vesicles35 and functionally plays a role in signal 

transduction. C1QA is considered to play a role in removing apoptotic cells via 

efferocytosis, and its presence reduces the atherosclerotic plaque size in animal models36.
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Clinical value of transcriptomic-based plaque characterization.—The pathology-

based description of the ‘vulnerable plaque’ has proven crucial value for understanding 

the progression and complications of atherosclerotic disease in experimental research37. In 

addition, the clinical utility of numerous vascular imaging modalities is based on the well-

known definition of thin cap fibroatheroma. The discovery and evaluation of pharmaceutical 

treatments rely on animal models that apply the pathology-based surrogate measures of 

destabilizing atherosclerotic disease. Our observations provide evidence that transcriptomic 

profiling and subsequent clustering of human plaques may have substantial added value 

in searching for suitable drug targets. These observations that significantly fine-tune the 

phenotype of the destabilizing plaque can be translated to animal models and cell culture 

systems used in drug-related research.

There is an unmet need for biomarkers associated with the presence of plaques at risk 

for a thrombotic ischemic event. Proteins can today be measured with high accuracy 

using multiplex methods38. We feel that the observed enrichment of biomarkers associated 

with different transcriptomic plaque clusters is promising. Our sample size with combined 

plaque transcriptomic and clinical data does not allow strong inferences and surely requires 

verification. Our data do show that non-stratified biomarker analyses in large pooled 

patient samples may mask subgroups in whom biomarker profiles could be predictive. 

For example, clusters #0 and #4 both encompassed patients with mild symptoms but had 

different associations with biomarker profiles. Future efforts will be focused on more 

complex analysis39 and on building prediction models40, which, based on measurements 

of circulating biomarkers, can predict the plaque types present in patients.

Limitations

Our results could be biased by the type of source material for the bulk RNAseq analyses. 

Different regions in a plaque can reveal different cell types that could explain the differential 

clustering among patients. To avoid this bias, the plaque samples selected for the RNAseq 

were those with available segments closest to a 0.5 cm length culprit lesion (which is used 

for pathology). In addition, the associations observed between clusters, clinical symptoms, 

and polygenic risk score and the substantial overlap with observations in coronary samples 

do support our view that this bias cannot fully explain the observed outcomes.

Similarly, the quality of RNA obtained from atherosclerotic lesions can be affected by the 

lesional morphology, such as the presence of necrotic debris. This may have biased our 

results. However, we were able to verify the presence of similar clusters, driven by identical 

biological processes in the coronary samples that also encompassed less advanced lesions 

which support the view that results cannot be fully explained by lesion type with differential 

grades of RNA degradation.

In summary, our study shows that deciphering the transcriptomic profile of atherosclerotic 

lesions results in an updated description of the ‘vulnerable plaque’ with clinical relevance. 

Our results also demonstrate that transcriptomic analyses can contribute to assessing lesion 

phenotypes that are predisposed to a thrombotic event and potentially reveal underlying 

pathogenetic mechanisms.
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Methods

Carotid plaque samples

The Athero-Express Biobank (AE) includes patients undergoing carotid endarterectomy, 

of which the study design has been published before41–43. The AE study is an ongoing 

biobank, and extensive baseline characteristics, blood samples, and atherosclerotic plaque 

specimens are collected. Clinical data were obtained from patient files and through 

standardized questionnaires. The indication for CEA was based on the recommendations 

from the Asymptomatic Carotid Surgery Trial (ACST) for asymptomatic patients and 

the European Carotid Surgery Trial (ECST) and North American Symptomatic Carotid 

Endarterectomy Trial for symptomatic patients (NASCET). Indications for CEA were 

evaluated by a multidisciplinary vascular team. The removal of atherosclerotic plaques was 

performed by a team of experienced surgeons, and standardized treatment protocols were 

applied. All patients were examined by a neurologist for assessment of their preoperative 

neurologic status. For this study, subsequent patients were included who underwent carotid 

endarterectomy between 2002 and 2016 and of whom genotyping data were available. 

The performed study is in line with the Declaration of Helsinki and informed consent 

was provided by all study participants after the approval for this study by medical ethical 

committees of the different hospitals (the University Medical Center Utrecht NL and St. 

Antonius Hospital Nieuwegein NL) was obtained.

Baseline characteristics

Baseline data were obtained by chart review and from extensive questionnaires completed 

by the participating patients that included questions on the history of cardiovascular disease, 

cardiovascular risk factors (smoking, hypertension, diabetes), and use of medication. 

Presenting symptoms and duplex stenosis were retrieved from patient charts. Symptom 

categories were “asymptomatic”, defined as not having ipsilateral cerebrovascular symptoms 

in the previous 6 months; “ocular” - amaurosis fugax, defined as ipsilateral mono-ocular 

blindness of acute onset lasting <24 hours; cerebral “transient ischemic attack” (TIA), 

defined as the ipsilateral focal neurologic deficit of acute onset lasting <24 hours; and 

ipsilateral “stroke”. Lipid spectra were determined in blood specimens drawn at baseline.

Follow up

All patients answered a questionnaire 1, 2, and 3 years after the carotid endarterectomy. In 

case an adverse event was reported or suspected, the referring hospital or general practitioner 

was approached for additional medical information. The primary outcome was defined 

as a composite of endpoints including, any death of vascular origin (fatal stroke, fatal 

myocardial infarction, sudden death, and other vascular death), non-fatal stroke (either 

ischemic or hemorrhagic), or non-fatal myocardial infarction, and any arterial vascular 

intervention that had not already been planned at the time of inclusion (e.g. carotid surgery 

or angioplasty, coronary artery bypass, percutaneous coronary artery intervention, peripheral 

vascular surgery, or angioplasty).
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Sample handling

The atherosclerotic plaques were transported to the laboratory and processed immediately 

after the surgical removal. An experienced technician identified the culprit lesion, which 

is defined as the segment with the smallest lumen. In case of doubt, the segment with the 

largest plaque diameter was selected. According to a standardized protocol, the plaque was 

divided into segments of 5 mm thickness along the longitudinal axis. The segment with the 

culprit lesion was then prepared and stored in 4% formaldehyde, decalcified, and embedded 

in paraffin for histological analysis. The rest of the plaque was snap-frozen using liquid 

nitrogen and stored at −80 degrees Celsius.

Histological assessment

The assessment was performed according to a previously validated protocol, which was 

described in detail before44. Cross-sections of the culprit lesion are stained and quantified 

for each patient at 40× magnification. A hematoxylin-eosin (HE) staining was performed 

for the assessment of calcification and picrosirius red for collagen. Collagen staining and 

calcification were assessed and categorized as (1) no, (2) minor, (3) moderate, and (4) heavy 

independent of the localization of the staining. CD68 (antibody: Roche cat# 790–2931, used 

undiluted) was stained to identify macrophages. The criteria for classification were defined 

as follows: macrophages: (1) no or just a few scattered cells (2) minor CD68 staining with 

clusters with less than 10 cells present; (3) moderate: cell clusters with >10 cells present or 

(4) heavy, the abundance of positive cells. Alpha-smooth muscle actin (Biosite BSH-7459–1, 

clone BS66, 1:20000 dilution) was stained to determine the presence of smooth muscle 

cells. The criteria for classification were defined as follows: (1) no or few scattered cells 

(2 minor alpha-actin staining over the entire circumference with absent staining at parts of 

the circumference of the arterial wall; (3) moderate: positive cells along the circumference 

of the luminal border, with locally at least few scattering cells (4) heavy: SMC dominant 

plaque with cells within the entire cap and also large clusters deep in the lesion. The 

location of SMCs was evaluated as “mainly basal”, “homogeneous,” or ”mainly luminal”. 

The location of macrophages was evaluated as “basal”, “homogeneous”, ”luminal”, or “no 

macrophages”. In the present study, some of these categories were binned into no/minor 

staining and moderate/heavy staining. Immunohistochemical staining for CD34 (Ventana, 

CONFIRM anti-CD34 (QBEnd/10) Primary Antibody, 790–2927, used undiluted) was 

performed to assess vessel density. Plaque microvessels were quantified in three hotspots 

and subsequently, the average number of vessels per hotspot was calculated. Picrosirius red 

in combination with elastic-Van Gieson, HE, and polarized light was used to visualize the 

lipid core. The lipid content of the plaque was estimated as a percentage of the total plaque 

area, with a cutoff at 10% and 40% for carotid plaques. Plaques with<10%, 10–40%, and 

>40% fat were categorized as fibrous, fibro-atheromatous, and atheromatous, respectively. 

The presence of plaque hemorrhage was determined using HE staining, fibrin staining, and 

glycophorin staining. All plaque characteristics were scored and quantified with good intra- 

and interobserver reproducibility by two independent observers54.
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RNA isolation and library preparation

A total of 700 segments were selected from patients who were included in the study between 

2002 and 2016. The atherosclerotic plaque was grounded while frozen with liquid nitrogen, 

and after that Tripure (Roche, cat# 11667165001) was added, and the plaque pieces and 

further disrupted by the Precellys 25 homogenizer (Bertin Instruments). The sample was 

incubated at room temperature for 5 minutes and centrifuged at 20.000g for 1 minute at 

4°C. The supernatant was mixed with chloroform and incubated at RT for 15 minutes. The 

sample was centrifuged at 12.000xg for 5 minutes at 4°C, and the upper phase was used for 

RNA isolation. Then isopropanol and GlycoBlue (Invitrogen, cat# 10301575) were added to 

the aqueous phase to precipitate the RNA and centrifuged at 12.000xg for 10 minutes at 4°C. 

The pellet was washed with 75% ethanol and resuspended in RNase-free water.

The RNA isolated from the archived advanced atherosclerotic lesion is fragmented 

(Extended Data Fig. 4a). We have, therefore, tested four different library preparation 

strategies (Extended Data Fig. 4bc): CEL-seq245, QIAseq (QIAseq Stranded Total RNA 

Lib Kit, Qiagen, cat# 180743), NEXTflex (NEXTflex Rapid Directional RNA-Seq Kit, 

Bioo Scientific, cat# NOVA-5138–08), and SMARTer (SMARTer® Stranded RNA-Seq Kit, 

Takara, cat# 634862) using the manufacturer’s or author’s recommendations. We have 

ultimately employed the CEL-seq2 method. CEL-seq2 yielded the highest mappability reads 

to the annotated genes compared to other library preparation protocols (Extended Data Fig. 

4bc). The methodology captures the 3’-end of polyadenylated RNA species and includes 

unique molecular identifiers (UMIs), which allow direct counting of unique RNA molecules 

in each sample. 50ng of total RNA was precipitated using isopropanol and washed with 

75% ethanol. After removing ethanol and air-drying the pellet, a primer mix containing 5ng 

primer per reaction was added, initiating primer annealing at 65°C for 5min. Subsequent 

RT reaction was performed; first-strand reaction for 1h at 42°C, heat-inactivated for 10m at 

70°C, second strand reaction for 2h at 16°C, and then put on ice until proceeding to sample 

pooling. The primer used for this initial reverse-transcription (RT) reaction was designed as 

follows: an anchored polyT, a unique 6bp barcode, a unique molecular identifier (UMI) of 

6bp, the 5’ Illumina adapter, and a T7 promoter, as described. Each sample now contained 

its own unique barcode due to the primer used in the RNA amplification, making it possible 

to pool together cDNA samples at 7 samples per pool. Complementary DNA (cDNA) 

was cleaned using AMPure XP beads (Beckman Coulter, cat# A63882), washed with 80% 

ethanol, and resuspended in water before proceeding to the in vitro transcription (IVT) 

reaction (AM1334; Thermo-Fisher) incubated at 37°C for 13 hours. Next, primers were 

removed by treating with Exo-SAP (Affymetrix, Thermo-Fisher, cat# 78201.1.ML), and 

amplified RNA (aRNA) was fragmented and then cleaned with RNAClean XP (Beckman-

Coulter, cat# A63987), washed with 70% ethanol, air-dried, and resuspended in water. After 

removing the beads using a magnetic stand, RNA yield and quality in the suspension were 

checked by Bioanalyzer (Agilent).

cDNA library construction was then initiated by performing an RT reaction using 

SuperScript II reverse transcriptase (Invitrogen/Thermo-Fisher, cat# 18064022) according 

to the manufacturer’s protocol, adding randomhexRT primer as a random primer. Next, PCR 

amplification was done with Phusion High-Fidelity PCR Master Mix with HF buffer (NEB, 
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MA, USA, cat# F531L) and a unique indexed RNA PCR primer (Illumina) per reaction, for 

a total of 11–15 cycles, depending on aRNA concentration, with 30 seconds elongation time. 

PCR products were cleaned twice with AMPure XP beads (Beckman Coulter, cat# A63882). 

Library cDNA yield and quality were checked by Qubit fluorometric quantification 

(Thermo-Fisher, cat# Q32851) and Bioanalyzer (Agilent), respectively. Libraries were 

sequenced on the Illumina Nextseq500 platform; paired-end, 2 × 75bp.

Sequencing read mapping and quality filtering

Libraries were sequenced on the Illumina Nextseq500 platform; a high output paired-end run 

of 2 × 75 bp was performed (Utrecht Sequencing Facility). The reads were demultiplexed 

and aligned to human cDNA reference (Ensembl 84) using the BWA (0.7.13) by calling 

‘bwa aln’ with settings -B 6 -q 0 -n 0.00 -k 2 -l 200 -t 6 for R1 and -B 0 -q 0 -n 

0.04 -k 2 -l 200 -t 6 for R2, ‘bwa sampe’ with settings -n 100 -N 100. Multiple reads 

mapping to the same gene with the same unique molecular identifier (UMI, 6bp long) 

were counted as a single read. The raw read counts were corrected for UMI sampling 

(corrected_count=−4096*(ln(1-(raw_count/4096)))), normalized for sequencing depth and 

quantile normalized. We have detected a median of 19.501 (SD = 5.874) genes per sample 

with at least one unique read (Extended Data Fig. 4d) and discarded samples (n=46) with 

less than 9000 detected genes from further analysis (Extended Data Fig. 4e and Fig. 1a). 

For all the subsequent analyses, we have excluded all the ribosomal genes and used only the 

protein-coding genes with annotated HGCN names.

Clustering of transcriptomics datasets

Clustering of datasets from carotid arteries was based on the first 12 principal components 

(PCs) calculated using 5000 most variable genes from the normalized gene expression 

data. We used the shared nearest neighbor (SNN) modularity optimization-based clustering 

algorithm46 implemented in the Seurat package47 (core scripts can be found at https://

github.com/CirculatoryHealth/PlaqueCluster). 162 transcriptomics data sets from coronary 

arteries were clustered separately in the same way.

Pathway analysis

Pathway analysis was performed using the “ReactomePA” R/Bioconductor package48. 

Module score were calculated using the Seurat’s AddModuleScore() function.

Baseline characteristics tables

Baseline characteristics tables were produced using R’s “tableone” package with default 

settings. Statistical significance of differences between groups was tested using the chi-

square test for categorical variables and one-way analysis of variance (ANOVA) for 

continuous variables (with equal variance assumption, i.e., regular ANOVA).

Logistic regression model

The logistic regression models were built using the principal components (PCs) calculated 

from 5000 most variable genes from the normalized gene expression data. Raw counts were 

corrected for UMI sampling bias (corrected.genecounts = (−4096*(ln(1-(raw.genecounts/
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4096))))) and sequencing depth and quantile normalized. We have used (Model: “RNA 

based model”) the first 25 PCs from RNA sequencing data, (Model: “Histology”) 

histological parameters - plaque phenotype, the mean number of macrophages, the mean 

number of smooth muscle cells, fat core presence (atheromatous, fibro-atheromatous, 

fibrous), calcification score, collagen presence score, SMC presence score, SMC location, 

macrophages presence, macrophages location, SMC to macrophages ratio, media presence 

and intraplaque hemorrhage and (Model: “RNA + Histology”) combined histological and 

transcriptomics parameters. All models included sex and age of the patients. Next, we used 

a backward stepwise algorithm based on the Akaike information criterion to reduce the 

number of parameters in the final models.

Correlation with mouse dataset

We have accessed three transcriptomics datasets Apoe#1 (Affymetrix HT-MG-430 PM 

microarray, whole aorta from the arch to the mid-abdomen): GSE6656949, Apoe#2 (RNA-

seq, vascular tissue): GSE18625250 and LDLR (RNA-seq, aortic arch): GSE16320651. First, 

gene IDs and microarray probes were matched to Ensembl IDs, quantile normalized, and 

log2 transformed after adding 1 to each expression value. Next, the corresponding human 

orthologue for each mouse Ensembl ID is found and the correlation between each human 

and mouse dataset was calculated with a Pearson’s correlation.

Human coronary artery tissue procurement

Human coronary artery tissue biospecimens were obtained at Stanford University from 

diseased heart transplant donors consenting to research studies under Institutional Review 

Board protocols (#4237 and #11925). Hearts were arrested in cardioplegic solution and 

transported on ice prior to dissecting proximal coronary artery segments from main 

branches of left anterior descending, circumflex or right coronary arteries. Epicardial 

and perivascular adipose was trimmed on ice, rinsed in cold phosphate-buffered saline, 

rapidly frozen in liquid nitrogen, and stored at −80C. Normal human coronary artery tissue 

biospecimens were also obtained at Stanford University from non-diseased donor hearts 

rejected for orthotopic heart transplantation processed following the same protocol as hearts 

for transplant. Tissues were de-identified and clinical and histopathology information was 

used to classify ischemic and non-ischemic arteries. All normal arteries originated from 

hearts with a left ventricular ejection fraction (LVEF) greater than 50%. Frozen tissues 

were transferred to the University of Virginia through a material transfer agreement and 

Institutional Review Board-approved protocol (#20008).

RNA sequencing of coronary samples

Total RNA was extracted from frozen coronary artery segments (n = 162, 57 females, 

105 males, Age (mean) = 50.1years (standard deviation = 15.2years) using the Qiagen 

miRNeasy Mini RNA Extraction kit (catalog #217004). Approximately 50 mg of frozen 

tissue was pulverized using a mortar and pestle under liquid nitrogen. Tissue powder 

was then further homogenized in Qiazol lysis buffer using stainless steel beads in a 

Bullet Blender (Next Advance) homogenizer, followed by column-based purification. RNA 

concentration was determined using Qubit 3.0 and RNA quality was determined using 

Agilent 4200 TapeStation. Samples with RNA Integrity Number (RIN) greater than 5.5 
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and Illumina DV200 values greater than 75 were included for library construction. Total 

RNA libraries were constructed using the Illumina TruSeq Stranded Total RNA Gold kit 

(catalog #20020599) and barcoded using Illumina TruSeq RNA unique dual indexes (catalog 

#20022371). After re-evaluating library quality using TapeStation, individually barcoded 

libraries were sent to Novogene for next-generation sequencing. After passing additional 

QC, libraries were multiplexed and subjected to paired-end 150 bp read sequencing on an 

Illumina NovaSeq S4 Flowcell to a median depth of 100 million total reads (>30 G) per 

library.

RNA-seq processing and analysis of coronary samples

The raw passed filter sequencing reads obtained from Novogene were demultiplexed using 

the bcl2fastq script. The quality of the reads was assessed using FASTQC and the adapter 

sequences were trimmed using trimgalore. Trimmed reads were aligned to the hg38 human 

reference genome using STAR v2.7.3a according to the GATK Best Practices for RNA-seq. 

To increase mapping efficiency and sensitivity, novel splice junctions discovered in a first 

alignment pass with high stringency were used as annotation in a second pass to permit 

lower stringency alignment and therefore increase sensitivity. PCR duplicates were marked 

using Picard and WASP was used to filter reads prone to mapping bias. Total read counts 

and RPKM were calculated with RNA-SeQC v1.1.8 using default parameters and additional 

flags “-n 1000 -noDoC -strictMode” and GENCODE v30 reference annotation.

Projection of coronary artery datasets with carotid clusters

To integrate two heterogeneous datasets, we have first used the anchor-based data integration 

algorithm19. Next, we created a pairwise correlation matrix between individual samples 

using the Pearson correlation. Then for each coronary sample, we assigned the cluster 

identity of the closest (best positively correlated) carotid sample.

Measurement of circulating biomarkers

In 386 selected patients from the Athero-Express cohort, we used a commercially available 

multiplex proximity extension assay52 from the Olink proteomics AB platform (Uppsala, 

Sweden) to measure 276 proteins using the Olink® Cardiovascular II (n=386), Olink® 

Cardiovascular III (n=386), and Olink® Cardiometabolic (n=208) panels. These panels were 

selected for their known associations with CV disease. Proteins are expressed on a log2- 

scale as normalized protein expression (NPX) values. Patients were randomly distributed 

across plates.

Genotyping and weighted polygenic scores calculation

DNA isolation and genotyping—We genotyped the AE in three separate but 

consecutive experiments53. The DNA was extracted from EDTA blood or (when no blood 

was available) plaque samples using in-house validated protocols and genotyped in 3 batches 

(Athero-Express Genomics Studies). For the Athero-Express Genomics Study 1 (AEGS1), 

included between 2002 and 2007, were genotyped (440,763 markers) using the Affymetrix 

Genome-Wide Human SNP Array 5.0 (SNP5) chip (Affymetrix Inc., Santa Clara, CA, 

USA) at Eurofins Genomics, https://www.eurofinsgenomics.eu/). For the Athero-Express 
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Genomics Study 2 (AEGS2), included between 2002 and 2013, were genotyped (587,351 

markers) using the Affymetrix AxiomⓇ GW CEU 1 Array (AxM) at the Helmholtz 

Genome Analysis Center (https://www.helmholtz-muenchen.de/no_cache/gac/index.html). 

For the Athero-Express Genomics Study 3 (AEGS3), included between 2002 and 2016, were 

genotyped (693,931 markers) using the Illumina GSA MD v1 BeadArray (GSA) at Human 

Genomics Facility, HUGE-F (http://glimdna.org/index.html). All experiments were carried 

out according to OECD standards and as advised by the respective manufacturer. We used 

the genotyping calling algorithms as advised by Affymetrix (BRLMM-P for AEGS1 and 

AxiomGT1 for AEGS2) and Illumina (Illumina GenomeStudio For AEGS3).

Quality control after genotyping—After genotype calling, we adhered to community 

standard quality control and assurance (QCA) procedures of the genotype data from AEGS1, 

AEGS2, and AEGS354. Samples with low average genotype calling and sex discrepancies 

(compared to the clinical data available) were excluded. The data was further filtered on: 

1) individual (sample) call rate > 97%, 2) SNP call rate > 97%, 3) minor allele frequencies 

(MAF) > 3%, 4) average heterozygosity rate ± 3.0 cs.d., 5) relatedness (pi-hat > 0.20), 

6) Hardy–Weinberg Equilibrium (HWE p < 1.0×10−3, 7) Monomorphic SNPs (MAF< 

1.0×10−6), and 8) deviation in the principal component analysis plot using 1000G phase 

3 as reference (6 iterations ± 3s.d.).

Imputation—Before phasing using SHAPEIT255, data was lifted to genome build b37 

using the liftOver tool from UCSC (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Finally, 

data were imputed with 1000G phase 3, version 5 and HRC release 1.1 as a reference using 

the Michigan Imputation Server (https://imputationserver.sph.umich.edu/). These results 

were further integrated using QCTOOL v2 (https://www.well.ox.ac.uk/~gav/qctool_v2/), 

where HRC imputed variants are given precedence over 1000G phase 3 imputed variants. 

After imputation, we compared the quality of the three AEGS datasets based on sample type 

(EDTA blood or plaque) and genotyping chip used. We checked identity-by-descent (IBD) 

within and between datasets to aid in sample mixups, duplicate sample use, and relatedness.

Weighted polygenic score calculation—We estimated the weighted polygenic 

cardiovascular disease susceptibility using the previously published polygenic risk score for 

coronary artery disease (MetaGRS) described before56. Briefly, the MetaGRS comprises 

1,745,179 genetic variants with a minor allele frequency (MAF) > 0.1% associated 

with CAD and was constructed through meta-analysis of three genomic risk scores: 

GRS46K (comprising 46,000 cardiometabolic genetic variants), FDR202 (including 202 

genetic variants associated with CAD at false discovery rate p < 0.05 in the recent 

GWAS CARDIoGRAMplusC4D), and the 1000Genomes genetic score also created with 

CARDIoGRAMplusC4D. The MetaGRS was internally and externally validated for the 

primary risk of prevalent and incident CAD in the UK Biobank63. We matched the 1.7 

million variants from the MetaGRS to 1,742,593 variants in our data (2586 variants were 

not present in our data). Given that the median imputation quality was high (INFO = 0.978 

[IQR 0.945–0.991]), and the variants included in the MetaGRS have MAF >0.1%, we did 

not further filter on imputation quality. Moreover, since we used the imputed genotype 

probabilities to calculate the MetaGRS, rather than the hard-coded genotypes, bias arising 
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from imputation error, i.e., low imputation quality, will only reduce predictive accuracy. 

Thus, we calculated the weighted polygenic score (PGS) for each included patient in this 

study using PRSice-257 as follows. To account for the imputation quality, we used the allelic 

dosages (D) estimated by IMPUTE2 based on the posterior genotype probabilities (Pg) for 

the B-allele (B) for the ith variant. Thus:

Di = 2 × Pg BB + 1 × Pg AB + 0 × Pg AA

For each individual, we calculated the aggregate polygenic scores using the effect D of all 

modeled variants weighted by the effect size (β) of the ith variant as given in the MetaGRS. 

Thus, for each individual n, the weighted PGS is the sum of the β of the ith variant 

multiplied by the dosage D of that respective variant:

polygenic score = ∑
i

n
βi × Di

We standardized the PGS to mean-zero and unit-variance for each genotyping batch 

separately.

Extended Data

Extended Data Figure 1. Unsupervised clustering of plaques based on transcriptomics data.
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a) PCA plot and b) tSNE projection of the 654 plaque samples based on RNA-seq 

dataset. The color indicates the cluster corresponding to the plaque type cluster from the 

SNN modularity optimization based clustering algorithm. c) Distribution of non-ribosomal 

protein-coding genes with annotated HGNC name; reads mapping to mitochondrial genes 

and mean Pearson correlation of samples per cluster

Extended Data Figure 2. Robustness of the clustering.
a) UMAP projection of the 654 plaque samples based on RNA-seq dataset. The color 

indicates the cluster corresponding to the plaque type cluster from the SNN modularity 

optimization-based clustering algorithm after batch and hospital correction. b) Heatmap 

depicts relative gene expression levels of selected plaque type enriched genes in individual 

samples and plaque clusters. c) Correspondence of clusters derived from batch corrected and 

original dataset. Numbers indicate sample counts in the intersection of the corresponding 
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clusters. d) UMAP projection of the 654 plaque samples based on RNA-seq dataset. The 

color indicates the cluster corresponding to the plaque type cluster from the SNN modularity 

optimization-based clustering algorithm after batch and hospital correction using Harmony 

integration. e) Heatmap depicts relative gene expression levels of selected plaque type 

enriched genes in individual samples and plaque clusters. f) Correspondence of clusters 

derived from batch corrected (using Harmony) and original dataset. Numbers indicate 

sample counts in the intersection of the corresponding clusters. g) UMAP projection of 

the 654 plaque samples based on RNA-seq dataset. The color indicates the frequency of 

the sample being assigned in other than the original cluster in permutation analysis. h) 

Distribution of the frequencies of the sample being assigned in other than the original cluster 

in permutation analysis.

Extended Data Figure 3. Integrative analysis of coronary and carotid dataset
a) Heatmaps depicting relative gene expression levels of selected plaque type enriched genes 

in individual samples and plaque clusters (upper panel - combined coronary and carotid 

dataset, lower panel – original carotid dataset). b) UMAP projection of the coronary and 

carotid sample based on RNA-seq data. The color indicates the cluster corresponding to the 

plaque type cluster from the SNN modularity optimization based clustering algorithm
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Extended Data Figure 4. Plaque transcriptomics.
a) representative bioanalyzer profiles of total RNA isolated from 10 samples of advanced 

atherosclerotic lesions. b) Distribution of sequencing reads between samples using four 

different library preparation strategies. c) Percentage of sequenced reads mapped to 

annotated genes using four different library preparation strategies. d) Number of annotated 

genes identified per sample with at least one mapped read. Samples with less than 9000 

genes were excluded from the analysis. e) Number of non-ribosomal protein-coding genes 

with annotated HGNC name per sample used in the analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Unsupervised clustering of plaques based on transcriptomics data.
a) A schematic workflow of the clustering analysis. b) UMAP projection of the 654 plaque 

samples based on RNA-seq dataset. The color indicates the cluster corresponding to the 

plaque type from the SNN modularity optimization-based clustering algorithm. c) Heatmap 

depicts relative gene expression levels of selected plaque type enriched genes in individual 

samples and plaque clusters. d) Module scores of genes annotated to selected molecular 

pathways in different plaque clusters. e) Module scores of genes annotated to selected 

metabolic pathways in different plaque clusters. * depicts empirically selected pathways that 

were not significantly enriched in the pathway analysis.
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Figure 2. Unsupervised clustering of plaques based and cell composition.
a) Distribution of histological features in five transcriptome-based clusters. The percentage 

represents the difference over equal distribution. (IPH - intraplaque hemorrhage). P-values 

were calculated using the chi-square test for categorical variables and one-way analysis of 

variance (ANOVA) for continuous variables. Categories with less than 15 samples were 

omitted. Exact proportions can be found in Supplementary Table 4 b) Expression of selected 

cell marker genes in transcriptome-based clusters. c) Expression of cluster-specific gene 

sets in single-cell transcriptomics datasets from atherosclerotic plaques. d) Correlation of 

transcriptomic profiles between human plaques and bulk RNAseq data of plaques from 

the different mice models: Apoe −/− (n=20 animals and n=9 animals) and Ldlr −/− (n=3 

animals). Boxplot’s top, middle, and bottom lines represent values at 25th, 50th, and 75th 

percentile. Whiskers extend up to 1.5 times the interquartile range from the top (bottom) of 

the box to the furthest data point within that distance.
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Figure 3. Association of molecular plaque types with secondary risk and genetic risk
a) Workflow of the generalized linear model (GLM) analysis. Receiver operating 

characteristic (ROC) curve depicting the ability of GLM to discriminate between the 

occurrence of the primary outcome within a 3-year follow-up time using histological data 

(red), transcriptomics data (blue), or combined histological and transcriptomics data (green). 

b) Distribution of polygenic risk scores (PRS) for coronary artery disease (CAD) among 

patients (n=632) from different clusters. Error bars represent the standard deviation and are 

centered around the mean value. P-value is calculated using one-way ANOVA c) Module 

scores of genes genetically associated with CAD in different plaque clusters
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Figure 4. Unsupervised clustering of coronary artery samples based on transcriptomics data.
a) A schematic workflow of the clustering analysis. b) UMAP projection of the 162 

coronary samples based on RNA-seq dataset. The color indicates the cluster corresponding 

to the plaque type from the SNN modularity optimization-based clustering algorithm. c) 
UMAP projection of the 162 coronary samples based on RNA-seq dataset. The color 

indicates the projected plaque type identity from the carotid dataset. d) Correspondence 

of clusters derived from coronary data and projected clusters from carotids. Numbers in the 

table indicate sample counts in the intersection of the corresponding clusters. e) Module 

scores of genes annotated to selected molecular pathways in individual plaque clusters 

derived from coronary arteries. f) Distribution of clinical status and age of sample donors in 

coronary clusters. g) Module scores of genes annotated to selected molecular pathways in 

individual plaque clusters projected from carotid arteries. h) Distribution of clinical status 

and age of coronary artery sample donors in projected carotid clusters. P-values in f) and h) 
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were calculated using the chi-square test for categorical variables and one-way analysis of 

variance (ANOVA) for continuous variables.
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Figure 5. Circulating biomarkers differ between transcriptome-based clusters.
a) Volcano plot showing the statistical significance (using Kruskal-Wallis test) versus effect 

size (chi-squared statistic) differential distribution of 276 biomarkers between transcriptome 

clusters or pathological plaque features. “n” represents the number of significant biomarkers. 

b) Plasma levels of plasminogen activator inhibitor (PAI). n = 386, Boxplot’s top, middle, 

and bottom lines represent values at 25th, 50th, and 75th percentile. Whiskers extend up to 

1.5 times the interquartile range from the top (bottom) of the box to the furthest data point 

within that distance.
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Figure 6. Graphical summary of the study.
Schematic overview representing our main observations. In this transcriptomic study, we 

were able to differentiate 5 clusters that were associated with clinical manifestations 

(stroke, transient ischemic attack - TIA, coronary ischemia), genetic risk score, and histo-

pathological characteristics.
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Table 1

Distribution of clinical parameters in five transcriptome-based molecular plaque types.

Cluster # 0 1 2 3 4 p-value

n 200 147 116 114 55

Male (%) 144 (72.0) 111 (75.5) 92 (79.3) 89 (78.1) 40 (72.7) 0.584

Number of plaque segments stored (0.5 cm each) (mean 
(SD))

6.5 (2.5) 6.2 (2.3) 6.6 (2.6) 6.2 (2.1) 6.2 (2.3) 0.424

Smoker current (%) 80 (40.0) 46 (31.9) 36 (31.6) 41 (36.3) 23 (42.6) 0.356

DM (%) 54 (27.0) 28 (19.0) 20 (17.2) 23 (20.2) 11 (20.0) 0.236

CAD history = No history CAD (%) 135 (67.5) 86 (58.5) 83 (71.6) 79 (69.3) 38 (69.1) 0.184

Stroke history = No history of stroke (%) 146 (73.0) 102 (69.4) 73 (62.9) 78 (68.4) 42 (76.4) 0.308

Peripheral arterial occlusive disease = yes (%) 50 (25.0) 40 (27.2) 21 (18.1) 20 (17.5) 8 (14.5) 0.112

Stenosis (%) 0.642

 0–50% 0 (0.0) 0 (0.0) 1 (0.9) 1 (0.9) 0 (0.0)

 50–70% 13 (6.7) 7 (5.0) 10 (9.0) 5 (4.5) 4 (7.4)

 70–99% 180 (93.3) 134 (95.0) 100 (90.1) 104 (94.5) 50 (92.6)

Stenosis contralateral= 50–100% (%) 84 (46.7) 60 (48.0) 46 (46.0) 37 (35.6) 16 (31.4) 0.102

Time between event and surgery [days] (mean (SD)) 81.3 (86.7) 62.6 (65.6) 53.3 (65.8) 73.6 (79.9) 64.7 (68.2) 0.057

eGFR [mL/min/1.73m2] (mean (SD)) 72.6 (21.4) 72.0 (18.7) 70.2 (22.5) 76.2 (19.3) 75.8 (18.2) 0.175

Hypertension (%) 144 (74.2) 106 (73.1) 82 (71.9) 81 (73.0) 34 (61.8) 0.486

Systolic tension [mmHg] (mean (SD)) 153 (26) 153 (26) 159 (25) 155 (23) 152 (22) 0.393

Diastolic tension [mmHg] (mean (SD)) 82 (14) 81 (12) 84 (15) 84 (13) 82 (13) 0.457

Symptoms (%) 0.001

 asymptomatic 42 (21.1) 17 (12.0) 9 (8.0) 17 (15.0) 10 (18.5)

 ocular 46 (23.1) 28 (19.7) 13 (11.6) 9 (8.0) 11 (20.4)

 stroke 38 (19.1) 36 (25.4) 37 (33.0) 29 (25.7) 10 (18.5)

 TIA 73 (36.7) 61 (43.0) 53 (47.3) 58 (51.3) 23 (42.6)

Restenosis (%) 3 (1.5) 4 (2.8) 0 (0.0) 4 (3.6) 0 (0.0) 0.207

Emergency (%) 9 (4.6) 4 (2.9) 6 (5.5) 4 (3.5) 0 (0.0) 0.683

Age (mean (SD)) 67.2 (8.9) 69.1 (8.8) 70.4 (9.2) 67.5 (8.8) 68.9 (8.3) 0.019

BMI (mean (SD)) 27.2 (3.6) 26.4 (4.1) 26.6 (3.2) 26.3 (4.1) 25.8 (3.9) 0.095

Hemoglobin [mmol/L] (mean (SD)) 8.72 (1.02) 8.65 (0.88) 8.69 (0.94) 8.81 (0.90) 8.74 (0.91) 0.734

Hematocrit (fraction of erythrocytes in the blood) (mean 
(SD))

0.42 (0.05) 0.41 (0.04) 0.41 (0.05) 0.42 (0.05) 0.41 (0.04) 0.745

Creatinin [umol/L] (mean (SD)) 97.7 (36.4) 96.0 (28.2) 101.1 (31.9) 92.1 (28.3) 89.9 (21.2) 0.123

Homocysteine [umol/L] (mean (SD)) 15.3 (11.1) 13.6 (4.5) 18.8 (21.0) 12.9 (4.0) 14.0 (6.1) 0.345

Glucose [mmol/L] (mean (SD)) 6.63 (2.41) 6.57 (2.06) 6.51 (1.44) 6.16 (1.91) 6.09 (1.29) 0.386

Cholesterol [mmol/L] (mean (SD)) 4.59 (1.27) 4.48 (1.24) 4.11 (1.08) 4.58 (1.32) 4.44 (1.11) 0.050

Triglycerides [mmol/L] (mean (SD)) 1.75 (0.95) 1.67 (0.83) 1.70 (1.01) 1.76 (1.17) 1.52 (0.82) 0.688

LDL-cholesterol [mmol/L] (mean (SD)) 2.62 (1.01) 2.50 (0.90) 2.39 (0.92) 2.61 (1.10) 2.49 (0.91) 0.464

HDL-cholesterol [mmol/L] (mean (SD)) 1.14 (0.38) 1.10 (0.33) 1.03 (0.32) 1.11 (0.28) 1.12 (0.39) 0.162

Plaquephenotype (%) <0.001

 atheromatous 44 (22.2) 40 (27.6) 49 (43.0) 43 (38.1) 11 (20.8)
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Cluster # 0 1 2 3 4 p-value

 fibroatheromatous 71 (35.9) 51 (35.2) 48 (42.1) 46 (40.7) 19 (35.8)

 fibrous 83 (41.9) 54 (37.2) 17 (14.9) 24 (21.2) 23 (43.4)

MACE free (3 years) (%) 176 (88.9) 126 (86.3) 103 (88.8) 95 (83.3) 49 (89.1) 0.629

Acetylsalicylic acid = yes (%) 85 (42.5) 49 (33.6) 33 (28.4) 37 (32.5) 20 (36.4) 0.111

Carbasalate = yes (%) 96 (48.0) 82 (56.2) 68 (58.6) 68 (59.6) 33 (60.0) 0.184

Dipyridamole = yes (%) 98 (49.0) 76 (52.1) 67 (57.8) 59 (51.8) 28 (50.9) 0.682

Clopidogrel (or other ADP inhibitor) = yes (%) 22 (11.0) 20 (13.7) 10 (8.6) 12 (10.5) 8 (14.5) 0.680

Anti platelet drug use = yes (%) 178 (89.0) 130 (89.0) 105 (90.5) 104 (91.2) 47 (85.5) 0.825

RAAS medication use = yes (%) 108 (54.0) 71 (48.6) 58 (50.0) 53 (46.5) 23 (41.8) 0.496

Anti-arrythmic drugs used = yes (%) 9 (4.5) 8 (5.5) 6 (5.2) 6 (5.3) 3 (5.5) 0.995

Statins = yes (%) 143 (71.5) 108 (74.0) 91 (78.4) 87 (76.3) 41 (74.5) 0.714

Diuretic use = yes (%) 75 (37.5) 46 (31.5) 48 (41.4) 38 (33.3) 15 (27.3) 0.290

Beta-blocker use = yes (%) 86 (43.0) 74 (50.7) 50 (43.1) 55 (48.2) 22 (40.0) 0.497

Calcium channel blockers use = yes (%) 58 (29.0) 40 (27.4) 27 (23.3) 35 (30.7) 7 (12.7) 0.103

ACE-inhibitor use = yes (%) 71 (35.5) 45 (30.8) 35 (30.2) 38 (33.3) 15 (27.3) 0.733

Angiotensin II receptor antagonist use = yes (%) 39 (19.5) 29 (19.9) 24 (20.7) 18 (15.8) 10 (18.2) 0.893

Use of one or more antihypertensive drugs = yes (%) 161 (80.5) 113 (77.4) 83 (71.6) 90 (78.9) 41 (74.5) 0.438

P-values were calculated using the chi-square test for categorical variables and one-way analysis of variance (ANOVA) for continuous variables. 
DM – diabetes mellitus, CAD – coronary artery disease, eGFR - estimated glomerular filtration rate, TIA - transient ischemic attack, MBI - 
body mass index, LDL - low-density lipoprotein, HDL high-density lipoprotein, MACE - major adverse cardiovascular event, ACE - angiotensin-
converting enzyme, RAAS - renin-angiotensin-aldosterone-system
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