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Abstract

Electrophysiological recordings from freely behaving animals are a widespread and power-

ful mode of investigation in sleep research. These recordings generate large amounts of

data that require sleep stage annotation (polysomnography), in which the data is parcellated

according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-

REM (NREM) sleep. Manual and current computational annotation methods ignore interme-

diate states because the classification features become ambiguous, even though intermedi-

ate states contain important information regarding vigilance state dynamics. To address this

problem, we have developed "Somnotate"—a probabilistic classifier based on a combina-

tion of linear discriminant analysis (LDA) with a hidden Markov model (HMM). First we dem-

onstrate that Somnotate sets new standards in polysomnography, exhibiting annotation

accuracies that exceed human experts on mouse electrophysiological data, remarkable

robustness to errors in the training data, compatibility with different recording configurations,

and an ability to maintain high accuracy during experimental interventions. However, the

key feature of Somnotate is that it quantifies and reports the certainty of its annotations. We

leverage this feature to reveal that many intermediate vigilance states cluster around state

transitions, whereas others correspond to failed attempts to transition. This enables us to

show for the first time that the success rates of different types of transition are differentially

affected by experimental manipulations and can explain previously observed sleep patterns.

Somnotate is open-source and has the potential to both facilitate the study of sleep stage

transitions and offer new insights into the mechanisms underlying sleep-wake dynamics.
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Author summary

Typically, the three different vigilance states–awake, REM sleep, and non-REM sleep–

exhibit distinct features that are readily recognised in electrophysiological recordings.

However, particularly around vigilance state transitions, epochs often exhibit features

from more than one state. These intermediate vigilance states pose challenges for existing

manual and automated classification methods, and are hence often ignored. Here, we

present ‘Somnotate’—an open-source, highly accurate and robust sleep stage classifier,

which supports research into intermediate states and sleep stage dynamics in mice. Som-

notate quantifies and reports the certainty of its annotations, enabling the experimenter to

identify abnormal epochs in a principled manner. We use this feature to identify interme-

diate states and to detect unsuccessful attempts to switch between vigilance states. This

has the potential to provide new insights into the mechanisms of vigilance state transi-

tions, and creates new opportunities for future experiments.

Introduction

Long-term electrophysiological recordings from freely behaving mice and other laboratory

animals are a popular and powerful mode of investigation for neuroscientists, particularly

sleep researchers [1–3]. This approach affords the study of a wide range of animal behaviours

and associated neurophysiological activities, under experimentally controlled conditions. The

recordings typically incorporate an electroencephalogram (EEG) signal recorded from the cor-

tical surface at one or more locations, and may also include electromyogram (EMG) record-

ings from relevant muscle groups. As the vigilance state profoundly affects the behaviour and

physiology of the animal, the first step in the analysis is typically sleep stage annotation. This

involves the parcellation of the data into three vigilance states: awake, rapid eye movement

(REM) sleep, and non-REM (NREM) sleep.

Whilst sleep stage annotation is typically performed by human experts, there are two princi-

pal motives for developing effective automated methods for annotating sleep data. First, man-

ual annotation is time-consuming, as an experienced scorer typically requires several hours to

annotate a single 24-hour data set. This places a significant burden on the analysis stage of

most experiments, meaning that automation is required to conduct experiments at a scale that

would be otherwise difficult to imagine [4,5]. To this end, several automated methods have

been developed for sleep stage annotation, primarily in the context of human clinical data [6–

24], but also in the context of laboratory animals [25–33].

The second principal motive for developing automated sleep stage annotation is that the

underlying electrophysiological signals can be ambiguous with respect to the sleep stage [34].

This is especially the case during intermediate sleep states, when EEG signals can exhibit fea-

tures of more than one vigilance state. Local slow wave activity for example, which is normally

considered a hallmark of NREM sleep, has been observed during REM and awake states across

different cortical regions in humans [35,36] and rodents [37–39]. Whilst the AASM guidelines

[40] have established rules for managing such ambiguity for standardised human data in a

clinical setting, no equivalent standard exists for animal research. Indeed, as the number and

placement of electrodes often varies between experiments (and within a single study), it is diffi-

cult to formulate an analogous standard with similar precision. Consequently, manual annota-

tions often differ between scorers [41,42]. Automated methods remove such inter-rater

variance and afford new opportunities to systematically describe these intermediate states, and

investigate their importance for sleep-wake dynamics. Whilst for human clinical data several
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methods have been designed with these aims in mind [43–47], no comparable approach exists

for animal polysomnography.

Here, we present ‘Somnotate’—an open-source, highly accurate and robust sleep stage clas-

sifier, which supports research into intermediate states and sleep stage dynamics. Somnotate is

shown to consistently exceed the accuracy of expert manual annotations on rodent

electrophysiological data and is remarkably robust to errors in the training data and across a

series of experimental manipulations. Somnotate is a probabistic classifier that quantifies the

certainty of its predictions, thereby identifying epochs that present abnormal electrophysiolog-

ical signals. This not only affords the opportunity to review the algorithm’s predictions, but

also offers a principled method for describing intermediate sleep states across large data sets,

where an exhaustive review of the data would be impractical. Here, we show that intermediate

states are typically present around vigilance state transitions, but also identify failed transition

attempts. We show that different types of state transitions have markedly different success

rates, which may explain commonly observed sleep patterns, and we demonstrate that the suc-

cess rates are altered by interventions such as sleep deprivation. Somnotate can thus facilitate

the study of sleep stage transitions and has the potential to offer new insights into the mecha-

nisms underlying sleep-wake dynamics.

Results

Establishing a probabilistic vigilance state classifier

In machine learning, classifiers typically learn a transformation that maps a sample consisting

of a set of input values or features, onto a single output value or category. This forms the basis

of most automated methods for sleep stage classification, such as decision trees, linear discrim-

inant analysis (LDA), support vector machines, and neural networks [17,27,29–31,48]. A key

weakness of deterministic machine learning approaches is that each input is mapped onto a

single output. As a result, any ambiguity in the sample is ignored, and there is no indication

how certain the classifier is in its estimate of the vigilance state. This problem can be solved by

using a probabilistic classifier that maps each sample onto a probability distribution over vigi-

lance states. The simplest probabilistic classifier is the naive Bayes classifier, which predicts the

most likely state ŝ 2 S of each sample d 2D in the test set based on the probability of the sam-

ple given each state P(D|S) weighted by the frequency of states P(S):

ŝ ¼ argmaxsPðDjSÞ PðSÞ

A shortcoming of this approach is that each sample is classified independently and, as the

input data can be noisy, this can result in misclassifications and an overestimation of the num-

ber of state transitions. Human scorers avoid these issues by using contextual information,

subjectively integrating the evidence within each time bin, with an estimate of the likelihood of

each state based on the broader context; the high performance of recurrent and convolutional

neural networks compared to other methods is likely due to similar reasons [45,49,50]. Algo-

rithmically, the simplest way to integrate predictions based on individual samples with contex-

tual information is to smooth the inferred state sequence by determining the most common

vigilance state surrounding the sample of interest. However, vigilance states can be short-lived,

which poses a difficult problem for such an approach. For example, mice often transition from

REM sleep to NREM sleep via a brief period in which their EEG and EMG activity reflect the

awake state [51–54]. A probabilistic classifier that can systematically integrate contextual infor-

mation without smoothing is the hidden Markov model (HMM). The HMM classifier is con-

ceptually similar to the naive Bayes classifier, with the difference being that the prior
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probability of the state, P(S), is not approximated by its expected frequency, but rather depends

on the overall most likely state sequence given the context of the surrounding samples.

A drawback of probabilistic classifiers is that they require an estimate of the multivariate

probability distribution over input values for each state. With each additional feature, the

number of samples needed to accurately estimate these probability distributions increases

exponentially. Consequently, HMMs that have been used in vigilance state annotation previ-

ously used low dimensional, hand-crafted features [55–57] or state sequences inferred by other

algorithms [7,8,20]. Due to the biases of human perception, manual feature engineering from

complex signals carries the risk of discarding information that might be valuable for a down-

stream machine learning classifier. To avoid this, we set out to combine probabilistic classifiers

with LDA, which can be trained to automatically extract low dimensional features from com-

plex, high-dimensional inputs, whilst retaining the maximal amount of (linearly decodable)

information about the target classes.

To benchmark the performance of our new approach, and to illustrate the advantage con-

ferred by incorporating contextual information, we compared the performance of an HMM to

a naive Bayes classifier and an LDA classifier on a data set of six 24-hour (i.e. 144 hours total)

simultaneous recordings of anterior EEG, posterior EEG, and EMG in freely behaving mice

(Materials and methods), which were independently scored by at least four experienced sleep

researchers to annotate awake, NREM, and REM states (Fig 1A). For all classifiers, the data

was prepared in the same way. The EEG and EMG traces (Fig 1B) were subsampled to 256 Hz

and converted to multitaper spectrograms [58]. The power values in each frequency band were

normalised by applying a log(x + 1) transformation and then converting the result to z-scores

(Fig 1C). As power is exponentially distributed in EEG and EMG signals, a log(x + 1) transfor-

mation results in approximately normally distributed values. This facilitates the determination

of robust linear discriminants and the targeted dimensionality reduction via linear discrimi-

nant analysis (LDA; Fig 1D), the final step. Thresholding the LDA representations yielded the

LDA classification. For the naive Bayes classifier, multivariate Gaussian distributions (one for

each state; Fig 1G) were fitted to the low dimensional representation of the samples in the

training data set, and the corrsponding state annotations were used to determine the expected

frequency of each state (Fig 1H). The states corresponding to samples in the test set were then

predicted based on the probability of the sample given each state P(D|S) (Fig 1E), weighted by

their frequency P(S). For the HMM, the probability given each state P(D|S) was computed in

the same way as for the Bayes classifier. However, based on the expected transition frequencies

observed in the state sequences in the training data set (Fig 1I), P(S) was computed using the

Baum-Welch algorithm (Fig 1F) and the most likely state sequence through the test set was

computed using the Viterbi algorithm [59].

The LDA classifier was found to achieve an accuracy of 92% ± 1% on the test data set (Fig

1J, “LDA”), which was comparable to previous work that used an LDA classifier to predict vig-

ilance states from rodent experimental EEG data (89% ± 1% accuracy [29]). The Bayes classi-

fier achieved an accuracy of 93% ± 1% on the test data set (Fig 1J, “Bayes”), which was

consistent with previously reported values using a similar approach to predict vigilance states

from rodent EEG data (94% ± 1% [30]). Finally, the HMM had an accuracy of 97% ± 1%,

which was significantly more accurate than either the LDA or the Bayes classifiers, reducing

the number of errors by more than half in both cases (Fig 1J, “HMM”). These analyses con-

firmed the benefit of incorporating contextual information. They also established automated

feature extraction using LDA, combined with context-aware state annotation using a HMM,

as a highly effective strategy for achieving very accurate automated sleep stage classification of

experimental data. We refer to this improved classifier as ‘Somnotate’.
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Fig 1. Establishing a probabilistic sleep stage classifier. (A) Continuous EEG and EMG recordings were made across

a full sleep-wake cycle from freely behaving mice. (B) A fifteen-minute segment of the consensus of manual

annotations by four independent experienced sleep researchers (top) and the corresponding anterior EEG, posterior

EEG, and EMG recording. (C) Anterior EEG, posterior EEG and EMG multi-taper spectrograms. (D) Two-

dimensional representation of the segment after targeted dimensionality reduction via LDA. Negative values in the

first component (‘LD1’) and in the second component (‘LD2’) indicate the awake state; positive LD1 with negative LD2

indicates NREM; negative LD1 with positive LD2 indicates REM. (E) Probability of each state when fitting two-

dimensional Gaussian distributions to the values in ‘D’. (F) Likelihood of each state given the probability of each state

(as shown in ‘E’) and all possible state sequences, weighted by their likelihood given the state transition probabilities (as

shown in ‘I’). (G) Distribution of values after dimensionality reduction by LDA. Each dot corresponds to a randomly

chosen 1-second epoch. Colour indicates the state assigned in the manual consensus annotation. Lines indicate the

standard deviations of multivariate Gaussian distributions, one for each state, fitted to all samples in the data set. (H)

The state occupancy based on the time spent in each state across six 24-hour data sets, according to at least four
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Sleep stage annotation by Somnotate exceeds manual accuracy and

compares favourably to other automated solutions

Manual annotation continues to be the gold standard by which any automated annotation is

measured. The performance of sleep stage classifiers is typically measured by computing their

agreement with two independent manual annotations. Performance is evaluated as the average

agreement of the automated annotation with each of the two manual annotations, and this

average is then compared to the level of agreement between the two manual annotations. This

subtle difference in how manual and automated annotations are compared can lead to system-

atic biases in favour of the automated annotation (see S1 Appendix).

For these reasons, we were keen to compare manual and automated annotations to a major-

ity-vote consensus derived from multiple independent manual annotations. We generated a

data set of six 24-hour (i.e. 144 hours total) simultaneous recordings of anterior EEG, posterior

EEG, and EMG in freely behaving mice (Materials and methods), which were independently

scored by at least four experienced sleep researchers to annotate awake, NREM, and REM

states. The sleep researchers had a median of 5 years’ experience in manual vigilance state

annotation (minimum of 2 years’ experience), and had manually annotated a median of 1272

hours (minimum of 768 hours) of equivalent recordings (S1 Table). The recordings, individ-

ual manual annotations, and automated annotations are made freely available in standard for-

mats (see Data Availability Statement).

To determine the accuracy of manual annotations by experienced sleep researchers, we

compared individual manual annotations for any of the six 24-hour recordings to the consen-

sus of the remaining three or more annotations of the same recording. Somnotate was trained

and tested in a hold-one-out fashion on the same six recordings, and its accuracy was deter-

mined by comparison to the consensus of the manual annotations. This revealed that the accu-

racy of Somnotate exceeded the accuracy of manual annotations by 13 experienced sleep

researchers (Fig 2A). Out of a total of 25 manual annotations, 22 were less accurate than the

automated annotation. Twelve out of the thirteen annotators had a lower average accuracy

than the automated classifier on the same data sets. Thus Somnotate significantly exceeded

human performance in terms of accuracy (p< 0.001, Wilcoxon signed rank), and we obtained

identical results for other measures of performance, such as Cohen’s kappa and the weighted

F1 score (Tables 1 and S2 and S6 Fig).

The difference between the confusion matrices for the manual and automated annotations

indicated that the performance difference between manual and automated annotation was

mainly driven by a more accurate annotation of NREM states (Fig 2B). Somnotate identified

more state transitions than were typically present in manual annotations, in particular if these

transitions involved NREM states. Cumulatively however, the differences between manual and

automated state annotations resulted in minor differences in the overall state occupancy (Fig

2C and 2D). When partitioning the data by state according to the manual consensus or the

automated annotation, there were no discernible differences between power spectra of the

EEG activity (S1 Fig).

Approximately two thirds of the differences between Somnotate and the manual consensus

annotations had a duration that was shorter than the temporal resolution of the manual anno-

tations (i.e. shorter than 4 s; Fig 2E). Many of these differences could therefore be resolved if

manual annotations. (I) The corresponding state transition probabilities. (J) Accuracy of the LDA classifier, the naive

Bayes classifier, and the HMM classifier (i.e. Somnotate). Accuracy was evaluated across six 24-hour data sets in a

hold-one-out fashion. Error bars indicate standard deviation. P-values are derived from a Wilcoxon signed rank test

with a Bonferroni-Holm correction for multiple comparisons.

https://doi.org/10.1371/journal.pcbi.1011793.g001
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Fig 2. Automated sleep stage classification by Somnotate exceeds manual accuracy. (A) Somnotate was trained and tested, in a hold-one-out

fashion, on six 24-hour data sets. Using a consensus annotation based on at least three manual annotations, the accuracy of the classifier was

compared to the accuracy of individual manual annotations (n = 25 manual annotations from 13 experienced sleep researchers). (B) The confusion

matrix for individual manual annotations compared to the manual consensus (left), for the automated classifier compared to the manual consensus

(middle), and the difference between these two confusion matrices (right). (C) Comparison of state occupancies between the automated and manual

consensus annotations. (D) State transition probabilities in the automated annotation, normalised to the state transition probabilities in the manual

consensus annotation. (E) Cumulative frequency plot shows the duration of the differences between the automated annotation and the manual

consensus. Note that the manual annotation had a temporal resolution of 4 s (vertical dashed line), whereas the automated classification was

performed at a time resolution of 1 s. (F) Venn-diagram of the time points at which the automated annotation and manual consensus differed. (G)

Excluding samples where Somnotate is not certain improves accuracy. Classifier accuracy was compared between cases when all samples were

included (‘All data’) and when 5.5% of samples were removed because the likelihood of the predicted state dropped below 0.995 (‘High certainty’).

The plot indicates mean ± standard deviation and p-values are derived from a Wilcoxon signed rank test. (H) Somnotate was trained on six 24-hour

data sets and then tested on a 12-hour data set, which had been independently annotated by ten experienced sleep researchers (as in Fig 1). The

accuracy of the annotation by Somnotate was compared to consensus annotations generated from different numbers of manual annotations. Error

bars indicate standard deviation. P-values are derived from a Wilcoxon signed rank test.

https://doi.org/10.1371/journal.pcbi.1011793.g002
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the data had been manually annotated at a higher temporal resolution, albeit at the expense of

a greater investment of time. In other cases however, annotating a definitive state may not

have been possible. For instance, the animal may have been transitioning from one state to

another, resulting in ambiguous EEG and EMG waveforms that reflect an ‘intermediate’ state.

Consistent with this scenario, 54% of differences between the consensus and the automated

annotation occurred within 5 seconds of a state transition, where manual annotations also

often disagreed with one another (Fig 2F). As Somnotate is a probabilistic classifier, it can

automatically identify intermediate states as epochs with non-zero probabilities for more than

one state (denoted by "Automated state annotations uncertain" in Fig 2F). Excluding these

epochs reduces the differences between the consensus annotation and the automated annota-

tion by a third (Fig 2G), and provides a convenient way to clean up the EEG data for further

downstream analysis. As a final validation, we trained Somnotate on the six 24-hour test data

sets, but then tested performance on the 12-hour data set that had been annotated by ten expe-

rienced sleep researchers. This revealed that the more manual annotations that were used to

generate a consensus sequence of the test data, the more closely this manual consensus

matched the automated annotation (Spearman’s rank correlation ρ = 0.80, p< 0.001; Fig 2H).

In other words, as one increases the number of experienced annotators, the manual consensus

converges on the automated annotation by Somnotate.

Finally, we were keen to compare Somnotate to other solutions for automated vigilance

state annotation in experimental animal models, in particular mice. To that end, we assessed

the performance of IntelliSleepScorer [60] and SPINDLE [49] on the six 24-hour EEG & EMG

recordings annotated by multiple experts. We choose these two programs as reference points

based on the following criteria: (1) both programs and all of their dependencies are open

source software, freely available, and thus highly accessible. (2) Both support re-training, and

can, in principle, be adapted to different recording configurations and experimental setups. (3)

Both come with fully parameterised models that have been optimised by their authors based

on large corpuses of annotated recordings. (4) Analogously to Somnotate, both use three

electrophysiological signals by default, specifically frontal EEG, parietal EEG, and neck EMG,

to annotate each epoch (SPINDLE: 4 seconds; IntelliSleepScorer: 10 seconds) with one of three

vigilance states (Awake, NREM, REM); (5) Both are well-documented and include example

data, such that we could be confident that we prepared our test data appropriately, and

invoked the software correctly. Beyond these objective criteria, we were particularly interested

in SPINDLE, as its underlying approach is conceptually similar to Somnotate: both, SPINDLE

and Somnotate, use HMMs for classification. As HMMs require low dimensional signals to be

trained effectively, SPINDLE and Somnotate employ sophisticated dimensionality reduction

techniques. However, whereas Somnotate uses linear discriminant analysis (LDA), requiring

optimisation of only four parameters, SPINDLE uses a deep convolutional neural network

(CNN). This leverages recent advances in deep learning, but also requires the optimisation of

hundreds of thousands of parameters and hence substantially more training data. We were

interested to what degree this trade-off could be justified by the model’s performance. Intelli-

SleepScorer, on the other hand, is based on LightGBM, a decision tree ensemble model devel-

oped by Microsoft, and seemed a reasonable representative of the current state-of-the-art,

being to our knowledge the most recently released automated solution for animal polysomno-

graphy. Interestingly, SPINDLE—at least in our hands—performed much better than the

more recently published IntelliSleepScorer across all evaluated metrics (accuracy, Cohen’s

kappa, and weighted F1 score; Table 1). However, though the differences were much smaller,

Somnotate still performed better than SPINDLE. This indicates that for animal polysomnogra-

phy, a combination of targeted dimensionality reduction with hidden Markov models yields
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comparable results, and that linear, low-parameter approaches to dimensionality reduction

such as linear discriminant analysis are sufficient to perform well.

Somnotate is highly robust

Machine learning algorithms can be uniquely sensitive to patterns in the data. This sensitivity

is often desirable, but can also be problematic. We were therefore keen to examine Somnotate’s

performance under conditions in which the training data contained errors, or where the test

data reflected different experimental conditions, or where the data was acquired using a differ-

ent experimental recording configuration.

First, to test sensitivity to errors in the training data, we evaluated Somnotate’s accuracy on

six 24-hour EEG and EMG recordings annotated by at least four experienced sleep researchers

in a hold-one-out fashion, while randomly permuting an increasing proportion of the consen-

sus state annotations. This revealed that Somnotate is extremely robust to errors in the training

data, as the accuracy on the test set only displayed a notable drop in performance when more

than half of the training samples were misclassified (Fig 3A and 3B). Furthermore, classifier

performance monotonically increased with increasing amounts of training data (S2 Fig), con-

sistent with the idea that the classifier does not overfit the training data and, as a result, does

not learn patterns that are present due to chance.

Second, classifiers are susceptible to being fine-tuned to a standard training data set, such

that performance levels can drop when faced with test data collected under different condi-

tions, particularly when features used by the classifier are altered in a consistent manner. To

assess robustness to changes in features, we tested Somnotate’s performance on data from a

sleep deprivation experiment. Sleep deprivation is a common experimental manipulation that

is known to change the EEG power spectrum after sleep onset, and EEG power values are pri-

mary features used by Somnotate. We evaluated the accuracy of our pre-trained classifier on

six 3-hour data sets recorded after sleep onset in sleep-deprived mice, and compared this to

the accuracy on matched ‘baseline’ (i.e. without sleep deprivation) data recorded from the

same animals (Fig 3C and 3D). The annotation accuracy was found to be comparable and

high across both the sleep deprivation and baseline conditions, consistent with Somnotate

being robust to experimentally-induced changes in relevant features (Fig 3D).

Third, Somnotate uses contextual information in the form of prior probabilities of the dif-

ferent vigilance states. These probabilities depend on how much time animals spend in each

state and how frequently they transition between states, both of which can change under

experimental conditions. To assess the classifier’s robustness to variations in these prior proba-

bilities, we trained and tested Somnotate in a hold-one-out fashion on the six 24-hour EEG

and EMG recordings with high quality consensus annotations, as before. We then evaluated

Somnotate’s accuracy on data sets from mice that had experienced repeated, experimentally-

induced awakenings throughout the day. These awakenings were achieved via optogenetic

stimulation of channelrhodopsin-2 (ChR2) expressing inhibitory neurons in the lateral

Table 1. Performance of Somnotate and other state-of-the-art algorithms for automated mouse polysomnography compared to manual annotation by experienced

experts. Manual and automated annotations of six 24 hour datasets were evaluated based on the consensus of multiple expert annotations. Values represent

mean ± standard deviation.

Method Accuracy Cohen’s kappa Weighted F1 score

Somnotate 0.97 ± 0.01 0.95 ± 0.01 0.97 ± 0.01

Manual 0.95 ± 0.02 0.91 ± 0.03 0.95 ± 0.02

SPINDLE 0.94 ± 0.01 0.90 ± 0.01 0.94 ± 0.01

IntelliSleepScorer 0.75 ± 0.04 0.54 ± 0.07 0.73 ± 0.05

https://doi.org/10.1371/journal.pcbi.1011793.t001
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Fig 3. Somnotate is robust to errors in the training data, changes in the features of the data, and changes in the

vigilance state transition probabilities. (A) Somnotate’s accuracy was evaluated on six 24-hour data sets, in a hold-

one-out fashion, while permuting an increasing fraction of annotations in the training data. Confusion matrices show

the results when permuting 10% of the training data annotations (resulting in 6% mislabelled time points; left),

permuting 50% of the training data annotations (resulting in 28% mislabelled time points; middle), or permuting 90%

of the training data annotations (resulting in 51% mislabelled time points; right). Values represent mean ± standard

deviation. (B) Somnotate’s accuracy as a function of the percentage of permuted training data annotations. (C) The

accuracy of Somnotate, pre-trained on 24h standard sleep-wake cycle datasets, was evaluated against a manual

annotation of baseline control data (six 12-hour light cycle-only data sets), and compared to its accuracy on data from

the same animals after undergoing a sleep deprivation protocol (six 12-hour light cycle-only data sets). Confusion

matrices are shown for the baseline (left), following sleep deprivation (middle), and as the difference between these two

confusion matrices (right). (D) Comparison of Somnotate’s overall accuracy on baseline data and data collected after

sleep deprivation. P-value is derived from a Wilcoxon signed rank test. (E) Mice experienced experimentally-induced

awakenings via optogenetic stimulation of ChR2-expressing inhibitory neurons in the lateral preoptic hypothalamus.

(F) State transition probabilities during optogenetic stimulation, normalised to the state transition probabilities during

the baseline condition. The optogenetic manipulation increased the probability that the animals transitioned from

NREM sleep and REM sleep, to the awake state. (G) The accuracy of Somnotate, pre-trained on 24h standard sleep-

wake cycle datasets, was evaluated against a manual annotation for eleven 24-hour data sets recorded during
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preoptic hypothalamus (Fig 3E; as described in [61]), which affected the probabilities with which

the animals transitioned between states (Fig 3F), but did not affect the overall time spent in each

state (p> 0.15 for all states, Wilcoxon signed rank test). Despite the changes in transition proba-

bilities, there was no detectable change in Somnotate’s performance (Fig 3G and 3H).

Finally, although most electrophysiological signals show a dependence on vigilance state,

some signals are thought to be more informative of certain states. For example, REM sleep is

indicated by a high power in the theta frequency band of an EEG recording, which is typically

more apparent for a posterior electrode than an anterior electrode [62]. However, due to

experimental requirements and technical limitations, it is not always possible to record the

‘ideal’ combination of signals for the inference of vigilance states. We were hence keen to assess

Somnotate’s robustness to changes in recording configurations, and trained and tested Som-

notate in a hold-one-out fashion on the six 24-hour recordings with high quality consensus

annotations, while using only data from a single EEG, EMG, or LFP electrode. Our tests

revealed that a single EEG signal was sufficient to infer the vigilance state with high accuracy

(S3 Fig).

Taken together, these observations demonstrate the robustness of Somnotate to changes in

the features used for inference, the state frequencies, and the state transition probabilities.

Somnotate is therefore able to perform highly accurate sleep stage annotation under a variety

of experimental conditions.

Somnotate identifies failed state transitions

HMMs belong to the category of Bayes classifiers that compute the likelihood of each state, for

every data sample (i.e. time point). This means that Somnotate is able to distinguish samples

where it is certain in its prediction (i.e. where the likelihood of the predicted state is effectively

one), and samples where it is uncertain (i.e. where the likelihood of the predicted state is less

than one). For our data sets, the cumulative distribution of likelihood values indicated a

change point at 0.995 (S4 Fig), with a minority of samples (5.5%) having a likelihood below

this threshold. Notably, for samples where Somnotate was uncertain, almost half (44%) coin-

cided with instances where manual annotations disagreed with one another. This suggested

that the difficulty in predicting the vigilance state at these time points was not an artefact of the

inference method, but a result of ambiguity within the signals. Human annotators often

exclude such sections of the data from their analysis and, by analogy, the accuracy of our auto-

mated classifier further increased when these ambiguous samples were excluded (Fig 2G). By

reporting the certainty of its predictions, Somnotate greatly facilitates the identification of

ambiguous samples that the experimentalist may wish to review or examine further. Somno-

tate also offers the chance to characterise such ambiguous samples in a principled way.

An ambiguous sample could result from measurement noise masking a true, unambiguous

signal, or it could stem from a mixed signal reflecting an intermediate state. Four lines of evi-

dence support the idea that ambiguous samples reflect an intermediate state and are not a mea-

surement artefact. First, the majority of ambiguous samples (76%) occur around state

transitions, which represent relatively rare events in the recordings (first two examples in Fig

4A). Second, for nearly all ambiguous samples, the probability mass was concentrated in two

states, rather than being randomly distributed across all three states (Fig 4B). Third, the power

optogenetic stimulation, and for baseline recordings from the same animals on days when optogenetic stimulation was

not performed. Confusion matrices are shown for the baseline recordings (left) and the recordings with optogenetic

stimulation (right). (H) The accuracy of Somnotate’s annotations was near identical for both data sets and not

significantly different (p> 0.9, Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1011793.g003
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Fig 4. Somnotate identifies intermediate states associated with successful and failed vigilance state transitions.

(A) Three examples of intermediate states identified by Somnotate, in which the probability of the most likely state

dropped below 0.995. In each case, the consensus annotation, input signals, power spectra and likelihood of each state

assigned by Somnotate, are shown. The first example (left) shows a successful state transition from awake to NREM

sleep. Just before the transition, Somnotate identifies time points with intermediate states in which the probability of

being awake has decreased and NREM sleep has increased. The second example (middle) shows a brief state transition

from NREM sleep to awake, and then back to NREM sleep, which includes time points with intermediate states. The

third example (right) shows a failed transition from NREM sleep to awake, which includes a series of time points with

intermediate states in which there is a partial decrease in the probability of NREM sleep and partial increase in the

probability of being awake. (B) Ternary plot of the state probabilities assigned to each time point with an intermediate
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spectra for ambiguous samples showed elements of the power spectra of the two most likely

states (Fig 4C). For example, samples that Somnotate was uncertain whether to assign as

awake or NREM sleep showed a high power in the δ frequency band, characteristic of NREM

sleep, but also high power in the γ frequency band, which is typically an indicator of the awake

state (Fig 4C). Fourth, the periods during which the classifier was uncertain tended to be

much longer than the duration of a single sample and up to a maximum of 30 seconds, such

that these intermediate states could not simply reflect the temporal resolution of the sampling

(i.e. the result of a state transition occurring during a single one second sample).

To demonstrate the opportunities afforded by Somnotate’s identification of intermediate

states, we focused upon the 24% of ambiguous samples that were associated with an incom-

plete state transition (such as the third example in Fig 4A) and referred to these as ‘failed tran-

sitions’, to distinguish them from successful state transitions. We computed the frequencies of

these different transition types and expressed the failed transitions as a proportion of all transi-

tions (Fig 4D). This revealed that the probability of failing to transition was not random. The

overall probability of failed transitions was higher when moving out of NREM sleep, than

when moving out of REM sleep (p< 0.001, χ2 contingency test). Furthermore, whereas the

two state transitions out of NREM sleep exhibited a similar probability of failing (p = 0.98, χ2

contingency test), the state transitions out of REM sleep differed, with a transition from REM-

to-NREM showing a higher probability of failing than a transition from REM-to-awake (17%

versus 1%; p< 0.001, χ2 contingency test). The same pattern of failed transitions remained

when a more conservative threshold criterion was adopted such as a state probability below

0.95. These observations may explain why animals often appear to enter a brief awake state

between REM sleep and NREM sleep [51–54], as transitions from REM to awake, and from

awake to NREM, fail much more rarely than transitions from REM to NREM.

Finally, we investigated if the state transition failure rates were sensitive to an animal’s

recent sleep-wake history. The recovery after sleep deprivation is known to be dominated by

long periods of NREM and REM sleep (Fig 5A & [2,51]). We asked whether this change in

state occupancy is also associated with a change in the failure rate of state transitions. Indeed,

we observed an increase in the failure rate of transitions out of NREM, as well as an increase in

the failure rate of REM-to-NREM transitions, increasing the likelihood of remaining in either

sleep state for a longer period of time (p< 0.05, Mann-Whitney rank test, Fig 5B). In contrast,

there was no difference in the failure rate for awake-to-NREM transitions. Together, these

changes in the failure rate of the different state transitions are consistent with the observed vig-

ilance state occupancy following sleep deprivation. More generally, these analyses confirm the

additional opportunities afforded by Somnotate’s ability to identify intermediate states and to

provide a more complete and richer characterisation of sleep-wake dynamics.

Discussion

We present Somnotate—a purpose-built probabilistic sleep stage classifier that quantifies the

certainty of its annotations. This enables the experimenter to assign vigilance states (awake,

state in six 24-hour data sets (left). In the vast majority of cases, the probability mass was concentrated in one or two

states. This was different to a theoretical distribution in which the probability mass outside the most likely state was

randomly assigned to the other two states (right). (C) Power spectra extracted for time points with intermediate states

(solid lines). For reference, the power spectra for the “pure” states are also shown (dashed lines). (D) Relative

frequencies of successful state transitions (per day; left), failed state transitions (middle) and the ratio between these

(right). Values indicate mean ± standard deviation. The failure rates of REM transitions were statistically significantly

different from one another (p< 0.001; χ2 contingency test), and hence indicated with black arrows; the failure rates of

NREM transitions were not significantly different (p> 0.05; χ2 contingency test), and hence indicated by grey arrows.

https://doi.org/10.1371/journal.pcbi.1011793.g004

PLOS COMPUTATIONAL BIOLOGY Automated identification of intermediate vigilance states

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011793 January 17, 2024 13 / 26

https://doi.org/10.1371/journal.pcbi.1011793.g004
https://doi.org/10.1371/journal.pcbi.1011793


REM sleep, and NREM sleep) with high accuracy, whilst also identifying ambiguous epochs

that represent intermediate states. Somnotate combines optimal feature extraction by linear

discriminant analysis (LDA), with state-dependent contextual information derived via a hid-

den Markov model (HMM). Our benchmarking tests demonstrate that this approach opti-

mises the use of contextual information, outperforming other classifiers that are compatible

with data collected under experimental conditions. Furthermore, through systematic

Fig 5. Vigilance state transition failure rates depend upon sleep-wake history. (A) State occupancy during the first

two hours of recovery from a period of sleep deprivation versus baseline recordings performed in the same animals

over an equivalent period but not following sleep deprivation. (B) Failure rates for transitions during the awake state

(i.e. awake-to-NREM transitions; left), transitions during NREM (NREM-to-awake and NREM-to-REM transitions;

middle), and transitions during REM (REM-to-awake and REM-to-NREM transitions; right). P-values are derived

from a Wilcoxon signed rank tests with a Bonferroni-Holm correction for multiple comparisons.

https://doi.org/10.1371/journal.pcbi.1011793.g005
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comparisons against expert manual annotations, we demonstrate that Somnotate surpasses the

accuracy achieved by experienced sleep researchers. Somnotate is shown to be robust to errors

in the training data, able to operate across different types of experimental manipulations, and

compatible with different electrophysiological signals.

Somnotate’s ability to quantify the certainty of its predictions creates new opportunities for

the researcher, by systematically identifying epochs in which the vigilance state is ambiguous.

With its dual output at every time point–a prediction and a certainty for each vigilance state–

Somnotate offers users the chance to rapidly identify and confirm the classifier’s performance

in a targeted manner. Furthermore, this feature affords new analysis opportunities that are

only feasible with an automated approach. Whilst the gold standard for sleep stage classifica-

tion remains human experts, there is an element of subjectivity to all manual annotations that

makes areas of investigation difficult. For example, EEG signals often show signatures of multi-

ple states, particularly around state transitions [38,63–65], where most disagreements between

manual annotations occur. And although humans are very good at determining the most likely

state at a given time point, they struggle to quantify intermediate states [66].

To demonstrate the opportunities that result from this feature, we used Somnotate to iden-

tify intermediate states associated with incomplete state transitions, which we define as failed

transitions. Interestingly, the probability of failed transitions was highly non-random and

depended upon the type of transition, with REM-to-awake transitions showing relatively low

failure rates, but REM-to-NREM transitions showing high failures. This differential failure

rate may explain the preponderance of brief awake periods between REM and NREM sleep, as

it may be easier for the underlying neuronal networks to transition from REM to awake, and

then to NREM, rather than to transition directly from REM to NREM [51–54]. In addition, we

revealed that the animal’s recent sleep-wake history affects the probability of observing differ-

ent types of failed transitions. More specifically, recovery sleep following a period of sleep dep-

rivation exhibited an increase in the probability of failed transitions from NREM to REM, and

from NREM to awake. These observations suggest that the underlying neuronal networks find

it more difficult to transition out of the NREM state following sleep deprivation, which is con-

sistent with the well-established finding that sleep deprivation leads to longer and more intense

periods of NREM sleep [2,51]. These applications highlight the power of Somnotate’s ability to

determine intermediate states and reveal new opportunities to investigate the neurophysiologi-

cal mechanisms of state transitions.

Despite previous efforts to develop algorithms for sleep stage classification, many sleep

researchers continue to manually score their data. We believe that several barriers have pre-

vented widespread adoption of automated solutions and our findings allow us to evaluate

Somnotate in terms of these potential stumbling blocks. A first barrier to the widespread adop-

tion of automated solutions is the issue of accessibility. Commercially available software for

automated sleep stage classification can be expensive and details of their operation are often

not made available to the user [33,67]. We provide an open source implementation of our

algorithm written in Python. The code comes with extensive documentation including detailed

installation instructions and a comprehensive tutorial. The modules of the code base can be

integrated into an existing workflow. Alternatively, we also provide a fully-fledged pipeline as

a standalone command line application.

In terms of performance levels, reports of human-like performance by automated methods

may fall short in practice. Our findings suggest that the choice of performance metric may

have contributed to this, as we show that inter-rater agreement can be an imprecise measure of

annotation accuracy and is typically used in a manner that favours automated annotation. To

improve upon this standard, we evaluated the quality of automated annotations against the

consensus of at least three manual annotations. An annotation based on the consensus by
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majority vote will be more accurate than any individual annotation, whenever manual errors

show some degree of independence from one another [68,69]. Using this improved assessment

of performance, we showed that Somnotate matched the consensus more closely than any

individual manual annotation. What was particularly encouraging was that the more manual

annotations that were used to generate the consensus sequence, the more closely this consen-

sus matched the automated annotation by Somnotate.

Human experts are aware that they continually use contextual information whilst interro-

gating time series data, relating information at a time point of interest, with information that

they infer over longer timescales. This is often overlooked in automated classifiers, although a

subset have used algorithms that incorporate contextual information, including those that

have used HMMs [7,8,49] and recurrent or convolutional neural networks [18,19,21–24]. The

inherent flexibility of neural networks can pose problems, as they require large amounts of

labelled data to train [50], are prone to overfitting, and adapting their architecture to different

inputs can be non-trivial. For these reasons neural networks can be a suboptimal choice in an

animal research setting, where changes to the experimental arrangement are common and

generating the large, well-curated training data sets required by neural networks, is usually

impractical [50,70]. As HMMs are easier to optimise by non-experts, place significantly less

demands on training data, and are thus more compatible with the constraints of experimental

settings, we concentrated our efforts on improving the state-of-the-art for HMM-based infer-

ence of vigilance states. Somnotate represents an advance upon previous work on related clas-

sifiers, by first using LDA to automatically extract features that carry the maximum amount of

linearly decodable information about vigilance states, and then incorporating state-dependent

contextual information through the application of a HMM.

Another concern with automated approaches is how annotation is affected by differences

in the training data or the features used for classification. We found that Somnotate is remark-

ably robust to errors in the training data, with test performance only dropping significantly

when more than half of the training samples had been deliberately misclassified. Furthermore,

automated scoring methods can exhibit overfitting to standard or control data sets, which

means that their performance is diminished in other settings when the probabilities of key fea-

tures vary [21,24,26,71,72]. This was not the case with Somnotate. We saw no drop in perfor-

mance when Somnotate annotated data collected under different experimental conditions in

which the features used for inference, the state transition probabilities, and/or the state fre-

quencies varied. Somnotate’s high performance was maintained on data from sleep-deprived

mice in which the EEG spectrogram is significantly altered, and on data from optogenetic

manipulation experiments in which the state transition probabilities are changed. These appli-

cations establish that Somnotate is well-suited to perform accurate sleep stage annotation

under a variety of experimental conditions.

In terms of adaptability, the use of targeted feature extraction via LDA means that Somno-

tate is agnostic with respect to the exact nature of the input signal, and our data suggests that

Somnotate retains a high accuracy with different EEG recording configurations and even

other data sources such as local field potential (LFP) recordings. In principle, Somnotate could

be applied to any high frequency time series data that contains information about an animal’s

vigilance state, and hence we plan to expand this approach to other types of signals, such as

surface EEG, actigraphy, or respiratory activity [31,72–74]. While some automated approaches

depend on a specific input signal [32], others are also adaptable in the sense that they can be

recalibrated to changes in the experimental setup [17,27,29–31,48]. However, as these auto-

mated approaches tend to have several free parameters, adaptation to a different setup can be

time-consuming, with uncertain returns. As there are no free parameters in Somnotate other

than the desired time resolution of the state prediction, re-training requires no optimisation,
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and is straightforward and fast. Training Somnotate takes approximately one second per 24

hours of data on a standard desktop computer.

In summary, Somnotate’s development as a probabilistic sleep stage classifier affords new

biological insights through the identification and characterization of intermediate states in

polysomnography, whilst simultaneously setting new standards in terms of performance,

robustness, ease of use, and accessibility.

Materials and methods

Ethics statement

All electrophysiological recordings were performed in accordance with the United Kingdom

Animal Scientific Procedures Act 1986 under personal and project licences granted by the

United Kingdom Home Office. Ethical approval for the animal experimentation was granted

by the Animal Welfare and Ethical Review Body at the University of Oxford.

Animal husbandry and sleep deprivation

All experiments were performed on adult male C57BL/6 wild-type mice, which were bred,

housed and used in accordance with the UK Animals (Scientific Procedures) Act (1986). The

data collected were part of projects examining the role of cortex in sleep-wake regulation [75]

and sleep homeostasis [61,76]. Animals were maintained under a 12-hour:12-hour light-dark

(LD) cycle. For the subset of animals that underwent a sleep deprivation (SD) protocol, each

animal was pre-exposed to novel objects to encourage exploratory behaviour. The SD protocol

then consisted of delivering novel objects for the first three (Fig 3) or for the first six hours (Fig

5) of the light cycle, under the continuous observation of an experimenter. Once an animal

had stopped exploring an object, a new object was presented.

Surgical procedures and electrode configuration

For chronic electroencephalogram (EEG) and electromyogram (EMG) recordings, custom-

made headstages were constructed by connecting three stainless steel screw electrodes (Fine

Science Tools), and two stainless steel wires, to an 8-pin surface mount connector (8415-SM,

Pinnacle Technology Inc., Kansas). For LFP recordings, a 16-channel silicon probe (Neuro-

Nexus Technologies Inc., Ann Arbor, MI, USA; model: A1x16- 3mm-100-703-Z16) with a

spacing of 100 μm between individual channels was used. Device implantation was performed

using stereotactic surgery, aseptic technique, isoflurane anaesthesia (3–5% for induction and

1–2% for maintenance) and constant body temperature monitoring. Analgesia was provided

at the beginning of surgery and during recovery (buprenorphine and meloxicam). A craniot-

omy was performed over the right frontal cortex (AP +2 mm, ML +2 mm from Bregma), right

occipital cortex (AP +3.5 mm, ML +2.5 mm from Bregma), and the cerebellum (-1.5 mm pos-

terior from Lambda, ML 0). A subset of animals were further implanted with a bipolar concen-

tric electrode (PlasticsOne Inc., Roanoke, VA, USA) in the right primary motor cortex,

anterior to the frontal EEG screw. To accommodate this additional implant, the frontal EEG

screw was typically implanted 0.2–1.6 mm posterior to the target coordinates. For EEG record-

ings, a screw was fixed over both the right frontal and occipital cortex. For LFP and multi-unit

activity recording in a subset of animals, a 16-channel silicon probe was implanted into pri-

mary motor cortex (+1.1 mm AP (anterior), -1.75 mm ML (left), tilt -15˚ (left)) under micro-

scopic control, as reported previously [75]. EEG and LFP signals were referenced to a

cerebellum screw. For EMG recordings, wire electrodes were inserted into the left and right

neck muscles, and one signal acted as reference to the other. All implants were secured using a
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non-transparent dental cement (SuperBond from Prestige Dental Products Ltd, Bradford,

UK). Animals were allowed to recover for at least 1 week before recordings.

In vivo data acquisition

Animals were moved to a recording chamber and housed individually in a Plexiglas cage (20.3

x 32 x 35 cm). Recordings were performed using a 128-channel Neurophysiology Recording

System (Tucker-Davis Technologies Inc., Alachua, FL, USA), acquired using the electrophysi-

ological recording software, Synapse (Tucker-Davis Technologies Inc., Alachua, FL, USA),

and stored locally for offline analysis. EEG, EMG, and LFP signals were continuously recorded,

filtered between 0.1–100 Hz, and stored at a sampling rate of 305 Hz. EEG, EMG and LFP sig-

nals were resampled at 256 Hz using custom code in MATLAB (MathWorks, v2017a), and

converted into the European Data Format. The first and/or last 30 seconds of recordings could

contain missing values as this corresponded to the period when the electrodes were being con-

nected/disconnected from the recording system. These epochs were excluded from all subse-

quent analyses.

Optogenetic stimulation

We employed a protocol previously described in detail in [77,42]. Briefly, channelrhodopsin-2

(ChR2) was expressed in glutamate decarboxylase 2 expressing (GAD2+) interneurons by

injection of an adenovirus construct (UNC vector core, AAV5-EF1a-DIO-ChR2-eYFP) into

the lateral preoptic area (LPO) of the hypothalamus in adult Gad2-IRES-Cre mice (Jackson

Laboratory 019022; B6N.Cg-Gad2tm2(cre)Zjh/J). For optical stimulation, either an optic fiber

(400 μm diameter, Doric Lenses Inc, Quebec) or a custom made optrode, consisting of an

optic fiber glued with tungsten wires, was inserted to 0.2 mm above the virus injection site. All

electrophysiological recordings were made 4 to 7 weeks post virus injection. To optogenetically

stimulate GAD2+ neurons, we applied 10 ms pulses of light from a blue LED (470 nm, 10.8–

13.2mW at fiber tip) at various frequencies (20, 10, 5, 2 or 1 Hz), for a duration of 2 minutes,

every 20 ± 2 minutes. On baseline days, no optogenetic stimulation was provided.

Manual vigilance state annotation

Manual annotation of vigilance states was performed offline, based on 4 s epochs using Sleep-

Sign software (Kissei Comtec). The anterior EEG channel, the posterior EEG channel, and the

EMG channel were displayed on-screen simultaneously and visually inspected for vigilance

state scoring. Three vigilance states were identified, as is typical in laboratory rodent studies.

Waking was defined by a low-voltage, high-frequency EEG signal, with a high level or phasic

EMG activity. During active, exploratory waking, a transient increase in theta-activity (5–10

Hz) was typically observed in the occipital derivation, overlying the hippocampus. NREM

sleep was defined by an overall higher amplitude signal, dominated by slow waves (<4 Hz)

and spindle oscillations (10–15 Hz) that were especially prominent in the anterior EEG chan-

nel, while the EMG signal was typically low. REM sleep was characterised by low-voltage,

high-frequency EEG, dominated by theta activity especially in the posterior EEG channel, with

a low level of EMG activity.

Data pre-processing for automated annotation

We first computed the spectrograms of the anterior EEG, the posterior EEG, and the EMG

traces. To reduce sensitivity to noise present in electrophysiological recordings, we used a mul-

titaper approach, as this results in more robust estimates of the power than the more

PLOS COMPUTATIONAL BIOLOGY Automated identification of intermediate vigilance states

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011793 January 17, 2024 18 / 26

https://doi.org/10.1371/journal.pcbi.1011793


conventional Baum-Welch algorithm. Specifically, we used the implementation in the lspopt

python library (1 second long segments with no overlap, other parameters at default values).

We then discarded parts of the power spectrum that are strongly influenced by signals not

related to changes in vigilance states. We discarded signals in the 0–0.5 Hz frequency range in

the EEG and EMG recordings, as these are dominated by drift due to animal locomotion. Fur-

thermore, we discarded signals between 45–55 Hz and above 90 Hz, as these were strongly

affected by 50 Hz electrical noise. We then applied a log(x+1) transformation to map the

heavy-tailed distribution of power values to a distribution that is more normally distributed.

The normal distribution is the maximum entropy distribution for continuous distributions on

unbounded domains, and as such, samples are maximally far apart from one another (com-

pared to other distributions with the same variance). This facilitates downstream classification

into separable groups. The re-mapped power values were then normalised by converting them

to Z-scores (mean subtraction followed by rescaling to unit variance). Normalisation ensures

that all frequencies are weighted equally in the downstream feature extraction. Finally, the nor-

malised spectrograms were concatenated, resulting in a high-dimensional signal.

Automated feature extraction

Features for downstream classification were then extracted from the concatenated spectro-

grams in a targeted manner using linear discriminant analysis (LDA [78]), as implemented in

the scikit-learn python library [79]. LDA determines a linear projection of high dimensional

data to a low dimensional representation, such that samples belonging to different classes are

optimally linearly separated in the low dimensional space. Thus, information in the signal

about the different classes is preserved, while non-informative components of the signal are

discarded. This has two further effects. Firstly, training of any classifier is accelerated, which

implicitly or explicitly fits a joint probability distribution to the components of the training

data. The number of samples required to accurately fit a joint probability distribution increases

exponentially with the number of dimensions. As the dimensionality of the data is reduced,

fewer samples are required to escape the under-sampled regime and accurately determine the

shape of the data distribution. This is enhanced by the fact that the components of the LDA

are largely independent of one another–unlike the original signal, in which many frequencies

are highly correlated with each other. Secondly, as much of the original signal is effectively dis-

carded, artefacts that contaminate the signal are also removed.

Automated vigilance state annotation

Given three target states (awake, NREM sleep, and REM sleep), dimensionality reduction with

LDA results in two-dimensional signals. These two-dimensional signals together with the cor-

responding manual annotations were used to train a HMM in a supervised fashion, with mul-

tivariate Gaussian state emissions using the python library pomegranate with all optional

parameters at default values [80]. Manual annotations occasionally contain mislabelled sam-

ples, which when parameterising the HMM result in non-zero probabilities for state transi-

tions that are thought to be absent in wildtype/control data, notably awake-to-REM transitions

in mice [49]. Somnotate facilitates pruning of these spurious transitions by exposing a thresh-

old parameter, such that state transitions below this threshold are removed. For the purpose of

this study, state transitions with probability below 0.0001 per second were removed. The accu-

racy of the trained LDA and HMM models were ascertained by applying them to held out test

data, which had not been used to fit the linear discriminants or to parameterize the HMM. For

each sample, the probability of each state was computed using the Baum-Welch algorithm,

and the most likely state sequence was determined using the Viterbi algorithm. Unless
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specified otherwise, training and testing occurred in a hold-one-out fashion, i.e. the model was

trained using all but one of the specified datasets and then tested on the remaining dataset.

This process was repeated for all possible train-test splits of the data. SPINDLE and Intelli-

SleepScorer were both evaluated based on the predictions made by extensively pre-trained

models provided by the authors, and with all other parameters at default values. As both mod-

els contain thousands of model parameters, we opted to evaluate them without re-training, as

the limited number of data sets available to us with high-quality manual annotations based on

the consensus of multiple experts would potentially have been insufficient to do so.

Recording artefacts

Samples containing artefacts associated with the animal’s gross body movements were identi-

fied during manual annotations, but were still included in the analysis of vigilance states and

in the data used to train Somnotate. Such artefacts represented 1.0% ± 1.0% of the consensus

manual annotations (mean ± standard deviation; 3.8% ± 2.8% in the individual manual anno-

tations) and did not influence the automated feature extraction by LDA, so did not impact the

quality of the automated annotations. However, such artefacts could affect downstream analy-

ses in future applications, such as spectral analysis of the recorded signals. For this reason,

Somnotate includes two features to facilitate the detection and removal of artefacts. First, Som-

notate detects and demarcates gross movements that generate voltage deflections outside of

the dynamic range of the recording system (with an optional padding to also remove voltage

deflections preceding and following such events), so that they are not included in downstream

analyses. Second, Somnotate has the option to present samples to the user where the classifier

was uncertain about state assignment. Intervals consisting of consecutive samples in which the

probability of the inferred state is below one are scored according to the sum of the residual

probabilities (i.e. one minus the probability of the inferred state) and presented to the user in

descending order. Movement artefacts associated with prolonged voltage deflections, or that

strongly affect the spectral features identified by LDA, result in a high score and can be

excluded by the user.

Supporting information

S1 Appendix. Unbiased and precise assessment of automated and manual sleep annota-

tion.

(DOCX)

S1 Table. Manual annotations were performed by experienced sleep researchers. All

authors who provided manual annotations reported their task-relevant experience in years,

plus the approximate number of hours that they had previously manually annotated.

(DOCX)

S2 Table. Performance of Somnotate and other state-of-the-art algorithms for automated

mouse polysomnography compared to manual annotation by experienced experts. Manual

and automated annotations of six 24 hour datasets were evaluated based on the consensus of

multiple expert annotations.

(DOCX)

S1 Fig. EEG power spectra by state according to Somnotate (A) or manual consensus anno-

tations (B). Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data

sets. Spectrograms were computed for the anterior and posterior EEG and partitioned accord-

ing to the predicted state. The process was repeated using the manual consensus annotations.
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The lines indicate the median EEG power.

(EPS)

S2 Fig. Somnotate’s performance as a function of the amount of training data. Somnotate

was trained and tested, in a hold-one-out fashion, using different numbers of 24-hour data

sets. The maximum amount of training data available was twenty 24-hour EEG and EMG

recordings under baseline conditions. The line indicates the median. Error bars demarcate the

5th and 95th percentile.

(EPS)

S3 Fig. A single EEG signal is sufficient for Somnotate to infer vigilance states with high

accuracy. (A) The accuracy of Somnotate’s sleep stage classification using a single input signal.

Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Only

one signal was provided as an input signal: either the anterior EEG, the posterior EEG, the LFP

from primary somatosensory cortex, or the EMG. (B) Confusion matrices when using only the

anterior EEG (top left), the posterior EEG (top right), an LFP (bottom left), or the EMG (bot-

tom right). Values indicate mean ± standard deviation. The overall accuracy of the predictions

based on the anterior EEG alone did not differ from the overall accuracy when the anterior

EEG, posterior EEG and EMG were provided simultaneously (p> 0.24, Wilcoxon signed rank

test), as the small increase in the false negative detection rate for REM sleep was offset by an

improved distinction between the awake and two sleep states. The overall accuracy of the pre-

dictions based on the posterior EEG was 1% lower on average (p< 0.05, Wilcoxon signed

rank test), although in this case the identification of REM showed a similar accuracy to when

all signals were provided. The accuracy of predictions based on either an LFP recorded from

primary somatosensory cortex, or only the EMG signal, was in both cases worse (by 6% and

14%, respectively), largely due to the performance on REM sleep episodes (p< 0.05 in both

cases, Wilcoxon signed rank test). However, each individual signal was still sufficient to distin-

guish between awake and asleep states with high accuracy (~95%), indicating that either signal

would be sufficient in experiments that do not need to distinguish between REM and NREM

sleep states.

(EPS)

S4 Fig. Selecting a state probability threshold to identify ambiguous samples. The probabil-

ity of the predicted state was computed for each sample in six 24-hour data sets. As the cumu-

lative distribution of probabilities exhibits an elbow at 0.995, this value was chosen as a

threshold below which samples were classified as ambiguous.

(EPS)

S5 Fig. The consensus of manual annotations yields a better estimate of annotation accu-

racy. (A) The annotation of vigilance states was based on recordings of the anterior EEG, pos-

terior EEG and EMG from a freely behaving mouse. A one-minute segment of the recordings

is shown. (B) Multi-taper spectrograms for each of the recorded signals in ‘A’. (C) The major-

ity-vote consensus of manual annotations by three independent experienced sleep researchers

(top), which discriminates the vigilance states of ‘awake’ (red), ‘NREM’ sleep (blue) and ‘REM’

sleep (yellow). A fourth (middle) and fifth (bottom) independent individual manual annota-

tion of the same segment. (D) A total of ten experienced sleep researchers independently

annotated the same 12-hour recording and the accuracy of each annotation was assessed by

using the consensus of the other nine annotations as a proxy for the ground truth. (E) For each

possible pair of annotations, the inter-rater agreement was plotted against the mean accuracy

of the pair of annotations, when judged against a consensus based on the remaining other

eight annotations. (F) There was greater variability in the accuracy of an annotation when
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judged against a single other manual annotation, than when judged against the consensus of

three randomly selected annotations (without replacement). Plot shows the variability in accu-

racy estimates (standard deviation with Bessel correction), which was significantly lower when

using the consensus of three annotations (p< 0.01, Wilcoxon signed rank test). (G) A consen-

sus was constructed from five of the ten independent annotations based on majority vote. A

second consensus annotation was then constructed using either one, three or all five of the

remaining annotations. The plot shows the mean agreement between the two consensus anno-

tations. Error bars represent the standard deviation.

(EPS)

S6 Fig. The consensus of manual annotations yields a better estimate of annotation accu-

racy, as measured by Cohen’s kappa. The analyses in Figs 2A and S5D–S5G were repeated

using Cohen’s kappa as a measure of performance. (A) A total of ten experienced sleep

researchers independently annotated the same 12-hour recording and the accuracy of each

annotation was assessed by using the consensus of the other nine annotations as a proxy for

the ground truth. (B) For each possible pair of annotations, the inter-rater agreement was plot-

ted against the mean accuracy of the pair of annotations, when judged against a consensus

based on the remaining other eight annotations. (C) There was greater variability in the accu-

racy of an annotation when judged against a single other manual annotation, than when

judged against the consensus of three randomly selected annotations (without replacement).

Plot shows the variability in accuracy estimates (standard deviation with Bessel correction),

which was significantly lower when using the consensus of three annotations (p< 0.01, Wil-

coxon signed rank test). (D) A consensus was constructed from five of the ten independent

annotations based on majority vote. A second consensus annotation was then constructed

using either one, three or all five of the remaining annotations. The plot shows the mean agree-

ment between the two consensus annotations. Error bars represent standard deviation. (E)

Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Using a

consensus annotation based on at least 3 manual annotations, the Cohen’s kappa score of the

automated annotation was compared to the Cohen’s kappa score of individual manual annota-

tions (n = 25 manual annotations from 13 experienced sleep researchers). P-value is derived

from a Wilcoxon signed rank test.

(EPS)
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