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he World Health Organization ( WHO ) estimates that 
.4 million children died globally in the first month of life 
n 2019, with infection being the third commonest cause of 
eath following prematurity- and intrapartum-related compli- 
ations.1 The contribution of infection to deaths in the neona- 
al period is often underappreciated and varies according to 
eographic location, neonatal characteristics, and whether or 
ot neonates are born in a medical facility.2–4 

Neonatal invasive fungal infections are mostly caused by 
andida spp. Reported rates of neonatal invasive candidia- 
is ( NIC ) vary significantly globally 5 and are associated with 
 high crude mortality rate, ranging from 12% to 37% in 
igh-income countries ( HICs ) and from 8.9% to 75% in low- 
nd middle-income countries ( LMICs ) .6 In HICs, NIC is most 
ommonly reported in neonates < 1000 gr birth weight or 
 28 weeks gestational age, but recent reports from LMIC 

eonatal units show the occurrence of NIC outside these spe- 
ific groups.3 , 7 , 8 Although antifungal-resistant Candida spp . 
nfections remain uncommon in HICs,9 , 10 LMICs are report- 
ng an increasing proportion of fluconazole-resistant isolates, 
ncluding C. parapsilosis ,11 , 12 C. krusei , and C. auris .13 , 14 

The aim of this NeoOBS invasive candidiasis sub-study 
as to describe the epidemiology, antifungal resistance pat- 
erns, antifungal treatment, and clinical outcomes of neonates 
ith Candida spp. bloodstream infections in LMICs. Data 
ere collected as part of the larger NeoOBS study ( https:// 
linicaltrials.gov/ct2/show/NCT03721302 ) . 

aterials and methods 

eoOBS study population 

eoOBS, a global, prospective, longitudinal, observational 
ohort study of hospitalized infants < 60 days postnatal age 

with sepsis, was conducted at 19 hospitals in 11 countries,
between August 2018 and February 2020. Hospitals were a
mix of tertiary and district hospitals in Bangladesh ( n = 1 ) ,
Brazil ( n = 2 ) , China ( n = 3 ) , Greece ( n = 1 ) , India ( n = 3 ) ,
Italy ( n = 1 ) , Kenya ( n = 1 ) , South Africa ( n = 3 ) , Thailand
( n = 2 ) , Uganda ( n = 1 ) , and Vietnam ( n = 1 ) .15 , 16 

Infants could be enrolled in the study in two different ways
( Fig. 1 ) . The primary cohort of infants was enrolled with clini-
cal sepsis meeting the diagnostic criteria of at least one clinical
sign of sepsis plus one clinical or laboratory sign, with a blood
culture taken prior to initiating new antimicrobial treatment
( referred to as cohort 1 ) . Up to 200 infants from each hospital
were enrolled through this route. Infants were excluded if the
clinical signs were subsequently deemed to be more likely re-
lated to a non-sepsis diagnosis, as determined by the treating
clinician ( Supplementary Table 1 ) . 

In addition, a secondary cohort of infants ( referred to as co-
hort 2 ) was enrolled based on the isolation of a carbapenem-
resistant organism or Candida spp . from blood culture or with
confirmed bacterial meningitis ( Supplementary Table 1 ) . Co-
hort 2 was designed to better understand specific infections
and capture infants with these infections who may not have
been enrolled in or eligible for cohort 1. There was no min-
imum or maximum enrollment number for cohort 2 across
hospitals. Infants already enrolled in cohort 1 were not eligi-
ble to be enrolled in cohort 2 as all microbiology findings were
already captured as part of cohort 1 follow-up. 

Exclusion criteria for both cohorts were significant non-
infectious-related comorbidity expected to cause death within
72 h, enrollment in an interventional study or previous enroll-
ment in this study. Hospitals were given pragmatic flexibility
for enrollment time frames given variability in case numbers
and staffing capacity. Full inclusion and exclusion criteria for
both cohorts are described in Supplementary Table 1. 
iatrics, 2# Yabao Road, Chaoyang District, Beijing, China 
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Figure 1. Candida spp. sub-study population derived from the overall NeoOBS study. See Supplementary Figure 1 for detailed schematic of the study 
population indicating the two enrollment cohorts. Note: Overall NeoOBS enrollment: cohort 1 was 3204 babies from 19 hospitals in 11 countries; cohort 
2 was 169 babies from 14 hospitals in 10 countries. Candida sub-analysis cohort: cohort 1 includes 67 babies from 12 hospitals in 7 countries; cohort 2 
was 60 babies from 12 hospitals in 7 countries. 

Data collection 

Infants meeting the eligibility criteria were enrolled in both 
cohorts. Infants in cohort 1 were followed prospectively daily 
for the duration of hospitalization up to day 28 from the day 
of enrollment. 

For infants in cohort 2, daily clinical and antimicrobial 
treatment data and any laboratory or microbiological investi- 
gations were retrospectively collected using medical notes and 
other available data from the day the culture was taken up to 
the day of enrollment, and then, prospectively collected from 

the day of enrollment ( Supplementary Fig. 1 ) to 28 days from 

when the eligible blood culture was taken. For babies in both 
cohorts, clinical signs, supportive measures, and antimicrobial 
treatment were collected daily from the day of enrollment; 
blood culture, routine laboratory investigations, and other mi- 
crobiology results were collected as and when conducted. At 
enrollment, demographics, labor and delivery details, and risk 
factors were collected. 

All treatments and investigations were at the discretion of 
clinicians at the local hospital and were not determined by 
the study processes. At discharge or in-hospital death, infor- 
mation on mortality ( if applicable ) , antimicrobial treatment, 
and both infection- and non-infection-related diagnoses were 
collected. Infants who were discharged prior to day 28 were 
telephoned on day 28, to assess vital status and any medical 

interventions since discharge. The primary outcome of the 
study was death by day 28, from the day the enrollment 
blood culture was taken. Primary and secondary causes ( if 
applicable ) of death were captured both for infants who died 
in hospital and those who died post-discharge before day 28. 

Microbiological examinations were conducted as per local 
hospital procedures; however, babies must have had a blood 
culture taken prior to new antimicrobials being started to be 
eligible for enrollment in cohort 1. Blood culture results were 
collected as reported by local hospitals. 

Study data were collected by paper case report form and 
entered and managed using REDCap electronic data capture 
tools hosted at St. George’s, University of London. REDCap 
is a secure, web-based software platform 

17 , 18 used for the col- 
lection and management of research data. 

Ethics approval from local and national bodies was received 
by each hospital prior to commencing recruitment. Informed 
consent was obtained for all patients prior to enrollment. 

Candidemia study population 

All infants enrolled in the NeoOBS study via cohort 1 or co- 
hort 2 who had Candida spp . isolated from a blood culture at 
any point during their follow-up up to day 28 ( regardless of 
enrollment diagnosis ) were included in this analysis. Analyses 
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Table 1. Comparison of summary characteristics of neonates with candidemia by survival status. 

Overall ( n = 127 ) Survived ( n = 99 ) Died ( n = 28 ) 

Sex; Female ( % ) 59 ( 47 ) 44 ( 44 ) 15 ( 54 ) 

Birth weight ( gr ) ( median [IQR] ) 1270.0[990.0, 1692.5] 1300.00[1022.5, 1724.5] 955.00[772.0, 1655.0] 

Gestational age ( weeks ) ( median [IQR] ) 30 [28, 34] 30 [28, 34] 29 [27, 33] 

Age at Candida spp. culture ( days ) ( median [IQR] ) 16 [10.5, 22.0] 16.0 [12.0, 22.0] 14.5 [8.0, 22.5] 

Birth status Hospitalized since birth ( % ) 114 ( 90 ) 90 ( 91 ) 24 ( 86 ) 

Organism ( n = 128 ) ( % ) 
Candida albicans 45 ( 35 ) 35 ( 35 ) 10 ( 36 ) 
Candida parapsilosis 38 ( 30 ) 31 ( 31 ) 7 ( 25 ) 
Candida auris 18 ( 14 ) 13 ( 13 ) 5 ( 18 ) 
Other Candida spp.a 27 ( 21 ) 21 ( 21 ) 6 ( 21 ) 

Country ( % ) 
India 40 ( 32 ) 30 ( 30 ) 10 ( 36 ) 
South Africa 55 ( 43 ) 44 ( 44 ) 11 ( 39 ) 
Vietnam 13 ( 10 ) 10 ( 10 ) 3 ( 11 ) 
Other b 19 ( 15 ) 15 ( 15 ) 4 ( 14 ) 

Hospital ( % ) 
Hospital 1 28 ( 22 ) 22 ( 22 ) 6 ( 21 ) 
Hospital 2 25 ( 20 ) 20 ( 20 ) 5 ( 18 ) 
Hospital 3 21 ( 17 ) 17 ( 17 ) 4 ( 14 ) 
Hospital 4 13 ( 10 ) 10 ( 10 ) 3 ( 11 ) 
Hospital 5 11 ( 9 ) 8 ( 8 ) 3 ( 11 ) 
Other c 29 ( 23 ) 22 ( 22 ) 7 ( 25 ) 

a Other Candida spp. include C. famata ( n = 1 ) , C. glabrata ( n = 6 ) , C. metapsilosis ( n = 1 ) , C. pelliculosa ( n = 4 ) , C. rugosa ( n = 1 ) , undefined Candida spp. 
( n = 10 ) , and C. tropicalis ( n = 4 ) . 
b Other countries are comprised of five countries, each contributing < 8 participants ( range: 1–7 per country ) . 
c Other sites are comprised of nine hospitals, each contributing < 7 participants ( range: 1–6 per site ) . 

were restricted to the first Candida spp . isolated from each pa- 
tient. Regardless of when during follow-up the Candida spp. 
was taken, all infants were censored at 28 days from when 
the enrollment blood culture for the overall NeoOBS study 
was taken ( see Supplementary Fig. 1 ) This means some infants 
may have contributed fewer than 28 days of follow-up from 

when first Candida spp. culture was taken to this candidemia 
sub-analysis. 

Due to differing times in follow-up when Candida spp. cul- 
tures were taken for these patients, for this sub-analysis, all 
patients were aligned with day 0 defined as the day the pos- 
itive Candida spp. blood culture was taken ( Supplementary 
Fig. 1 ) . All data collection tools were the same for infants in 
both cohorts. Analyses were restricted to infants from LMICs 
only, thus excluding infants from Greece ( n = 3 ) and Italy 
( n = 0 ) . 

Statistical analysis 
Categorical variables were described as relative frequency, 
and continuous variables were described as median and in- 
terquartile range ( IQR ) . Demographic and clinical charac- 
teristics between enrollment cohorts were compared using 
the χ2 test. Kaplan–Meier curves and Cox proportional haz- 
ards model were used to investigate mortality. All data man- 
agement and analyses were conducted in RStudio v1.4.1717 
( R version 4.0.3 ) . 

Results 

Study population and baseline characteristics 
After excluding infants from Greece and Italy, 3083 neonates 
were enrolled from 17 hospitals in cohort 1, and 166 neonates 
were enrolled from 14 hospitals in cohort 2. Results from 

the overall NeoOBS study are described elsewhere.19 Overall, 
127/3249 ( 4% ) infants met the inclusion criteria for the 
candidemia sub-analysis ( 67 were from cohort 1 and 60 from 

cohort 2 ) ( Fig. 1 ) . Infants with candidemia were from 14 
hospitals in eight LMICs; however, 85% ( 108/127 ) of the in- 
fants with candidemia were reported from seven hospitals in 
three countries ( South Africa, India, and Vietnam ) . Forty-six 
percent ( 58/127 ) of infants had Candida spp. isolated during 
follow-up after enrollment in the overall NeoOBS study, 
while the remaining 54% ( 69/127 ) had Candida spp. isolated 
from their baseline enrollment blood culture. 

At the time when the blood culture that grew Candida spp. 
was taken, the median postnatal age was 16 days ( IQR: 10.5–
21 ) , the median gestational age at birth was 30 weeks ( IQR: 
28–34 ) , and the median birth weight was 1270 gr ( IQR: 990–
1692 ) . Fifty-four percent ( 68/127 ) of the infants were male. 
Only 19% ( 24/127 ) of the infants were born before 28 weeks 
of gestation, and 27% ( 34/127 ) had birth weights < 1000 gr. 
Infants with candidemia were hospitalized for a median of 
14 days ( IQR: 6.5–20 ) prior to when the Candida spp. blood 
culture was taken. Eighty percent ( 102/127 ) of infants re- 
ceived at least one broad-spectrum antibiotic in the week prior 
to that blood culture. The majority of cases, 90% ( 114/127 ) , 
were born either at the enrolling hospital or in a referral hospi- 
tal and remained hospitalized from birth. Baseline character- 
istics of both enrollment cohorts were similar ( Supplementary 
Table 2 ) . Epidemiological characteristics by survival are sum- 
marized in Table 1 . 

Microbiology findings 
The most common Candida species in this study were C. al- 
bicans ( n = 45, 35% ) , C. parapsilosis ( n = 38, 30% ) , and C. 
auris ( n = 18, 14% ) . Other species isolated were C. glabrata 
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Figure 2. Reported susceptibility profiles to amphotericin B, fluconazole, and micafungin for the most common Candida species. 

( n = 6 ) , C. pelliculosa ( n = 4 ) , C. tropicalis ( n = 4 ) , C. famata 
( n = 1 ) , C. metapsilosis ( n = 1 ) , and C. rugosa ( n = 1 ) . 
There were 10 ( 8% ) unspecified Candida spp. ( Table 1 ) . 
Species distribution varied by hospital ( P < .0001 ) and coun- 
try ( P < .0001 ) ( Supplementary Table 3 ) . One patient had two 
Candida spp. isolates ( C. parapsilosis and C. glabrata ) from 

the same blood culture ( a total of 128 Candida spp. isolates ) . 
Sixty-one percent ( 11/18 ) of C. auris isolates were found in 
India, and the remaining 39% ( 7/18 ) were from South Africa. 

Susceptibility testing was not reported for 13% ( 16/128 ) of 
isolates, and for 17 isolates ( 13% ) , only fluconazole suscepti- 
bility was reported. Susceptibility results for fluconazole, am- 
photericin B, and an echinocandin [micafungin] were reported 
in 80% ( 103/128 ) , 78% ( 87/128 ) , and 36% ( 46/128 ) of all 
Candida spp. isolates, respectively ( Fig. 2 ) . Of these, overall, 
41/103 ( 40% ) were fluconazole-resistant, 16/87 ( 18% ) were 
amphotericin B-resistant, and 0/46 ( 0% ) were micafungin- 
resistant. 

Of the C. albicans isolates with susceptibility results re- 
ported, 91% ( 38/42 ) were susceptible to fluconazole, and 
100% ( 30/30 ) were susceptible to amphotericin B; how- 
ever, 15/45 ( 33% ) did not have amphotericin B susceptibility 
reported. 

Reported resistance to fluconazole in C. parapsilosis was 
high ( 19/32 resistant, 59% ) ; however, the majority were sus- 
ceptible to amphotericin B ( 27/29 susceptible, 93% ) . Almost 
all the fluconazole-resistant C. parapsilosis isolates ( 17/19, 
90% ) were reported from South Africa . 

There was an expected high reported resistance to flu- 
conazole ( 15/17, 88% ) and amphotericin B ( 11/13, 85% ) in 
C. auris isolates. Most C. auris isolates did not have mica- 
fungin susceptibility testing done ( 16/18, 89% ) . Resistance of 
C. auris isolates to voriconazole was reported in 31% ( 5/16 ) . 
Figure 2 illustrates the susceptibility profiles of Candida spp. 
isolates to the three commonly used antifungal agents. 

Antifungal drug use 

Overall, 14% ( 18/127 ) of infants received antifungals for ei- 
ther prophylaxis ( n = 8 ) or empirical treatment ( n = 11 ) in the 
week preceding the positive blood culture with Candida spp. 
being taken. Of those, all the infants who received prophy- 
laxis received fluconazole. Of those receiving empirical treat- 
ment prior to the blood culture, amphotericin B was received 
by 73% ( 8/11 ) of infants. 

Overall, neonatal antifungal prophylaxis was uncommon 
in the infants that developed candidemia ( 8/127, 6% ) . None 
( 0/27 ) of those born before 28 weeks of gestation, and only 
3/34 ( 9% ) of neonates with a birth weight < 1000 gr received 
prophylaxis. 

Ninety percent of infants ( 114/127 ) received antifungal 
treatment after taking the blood culture that grew Candida 
spp., including eight infants who continued antifungal treat- 
ment that had been started before the culture ( fluconazole: 
n = 3 and amphotericin B: n = 5 ) . Of the 106, who started 
any new antifungals after the blood culture was taken, only 
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Figure 3. Patient-based antifungal treatment choice by country indicating the day the blood culture was taken ( day 0 ) , the day the fungal organism was 
identified ( open squares ) , and mort alit y ( solid dots ) . White space indicates calendar days that antifungal treatment was not given. 
*Other countries are comprised of five countries, each contributing < 8 participants ( range: 1–7 per country ) . 

one had received fluconazole prophylaxis. After taking the 
blood culture, the median time to start a new antifungal treat- 
ment in these 105 infants was 3 days ( IQR: 2–4 ) . The first 
antifungal treatment of choice was amphotericin B in 74% 

( 78/105 ) of the cases and fluconazole in 22% ( 23/105 ) of the 
cases. 

Out of 88 infants, 85 ( 97% ) received appropriate antifun- 
gal treatment based on the reported in vitro susceptibility pro- 
file of the Candida species with available susceptibility test- 
ing results. In these infants, amphotericin B ( n = 45 ) was the 
most commonly prescribed antifungal, followed by flucona- 
zole ( n = 27 ) , voriconazole ( n = 10 ) , and micafungin ( n = 3 ) . 
In infants with known susceptibility profile of the Candida 
species, the median time to appropriate antifungal treatment 
was 3 days from when the blood culture was taken ( IQR: 2–
5 days, range: 8 days prior to blood culture to 12 days after 
blood culture ) . 

Antifungal treatment varied by country ( Fig. 3 ) and 
causative Candida species ( Fig. 4 ) . Amphotericin B was used 
in all countries. In infants who received antifungal treatment 
after blood culture, a higher proportion of infants received 
amphotericin B in South Africa ( 48/53, 91% ) and India 
( 28/31, 90% ) compared to Vietnam ( 5/13, 38% ) ( Fig. 3 ) . 
Fluconazole was less commonly prescribed in India ( 4/31, 
13% ) and South Africa ( 23/53, 43% ) compared to Vietnam 

( 9/13, 69% ) . Voriconazole was used only in India ( n = 10 ) , 
micafungin was used predominantly in South Africa ( n = 10 ) , 
and caspofungin was used only in Vietnam ( n = 1 ) . Infants 

may have received more than one antifungal during their 
treatment. 

Clinical outcome 

Death by day 28 post-enrollment was 22% ( 28/127 ) . Sixty- 
four percent ( 81/127 ) of infants were still in the hospital on 
day 28 post-enrollment. The median length of follow-up from 

the day the Candida spp. culture was taken was 21 days 
( IQR: 11.5–27 ) . Among infants who died, the median length 
of follow-up was 7 days ( IQR: 4–12.25 ) . Unadjusted mortality 
by species is illustrated in Fig. 5 . In aunivariable Cox propor- 
tional hazards analysis, mortality was strongly associated with 
birthweight < 1000 gr ( HR: 3.83; 95% CI: 1.84–7.97 ) and 
gestational age < 28 weeks ( HR: 2.32; 95% CI: 1.08–4.99 ) . 
There was no significant difference in mortality by species, by 
hospital, by country, or by study cohort ( Table 2 ) . 

Discussion 

To the best of our knowledge, this is the largest multi-country 
cohort of neonates with Candida spp. bloodstream infections 
in the LMIC setting. Most of the neonates, included in the 
NeoOBS invasive candidiasis sub-study, were outside the high- 
risk groups for NIC as described in HIC, with 81% born after 
28 weeks gestation and 73% with a birth weight > 1000 gr. Al- 
though C. albicans was the most frequent species isolated, the 
species distribution varied significantly between hospitals and 
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Figure 4. Patient-based antifungal treatment choice by causative Candida spp. Day 0 is the day the blood culture was taken that grew Candida spp. Day 
that the Candida spp. was identified is indicated with open squares and mort alit y with solid dots. 

countries. Across the Candida spp. with known in vitro sus- 
ceptibility profile, 40% were fluconazole-resistant, 18% were 
amphotericin B-resistant, while no resistance was reported for 
micafungin. ( Albeit many isolates were not tested. ) Candida 
albicans was reported to be highly susceptible to fluconazole 
and amphotericin B. In contrast, a significant proportion of 
C. parapsilosis was reported to be fluconazole-resistant, 
driven by high resistance rates observed in South Africa.12 

Candida auris was the third most common species overall, but 
its presence varied greatly between countries. Amphotericin 
B was the most common empiric antifungal used ( 74% ) , fol- 
lowed by fluconazole ( 22% ) with echinocandins rarely used. 
Antifungal prophylaxis was infrequently used in infants who 
developed candidemia, even for those neonates considered at 
high-risk. Overall, the mortality was high ( 22% ) , and it was 
significantly associated with low birth weight ( < 1000 gr ) and 
extreme prematurity ( < 28 weeks ) . 

In the cohort of neonates with NIC described here, 37% 

weighed > 1500 gr and 38% were ≥32 weeks of gestational 
age. These results are similar to other studies in LMIC,11 , 20 

and contrast dramatically with the data from HICs, where 
extreme prematurity and ELBW neonates are the main high- 
risk groups for NIC.21 In 2018, e.g., the DeNIS study re- 
ported unusually high rates of NIC in a cohort of neonates 
in India born outside the hospital; more than a quarter of 
neonates with a positive blood culture ( 90/339, 26.5% ) had 
Candida spp. isolated. Remarkably, 61.5% of those neonates 

weighed > 1500 gr, and 73.3% were born at or after 32 weeks 
gestation.3 

Candida albicans has been reported as the most common 
causative species in NIC.10 , 22 Increasingly, a shift in epidemi- 
ology of NIC globally has been described, with a higher rate of 
non- albicans Candida isolates in LMICs compared to HICs.6 

The rise in non- albicans Candida spp . in NIC is associated 
with reduced susceptibility to fluconazole. This has been de- 
scribed in India, where MDR strains of C. krusei and C. auris 
have been reported 13 ; and in South Africa,23 where surveil- 
lance has shown an increase in the number of fluconazole- 
resistant C. parapsilosis .12 For example, Govender et al. re- 
ported a significant shift toward C. parapsilosis in neonates, 
with 53% of all C. parapsilosis isolates being fluconazole- 
resistant and 44% and 70% cross-resistant to voriconazole 
and posaconazole, respectively.12 Other South African se- 
ries report similar results.7 , 24 , 25 In the cohort presented here, 
C . albicans and C . parapsilosis accounted for 35% and 30% 

of the isolates, respectively. Whereas C. albicans remained 
mostly susceptible to fluconazole ( 91% cases ) , 59% of the C. 
parapsilosis isolates were fluconazole resistant, mostly from 

South Africa. 
Candida auris was the third most commonly reported 

pathogen ( 14% of all the cases ) in this cohort, with significant 
variability between countries ( 0%–27.5% ) . Candida auris is a 
rapidly emerging, multi-drug resistant, nosocomial pathogen, 
with high reported resistance to fluconazole and amphotericin 
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Figure 5. Kaplan–Meier curve for mort alit y from day of culture for each Candida species. 

B.25–27 There have been scant reports focused on invasive 
C. auris infections in neonates 28–30 ; most of them are from 

India.28 Chakabrati et al. published a multi-center prospective 
study from 2011 to 2012; where amongst 273 neonates from 

three hospitals with NIC, the proportion of C. auris isolates 
was 2.2%.13 More recent data,11 , 14 , 28 together with our ob- 
servations, show that C. auris has quickly become one of the 
most commonly encountered species causing NIC in LMICs. 

Reported neonatal mortality attributable to NIC in LMICs 
varies from 20% to as high as 50%.7 , 31 In the cohort described 
here, mortality was strongly associated with low birth weight 
( < 1000 gr ) and gestational age ( < 28 weeks ) ; however, we did 
not find a clear association with causative species or suscepti- 
bility profiles. 

Antifungal prophylaxis with fluconazole targeted to 
neonates < 1000 gr birth weight and/or < 28 weeks gestation, 
as well as those infants with birth weight of 1000–1500 gr 
with additional risk factors, is a recommended strategy in 
neonatal units in HICs to prevent NIC.32–36 Based on our data, 
NIC in LMICs affects mostly neonates with a birth weight 
> 1500 gr, putting in doubt the relevance of HIC neonatal 
fungal prophylaxis guidelines for LMICs. In addition, a high 
prevalence of fluconazole resistance poses an important bar- 
rier to the use of fluconazole prophylaxis in these countries. 
Future studies determining the clinical and health economic 
benefit of neonatal antifungal prophylaxis in LMIC settings 
are needed. Fluconazole is not the only available drug to be 
considered; prophylaxis with nystatin, a low cost oral anti- 
fungal, which has also been proven to have an impact on 
neonatal mortality and is included in the essential medicines 
list ( EML ) 37–39 can also be considered. 

Compared with the burden of bacterial sepsis, where Kleb- 
siella pneumoniae , Acinetobacter spp., and Escherichia coli 
are the most commonly reported pathogens in LMICs,40 , 41 the 
burden of fungal sepsis, particularly caused by Candida spp . 
has been poorly described. For this reason, it is not possible 
to provide an accurate estimated burden of NIC in LMICs.6 , 11 

Reported incidence of invasive candidiasis in pediatric inten- 
sive care units is significantly higher in LMICs ( 42.7 cases per 
1000 admissions ) compared to HICs ( 0.043–0.47 cases per 
1000 admissions ) .6 In general, Candida spp. are likely to be 
an underreported pathogen and mostly linked to healthcare- 
associated infections. 

This study has some key limitations. First, not all neonates 
with Candida spp. bloodstream infections presenting at these 
hospitals were enrolled in the study, introducing the risk of se- 
lection bias. The aims of the NeoOBS study were to describe 
presentation, management, and outcomes of infants with 
sepsis not describe incidence of these infections, and thus we 
were unable to quantify incidence of NIC in this cohort due to 
this enrollment bias. It is also possible that the seven hospitals 
contributing majority of the infants to this candidemia cohort 
had higher repeat blood culture rates than other hospitals 
in the NeoOBS study. Cohort 2 enrollment may have missed 
some infants who died prior to a positive culture result and 
who were unable to be consented, potentially contributing 
survivor bias and lower mortality for certain Candida species. 
Differences in baseline characteristics and mortality between 
the two enrollment cohorts were explored ( Supplementary 
Table 1 ) , and no significant differences were found in key 
risk factors, Candida species, or mortality, which sup- 
ported combining patients from these two cohorts into one 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

m
y/article/61/3/m

yad010/7070718 by Bodleian Libraries of the U
niversity of O

xford user on 21 January 2024



Medical Mycology , 2023, Vol. 61, No. 00 9 

Table 2. Univariable hazard ratios from Cox proportional hazards analysis. 

Mortality N ( % ) Univariable hazard ratio ( 95% CI, P ) 

Birthweight ( 1000 gr ) ≥1000 gr 95 ( 72.5 ) - 
< 1000 gr 36 ( 27.5 ) 3.83 ( 1.84 –7.97, P < .001 ) 

Gestational age ≥28 weeks 104 ( 79.4 ) - 
< 28 weeks 27 ( 20.6 ) 2.32 ( 1.08 –4.99, P = .032 ) 

Organism Candida albicans 48 ( 36.6 ) - 
Candida parapsilosis 38 ( 29.0 ) 0.84 ( 0.32–2.16, P = .711 ) 
Candida auris 18 ( 13.7 ) 1.28 ( 0.44–3.70, P = .645 ) 
Other Candida spp. 27 ( 20.6 ) 0.92 ( 0.34–2.48, P = .868 ) 

Country Country 1 40 ( 30.5 ) - 
Country 2 55 ( 42.0 ) 0.82 ( 0.35–1.94, P = .658 ) 
Country 3 13 ( 9.9 ) 0.77 ( 0.21–2.78, P = .685 ) 
Other* 23 ( 17.6 ) 0.80 ( 0.27–2.34, P = .681 ) 

Hospital Hospital 1 28 ( 21.4 ) - 
Hospital 2 25 ( 19.1 ) 0.98 ( 0.30–3.22, P = .977 ) 
Hospital 3 21 ( 16.0 ) 1.10 ( 0.31–3.91, P = .883 ) 
Hospital 4 13 ( 9.9 ) 0.92 ( 0.23–3.70, P = .911 ) 
Hospital 5 11 ( 8.4 ) 1.16 ( 0.29–4.63, P = .837 ) 
Other* 33 ( 25.2 ) 1.11 ( 0.38–3.20, P = .851 ) 

Enrollment cohort Cohort 1 69 ( 52.7 ) - 
Cohort 2 62 ( 47.3 ) 0.60 ( 0.29–1.27, P = .186 ) 

Note: Significant covariates are bolded. 
*Other should correspond to Other sites are comprised of nine hospitals, each contributing < 7 participants ( range: 1–6 per site ) . 

analysis. Additionally, we used hospital-reported identifi- 
cation and phenotypic susceptibility testing results for this 
analysis, which may be less accurate than MIC values and/or 
molecular identification techniques; moreover, the use of in- 
terpretation guidelines of antimicrobial resistance ( e.g., CLSI, 
EUCAST, and BSAC ) may vary by hospital. Finally, there 
were a number of isolates that did not have any susceptibility 
testing done or were only tested for fluconazole. Therefore, 
we are unable to fully evaluate resistance and appropriateness 
of choice of the antifungal treatment. 

In conclusion, this study demonstrates that NIC is asso- 
ciated with significant mortality in the LMIC setting. The 
optimal method of prevention and treatment of this life- 
threatening infection requires further targeted studies. These 
studies should consider the epidemiological differences of NIC 

in LMICs compared to HICs, with an increased incidence of 
NIC in neonates outside the ‘high-risk’ group ( < 28 weeks 
and/or < 1000 gr ) and, although with significant variability be- 
tween settings, higher rates of fluconazole resistances in non- 
albicans Candida species. Insights into the fungal epidemi- 
ology and susceptibility profiles are of utmost relevance in 
order to develop management guidelines for NIC in LMICs. 
Diagnostics for Candida species, including susceptibility test- 
ing, need to be made available and improved. Although no 
micafungin resistance was observed ( within the few isolates 
tested ) , the role of empiric therapy with micafungin in LMICs 
for NIC needs to be a research priority. Micafungin has been 
included in the WHO-EML for children in 2021,37 but there 
are still limitations for its use in neonates, such as the lack of a 
defined optimal dose for those cases with meningoencephali- 
tis.42 , 43 Finally, studies in LMICs are required to define which 
neonates might benefit from antifungal prophylaxis. As our 
study shows the current recommendations used in HIC tar- 
geting ‘high-risk’ neonates do not entirely apply to neonates 
in LMICs. 

Supplementary material 

Supplementary material is available at Medical Mycology 
online. 
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