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Abstract

Discretization of probability measures is ubiquitous in the field of ap-

plied mathematics, from classical numerical integration to data com-

pression and algorithmic acceleration in machine learning. In this the-

sis, starting from generalized Tchakaloff-type cubature, we investigate

random convex hulls and kernel quadrature.

In the first two chapters after the introduction, we investigate the

probability that a given vector θ is contained in the convex hull of

independent copies of a random vector X. After deriving a sharp in-

equality that describes the relationship between the said probability

and Tukey’s halfspace depth, we explore the case θ = E[X] by using

moments of X and further the case when X enjoys some additional

structure, which are of primary interest from the context of cubature.

In the subsequent two chapters, we study kernel quadrature, which

is numerical integration where integrands live in a reproducing kernel

Hilbert space. By explicitly exploiting the spectral properties of the

associated integral operator, we derive convex kernel quadrature with

theoretical guarantees described by its eigenvalue decay. We further

derive practical variants of the proposed algorithm and discuss their

theoretical and computational aspects.

Finally, we briefly discuss the applications and future work of the thesis,

including Bayesian numerical methods, in the concluding chapter.
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Chapter 1

Introduction

In this thesis, we tackle the problem of discretizing probability measures. This

involves numerically approximating integrals, finding efficient samples to repre-

sent randomness in nature or big data, and accelerating scientific computing that

involves randomness. Although the concrete topics of the thesis cover random con-

vex hulls and kernel quadrature, they both originate from the following concept of

discretization — cubature.

1.1 Cubature and random convex hulls

Let µ be a Borel probability measure on some topological space X . Consider d

integrable functions φ1, . . . , φd : X → R. We denote φ := (φ1, . . . , φd)
⊤, the

d-dimensional vector-valued function. Then, we know there exists a “good reduc-

tion” of µ with respect to φ by the following theorem:

Theorem 1.1. There are n points x1, . . . , xn ∈ suppµ and weights w1, . . . , wn ≥ 0

with n ≤ d+ 1 such that w1 + · · ·+ wn = 1 and∫
X
φ(x) dµ(x) =

n∑
i=1

wiφ(xi). (1.1)

This is often referred to as Tchakaloff’s theorem [162, 12], although a more

accurate nomenclature would involve Wald, Richter, Rogosinski, and Rosenbloom

[175, 162, 141, 142, 143]; see di Dio and Schmüdgen [40] for a historical perspective.

The proof is essentially given by classical Carathéodory’s theorem [25]. The

points and weights treated in Tchakaloff’s theorem are called cubature [161] — an

1



important object in the field of numerical integration. An equivalent problem is

also treated as a useful way to compress data in the field of data science [111, 34].

When X is a subset of a Euclidean space, monomials are a typical choice of test

functions φi, so the the discrete measure
∑n

i=1wiδxi
is a good approximation of

µ in terms of smooth integrands. However, constructions in general settings are

also useful; for example, in the cubature on Wiener space [110], X is the space

of continuous paths, µ is the Wiener measure, and the test functions are iterated

integrals of paths.

To the generalized cubature construction (or measure reduction) problem, when

µ is discrete, there are efficient deterministic approaches [103, 163, 111]. In the

general case, although there is no universal efficient algorithm, we can consider the

following naive sampling-based approach. We are given a d-dimensional random

vector X = φ(Y ). Given its independent copies Xi = φ(Yi) for i = 1, 2, . . . , n,

once E[X] ∈ conv{X1, . . . , Xn} is satisfied, by using a linear programming (LP)

solver, we can find sparse weights wi ≥ 0 with
∑n

i=1wi = 1 such that

E[φ(Y )] = E[X] =
n∑

i=1

wiXi =
n∑

i=1

wiφ(Yi),

which yields a generalized cubature formula. This approach is explicitly proposed

by Hayakawa [66] and called Monte Carlo cubature construction, and it empirically

works for constructing classical polynomial cubature [66] and cubature on Wiener

space [68] of moderate size with a “reasonable” magnitude of n (e.g., 3d). But

there was no theoretical explanation of why it works except for the case that the

distribution of X has a strong symmetry [178, 172].

Contributions on random convex hulls. To estimate the necessary compu-

tational time of this approach, we investigate the quantities

pn,X(θ) := P(θ ∈ conv{X1, . . . , Xn}) , NX(θ) := inf{n | pn,X(θ) ≥ 1/2},

for a d-dimensional random vector X and θ ∈ Rd, which are about the number of

i.i.d. vectors we should sample before we get θ in the random convex hull. A sharp

upper bound of NX(E[X]) can be used as a threshold for the sample size we need to

generate in the Monte Carlo cubature construction. In the first part of this thesis,

2



we derive sharp upper bounds of pn,X and lower bounds of NX (Chapter 2) for a

general random vector X as well as with a structured one X = φ(Y ) (Chapter 3),

while the previous studies have been on the bounds of the opposite directions

[178, 172] or on a specific class of random vectors such as Gaussian [81].

1.2 RKHS and kernel quadrature

The setting in Section 1.1 is quite general — we have a probability measure that

we want to approximate and a family of test functions. To make it usable, we

need to specify the test functions or the function space of our interest; we explore

kernel quadrature as a somewhat concrete objective.

On a topological space X , we are given a symmetric function k : X × X → R.
It is called a positive definite kernel if the (Gram) matrix (k(xi, xj))

n
i,j=1 is positive

semi-definite for each x1, . . . , xn ∈ X . Then, it has an associated Hilbert space Hk

called reproducing kernel Hilbert space (RKHS) with the following properties:

• span{k(·, x) | x ∈ X} is a dense subspace of Hk;

• ⟨f, k(·, x)⟩Hk
= f(x) holds for each x ∈ X and f ∈ Hk.

See, e.g., Berlinet and Thomas-Agnan [18] for a formal introduction to RKHSs.

We treat real RKHSs throughout the thesis. For an f : X → R, f ∈ Hk if and

only if there is a constant c > 0 such that k(x, y) − cf(x)f(y) is still positive

definite (see Paulsen and Raghupathi [135, Theorem 3.11]; though they work with

a complex RKHS, the same proof works for a real RKHS).

Let us then explain kernel quadrature. Given a Borel probability measure µ

on X , our objective is to find a good n-point quadrature Qn composed of points

x1, . . . , xn ∈ X and weights w1, . . . , wn ∈ R with a small worst-case error:

wce(Qn;Hk, µ) := sup
∥f∥Hk

≤1

∣∣∣∣∣
∫
X
f(x) dµ(x)−

n∑
i=1

wif(xi)

∣∣∣∣∣ .
It gives a criterion to evaluate how well the discrete measure

∑n
i=1wiδxi

(also

denoted by Qn) approximates the target measure µ. This worst-case error is also

known as the maximum mean discrepancy (or MMD distance) In general, given
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two Borel (probability) measures µ and ν with x 7→
√
k(x, x) ∈ L1(µ) ∩ L1(ν)

(this condition can be weakened to k(x, y) ∈ L1(µ× µ) ∩ L1(ν × ν)), their MMD

distance MMDk(µ, ν) is defined and can be computed as

MMDk(µ, ν) := sup
∥f∥Hk

≤1

∣∣∣∣∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

∣∣∣∣ ,
MMDk(µ, ν)

2 =

∫∫
X×X

k(x, y) dµ(x) dµ(y)− 2

∫∫
X×X

k(x, y) dµ(x) dν(y)

+

∫∫
X×X

k(x, y) dν(x) dν(y). (1.2)

The latter is a well-known formula for computing the MMD distance [58, 159].

Contributions on kernel quadrature. It is known that, under mild assump-

tions (e.g., suppµ = X , k is continuous, and x 7→ k(x, x) ∈ L1(µ)), we can have

the following Mercer decomposition [160]: k(x, y) =
∑∞

i=1 σiei(x)ei(y), where σi is

an eigenvalue of the integral operator K : L2(µ)→ L2(µ) given by

Kf =

∫
X
k(·, x)f(x) dµ(x) (1.3)

corresponding to the eigenfunction ei, and they are ordered (σ1 ≥ σ2 ≥ · · · ≥ 0)

and normalized (∥ei∥L2(µ) = 1). The eigenvalue decay has been known to be

closely related to the worst-case error of a good n-point kernel quadrature, such

as wce(Qn;Hk, µ)
2 ∼ σn [6, 16, 17], but there were no practical algorithms that

exploit this eigenvalue decay and are applicable to general pair of (k, µ) with access

to an i.i.d. sample from µ; a detailed literature review will be given in Chapter 4

(see also Table 4.1 for a comparison of relevant methods). In Chapters 4 & 5, we

shall give a novel kernel quadrature method that has, among other benefits, (1)

a practical algorithm and (2) theoretical guarantees based on the above spectral

decay, which have not been satisfied at the same time in the previous studies.

1.3 Overview and outline

In this thesis, starting from the generalized cubature problem, we address the

following questions in Chapters 2–5:
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• Why does the naive randomized cubature construction work?

• How can we apply the idea to the kernel quadrature problem?

We also briefly discuss applications and future directions of the thesis in Chapter 6.

We shall explain more details of our contributions together with the outline of

the main body (Chapters 2–5) in the following.

Why — Random convex hulls (Chapters 2 & 3). The first two chapters after

this introduction are devoted to analyzing pn,X and NX introduced in Section 1.1.

In Chapter 2, we treat a general random vector X and point out that the Tukey

depth [169] (or halfspace depth) defined as

αX(θ) := inf
c∈Rd\{0}

P
(
c⊤(X − θ) ≤ 0

)
plays an essential role in analyzing random convex hulls. Indeed, in Theorem 2.13,

we prove the inequality

1/2 ≤ αX(θ)NX(θ) ≤ 3d+ 1

for a general X, which is sharp up to a constant. This main result further yields

a bound of NX(E[X]) based on the moments of X (Section 2.4) as well as a

description of the deterministic body included in a random convex hull with high

probability (Section 2.5).

In Chapter 3, we consider the case where X is given by a vector-valued function

with some structure X = φ(Y ), e.g., φ is given by multivariate polynomials up

to some degree. By generalizing the hypercontractivity arguments in Gaussian

Wiener chaos [79, Chapter 5] and applying it to our result in Chapter 2, we prove

the following result (Corollary 3.20):

Let ℓ,m be positive integers and Z be an R-valued random variable

with E[|Z|4m] < ∞. If a d-dimensional random vector is given by

X = φ(Z1, . . . , Zℓ), where Z1, . . . , Zℓ are independent copies of Z and

each coordinate of φ : Rk → Rd is given by a polynomial up to degree

m, then there is a constant Cm > 0 independent of ℓ such that

NX(E[X]) ≤ Cmd.
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This partially explains what we observe in Hayakawa [66], but is just an instance

of our more general argument on cubature problems with product structure, and

our examples also include the Monte Carlo approach to kernel quadrature (see the

next section) and cubature on Wiener space [110].

How — Kernel quadrature (Chapters 4 & 5). The final two chapters of the

thesis address the kernel quadrature problem from the viewpoint of generalized

cubature. Recall we are given an RKHS Hk with a Borel probability measure µ,

which admits the Mercer decomposition k(x, y) =
∑∞

i=1 σiei(x)ei(y).

In Chapter 4, the essential idea behind the general theory is the use of φ =

(e1, . . . , en−1)
⊤ in the context of generalized cubature (1.1). Indeed, with this φ,

we can prove that, if a convex quadrature Qn = (wi, xi)
n
i=1 (“convex” means that

the weights satisfy wi ≥ 0 and
∑n

i=1wi = 1) satisfies

n∑
i=1

wiφ(xi) =

∫
X
φ(x) dµ(x),

n∑
i=1

wi

∞∑
m=n

σmem(xi)
2 ≤

∫
X

∞∑
m=n

σmem(x)
2 dµ(x),

then we have wce(Qn;Hk, µ)
2 ≤ 4

∑∞
m=n σm (Theorem 4.5). Indeed, such a convex

quadrature can be obtained via random sampling in the spirit of the Monte Carlo

cubature construction.

This construction gives a nice convergence guarantee as well as the convexity

condition of weights, which makes Qn a probability measure, but requires the

knowledge of the Mercer decomposition, which is not necessarily available in a

general situation. It is also beneficial to have the option of avoiding the use of

random convex hulls as there are still open questions on them, despite the progress

in Chapters 2 & 3. Thus, we generalize the above approach in the following two

ways and confirm their performance in numerical experiments.

(a) Use of any finite-rank approximation of k. We develop a theory that is

applicable to any finite-rank kernel k0(x, y) =
∑n−1

i=1 ciφi(x)φi(y) with ci ≥ 0

and k1 := k−k0 being positive definite as well. If we use φ = (φ1, . . . , φn−1)
⊤

and replace the constraint by

n∑
i=1

wiφ(xi) =

∫
X
φ(x) dµ(x),

n∑
i=1

wik1(xi, xi) ≤
∫
X
k1(x, x) dµ(x), (1.4)
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then we have wce(Qn;Hk, µ)
2 ≤ 4

∫
X k1(x, x) dµ(x) (Theorem 4.5), where

the above method of using eigenfunctions is just a special example with

k0(x, y) =
∑n−1

i=1 σiei(x)ei(y).

(b) Use of empirical measure and the recombination algorithm. Finding

a set of points and weights with (1.4) would require the use of random convex

hulls, but we can consider replacing µ in (1.4) by its empirical measure

µ̃N = 1
N

∑N
i=1 δyi where yi are independent samples from µ. Then, we can

find such a convex kernel quadrature in O(nN + n3 log(N/n)) computational

steps by using the recombination algorithm [103, 163], and the resulting Qn

satisfies (Theorem 4.1)

E
[
wce(Qn;Hk, µ)

2
]
≤ 8

∫
X
k1(x, x) dµ(x) +

2

N

∫
X
k(x, x) dµ(x),

which yields a practical instance of our convex kernel quadrature.

Among possible choices of k0 introduced in (a), arguably the most promising

choice is the Nyström approximation [179, 43, 97]; the s-rank Nyström approxi-

mation based on ℓ (≥ s) landmark points Z = (zi)
ℓ
i=1 ⊂ X is given by

k(x, y) ≈ kZs (x, y) := k(x, Z)k(Z,Z)+s k(Z, y),

where k(A,B) forA = (ai) andB = (bj) generally represents the matrix (k(ai, bj))ij,

and k(Z,Z)+s is the Moore–Penrose pseudo-inverse of the best s-rank approxima-

tion of the Gram matrix k(Z,Z) = (k(zi, zj))
ℓ
i,j=1.

In Chapter 5, we first investigate how well kZs approximates the original kernel

k by estimating the quantity∫
X

√
k(x, x)− kZs (x, x) dµ(x),

which yields a subsequent theoretical guarantee of a relevant kernel quadrature

rule, in the case where Z is given by independent samples from µ. Our analysis is

based on the observation that kZs is given by a truncated Mercer decomposition of

the kernel kZ = kZℓ , and an application of statistical learning theory. By general-

izing this observation, we further propose other low-rank approximations kZs,µ and

kZs,X for a non-i.i.d. Z and prove their favorable theoretical properties, which are

confirmed both in theory and numerical experiments.
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Chapter 2

Estimating the probability that a
given vector is in the convex hull
of a random sample

For a d-dimensional random vector X, let pn,X(θ) be the probability that the

convex hull of n independent copies of X contains a given point θ. We also define

NX(θ) as the smallest n for which pn,X(θ) ≥ 1/2, as introduced in Section 1.1. In

this chapter, we provide several sharp inequalities regarding pn,X and NX . As a

main result, we derive a totally general inequality, 1/2 ≤ αX(θ)NX(θ) ≤ 3d + 1,

where αX(θ) (known as the Tukey depth) is the minimum probability that X is in

a fixed closed halfspace containing the point θ. We also show several applications

of our general results. One is a moment-based bound on NX(E[X]), which is an

important quantity in randomized approaches to cubature construction or measure

reduction problems. Another application is the determination of the canonical

convex body included in a random convex polytope given by independent copies

of X, where our combinatorial approach allows us to generalize existing results in

the random matrix community significantly.

2.1 Introduction

Consider generating independent and identically distributed d-dimensional random

vectors. How many vectors do we have to generate in order that a point θ ∈ Rd

is contained in the convex hull of the sample with probability at least 1/2? More
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generally, what is the probability of the event with an n-point sample for each

n? These questions were first solved for a general distribution which has a certain

symmetry about θ by Wendel [178]. Let us describe the problem more formally.

Let X be a d-dimensional random vector and X1, X2, . . . be independent copies

of X. For each θ ∈ Rd and positive integer n, recall we have defined

pn,X(θ) := P(θ ∈ conv{X1, . . . , Xn}) , NX(θ) := inf{n | pn,X(θ) ≥ 1/2}

as quantities on a reasonable sample size we need (in Section 1.1). As pn,X and

NX are only dependent on the probability distribution of X, we also write pn,µ

and Nµ when X follows the distribution µ. We want to evaluate pn,X as well as

NX for a general X.

Wendel [178] showed that

pn,X(0) = 1− 1

2n−1

d−1∑
i=0

(
n− 1

i

)
(2.1)

holds for an X such that X and −X have the same distribution and X1, . . . , Xd

are almost surely linearly independent. In particular, NX(0) = 2d holds for such

random vectors. For an X with an absolutely continuous distribution with respect

to the Lebesgue measure, Wagner and Welzl [172] showed more generally that

the right-hand side of (2.1) is indeed an upper bound of pn,X(0), and they also

characterized the condition for equality (see Theorem 2.5). Moreover, Kabluchko

and Zaporozhets [81] recently gave an explicit formula for pn,X when X is a shifted

Gaussian.

In this chapter, our aim is to give generic bounds of pn,X and NX , and we

are particularly interested in the upper bound of NX , which is opposite to the

bound given by Wagner and Welzl [172]. Estimating pn,X and NX is of great

interest from application, which ranges from numerical analysis to statistics, and

compressed sensing. As a by-product, we also give a general result explaining

the deterministic body included in the random polytope conv{X1, . . . , Xn}, which
is a generalization of recent work in the random matrix community [60]. The

remainder of this section will explain more detailed motivation from related fields

and implications of our results.

Throughout the chapter, let ⟨·, ·⟩ be any inner product on Rd, and ∥ · ∥ be the

norm it induces.
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2.1.1 Statistical depth

From the statistical context, pd+1,X(θ) for a d-dimensionalX is called the simplicial

depth of θ ∈ Rd with respect to the (population) distribution of X [107, 27], which

can be used for mathematically characterizing the intuitive “depth” of each point θ

when we are given the distribution of X. For an empirical measure, it corresponds

to the number of simplices (whose vertices are in the data) containing θ.

There are also various concepts measuring depth, all called statistical depth

[27, 122]. One of the first such concepts is the halfspace depth proposed by Tukey

[169]:

αX(θ) := inf
c∈Rd\{0}

P(⟨c,X − θ⟩ ≤ 0) ,

which can equivalently be defined as the minimum measure of a halfspace contain-

ing θ. Donoho and Gasko [42] and Rousseeuw and Ruts [144] extensively studied

general features of αX . We call it the Tukey depth throughout the chapter.

Our finding is that these two depth notions are indeed deeply related. We prove

the rate of convergence pn,X → 1 is essentially determined by αX (Proposition

2.24), and we have a beautiful relation 1/2 ≤ αXNX ≤ 3d+ 1 in Theorem 2.13.

2.1.2 Inclusion of deterministic convex bodies

Although we have seen the background of the pn,X(θ), which only describes the

probability of a single vector contained in the random convex polytope, several

aspects of such random polytopes have been studied [112, 77]. In particular,

people also studied deterministic convex bodies associated with the distribution

of a random vector. For example, one consequence of the well-known Dvoretzky–

Milman’s Theorem (see, e.g., Vershynin [171, Chapter 11]) is that the convex hull

of n independent samples from the d-dimensional standard normal distribution is

“approximately” a Euclidean ball of radius ∼
√
log n with high probability for a

sufficiently large n.

Mainly from the context of random matrices, there have been several pieces of

research on the interior convex body of conv{X1, . . . , Xn} or its “absolute” version

conv{±X1, . . . ,±Xn} for various classes of X such as Gaussian, Rademacher or

vector with i.i.d. subgaussian entries [56, 52, 104, 37, 61]. One result on the

Rademacher vector is the following:
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Theorem 2.1 ([52]). Let d be a sufficiently large positive integer and X1, X2, . . .

be independent samples from the uniform distribution over the set {−1, 1}d ⊂ Rd.

Then, there exists an absolute constant c > 0 such that, for each integer n ≥
d(log d)2, we have

conv{±X1, . . . ,±Xn} ⊃ c
(√

log(n/d)Bd
2 ∩Bd

∞

)
with probability at least 1 − e−d. Here, Bd

2 is the Euclidean unit ball in Rd and

Bd
∞ = [−1, 1]d.

Although each of those results in literature was based on its specific assump-

tions on the distribution of X, Guédon et al. [60] found a possible way of treating

the results in a unified manner under some technical assumptions on X. They

introduced the floating body associated with X

K̃α(X) := {s ∈ Rd | P(⟨s,X⟩ ≥ 1) ≤ α}

to our context (the notation here is slightly changed from the original one), and ar-

gued that, under some assumptions onX, with high probability, conv{X1, . . . , Xn}
includes a constant multiple of the polar body of K̃α(X) with log(1/α) ∼ 1 +

log(n/d). Note that their main object of interest is the absolute convex hull, but

their results can be extended to the ordinary convex hull (see Guédon et al. [60,

Remark 1.7]).

Let us explain more formally. Firstly, for a set A ⊂ Rd, the polar body of A is

defined as

A◦ := {x ∈ Rd | ⟨a, x⟩ ≤ 1 for all a ∈ A}.

Secondly, we shall describe the assumptions used in Guédon et al. [60]. Let |||·|||
be a norm on Rd and γ, δ, r, R > 0 be constants. Their assumptions are as follows:

• (γ, δ) small-ball condition: P(|⟨t,X⟩| ≥ γ|||t|||) ≥ δ holds for all t ∈ Rd.

• Lr condition with constant R: E[|⟨t,X⟩|r]1/r ≤ R|||t||| holds for all t ∈ Rd.

Under these conditions, they proved the following assertion by using concentration

inequalities.
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Theorem 2.2 ([60]). Let X be a d-dimensional symmetric random vector that

satisfies the small-ball condition and Lr condition for a norm |||·||| and constants

γ, δ, r, R > 0. Let β ∈ (0, 1) and set α = (en/d)−β. Then, there exist a constant

c0 = c0(β, δ, r, R/γ) and an absolute constant c1 > 0 such that, for each integer

n ≥ c0d,

conv{X1, . . . , Xn} ⊃
1

2

(
K̃α(X)

)◦
holds with probability at least 1−2 exp(−c1n1−βdβ), where X1, X2, . . . are indepen-

dent copies of X.

Though computing
(
K̃α(X)

)◦
for individual X is not necessarily an easy task,

this gives us a unified understanding of existing results in terms of the polar of the

floating body K̃α(X). However, its use is limited due to technical assumptions. In

this chapter, we show that we can completely remove the assumptions in Theorem

2.2 and obtain a similar statement only with explicit constants (see Proposition

2.20 and Corollary 2.23, or the next section).

Finally, we add that this interior body of random polytopes or its radius is

recently reported to be essential in the robustness of sparse recovery [60] and the

convergence rate of greedy approximation algorithms [119, 32] when the data is

random.

2.1.3 Organization of the chapter

In this chapter, our aim is to derive general inequalities for pn,X and NX . The

main part of this chapter is Section 2.2 to 2.5. We first give general bounds of pn,X

without specific quantitative assumptions in Section 2.2, and present novel bounds

of pn,X uniformly determined by the Tukey depth αX in Section 2.3, which is the

primary contribution of this chapter. Section 2.4 then gives uniform bounds of

NX(E[X]) based on the moments of X, while the results on deterministic convex

bodies included in random polytopes are given in Section 2.5.

Let us give more detailed explanations of each section. Section 2.2 provides

generalization of the results of Wagner and Welzl [172], and we give generic bounds

of pn,X(θ) under a mild assumption pd,X(θ) = 0, which is satisfied with absolutely

continuous distributions as well as typical empirical distributions. Our main result

in Section 2.2 is as follows (Theorem 2.7):
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Theorem. Let X be an arbitrary d-dimensional random vector and θ ∈ Rd. If

pd,X(θ) = 0 holds, then, for any n ≥ m ≥ d+ 1, inequalities

pn,X(θ) ≤ 1− 1

2n−1

d−1∑
i=0

(
n− 1

i

)
,

1

2n−m

(
n

d+1

)(
m
d+1

)pm,X(θ) ≤ pn,X(θ) ≤
(

n
d+1

)(
m
d+1

)pm,X(θ)

hold.

In Section 2.3, we introduce pεn,X and αε
X for an ε ≥ 0, which are “ε-relaxation”

of pn,X and αX in that p0n,X = pn,X and α0
X = αX hold. For this generalization,

we prove that the convergence of pεn,X → 1 is uniformly evaluated in terms of αε
X

(Proposition 2.24), and obtain the following result (Theorem 2.12):

Theorem. Let X be an arbitrary d-dimensional random vector and θ ∈ Rd. Then,

for each ε ≥ 0 and positive integer n ≥ 3d/αε
X(θ), we have

pεn,X(θ) > 1− 1

2d
.

Although we do not define ε-relaxation version here, we can see from the case

ε = 0 that, for example, NX(θ) ≤ ⌈3d/αX(θ)⌉ generally holds (see also Theorem

2.13).

In Section 2.4, we derive upper bounds of NX without relying on αX , which

may also be unfamiliar. By using the result in the preceding section and the Berry–

Esseen theorem, we show some upper bounds of NX in terms of the (normalized)

moments of X as follows (Theorem 2.17):

Theorem. Let X be a centered d-dimensional random vector with nonsingular

covariance matrix V . Then,

NX ≤ 17d

(
1 +

9

4
sup

c∈Rd,∥c∥2=1

E
[∣∣c⊤V −1/2X

∣∣3]2)
holds.

Here, ∥ · ∥2 denotes the usual Euclidean norm on Rd. Note that the right-hand

side can easily be replaced by the moment of ∥V −1/2X∥2 (see also Corollary 2.18).

Section 2.5 asserts thatKα(X) := {θ ∈ Rd | αX(θ) ≥ α} (α ∈ (0, 1)) is a canon-

ical deterministic body included in the random convex polytope conv{X1, . . . , Xn}.
We see in Proposition 2.20 that this body is essentially equivalent to the

(
K̃α(X)

)◦
mentioned in Section 2.1.2, and prove the following (Theorem 2.22):
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Theorem. Let X be an arbitrary symmetric d-dimensional random vector, and

let α, δ, ε ∈ (0, 1). If a positive integer n satisfies

n ≥ 2d

α
max

{
log(1/δ)

d
+ log

1

ε
, 6

}
,

then we have, with probability at least 1− δ,

conv{X1, . . . , Xn} ⊃ (1− ε)Kα(X),

where X1, X2, . . . are independent copies of X.

A consequence of this theorem (Corollary 2.23) enables us to remove the technical

assumption of Theorem 2.2.

Note that all these results give explicit constants with reasonable magnitude,

which is because of our combinatorial approach typically seen in the proof of

Proposition 2.9 and Proposition 2.14. After these main sections, we give some

implications of our results on motivational examples in Section 2.6, and we finally

give our conclusion in Section 2.7.

2.2 General bounds of pn,X

In this section, we denote pn,X(0) by only pn,X . As we always have pn,X(θ) =

pn,X−θ(0), it suffices to treat pn,X(0) unless we consider properties of pn,X as a

function.

Let us start with easier observations. Proposition 2.3 and Proposition 2.4 are

almost dimension-free. Firstly, as one expects, the following simple assertion holds.

Proposition 2.3. For an arbitrary d-dimensional random vector X with E[X] = 0

and P(X ̸= 0) > 0, we have

0 < pd+1,X < pd+2,X < · · · < pn,X < · · · → 1.

It still holds if we only assume pn,X > 0 for some n instead of E[X] = 0.

The next one includes a little quantitative relation among pn,X and NX .
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Proposition 2.4. For an arbitrary d-dimensional random vector X and integers

n ≥ m ≥ d+ 1,

pn,X ≤
(
n

m

)
pm,X , NX ≤

n

pn,X

hold.

Remark 2.1. Although the estimate NX ≤ n
pn,X

looks loose in general, NX ≤ 2d
p2d,X

is a sharp uniform bound for each dimension d up to a universal constant. Indeed,

in Example 2.33 and Example 2.34 (Appendix 2.C), we prove that

lim
ε↘0

sup
X:d-dimensional

p2d,X<ε

NXp2d,X
2d

≥ 1

4

holds for each positive integer d. In contrast, the other inequality pn,X ≤
(
n
m

)
pm,X

is indeed very loose and drastically improved in Proposition 2.6.

In Proposition 2.3 and 2.4, we have never used the information of dimension

except for observing pd+1,X > 0 in Proposition 2.3. However, when the distribution

of X has a certain regularity, there already exists a strong result that reflects the

dimensionality.

Theorem 2.5 ([172]). When the distribution of X is absolutely continuous with

respect to the Lebesgue measure on Rd,

pn,X ≤ 1− 1

2n−1

d−1∑
i=0

(
n− 1

i

)
=

1

2n−1

n−d−1∑
i=0

(
n− 1

i

)
(2.2)

holds for each n ≥ d+ 1. The equality is attained if and only if the distribution is

balanced, i.e., P(⟨c,X⟩ ≤ 0) = 1/2 holds for all the unit vectors c ∈ Rd.

Wagner and Welzl [172] derived this result by showing the existence of a non-

negative continuous function hX on [0, 1] such that hX(t) = hX(1 − t), hX(t) ≤
d+1
2

min{td, (1− t)d} and

pn,X = 2

(
n

d+ 1

)∫ 1

0

tn−d−1hX(t) dt. (2.3)

We shall provide an intuitive description of the function hX . Let us consider

a one-dimensional i.i.d. sequence Y1, Y2, . . . (also independent from X1, X2, . . .),
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where each Yi follows the uniform distribution over (0, 1). If we consider the (d+1)-

dimensional random vectors X̃i := (Xi, Yi), then, for each n, 0 ∈ conv{X1, . . . , Xn} ⊂
Rd is obviously equivalent to the condition that the (d+1)-th coordinate axis (de-

noted by ℓ) intersects the convex set C̃n := conv{X̃1, . . . , X̃n} ⊂ Rd+1.

Under a certain regularity condition, there are exactly two facets (a d-dimensional

face of C̃n) respectively composed of a (d + 1)-point subset of {X̃1, . . . , X̃n} that
intersects ℓ. Let us call them top and bottom, where the top is the facet whose

intersection with ℓ has the bigger (d + 1)-th coordinate. Let us define another

random variable H as

• 0 if ℓ does not intersect conv{X̃1, . . . , X̃d+1},

• otherwise the probability that 0 and X̃d+2 are on the same side of the hy-

perplane supporting conv{X̃1, . . . , X̃d+1} (conditioned by X̃1, . . . , X̃d+1).

Then, for a given realization of {X̃1, . . . , X̃n}, the probability that conv{X̃1, . . . , X̃d+1}
becomes the top of C̃n is Hn−d−1. As there are

(
n

d+1

)
choice of (equally) possible

“top,” we can conclude that

pn,X = P
(
ℓ intersects C̃n

)
=

(
n

d+ 1

)
P
(
{X1, . . . , Xd+1} is the top of C̃n

)
=

(
n

d+ 1

)
E
[
Hn−d−1

]
.

A similar observation shows pn,X =
(

n
d+1

)
E
[
(1−H)n−d−1, H > 0

]
, and so we can

understand hX as the density of a half mixture of H and 1 − H over {H > 0}.
This has been a simplified explanation of hX . For more rigorous arguments and

proofs, see Wagner and Welzl [172].

By using this “density” function, we can prove the following interesting rela-

tionship.

Proposition 2.6. Let X be an Rd-valued random variable with an absolutely con-

tinuous distribution. Then, for any integers n ≥ m ≥ d+ 1, we have

1

2n−m

n(n− 1) · · · (n− d)
m(m− 1) · · · (m− d)

pm,X ≤ pn,X ≤
n(n− 1) · · · (n− d)
m(m− 1) · · · (m− d)

pm,X . (2.4)
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Proof. The right inequality is clear from (2.3). For the left inequality, by using

hX(t) = hX(1− t), we can rewrite (2.3) as

pn,X =

(
n

d+ 1

)∫ 1

0

tn−d−1(hX(t) + hX(1− t)) dt

=

(
n

d+ 1

)∫ 1

0

(tn−d−1 + (1− t)n−d−1)hX(t) dt.

We can prove for a ≥ b ≥ 0 that ta+(1−t)a

tb+(1−t)b
attains its minimum at t = 1/2, e.g., by

using the method of Lagrange multipliers. Accordingly, we obtain

pn,X(
n

d+1

) =

∫ 1

0

(tn−d−1 + (1− t)n−d−1)hX(t) dt

≥ 2m−n

∫ 1

0

(tm−d−1 + (1− t)m−d−1)hX(t) dt = 2m−n pm,X(
m
d+1

) ,
which is equivalent to the inequality to prove.

Remark 2.2. The left inequality has nothing to say when n and m are large

so 2n−m is faster than (n/m)d. However, for small n and m, it works as a nice

estimate. Consider the case n = 2d and m = d+1. Then, the proposition and the

usual estimate for central binomial coefficients yield

p2d,X ≥
1

2d−1

(
2d

d+ 1

)
pd+1,X ≥

1

2d−1

(
d

d+ 1

22d

2
√
d

)
pd+1,X =

2d
√
d

d+ 1
pd+1,X .

This is comparable to the symmetric case, where pd+1,X = 1/2d and p2d,X = 1/2

hold.

The right inequality is an obvious improvement of the dimension-free estimate

given in Proposition 2.4.

We next generalize these results to general distributions including discrete ones

such as empirical measures. However, at least we have to assume pd,X = 0. Note

that it is weaker than the condition that X has an absolutely continuous distribu-

tion, as it is satisfied with usual empirical measures (see Proposition 2.8).

From smoothing arguments, we obtain the following generalization of inequal-

ities (2.2) and (2.4).
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Theorem 2.7. Let X be an arbitrary d-dimensional random vector with pd,X = 0.

Then, for any n ≥ m ≥ d+ 1, the following inequalities hold:

pn,X ≤ 1− 1

2n−1

d−1∑
i=0

(
n− 1

i

)
,

1

2n−m

(
n

d+1

)(
m
d+1

)pm,X ≤ pn,X ≤
(

n
d+1

)(
m
d+1

)pm,X .

We should remark that pd,X = 0 is naturally satisfied with (centered) empirical

measures.

Proposition 2.8. Let µ be an absolutely continuous probability distribution on Rd

and Y1, Y2, . . . be an i.i.d. samplings from µ. Then, with probability one, for each

M ≥ d+ 1, distributions

µM :=
1

M

M∑
i=1

δYi
and µ̃M :=

1

M

M∑
i=1

δYi− 1
M

∑M
j=1 Yj

satisfy pd,µM
= pd,µ̃M

= 0. We also have pd,µM
= 0 for 1 ≤M ≤ d; it only requires

pd,µ = 0 rather than absolute continuity.

2.3 Uniform bounds of pεn,X via the relaxed Tukey

depth

We have not used any quantitative assumption on the distribution of X in the

previous section. In this section, however, we shall evaluate pn,X and its ε-

approximation version by using the Tukey depth and its relaxation. We shall

fix an arbitrarily real inner product ⟨·, ·⟩ on Rd, and use the induced norm ∥ · ∥
and the notation dist(x,A) := infa∈A ∥x− a∥ for an x ∈ Rd and A ⊂ Rd.

For a d-dimensional random vectorX and θ ∈ Rd, define an ε-relaxation version

of the Tukey depth by

αε
X(θ) := inf

∥c∥=1
P(⟨c,X − θ⟩ ≤ ε) .

We also define, for a positive integer n,

pεn,X(θ) := P(dist(θ, conv{X1, . . . , Xn}) ≤ ε) ,

where X1, . . . , Xn are independent copies of X. Note that pn,X = p0n,X . Although

we regard them as functions of θ in Section 2.5, we only treat the case θ = 0 and

omit the argument θ in this section.
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Proposition 2.9. Let X be a d-dimensional random vector with an absolutely

continuous distribution with respect to the Lebesgue measure. Then, for each ε ≥ 0

and positive integer n ≥ d+ 1, we have

1− pεn,X ≤
n(1− αε

X)

n− d
(1− pεn−1,X).

Before going into details of quantitative results, we note the following equiva-

lence of the positivity of αε
X and pεn,X as an immediate consequence of this assertion.

Proposition 2.10. Let X be an arbitrary d-dimensional random vector and let

ε ≥ 0. Then, pεn,X > 0 for some n ≥ 1 implies αε
X > 0. Reciprocally, αε

X > 0

implies pεn,X > 0 for all n ≥ d+ 1.

Let us prove Proposition 2.9. We give its combinatorial proof here since it is

the primary technical contribution of this chapter.

Proof of Proposition 2.9. Let m ≥ d be an integer. We first consider the quantity

qm := 1 − pεm,X . Let Am be the event given by dist(0, conv{Xi}mi=1) > ε. Also,

let Bm be the event that {X1, . . . , Xm} is in general position. Then, we have

P(Bm) = 1 and qm = P(Am ∩Bm).

Under the event Am ∩ Bm, we have a unique point hm ∈ conv{Xi}mi=1 that

minimizes ∥hm∥. Let Hm be the open halfspace defined by Hm := {x ∈ Rd |
⟨x− hm, hm⟩ > 0}. Then, the boundary ∂Hm is the hyperplane going through hm

and perpendicular to hm. From the general-position assumption, there are at most

d points in {Xi}mi=1∩∂Hm. Let Im be the set of indices i satisfying Xi ∈ ∂Hm, then

Im is a random subset of {1, . . . ,m} with 1 ≤ |Im| ≤ d under the event Am ∩Bm.

Note also that Xi ∈ Hm for each i ∈ {1, . . . ,m} \ Im. For simplicity, define Im = ∅
for the event (Am ∩Bm)

c.

As Im is a random set determined uniquely, we can decompose the probability

P(Am ∩Bm) as follows by symmetry:

qm = P(Am ∩Bm) =
d∑

k=1

(
m

k

)
P(Im = {1, . . . , k}) .

Hence, we want to evaluate the probability P(Im = {1, . . . , k}). Note that we can

similarly define hk as the unique point in conv{Xi}ki=1 that minimizes the distance
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from the origin. Then, Hk is the open halfspace Hk = {x ∈ Rd | ⟨x− hk, hk⟩ > 0}.
Then, we have

P(Im = {1, . . . , k}) = E

[
1{∥hk∥>ε, conv{Xi}ki=1⊂∂Hk}

m∏
j=k+1

P
(
Xj ∈ Hk | {Xi}ki=1

)]
= E

[
1{∥hk∥>ε, conv{Xi}ki=1⊂∂Hk}P

(
X ′ ∈ Hk | {Xi}ki=1

)m−k
]
,

where X ′ is a copy of X independent from X1, X2, . . .. As P
(
X ′ ∈ Hk | {Xi}ki=1

)
≤

1− αε
X under the event {∥hk∥ > ε, conv{Xi}ki=1 ⊂ ∂Hk}, we have

P(Im+1 = {1, . . . , k}) = E
[
1{∥hk∥>ε, conv{Xi}ki=1⊂∂Hk}P

(
X ′ ∈ Hk | {Xi}ki=1

)m+1−k
]

≤ (1− αε
X)P(Im = {1, . . . , k}) .

Therefore, we have

qm+1 =
d∑

k=1

(
m+ 1

k

)
P(Im+1 = {1, . . . , k})

=
d∑

k=1

m+ 1

m+ 1− k

(
m

k

)
(1− αε

X)P(Im = {1, . . . , k})

≤ (m+ 1)(1− αε
X)

m+ 1− d
qm.

By letting n = m+ 1, we obtain the conclusion.

If we define gd,n(α) for α ∈ [0, 1] by gd,n := 1 for n = 1, . . . , d and

gd,n(α) := min

{
1,
n(1− α)
n− d

gd,n−1(α)

}
(2.5)

for n = d+ 1, d+ 2, . . ., we clearly have 1− pεn,X ≤ gd,n(α
ε
X) from Proposition 2.9

for a d-dimensional X with density. We can actually generalize this to any X.

Lemma 2.11. Let X be an arbitrary d-dimensional random vector. Then, for

each ε ≥ 0 and positive integer n, we have 1− pεn,X ≤ gd,n(α
ε
X).

For a special choice n = ⌈3d/α⌉, we obtain the following main result from a

concrete estimate of gd,n(α).
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Theorem 2.12. Let X be an arbitrary d-dimensional random vector. Then, for

each ε ≥ 0 and positive integer n ≥ 3d/αε
X , we have

pεn,X > 1− 1

2d
.

We also know the following assertion as a consequence of Theorem 2.12.

Theorem 2.13. Let X be an arbitrary d-dimensional random vector. Then, we

have
1

2αX

≤ NX ≤
⌈
3d

αX

⌉
.

Proof. The right inequality is an immediate consequence of Theorem 2.12. To

prove the left one, let n be a positive integer satisfying 1
2n

> αX . Then, there

exists a vector c ∈ Rd\{0} such that P(⟨c,X⟩ ≤ 0) < 1
2n
. Then, for X1, X2, . . . , Xn

(i.i.d. copies of X), we have

pn,X = P(0 ∈ conv{X1, . . . , Xn}) ≤ P

(
n⋃

i=1

{⟨c,Xi⟩ ≤ 0}

)
≤ nP(⟨c,X⟩ ≤ 0) <

1

2
.

Therefore, NX must satisfy 1
2NX
≤ αX .

Remark 2.3. The above theorem states that 1/2 ≤ αXNX ≤ 3d + 1. This

evaluation for αXNX is indeed tight up to a universal constant. For example,

if X is a d-dimensional standard Gaussian, we have αX = 1
2
and NX = 2d, so

αXNX = d. Moreover, for a small ε ∈ (0, 1), if we consider X = (X1, . . . , Xd) such

that

• P
(
Xd = 1

)
= ε and P

(
Xd = −1

)
= 1− ε,

• (X1, . . . , Xd−1)|Xd=1 is a standard Gaussian,

• X1 = · · · = Xd−1 = 0 if Xd = −1,

then we can see αX = ε/2 and NX = Ω((d− 1)/ε) as (0, . . . , 0, 1) has to be in the

convex hull of samples to include the origin in it. Hence the bound αXNX = O(d)
is sharp even for a small αX .

On the contrary,

inf
X:d-dimensional

αXNX ≤ 2

holds (even when requiring pd,X = 0) for each positive integer d from Example

2.33 and Example 2.34 in the appendix (Section 2.C).
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We complete this section with a stronger version of Proposition 2.9 only for

ε = 0. Indeed, by summing up the following inequality, we can immediately obtain

the ε = 0 case in Proposition 2.9.

Proposition 2.14. Let X be a d-dimensional random vector with an absolutely

continuous distribution with respect to the Lebesgue measure. Then,

pn+1,X − pn,X ≤
n(1− αX)

n− d
(pn,X − pn−1,X)

holds for all n ≥ d+ 1.

2.4 Bounds of NX via Berry–Esseen theorem

In this section, we discuss moment-based bounds of NX for a centered X, which

are of particular interest from the randomized measure reduction (see Section 1.1).

Although Theorem 2.13 has strong generality, we have little information about

the Tukey depth αX in many situations. Indeed, approximately computing the

Tukey depth itself is an important and difficult problem [36, 184]. However, if we

limit the argument to a centered X, we can obtain various moment-based bounds

as shown below. In this section, we use the usual Euclidean norm ∥ · ∥2 given by

∥x∥2 =
√
x⊤x for simplicity.

Let X be a d-dimensional centered random vector whose covariance matrix

V := E
[
XX⊤] is nonsingular. We also define V −1/2 as the positive-definite square

root of V −1. Then, for each unit vector c ∈ Rd (namely ∥c∥2 = 1), we have

E
[
(c⊤V −1/2X)2

]
= E

[
c⊤V −1/2XX⊤V −1/2c

]
= E

[
c⊤c
]
= 1, (2.6)

We have the following simple result for a bounded X.

Proposition 2.15. Let X be a centered d-dimensional random vector with non-

singular covariance matrix V . If ∥V −1/2X∥2 ≤ B holds almost surely for a positive

constant B, then we have

αX ≥
1

2B2
, NX ≤

⌈
6dB2

⌉
.
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Let us consider the unbounded case. The Berry–Esseen theorem evaluates the

speed of convergence in the central limit theorem [19, 48]. The following is a recent

result with an explicit small constant.

Theorem 2.16 ([95]). Let Y be a random variable with E[Y ] = 0, E[Y 2] = 1,

and E[|Y |3] < ∞, and let Y1, Y2, . . . be independent copies of Y . Also, let Z be a

one-dimensional standard Gaussian. Then, we have∣∣∣∣P(Y1 + · · ·+ Yn√
n

≤ x

)
− P(Z ≤ x)

∣∣∣∣ ≤ 0.4784E[|Y |3]√
n

for arbitrary x ∈ R and n ≥ 1.

We can apply the Berry–Esseen theorem for evaluating the probability P
(
c⊤Sn ≤ 0

)
from (2.6), where Sn is the normalized i.i.d. sum 1√

n
V −1/2(X1+ · · ·+Xn). By elab-

orating this idea, we obtain the following bound of NX .

Theorem 2.17. Let X be a centered d-dimensional random vector with nonsin-

gular covariance matrix V . Then, we have

NX ≤ 17d

(
1 +

9

4
sup

c∈Rd,∥c∥2=1

E
[∣∣c⊤V −1/2X

∣∣3]2) .
Remark 2.4. The bound in Theorem 2.17 is sharp up to a constant as a uni-

form bound in terms of E
[∣∣c⊤V −1/2X

∣∣3]. Indeed, if X is d-dimensional standard

Gaussian, then E
[∣∣c⊤V −1/2X

∣∣3] = 2
√
2√
π
holds for all ∥c∥2 = 1 while NX = 2d, so

sup
c∈Rd,∥c∥2=1

E
[∣∣c⊤V −1/2X

∣∣3]−2

NX =
π

4
d.

From Theorem 2.17, we also obtain several looser but more tractable bounds.

Corollary 2.18. Let X be a centered d-dimensional random vector with nonsin-

gular covariance matrix V . NX can be bounded as

NX ≤ 17d

(
1 +

9

4
min

{
E
[∥∥V −1/2X

∥∥3
2

]2
, E
[∥∥V −1/2X

∥∥4
2

]})
.
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Remark 2.5. In the order notation, the first bound in this corollary states

NX = O
(
dE
[∥∥V −1/2X

∥∥3
2

]2)
.

This estimate is also sharp up to O(d) factor in the sense that we can prove

sup

 NX

E
[
∥V −1/2X∥32

]2
∣∣∣∣∣∣∣

X is d-dimensional, E[X] = 0,

V = E
[
XX⊤] is nonsingular, E[∥∥V −1/2X

∥∥3
2

]
<∞

 ≥ 1

2

for each positive integer d. For proof of this fact, see Example 2.33 and Example

2.34 in the appendix (Section 2.C).

We finally remark that there are multivariate versions of the Berry–Esseen

theorem [182, 140] and we can use them to derive a bound of NX in a different

approach which does not use αX . However, their bounds only give the estimate

NX = O
(
d7/2E

[∥∥V −1/2X
∥∥3
2

]2)
, (2.7)

which is far worse than the bounds obtained in Theorem 2.17 and Corollary 2.18.

However, it is notable that this approach from multidimensional Berry–Esseen

formulas is applicable to non-identical Xi’s if the second and third moments are

uniformly bounded, while the combinatorial approach based on αX seems to be

fully exploiting the i.i.d. assumption. Therefore, we provide the details of this

alternative approach in the appendix (Section 2.B).

2.5 Deterministic interior body of random poly-

topes

For each α > 0, define a deterministic set defined by the level sets of Tukey depth

Kα(X) := {θ ∈ Rd | αX(θ) ≥ α}.

This set is known to be compact and convex [144]. We can also naturally generalize

this set for the ε-relaxation of Tukey depth, and the generalization also satisfies

the following:
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Proposition 2.19. Let X be a d-dimensional random vector. Then, for each ε ≥ 0

and α > 0, the set {θ ∈ Rd | αε
X(θ) ≥ α} is compact and convex, and satisfies

{θ ∈ Rd | αε
X(θ) ≥ α} ⊃ {θ ∈ Rd | dist(θ,Kα(X)) ≤ ε}.

Remark 2.6. Note that the inclusion stated in Proposition 2.19 can be strict.

For example, if X is a d-dimensional standard Gaussian, Kα(X) is empty for each

α > 1/2, but the ε-relaxation of Tukey depth can be greater than 1/2 for ε > 0.

From this proposition, we can naturally generalize the arguments given in

this section to the ε-relaxation case; natural interior bodies of ε-neighborhood

of conv{X1, . . . , Xn} are given by the ε-relaxation of Tukey depth. However, to

keep the notation simple, we only treat Kα(X) the interior body of the usual

convex hull in the following.

We next prove that the polar body
(
K̃α(X)

)◦
used in Guédon et al. [60],

which we have introduced in Section 2.1.2, is essentially the same as Kα(X) in

their setting, i.e., when X is symmetric. Recall that K̃α(X) is defined as

K̃α(X) = {s ∈ Rd | P(⟨s,X⟩ ≥ 1) ≤ α}.

Note that the following proposition is not surprising if we go back to the original

background of K̃α [150], where X is uniform from some deterministic convex set,

and recent research on its relation to the Tukey depth [124].

Proposition 2.20. Let X be a d-dimensional symmetric random vector. Then,

for each α ∈ (0, 1/2), we have

{θ ∈ Rd | αX(θ) > α} ⊂
(
K̃α(X)

)◦ ⊂ Kα(X).

We are going to prove the extension of Theorem 2.2 by finding a finite set

of points whose convex hull approximates Kα(X). The following statement is

essentially well-known [138, 10], but we give the precise statement and a brief

proof (Appendix 2.A.14) for completeness.

Proposition 2.21. Let K be a compact and convex subset of Rd such that K =

−K. Then, for each ε ∈ (0, 1), there is a finite set A ⊂ Rd such that

(1− ε)K ⊂ convA ⊂ K, |A| ≤
(
1 +

2

ε

)d

.
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Theorem 2.22. Let X be an arbitrary symmetric d-dimensional random vector,

and let α, δ, ε ∈ (0, 1). If a positive integer n satisfies

n ≥ 2d

α
max

{
log(1/δ)

d
+ log

1

ε
, 6

}
,

then we have, with probability at least 1− δ,

conv{X1, . . . , Xn} ⊃ (1− ε)Kα(X),

where X1, X2, . . . are independent copies of X.

Remark 2.7. Although the bound given in Theorem 2.22 requires n ≥ 12d/α, it

can be loosened for moderate δ and ε. For example, if we want to obtain a bound

for the case δ = ε = 1/2, then we can prove n ≥ 5d/α to be sufficient by using

the bound in Proposition 2.24. Moreover, we should note that we have used the

assumption that X is symmetric only to prove that Kα(X) is symmetric (so that

we can use Proposition 2.21). If we take a symmetric convex subset K ⊂ Kα(X),

we can prove a similar inclusion statement for K even for a nonsymmetric X.

If we want a generalized version of Theorem 2.2, we can prove the following:

Corollary 2.23. Let X be an arbitrary d-dimensional symmetric random vector.

Let β ∈ (0, 1) and set α = (en/d)−β. Then, there exists an absolute constant

c > 0.45 such that, for each integer n satisfying n ≥ (12eβ)1/(1−β)d, we have

conv{X1, . . . , Xn} ⊃
1

2
Kα(X)

with probability at least 1− exp(−ce−βn1−βdβ), where X1, X2, . . . are independent

copies of X.

2.6 Application

We discuss the implications of the results of this chapter in two parts. The first

part discusses the use of the bounds we gave on pn,X , while the second part gives

the implication of NX ’s bounds on the randomized cubature construction.
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2.6.1 Bounds of pn,X

Firstly, the inequality between pn,X and pm,X given in Proposition 2.6 provides the

inequality

p2d,X ≥
2d
√
d

d+ 1
pd+1,X (2.8)

as it is mentioned in Remark 2.2.

Measure reduction. Consider a discrete (probability) measure µ =
∑

x∈X wxδx

for a finite subset of X ⊂ Rd. In Cosentino et al. [34], randomized algorithms for

constructing a convex combination satisfying EX∼µ[X] =
∑d+1

i=1 λixi (xi ∈ X ),
whose existence is assured by Tchakaloff’s theorem [162, 12], are considered. As a

basic algorithm, the authors consider the following scheme:

(a.1) Randomly choose d points A = {x1, . . . , xd} from X .

(a.2) For each x ∈ X \A, determine if EX∼µ[X] ∈ conv(A∪{x}) or not, and finish

the algorithm and return A ∪ {x} if it holds.

(a.3) Go back to (a.1).

Although we can execute the decision for each x in (a.2) with O(d2) computational

cost with an O(d3) preprocessing for a fixed A, the overall expected computational

cost until the end of the algorithm is at least Ω(d2/pd+1,X) under some natural

assumption on µ (see Proposition 2.8).

However, we can also consider the following naive procedure:

(b.1) Randomly choose 2d points B = {x1, . . . , x2d} from X .

(b.2) Return B if EX∼µ[X] ∈ convB, and go back to (b.1) if not.

By using an LP solver with the simplex method we can execute (b.2) in (empiri-

cally) O(d3) time [133, 151]. Hence the overall computational cost can be heuristi-

cally bounded above by O(d3/p2d,X), which is faster than the former by Ω
(
d−3/22d

)
from the evaluation in (2.8). Note also that we have rigorously polynomial bounds

via other LP methods (e.g., an infeasible-interior-point method; [120]), and so the

latter scheme is preferable even in worst-case when the dimension d becomes large.
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Relation between two depths. We can also deduce an inequality between two

depth concepts in statistics. As mentioned in Introduction, for a random vector

X ∈ Rd, pd+1,X is called the simplicial depth whereas αX is the Tukey depth of

the origin with respect to X.

Naively, we have αX ≥ pn,X

n
for each n, so αX ≥ pd+1,X

d+1
holds. However, by

using (2.8) here, we obtain a sharper estimate

αX ≥
p2d,X
2d
≥ 1

2d

2d
√
d

d+ 1
pd+1,X ≥

2d−1

√
d(d+ 1)

pd+1,X .

In contrast, deriving a nontrivial upper bound of αX in terms of pd+1,X still seems

difficult.

2.6.2 Bounds of NX

Secondly, we give applications of the bounds of NX given in Section 2.4.

Random trigonometic cubature. Consider a d-dimensional random vector

X = (cos θ, . . . , cos dθ)⊤ ∈ Rd

for a positive integer d, where θ is a uniform random variable over (−π, π). Then,
from an easy computation, we have V := E

[
XX⊤] = 1

2
Id, and so we obtain

∥V −1/2X∥2 ≤ 2d almost surely. Therefore, from Proposition 2.15, we have NX ≤
1 + 12d2. This example is equivalent to a random construction of the so-called

Gauss–Chebyshev quadrature [114, Chapter 8]. Although we can have a bound for

the number of observations required in a random construction as above, concrete

constructions with fewer points are already known.

Deriving a bound for random construction of cubature without any known

deterministic construction, such as cubature on Wiener space [110, 68] with general

degree, which is more important, is addressed in the next chapter by using the

concept of hypercontractivity.
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Beyond naive cubature construction. Recall the cubature construction prob-

lem described in Section 1.1. We consider a random variable of the formX = f(Y ),

where Y is a random variable on some topological space X and f = (f1, . . . , fd)
⊤ :

X → Rd is a d-dimensional vector valued integrable function. Our aim is to find

points y1, . . . , yd+1 ∈ X and weights w1, . . . , wd+1 ≥ 0 whose total is one such that

E[f(Y )] =
d+1∑
j=1

wjf(yj). (2.9)

A naive algorithm proposed by Hayakawa [66] was to generate independent copies

Y1, Y2, . . . of Y and choose yj from these random samples. Without any knowledge

of NX , the algorithm would be of the form

(c.1) Take k = 2d.

(c.2) Randomly generate Yi up to i = k and determine if (2.9) can be satisfied

with yj ∈ {Yi}ki=1 by using an LP solver.

(c.3) If we find a solution, stop the algorithm. Otherwise, go to (c.2) after replacing

k with 2k.

This procedure ends at k ≤ 2NX(E[X]) with probability over half. We can then

heuristically estimate the computational cost by Θ(C(d,NX(E[X]))), where we

denote by C(d, n) the computational complexity of a linear programming problem

finding the solution of (2.9) from n sample points. Empirically, this is estimated

as Ω(d2n) or more when we use the simplex method [151].

However, our analysis onNX via the Berry–Esseen bound tells us the possibility

of an alternative (Algorithm 2.1).
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Algorithm 2.1 Randomized cubature construction for recombination

Input: An integer ℓ ≥ 2
Output: (w1, y1), . . . , (wn, yn) ∈ R≥0 × X satisfying

∑n
j=1wj = 1 and E[X] =∑n

j=1wjf(yj)
1: Initialize:
2: x1, . . . , xℓd, z1, . . . , zℓd : vectors in Rd, k ← 0
3: for i = 1, . . . , ℓd do
4: Sample Yi
5: xi ← f(Yi)
6: end for
7: while E[X] ̸∈ conv{x1, . . . , xℓd} do
8: for i = 1, . . . , ℓd do
9: zi ← 0 (as an Rd vector)

10: end for
11: for j = 2k, . . . , 2k+1 − 1 do
12: for i = 1, . . . , ℓd do
13: Sample Yjℓd+i

14: zi ← zi + 2−kf(Yjℓd+i)
15: end for
16: end for
17: for i = 1, . . . , ℓd do
18: xi ← (xi + zi)/2
19: end for
20: k ← k + 1
21: end while
22: Take xi1 , . . . , xid+1

and λ1, . . . , λd+1 such that E[X] =
∑d+1

m=1 λmxim by solving
an LP

23: Return (2−kλm, Yjℓd+im) for (j,m) ∈ {0, . . . , 2k − 1} × {1, . . . , d+ 1}

Although the pseudocode may seem a little long, this just uses ℓd random

vectors of the form n−1(X1 + · · ·+Xn) as the possible vertices of the convex com-

bination, which is used for deriving bounds of NX in Section 2.4. After executing

Algorithm 2.1, we can use any algorithm for deterministic measures (typically

called recombination; [103, 163, 111]) to obtain an actual d + 1 points cubature

rule, whose time complexity is rigorously bounded by O
(
kd3 + 2kd2

)
by using the

final value of k in the above algorithm.

As we can carry out Algorithm 2.1 within O
(
2kℓd2 + kC(d, ℓd)

)
, the overall

computational cost is O
(
kC(d, ℓd) + 2kℓd2

)
. Then we heuristically have the bound

30



O
(
kℓd3 + 2kℓd2

)
for a small ℓ. By using the numberN = 2kℓd, which is the number

of randomly generated copies of Y , this cost is rewritten as O(log(N/ℓd)ℓd3 +Nd).

As our bound for NX(E[X]) in Theorem 2.17 is applicable for this N because

of the use of Berry–Esseen type estimate (ℓ = 17 is used in the proof), we can

also give an estimate for this alternative algorithm. If the N is not as large

as Ω(dNX(E[X])) for an appropriate choice of ℓ, we indeed have a better scheme,

though the comparison itself may be a nontrivial problem in general. In any event,

the fact that we can avoid solving a large LP problem is an obvious advantage.

2.7 Concluding remarks

In this chapter, we have investigated inequalities regarding pn,X , NX and αX , which

is motivated by the fields of numerical analysis, data science, statistics and random

matrix. We generalized the existing inequalities for pn,X in Section 2.2. After

pointing out that the convergence rate of pn,X is determined by αX in Section 2.3

with introduction of ε-relaxation of both quantities, we proved that NX and 1/αX

are of the same magnitude up to an O(d) factor in Theorem 2.13. We also gave

estimates of NX based on the moments of X in Section 2.4 by using Berry–Esseen

type bounds. Although arguments have been based on whether a given vector

is included in the random convex polytope conv{X1, . . . , Xn}, in Section 2.4, we

extended our results to the analysis of deterministic convex bodies included in the

random convex hull, which immediately led to a technical improvement on a result

of the random matrix community. We finally discussed several implications of our

results on application in Section 2.6.

Appendix for Chapter 2

2.A Proofs

2.A.1 Proof of Proposition 2.3

Proof. For the proof of p2d,X > 0, see, e.g., Hayakawa [66]. From this and

Carathéodory’s theorem, we also have pd+1,X > 0. We clearly have pn+1,X ≥ pn,X

for each n ≥ d+ 1.
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The strict inequality also seems trivial, but we prove this for completeness.

Assume pn+1,X = pn,X for some n. This implies that 0 ̸∈ conv{Xi}ni=1 ⇒ 0 ̸∈
conv{Xi}n+1

i=1 holds almost surely. By symmetry, for any J ⊂ {1, . . . , n + 2} with
|J | = n+ 1, 0 ̸∈ conv{Xi}n+1

i=1 ⇒ 0 ̸∈ conv{Xi}i∈J holds almost surely. Therefore,

we have 0 ̸∈ conv{Xi}ni=1 ⇒ 0 ̸∈ conv{Xi}n+2
i=1 with probability one. By repeating

this argument, we obtain

0 ̸∈ conv{X1, . . . , Xn} =⇒ 0 ̸∈ conv{X1, . . . , Xn+d+1} =⇒ 0 ̸∈ conv{Xn+1, . . . , Xn+d+1}

with probability one, but this is only possible when P(0 ̸∈ conv{X1, . . . , Xn}) = 0

as pd+1,X > 0 and the variables Xn+1, . . . , Xn+d+1 are independent from the others.

This is of course impossible from the assumption P(X ̸= 0) > 0 (there exists a unit

vector c ∈ Rd such that P(⟨c,X⟩ > 0) > 0), so we finally obtain pn,X < pn+1,X .

Proving pn,X → 1 is also easy. From the independence, we have

pm(d+1),X = 1− P
(
0 ̸∈ conv{X1, . . . , Xm(d+1)}

)
≥ 1− P

(
m⋂
k=1

{0 ̸∈ conv{X(k−1)(d+1)+1, . . . , Xk(d+1)}}

)
= 1− (1− pd+1,X)

m → 1 (m→∞).

This leads to the conclusion combined with the monotonicity of pn,X .

Note that we have used the condition E[X] = 0 only to ensure pd+1 > 0. Hence

the latter statement readily holds from the same argument.

2.A.2 Proof of Proposition 2.4

Proof. Let M be the number of m-point subsets of {X1, . . . , Xn} whose convex

hull contains 0. Then, we have

E[M ] =
∑

J⊂{1,...,n}
|J |=m

P(0 ∈ conv{Xi}i∈J) =
(
n

m

)
pm,X .

As pn,X = P(M ≥ 1) ≤ E[M ], we obtain the first inequality.

For the second part, we carry out the following rough estimate: For the min-

imum integer k satisfying (1 − pn,X)
k ≤ 1/2, we have NX ≤ kn. If pn,X ≥ 1/2
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holds, then NX ≤ n immediately holds. Thus it suffices to prove k ≤
⌈
1−pn,X

pn,X

⌉
when pn,X < 1/2. Indeed, by the monotonicity of (1 + 1/x)x over x > 0, we have

(
1

1− pn,X

) 1−pn,X
pn,X

=

(
1 +

pn,X
1− pn,X

) 1−pn,X
pn,X

≥ 2, (∵ pn,X < 1/2)

so the conclusion follows.

2.A.3 Proof of Theorem 2.7

Proof. Let U be a uniform random variable over the unit ball of Rd which is inde-

pendent of X. Let also U1, U2 . . . be independent copies of U , which is independent

from X1, X2, . . .. We shall prove that limε↘0 pn,X+εU = pn,X for each n. Note that

the distribution of X + εU has the probability density function

f(x) =
1

V εd
P(∥X − x∥2 ≤ ε) ,

where V denotes the volume of the unit ball. Therefore, once we establish the

limit limε↘0 pn,X+εU = pn,X the statement of the theorem is clear.

From pd,X = 0, we know that

qX(δ) := P
(

inf
y∈conv{Xi}di=1

∥y∥ ≤ δ

)
→ 0, δ ↘ 0. (2.10)

For each n ≥ d+1, consider the event An := {0 ∈ conv{X1, . . . , Xn}}. If the closed
ε-ball centered at 0 is included in conv{X1, . . . , Xn}, then 0 is also contained in

conv{Xi+εUi}ni=1 as ∥εUi∥ ≤ ε for all i (more precisely, we can prove this by using

the separating hyperplane theorem). Therefore, by considering the facets of the

convex hull, we have

P

An ∩
⋂

J⊂{1,...,n}
|J |=d

{
inf

y∈conv{Xi}i∈J

∥y∥ ≥ ε

} ≤ P(0 ∈ conv{Xi + εUi}ni=1) = pn,X+εU .

33



By using (2.10), we have

pn,X+εU ≥ P(An)− P

 ⋃
J⊂{1,...,n}

|J |=d

{
inf

y∈conv{Xi}i∈J

∥y∥ < ε

}
≥ pn,X −

(
n

d

)
qX(ε)→ pn,X (ε↘ 0),

and so we obtain lim infε↘0 pn,X+εU ≥ pn,X .

On the other hand, if we have 0 ∈ conv{Xi+εUi}ni=1 and 0 ̸∈ conv{Xi}ni=1 at the

same time, then there exists J ⊂ {1, . . . , n} such that |J | = d and infy∈conv{Xi}i∈J
∥y∥ ≤

ε. Indeed, we can write 0 as a convex combination
∑n

i=1 λi(Xi + εUi) = 0, so∥∥∥∥∥
n∑

i=1

λiXi

∥∥∥∥∥ =

∥∥∥∥∥ε
n∑

i=1

λiUi

∥∥∥∥∥ ≤ ε
n∑

i=1

λi∥Ui∥ ≤ ε.

As 0 ̸∈ conv{Xi}ni=1, there is a facet within ε-distance from 0. Therefore, we obtain

P(0 ∈ conv{Xi + εUi}ni=1) ≤ P

An ∪
⋃

J⊂{1,...,n}
|J |=d

{
inf

y∈conv{Xi}i∈J

∥y∥ ≤ ε

} ,

and similarly, it follows that

pn,X+εU ≤ pn,X +

(
n

d

)
qX(ε) and lim sup

ε↘0
pn,X+εU ≤ pn,X .

Thus we finally obtain limε↘0 pn,X+εU = pn,X .

2.A.4 Proof of Proposition 2.8

Proof. For µM , it suffices to prove that with probability one there are no J ⊂
{1, . . . ,M} with |J | = d such that 0 ∈ conv{Yi}i∈J . This readily follows from the

absolute continuity of the original measure µ. The extension to the case µ satisfies

only pd,µ = 0 is immediate.

For the centered version µ̃M , what to prove is that with probability one there

are no J ⊂ {1, . . . ,M} with |J | = d such that 1
M

∑M
i=1 Yj ∈ conv{Yi}i∈J . Suppose

this occurs for some J . Then, we have that 1
M−d

∑
i ̸=J Yi is on the affine hull

34



of {Yi}i∈J . However, as {Yi}i ̸∈J is independent from {Yi}i∈J for a fixed J , this

probability is zero again from the absolute continuity of µ. Therefore, we have the

desired conclusion.

2.A.5 Proof of Proposition 2.10

Proof. If dist(0, conv{Xi}ni=1) ≤ ε, there exists a point x ∈ conv{Xi}ni=1 with

∥x∥ ≤ ε. Then, for each c ∈ Rd with ∥c∥ = 1, we have ⟨c, x⟩ ≤ ε and so ⟨c,Xi⟩ ≤ ε

for at least one i ∈ {1, . . . , n}. Hence we have a uniform evaluation

P(⟨c,X⟩ ≤ ε) =
1

n

n∑
i=1

P(⟨c,Xi⟩ ≤ ε)

≥ 1

n
P

(
n⋃

i=1

{⟨c,Xi⟩ ≤ ε}

)
≥ 1

n
P(dist(0, conv{Xi}ni=1) ≤ ε) ,

and the first assertion follows.

For the latter, if αε
X is positive, we have pεn,X > 0 for a sufficiently large n

from Proposition 2.9. Finally, Carathéodory’s theorem yields the positivity for all

n ≥ d+ 1.

2.A.6 Proof of Lemma 2.11

Proof. Note first that gd,n(α) is non-increasing with respect to α ∈ [0, 1]. Let X̃

be a d-dimensional random vector such that ∥X − X̃∥ ≤ δ for some δ > 0. Then,

for an arbitrary c ∈ Rd with ∥c∥ = 1, we have

⟨c, X̃⟩ ≤ ⟨c,X⟩+ δ,

so P(⟨c,X⟩ ≤ ε) ≤ P(⟨c, X̃⟩ ≤ ε+ δ). Hence we have αε
X ≤ αε+δ

X̃
.

Consider generating i.i.d. pairs (X1, X̃1), . . . , (Xn, X̃n) that are copies of (X, X̃).

Then, for each x ∈ conv{Xi}ni=1, there is a convex combination such that x =∑n
i=1 λiXi with λi ≥ 0 and

∑n
i=1 λi = 1. Then, we have∥∥∥∥∥x−

n∑
i=1

λiX̃i

∥∥∥∥∥ ≤
n∑

i=1

λi∥Xi − X̃i∥ ≤ δ.
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It means that infy∈conv{X̃i}ni=1
∥x− y∥ ≤ δ holds for every x ∈ conv{Xi}ni=1, and we

can deduce that pε+2δ
n,X ≥ pε+δ

n,X̃
holds.

In particular, we can choose X̃ having density, so that we have 1 − pε+δ
n,X ≤

gd,n(α
ε+δ

X̃
). Therefore, from the monotonicity of gd,n, we have

1− pε+2δ
n,X ≤ 1− pε+δ

n,X̃
≤ gd,n(α

ε+δ

X̃
) ≤ gd,n(α

ε
X).

As δ > 0 can be taken arbitrarily, we finally obtain

1− pεn,X ≤ gd,n(α
ε
X)

by letting δ → 0. The δ-relaxation technique used in this proof is a big advantage

of introducing pεn,X extending pn,X .

2.A.7 Proof of Theorem 2.12

First, from Lemma 2.11, we obtain the following general bound.

Proposition 2.24. Let X be an arbitrary d-dimensional random vector. Then,

for each ε ≥ 0 and positive integer n ≥ d/αε
X , we have

1− pεn,X ≤
(
nαε

X

d
exp

{(
1

αε
X

log
1

1− αε
X

)(
1 + αε

X −
nαε

X

d

)})d

.

Proof. From Lemma 2.11, it suffices to prove that

gd,n(α) ≤
(
nα

d
exp

{(
1

α
log

1

1− α

)(
1 + α− nα

d

)})d

(2.11)

holds for each α ∈ (0, 1) and n ≥ d/α. From the definition of gd,n (see (2.5)), if

we set n0 := ⌈d/α⌉, then we have

gd,n(α) ≤
n(n− 1) · · ·n0

(n− d)(n− d− 1) · · · (n0 − d)
(1− α)n−n0+1gd,n0−1(α)

≤ n(n− 1) · · · (n− d+ 1)

(n0 − 1)(n0 − 2) · · · (n0 − d)
(1− α)n−n0+1

≤
(

n

n0 − d

)d

(1− α)n−n0+1.
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As we know d/α ≤ n0 < d/α+ 1 by definition, we have

gd,n(α) ≤
(

n

d/α− d

)d

(1− α)n−
d
α =

(nα
d

)d
(1− α)n−

d
α
−d.

This is indeed the desired inequality (2.11).

Remark 2.8. As 1
α
log 1

1−α
≥ 1 holds on (0, 1) for n ≥ (1+α)d

α
, the bound (2.11)

yields a looser but more understandable variant

gd,n(α) ≤
(nα
d

exp
(
1 + α− nα

d

))d
.

Note that we have a trivial lower bound of 1− pεn,X ≥ (1− αε
X)

n, which is proven

by fixing a separating hyperplane between the origin and sample points.

By calculating the bound in Proposition 2.24 for a specific choice of n = ⌈3d/α⌉,
we can prove Theorem 2.12 as follows.

Proof of Theorem 2.12. From Proposition 2.24, it suffices to prove

3 exp

{(
1

α
log

1

1− α

)
(α− 2)

}
<

1

2
(2.12)

for all α ∈ (0, 1). If we let f(x) = x−2
x

log 1
1−x

for x ∈ (0, 1), then we have

f ′(x) =
1

x2

(
2 log

1

1− x
− x(2− x)

1− x

)
=

1

x2

(
2 log

1

1− x
+ (1− x)− 1

1− x

)
.

If we set t := log 1
1−x

, t takes positive reals and we have

2 log
1

1− x
+ (1− x)− 1

1− x
= 2t+ e−t − et = 2(t− sinh t) < 0.

Therefore, it suffices to consider the limit α ↘ 0. In this limit, the left-hand side

of (2.12) is equal to 3e−2, which is smaller than 1/2 since e >
√
6 holds.

2.A.8 Proof of Proposition 2.14

Proof. First, observe that pn+1,X−pn,X = P(0 ∈ conv{X1, . . . , Xn+1} \ conv{X1, . . . , Xn})
for n ≥ d+1 and independent copiesX1, X2, . . . ofX. Assume 0 ∈ conv{X1, . . . , Xn+1}\
conv{X1, . . . , Xn} holds and no d + 1 points of {0, X1, . . . , Xn+1} lie on the same
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hyperplane (the latter is satisfied almost surely as X is absolutely continuous).

Then, there exists an expression such that

0 =
n+1∑
i=1

λiXi,

n+1∑
i=1

λi = 1, λi ≥ 0.

Here 0 < λn+1 < 1 must hold as 0 ̸∈ conv{X1, . . . , Xn} and Xn+1 ̸= 0. Therefore,

we can rewrite
1

1− λn+1

n∑
i=1

λiXi = −
λn+1

1− λn+1

Xn+1

and this left-hand side is a convex combination of {X1, . . . , Xn}. Therefore, the

line ℓ passing through Xn+1 and 0 intersects conv{X1, . . . , Xn} after 0 (if directed

from Xn+1 to 0). Also, ℓ never intersects conv{X1, . . . , Xn} before 0. Indeed, if

we have λXn+1 ∈ conv{X1, . . . , Xn} for some λ > 0, then

0 ∈ conv

{
λXn+1,−

λn+1

1− λn+1

Xn+1

}
⊂ conv{X1, . . . , Xn}

holds and it contradicts the assumption.

Hence, we can define the first hitting point of ℓ and conv{X1, . . . , Xn} after

0. More formally, let P be the minimum-normed point in ℓ ∩ conv{X1, . . . , Xn}.
Then, by the general-position assumption, there exists a unique J ⊂ {1, . . . , n}
with |J | = d such that P ∈ conv{Xi}i∈J (more strongly, P is in the relative interior

of conv{Xi}i∈J). In other words, conv{Xi}i∈J is the unique facet which intersects

ℓ first. Then, there exists a unique normal vector cJ that defines the hyperplane

supporting {Xi}i∈J , i.e., ⟨cJ , Xi⟩ = 1 for each i ∈ J . Since ⟨cJ , P ⟩ = 1 also holds,

we have ⟨cJ , Xn+1⟩ < 0. We can also prove ⟨cJ , Xi⟩ > 1 for each i ∈ {1, . . . , n}\J .
Indeed, if we have ⟨cJ , Xj⟩ < 1 for some j ∈ {1, . . . , n} \ J , then there are interior

points of conv{Xi}i∈J∪{j} that belongs to ℓ and this contradicts the minimality of

the norm of P .

Therefore, for a fixed J ⊂ {1, . . . , n} with |J | = d, the probability that 0 ∈
conv{X1, . . . , Xn+1} \ conv{X1, . . . , Xn} holds and conv{Xi}i∈J becomes the first
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facet intersecting ℓ after 0 is, from the independence,

E

P(0 ∈ conv{Xi}i∈J∪{n+1} | {Xi}i∈J
) ∏
j∈{1,...,n}\J

P(⟨cJ , Xj⟩ > 1 | {Xi}i∈J)


= E

[
P
(
0 ∈ conv{Xi}i∈J∪{n+1} | {Xi}i∈J

)
P(⟨cJ , X ′⟩ > 1 | {Xi}i∈J)n−d

]
,

where X ′ is a copy of X independent from {Xi}i≥1. By symmetry, this J is chosen

with equal probability given 0 ∈ conv{X1, . . . , Xn+1} \ conv{X1, . . . , Xn} (almost

surely without overlapping). Hence, we obtain

pn+1,X − pn,X

=

(
n

d

)
E
[
P(0 ∈ conv{X1, . . . , Xd+1} | {Xi}i∈I)P(⟨cI , X ′⟩ > 1 | {Xi}i∈I)n−d

]
,

where I = {1, . . . , d}. Observe that this representation is still valid for n = d.

From the definition of αX , we have P(⟨cI , X ′⟩ > 1 | {Xi}i∈I) ≤ 1 − αX , so finally

obtain, for n ≥ d+ 1,

pn+1,X − pn,X

=

(
n

d

)
E
[
P(0 ∈ conv{X1, . . . , Xd+1} | {Xi}i∈I)P(⟨cI , X ′⟩ > 1 | {Xi}i∈I)n−d

]
≤ (1− αX)

(
n

d

)
E
[
P(0 ∈ conv{X1, . . . , Xd+1} | {Xi}i∈I)P(⟨cI , X ′⟩ > 1 | {Xi}i∈I)n−1−d

]
= (1− αX)

(
n
d

)(
n−1
d

)(pn,X − pn−1,X)

=
n(1− αX)

n− d
(pn,X − pn−1,X).

This is the desired inequality.

2.A.9 Proof of Proposition 2.15

Proof. For a one-dimensional random variable Y with E[Y ] = 0, E[Y 2] = 1 and

|Y | ≤ B, we have

BP(Y ≤ 0) ≥ E[−min{Y, 0}] = 1

2
E[|Y |]
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and so

P(Y ≤ 0) ≥ E[|Y |]
2B

≥ E[|Y |2]
2B2

=
1

2B2
.

By observing this inequality for each Y = c⊤V −1/2X with ∥c∥2 = 1, we obtain the

bound of αX . The latter bound then follows from Theorem 2.13.

2.A.10 Proof of Theorem 2.17

Proof. Let n be an integer satisfying

n ≥ 9

4
sup

c∈Rd,∥c∥2=1

E
[∣∣c⊤V −1/2X

∣∣3]2 .
Then, for an arbitrary ∥c∥2 = 1, from Theorem 2.16, we have

P
(
c⊤V −1/2(X1 + · · ·+Xn)

n
≤ 0

)
= P

(
c⊤V −1/2(X1 + · · ·+Xn)√

n
≤ 0

)
≥ 1

2
− 2

3
· 0.48 =

9

50
,

where X1, X2, . . . are independent copies of X. Hence αn−1(X1+···+Xn) ≥ 9/50 holds.

Then we can use Theorem 2.13 to obtain

Nn−1(X1+···+Xn) ≤
⌈
50

9
· 3d
⌉
≤ 17d.

Since NX ≤ nNn−1(X1+···+Xn) holds, we have

NX ≤ 17d

(
1 +

9

4
sup

c∈Rd,∥c∥2=1

E
[∣∣c⊤V −1/2X

∣∣3]2) ,
which is the desired conclusion.

2.A.11 Proof of Corollary 2.18

Proof. From Theorem 2.17, it suffices to prove

E
[∣∣c⊤V −1/2X

∣∣3]2 ≤ E
[∥∥V −1/2X

∥∥3
2

]2
, E
[∥∥V −1/2X

∥∥4
2

]
for each unit vector c ∈ Rd. The first bound is clear from∣∣c⊤V −1/2X

∣∣ ≤ ∥c∥2 ∥∥V −1/2X
∥∥
2
=
∥∥V −1/2X

∥∥
2
.
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The second bound can also be derived as

E
[∣∣c⊤V −1/2X

∣∣3]2 ≤ E
[∣∣c⊤V −1/2X

∣∣2]E[∣∣c⊤V −1/2X
∣∣4] = E

[∣∣c⊤V −1/2X
∣∣4]

≤ E
[∥∥V −1/2X

∥∥4
2

]
,

where we have used the Cauchy–Schwarz in the first inequality.

2.A.12 Proof of Proposition 2.19

Proof. We fix α and denote

Kε = {θ ∈ Rd | αε
X(θ) ≥ α}.

Note that K0 = Kα(X). Let c ∈ Rd satisfy ∥c∥ = 1. Define t(c) by

t(c) := inf{t ∈ R | P(⟨c,X⟩ ≤ t) ≥ α}. (2.13)

If t(c) =∞, i.e., the right-hand set is empty for some c, then each set Kε is empty.

t(c) > −∞ is clear from α > 0. Suppose t(c) ∈ R for all c. From the continuity of

probability, the infimum can actually be replaced by minimum, so we have

P(⟨c,X − θ⟩ ≤ ε) ≥ α ⇐⇒ ⟨c, θ⟩+ ε ≥ t(c)

for each θ ∈ Rd. Hence, if θ0 ∈ K0 and ∥θ − θ0∥ ≤ ε, then we have θ ∈ Kε, so we

obtain the inclusion statement.

Let us prove that Kε is compact and convex. Define Hε(c) := {θ ∈ Rd | ⟨c, θ⟩ ≥
t(c)− ε} for each c ∈ Rd with ∥c∥ = 1. From (2.13), we have Kε =

⋂
∥c∥=1Hε(c).

AsHε(c) is closed and convex, Kε is also closed and convex. To prove compactness,

we shall prove Kε is bounded. As X is a random vector, there is an R > 0 such

that P(∥X∥ ≥ R) < α. Then, for each θ ∈ Rd satisfying ∥θ∥ ≥ R + ε, we have

P
(〈
− θ

∥θ∥
, X − θ

〉
≤ ε

)
= P

(〈
− θ

∥θ∥
, X

〉
≤ ε− ∥θ∥

)
≤ P(∥X∥ ≥ R) < α.

Therefore, we have ∥θ∥ < R + ε for each θ ∈ Kε and so Kε is bounded.
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2.A.13 Proof of Proposition 2.20

Proof. Consider the set

Aα := {s ∈ Rd | P(⟨s,X⟩ ≥ 1) < α}.

Then, we clearly have Aα ⊂ K̃α(X) and so (Aα)◦ ⊃
(
K̃α(X)

)◦
. We first prove

that (Aα)◦ = Kα(X) actually holds. From the definition of a polar, θ ∈ (Aα)◦ if

and only if

P(⟨s,X⟩ ≥ 1) < α =⇒ ⟨s, θ⟩ ≤ 1

holds for each s ∈ Rd \ {0}. If we represent s = r−1c by r > 0 and c ∈ Rd with

∥c∥ = 1, this is equivalent to

P(⟨c,X⟩ ≥ r) < α =⇒ ⟨c, θ⟩ ≤ r (2.14)

for each r > 0 and ∥c∥ = 1. As we have assumed that X is symmetric and α < 1/2,

(2.14) is still equivalent even if we allow r to take all reals.

We shall prove that, for a fixed c, (2.14) is equivalent to P(⟨c,X − θ⟩ ≥ 0) ≥ α.

Indeed, if

P(⟨c,X − θ⟩ ≥ 0) = P(⟨c,X⟩ ≥ ⟨c, θ⟩) < α

holds, there exists a δ > 0 such that P(⟨c,X⟩ ≥ ⟨c, θ⟩ − δ) < α. Then, we have

the negation of (2.14) by letting r = ⟨c, θ⟩ − δ. For the opposite direction, if we

assume P(⟨c,X⟩ ≥ ⟨c, θ⟩) ≥ α, we have P(⟨c,X⟩ ≥ r) ≥ α for all r < ⟨c, θ⟩ and so

(2.14) is true. Therefore, we obtain (Aα)◦ = Kα(X).

For each β ∈ (α, 1/2), we clearly have K̃α(X) ⊂ Aβ. Therefore, we have⋃
α<β<1/2

Kβ(X) ⊂
(
K̃α(X)

)◦ ⊂ Kα(X),

which is the desired assertion.

2.A.14 Proof of Proposition 2.21

Proof. We can only consider the case K has full dimension, i.e., K has a nonempty

interior. Then, the Minkowski functional of K (e.g., see Conway [33, IV.1.14])

|||x||| := inf{t | t ≥ 0, x ∈ tK}
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defines a norm on Rd (note that all norms are equivalent on Rd). For this norm,

it is known that there is a finite subset A ⊂ S such that miny∈A |||x− y||| ≤ ε for

all x ∈ B and |A| ≤ (1 + 2/ε)d [138, Lemma 4.10]. It suffices to prove (1− ε)K ⊂
convA. Assume the contrary, i.e., let x0 be a point such that |||x||| ≤ 1 − ε and

x0 ̸∈ convA. Then, there exists a (d − 1)-dimensional hyperplane H ⊂ Rd such

that x0 ∈ H and all the points in A lie (strictly) on the same side as the origin

with respect to H. Let y ∈ argminx∈H |||x|||. Then, we have |||y||| ≤ 1 − ε, and

z := |||y|||−1y satisfies minx∈H |||z − x||| ≥ ε. Hence, we have minx∈A |||z − x||| > ε

and it contradicts the assumption for A.

2.A.15 Proof of Theorem 2.22

Proof. As Kα(X) is symmetric and convex, there is a set A ⊂ Kα(X) with car-

dinality at most (1 + 2/ε)d such that (1 − ε)Kα(X) ⊂ convA from Proposition

2.21. We shall evaluate the probability of A ⊂ conv{Xi}ni=1. As each point θ ∈ A
satisfies αX(θ) ≥ α, from Remark 2.8, we have

1− pn,X(θ) ≤
(nα
d

exp
(
1 + α− nα

d

))d
(2.15)

for each θ ∈ A. Hence, it suffices to prove the right-hand side of (2.15) is bounded

by (1 + 2/ε)−dδ. By taking the logarithm, it is equivalent to showing

nα

d
− log

nα

d
≥ 1 + α +

log(1/δ)

d
+ log

(
1 +

2

ε

)
.

Let us denote x := nα/d. For x ≥ 12, as x/2− log x is increasing, we have

x

2
− log x ≥ 6− log 6 ≥ 2 + log 3 ≥ 1 + α + log 3

by a simple computation. Therefore, from log(1 + 2/ε) ≤ log 3 + log(1/ε) and the

assumption for n, we obtain the inequality (2.15).

2.A.16 Proof of Corollary 2.23

Proof. For α = (en/d)−β, we have

α

12d
n =

1

12eβ

(n
d

)1−β

,
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so n ≥ 12d/α is equivalent to n ≥ (12eβ)1/(1−β)d. Hence, from Theorem 2.22, it

suffices to determine how small δ can be taken so as to satisfy

n ≥ 2d

α

(
log(1/δ)

d
+ log 2

)
.

As n ≥ 12d holds for all β, for a := log 2
6

< 0.1, we have an ≥ 2d
α
log 2. Therefore,

we can take δ as small as

log(1/δ) =
α

2
(1− a)n =

1− a
2

e−βn1−βdβ.

Therefore, we can take c = 1−a
2
> 0.45 as desired.

2.B Bounds of NX via multivariate Berry–Esseen

theorem

In this section, we provide two different estimates of NX . Although we can prove

that the first bound (Section 2.B.2) is strictly stronger than the second one (Section

2.B.3), we also give the proof of the second as there seems to be more room for

improvement in the second approach than in the first.

The following first bound is the one mentioned in (2.7). The proof is given in

Section 2.B.2.

Theorem 2.25. Let X be an Rd-valued random vector which is centered and of

nonsingular covariance matrix V . Then,

NX ≤ 8d

(
1 + 36d2(42d1/4 + 16)2E

[∥∥V −1/2X
∥∥3
2

]2)
holds.

Note that

E
[∥∥V −1/2X

∥∥3
2

]2
≥ E

[∥∥V −1/2X
∥∥2
2

]3
= d3

holds so we can ignore the O(d) term. In the case sup
∥∥V −1/2X

∥∥
2
<∞, we have

E
[∥∥V −1/2X

∥∥3
2

]2
≤ E

[∥∥V −1/2X
∥∥2
2
sup

∥∥V −1/2X
∥∥
2

]2
= d2 sup

∥∥V −1/2X
∥∥2
2
.
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Therefore, the following proposition, which only statesNX = Õ
(
d15/2 sup

∥∥V −1/2X
∥∥2
2

)
,

is weaker than Theorem 2.25. However, the approach of proofs is different and

there seems to remain some room for improvement in the proof of Proposition

2.26, so we give the proof in Section 2.B.3.

Proposition 2.26. Let X be an Rd-valued random vector which is centered, bounded

and of nonsingular covariance matrix V . Then, for all n satisfying

n

(1 + log n)2
≤ 216100d13/2 sup

∥∥V −1/2X
∥∥2
2
,

NX ≤ 6dn holds.

2.B.1 Multivariate Berry–Esseen bounds

Before proceeding to the evaluation of NX , we briefly review multivariate Berry–

Esseen type theorems. The following theorem should be the best known bound

with explicit constants and dependence with respect to the dimension.

Theorem 2.27 ([140]). Let Y1, . . . , Yn be i.i.d. D-dimensional independent random

vectors with mean zero and covariance ID. For any convex measurable set A ⊂ RD,

it holds ∣∣∣∣P(Y1 + · · ·+ Yn√
n

∈ A
)
− P(Z ∈ A)

∣∣∣∣ ≤ (42D1/4 + 16)E[∥Y1∥32]√
n

,

where Z is a D-dimensional standard Gaussian.

Note that the original statement is not limited to the i.i.d. case. However,

similarly to the other existing Berry–Esseen type bounds, Theorem 2.27 only gives

information about convex measurable sets. Thus we cannot use this result directly.

However, Section 2.B.2 gives a creative use of Theorem 2.27.

Unlike the usual Berry–Esseen results, the next theorem can be used for non-

convex cases with reasonable dependence on dimension. We denote by W2(µ, ν)

the Wasserstein-2 distribution between two probability measures µ and ν on the

same domain. This is defined formally as

W2(µ, ν) := inf
Y∼µ,Z∼ν

E
[
∥Y − Z∥22

]
,
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where the infimum is taken for all the joint distribution (Y, Z) with the marginal

satisfying Y ∼ µ and Z ∼ ν. Although it is an abuse of notation, we also write

W2(Y, Z) to representW2(µ, ν) when Y ∼ µ and Z ∼ ν for some random variables

Y and Z.

Theorem 2.28 ([182]). Let Y1, . . . , Yn be D-dimensional independent random vec-

tors with mean zero, covariance Σ, and ∥Yi∥2 ≤ B almost surely for each i. If we

let Z be a Gaussian with covariance Σ, then we have

W2

(
Y1 + · · ·+ Yn√

n
, Z

)
≤ 5
√
DB(1 + log n)√

n
.

For a set A ⊂ RD and an ε > 0, define

Aε :=

{
x ∈ RD

∣∣∣∣ infy∈A
∥x− y∥2 ≤ ε

}
, A−ε :=

{
x ∈ RD

∣∣∣∣ infy∈Ac
∥x− y∥2 ≥ ε

}
.

By combining the following assertion with Theorem 2.28, we derive another bound

of NX in Section 2.B.3.

Proposition 2.29. Let Y, Z be D-dimensional random vectors. Then, for any

measurable set A ⊂ Rd and any ε > 0, the following estimates hold:

P(Y ∈ A) ≤ P(Z ∈ Aε) +
W2(Y, Z)

2

ε2
,

P(Y ∈ A) ≥ P
(
Z ∈ A−ε

)
− W2(Y, Z)

2

ε2
.

Proof. This proof is essentially the same as the argument given in the proof of

[182, Proposition 1.4]. Let (Y ′, Z ′) be an arbitrary couple of random variables

such that Y ′ ∼ Y and Z ′ ∼ Z. Then, we have

P(Y ′ ∈ A) = P(∥Y ′ − Z ′∥2 < ε, Y ′ ∈ A) + P(∥Y ′ − Z ′∥2 ≥ ε, Y ∈ A)

≤ P(Z ′ ∈ Aε) + P(∥Y ′ − Z ′∥2 ≥ ε)

≤ P(Z ′ ∈ Aε) +
1

ε2
E
[
∥Y ′ − Z ′∥22

]
. (by Chebyshev’s inequality)

By taking the infimum of the right-hand side with respect to all the possible couples

(Y ′, Z ′), we obtain the former result. The latter can also be derived by evaluating

P
(
Z ′ ∈ A−ε

)
= P

(
∥Y ′ − Z ′∥2 < ε, Z ′ ∈ A−ε

)
+ P

(
∥Y ′ − Z ′∥2 ≥ ε, Z ∈ A−ε

)
≤ P(Y ′ ∈ A) + P(∥Y ′ − Z ′∥2 ≥ ε)

≤ P(Y ′ ∈ A) + 1

ε2
E
[
∥Y ′ − Z ′∥22

]
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and again taking the infimum.

2.B.2 The first bound

In this section, we prove Theorem 2.25. We shall set D = d and make use of

Theorem 2.27.

First, fix a set S ⊂ Rd and consider the set C(S) := {x ∈ Rd | 0 ∈ conv(S ∪
{x})}. We can prove this set is convex for any S. Indeed, if 0 ∈ convS, then

clearly C(S) = Rd. Otherwise, x ∈ C(S) is equivalent to the existence of some

k ≥ 0 and x1, . . . , xk ∈ S, λ > 0, λ1, . . . , λk ≥ 0 such that

λ+ λ1 + · · ·+ λk = 1, λx+ λ1x1 + · · ·+ λkxk = 0.

Here, λ > 0 comes from the assumption 0 ̸∈ convS. This occurs if and only if

x is contained in the negative cone of S, i.e., C(S) = {
∑k

i=1 λ̃ixi | k ≥ 0, λ̃i ≤
0, xi ∈ S}. In both cases, C(S) is convex, so S0 is always convex (and of course

measurable).

Let X be an Rd-valued random vector with mean 0 and nonsingular covariance

V . Suppose E
[∥∥V −1/2X

∥∥3
2

]
<∞. Let X1, X2, . . . be independent copies of X, and

for a fixed positive integer n, define

Wi :=
V −1/2X(i−1)n+1 + · · ·+ V −1/2Xin√

n

for i = 1, . . . , 2d. We also let Z1, . . . , Z2d be independent d-dimensional standard

Gaussian which is also independent from X1, X2, . . .. Then, by using Theorem

2.27 and the above-mentioned convexity of C(S), we have

P(0 ∈ {W1, . . . ,W2d}) = P(W1 ∈ C({W2, . . . ,W2d}))

≥ P(Z1 ∈ C({W2, . . . ,W2d}))−
(42d1/4 + 16)E

[∥∥V −1/2X
∥∥3
2

]
√
n

= P(0 ∈ conv{Z1,W2, . . . ,W2d})−
(42d1/4 + 16)E

[∥∥V −1/2X
∥∥3
2

]
√
n

.
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By repeating similar evaluations, we obtain

P(0 ∈ conv{W1, . . . ,W2d})

≥ P(0 ∈ conv{Z1,W2, . . . ,W2d})−
(42d1/4 + 16)E

[∥∥V −1/2X
∥∥3
2

]
√
n

≥ P(0 ∈ conv{Z1, Z2,W3, . . . ,W2d})−
2(42d1/4 + 16)E

[∥∥V −1/2X
∥∥3
2

]
√
n

...

≥ P(0 ∈ conv{Z1, . . . , Zi,Wi+1, . . . ,W2d})−
i(42d1/4 + 16)E

[∥∥V −1/2X
∥∥3
2

]
√
n

...

≥ P(0 ∈ conv{Z1, . . . , Z2d})−
2d(42d1/4 + 16)E

[∥∥V −1/2X
∥∥3
2

]
√
n

=
1

2
−

2d(42d1/4 + 16)E
[∥∥V −1/2X

∥∥3
2

]
√
n

.

Therefore, by letting

n =

⌈
36d2(42d1/4 + 16)2E

[∥∥V −1/2X
∥∥3
2

]2⌉
,

we have P(0 ∈ conv{X1, . . . , X2dn}) ≥ 1/6. Since (1−1/6)4 < 1/2 holds, we finally

obtain NX ≤ 8dn.

2.B.3 The second bound

In this section, we provide a proof of Section 2.26 in a different manner from the

one given in the previous section. We set D = 2d2 and define Ad ⊂ RD as follows:

Ad := {x = (x1, . . . , x2d) ∈ (Rd)2d ≃ RD | 0 ∈ conv{x1, . . . , x2d} ⊂ Rd}.

Then, it suffices to find a suitable upper bound of P
(
Z ∈ Ad \ A−ε

d

)
for a D-

dimensional standard Gaussian Z for our purpose. For an ε > 0, Bd,ε := Ad \A−ε
d

can be explicitly written as

Bd,ε =

{
x = (x1, . . . , x2d) ∈ RD

∣∣∣∣ 0 ∈ conv{xi}2di=1,
∃x̃ = (x̃i)

2d
i=1 ∈ RD s.t.∥x− x̃∥2 < ε, 0 ̸∈ conv{x̃i}2di=1

}
.

(2.16)
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For a (finite) set S = {v1, . . . , vj} ⊂ Rd, define the negative box N(S) ⊂ Rd by

N(S) := {a1v1 + · · ·+ ajvj | ai ∈ [−1, 0]}.

N(S) is obviously a convex set.

Lemma 2.30. For an arbitrary x = (x1, . . . , x2d) ∈ Bd,ε, there exists an index

k ∈ {1, . . . , 2d} such that xk ∈ N({xi | i ̸= k}) \N({xi | i ̸= k})−ε
√
2d.

Proof. As 0 ∈ conv{xi}2di=1, there exist nonnegative weights λ1, . . . , λ2d such that

λ1x1+ · · ·+λ2dx2d = 0 with the total weight one. Let k be an index such that wk is

the maximum weight. Then, λk is clearly positive and we have xk =
∑

i ̸=k−
λi

λk
xi.

Therefore, we obtain xk ∈ N({xi | i ̸= k}).
By (2.16), there exists an x̃ = (x̃i)

2d
i=1 ∈ RD such that

∑2d
i=1 ∥xi− x̃i∥22 < ε2 and

0 ̸∈ conv{x̃i}2di=1. We can prove that x̃k ̸∈ N({x̃i | i ̸= k}). Indeed, if we can write

x̃k = −
∑

i ̸=k aix̃i with ai ∈ [0, 1], then(
1 +

∑
i ̸=k

ai

)−1(
x̃k +

∑
i ̸=k

aix̃i

)
= 0

is a convex combination and it contradicts the assumption 0 ̸∈ conv{x̃i}2di=1. There-

fore, we can take a unit vector c ∈ Rd such that

c⊤x̃k > max{c⊤y | y ∈ N({x̃i | i ̸= k})}. (2.17)

Let us assume the closed ball with center xk and radius δ is included in N({xi |
i ̸= k}) for a δ > 0. Then, if δ > ∥xk − x̃k∥2, the closed ball with center x̃k and

radius δ′ := δ − ∥xk − x̃k∥2 is included in N({xi | i ̸= k}). In particular, we have

some coefficients ai ∈ [−1, 0] such that x̃k + δ′c =
∑

i ̸=k aixi. By the inequality

(2.17), we have

c⊤x̃k > c⊤
∑
i ̸=k

aix̃i = c⊤

(
x̃k + δ′c+

∑
i ̸=k

ai(x̃i − xi)

)
,

so by arranging

δ′ <
∑
i ̸=k

aic
⊤(xi − x̃i) ≤

∑
i ̸=k

∥xi − x̃i∥2.
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Therefore, from the definition of δ′, we obtain

δ <
2d∑
i=1

∥xi − x̃i∥2 ≤

(
2d

2d∑
i=1

∥xi − x̃i∥2

)1/2

≤ ε
√
2d

by Cauchy-Schwarz and the assumption. It immediately implies the desired asser-

tion.

Proposition 2.31. P(Z ∈ Bd,ε) ≤ 8
√
2d7/4ε holds.

Proof. By Lemma 2.30, we have Bd,ε ⊂
⋃2d

k=1{x | xk ∈ N({xi | i ̸= k}) \ N({xi |
i ̸= k})−ε

√
2d}. Therefore, letting Z = (Z1, . . . , Z2d) be a standard Gaussian in RD

(where each Zi is a independent standard Gaussian in Rd), we can evaluate

P(Z ∈ Bd,ε) ≤
2d∑
k=1

P
(
Zk ∈ N({Zi | i ̸= k}) \N({Zi | i ̸= k})−ε

√
2d}
)
.

For each k, Zk is independent from the random convex set N({Zi | i ̸= k}).
Therefore, we can use the result of Ball [8] to deduce

P
(
Zk ∈ N({Zi | i ̸= k}) \N({Zi | i ̸= k})−ε

√
2d}
)
≤ 4d1/4 · ε

√
2d.

Therefore, we finally obtain

P(Z ∈ Bd,ε) ≤ 2d · 4d1/4 · ε
√
2d = 8

√
2d7/4ε.

By letting ε = 2−13/2d−7/4, we have P(Z ∈ Bd,ε) ≤ 1/8. Under this value of ε,

if we let n satisfy

n

(1 + log n)2
≥ 8 · 25DB2

ε2
= 400d2B2 · 213d7/2 = 215100B2d11/2, (2.18)

for a constant B, then we have(
5
√
DB(1 + log n)√

n

)2

≤ ε2

8
.

Now consider a bounded and centered Rd-valued random vector X with V =

E
[
XX⊤] nonsingular. Then B′ := sup

∥∥V −1/2X
∥∥
2
is finite. Let X1, X2, . . . be
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independent copies of X. Define RD-valued random vectors Y1, Y2, . . . by Yi :=

(V −1/2X(2i−1)d+1, . . . , V
−1/2X2id)

⊤ for each i. Then, note that ∥Yi∥2 ≤
√
2dB′. By

taking B =
√
2dB′ in (2.18), we have from Theorem 2.28 that (for ε = 2−13/2d−7/4)

P(Z ∈ Bd,ε) ≤
1

8
,

1

ε2
W2

(
Y1 + · · ·+ Yn√

n
, Z

)
≤ 1

8
.

From Proposition 2.29, we obtain

P
(
Y1 + · · ·+ Yn√

n
∈ Ad

)
≥ P(Z ∈ Ad)−P(Z ∈ Bd,ε)−

1

ε2
W2

(
Y1 + · · ·+ Yn√

n
, Z

)
≥ 1

4
.

Therefore, 0 is contained in the convex hull of {X1, . . . , X2dn} with probability

at least 1/4. Since (1 − 1/4)3 < 1/2, NX ≤ 6dn holds. Therefore, our proof of

Proposition 2.26 is complete.

2.C Extreme examples

Before treating concrete examples, we prove a proposition which is useful for eval-

uating NX .

Lemma 2.32. For a random vector X and its independent copies X1, X2, . . .,

define ÑX as the minimum index n satisfying 0 ∈ conv{X1, . . . , Xn}. Then, we

have
1

2
E
[
ÑX

]
≤ NX ≤ 2E

[
ÑX

]
.

Proof. From the definition of NX , P(0 ∈ {X1, . . . , XNX−1}) < 1/2 holds. Thus

P
(
ÑX ≥ NX

)
≥ 1/2, and so we obtain E

[
ÑX

]
≥ 1

2
NX .

For the other inequality, we use the evaluation P
(
ÑX ≥ kNX

)
≤ 2−k for each

nonnegative integer k. As ÑX is a nonnegative discrete random variable,

E
[
ÑX

]
=

∞∑
n=1

P
(
ÑX ≥ n

)
≤

∞∑
k=0

NXP
(
ÑX ≥ kNX

)
≤ 2NX

holds.

Note that all the examples given below satisfy pd,X = 0. They are given as

one of the worst-case examples for uniform estimates of NX in Proposition 2.4 or

Theorem 2.25. Let us start with the simplest extreme case.
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Example 2.33. Let d = 1. For an ε ∈ (0, 1), let X be a random variable such

that P(X = 1/ε) = ε and P(X = −1/(1− ε)) = 1− ε. Then E[X] = 0.

In this example, we can explicitly calculate pn,X as

pn,X = 1− εn − (1− ε)n.

In particular, p2,X = 2ε − 2ε2. We have limε↘0(1 − ε)1/2ε = e−1/2 = 0.60 . . ., so

p⌈1/2ε⌉,X < 1/2 holds for a sufficiently small ε. For such an ε, we have

NX ≥
1

2ε
=

1− ε
2

2

p2,X
, (2.19)

and so NX ≤ 2
p2,X

in Proposition 2.4 is sharp up to constant.

For ε ∈ (0, 1/2), NX can also be evaluated above as NX ≤ 2E
[
ÑX

]
≤

2
(

1
ε
+ 1

(1−ε)

)
by using Proposition 2.32. We also have αX = ε for ε ∈ (0, 1/2), so

inf
X:1-dimensional

αXNX ≤ 2 +
2ε

1− ε
→ 2 (ε→ 0).

As the variance is V = E[X2] = 1
ε
+ 1

1−ε
= 1

ε(1−ε)
, we have

E
[∣∣V −1/2X

∣∣3]2 = V −3

(
1

ε2
+

1

(1− ε)2

)2

= ε3(1− ε)3
(

1

ε4
+

2

ε2(1− ε)2
+

1

(1− ε)4

)
=

1

ε
+O(1) .

Therefore, from (2.19), we obtain

sup

{
E
[∣∣V −1/2X

∣∣3]−2

NX

∣∣∣∣∣ X is 1-dimensional, E[X] = 0,

V = E[X2] ∈ (0,∞), E
[∣∣V −1/2X

∣∣3] <∞
}
≥ 1

2
,

which is what is mentioned in Remark 2.5 when d = 1.

The next example is a multi-dimensional version of the previous one.

Example 2.34. Let d ≥ 2. Let {e1, . . . , ed} ⊂ Rd be the standard basis of Rd.

Let us first consider, for an arbitrary ε ∈ (0, 1), a random vector X given by

X = Y

(
d−1∑
i=1

Ziei −
1

1− ε
ed

)
+

1

ε
(1− Y )ed,
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where P(Y = 1) = 1− ε, P(Y = 0) = ε and Z1, . . . , Zd−1 are independent uniform

random variables over [−1, 1]. (also independent from Y ). Namely, X is ε−1ed

with probability ε and a (d − 1)-dimensional uniform vector over a box on the

hyperplane {x ∈ Rd | e⊤d x = −(1− ε)−1} otherwise. E[X] = 0 also holds.

Let us estimate pd+1,X , p2d,X and NX for this X. To contain the origin in the

convex hull, we have to observe at least one Xi with Y = 0. Therefore, for an

ε≪ 1/d, we have

pd+1,X = (d+ 1)ε(1− ε)d2−(d−1) =
d+ 1

2d−1
ε
(
1 +O

(
d2ε2

))
p2d,X =

d∑
k=1

(
2d

k

)
εk(1− ε)2d−kp2d−k,X′

= 2dεp2d−1,X′ +O
(
d2ε2

)
= d

(
1 +

1

22d−2

(
2d− 2

d− 1

))
ε+O

(
d2ε2

)
≥ d

(
1 +

1

2
√
d− 1

)
ε+O

(
d2ε2

)
,

where X ′ represents a (d − 1)-dimensional uniform random vector over the box

[−1, 1]d−1. We can see that p2d,X ≳ 2d−1pd+1,X holds for a small ε as Remark 2.2

suggests.

For the calculation of NX , we can exploit Proposition 2.32. We first bound

the expectation of ÑX . For independent copies X1, X2, . . . of X, let N1 be the

minimum integer n satisfying Xn = ε−1ed. We also define N2 as the minimum

integer n satisfying −(1− ε)−1ed ∈ conv{X1, . . . , Xn}. Then, ÑX = max{N1, N2}
holds. Thus we have N1 ≤ ÑX ≤ N1 +N2. E[N1] = 1/ε clearly holds. For N2, we

can evaluate (again using X ′) as

E[N2] =
1

1− ε
E
[
ÑX′

]
≤ 2NX′

1− ε
=

4(d− 1)

1− ε
,

where we have used Proposition 2.32 for the inequality. Therefore, from Proposi-

tion 2.32, we obtain

1

2ε
≤ 1

2
E
[
ÑX

]
≤ NX ≤ 2E

[
ÑX

]
≤ 2

ε
+

8(d− 1)

1− ε
. (2.20)
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We finally compare the naive general estimate NX ≤ n
pn,X

in Proposition 2.4

with this example. From (2.20), we have

NXp2d,X
2d

≥ p2d,X
4dε

≥ 1

4
+

1

8
√
d− 1

+O(dε) .

Therefore, the evaluation NX ≤ 2d
p2d,X

is sharp even for small p2d,X up to constant

in the sense that we have

lim
ε→0

sup
X:d-dimensional

p2d,X<ε

NXp2d,X
2d

≥ 1

4
+

1

8
√
d− 1

.

Also in this example, we have αX = ε for ε ∈ (0, 1/3). Hence, combined with

(2.20), we have

αXNX ≤ ε

(
2

ε
+

8(d− 1)

1− ε

)
= 2 +

8(d− 1)ε

1− ε
→ 2 (ε→ 0).

Therefore, we have infX:d-dim αXNX ≤ 2.

We next evaluate the value of E
[∥∥V −1/2X

∥∥3
2

]
, where V = (V ij) is the co-

variance matrix of X with respect to the basis {e1, . . . , ed}. Then, for (i, j) ∈
{1, . . . , d− 1}2, we obtain

V ij = E
[
Y 2ZiZj

]
= E

[
Y 2
]
E
[
ZiZj

]
=

1− ε
2

δij, (δij: Kronecker’s delta)

V id = E
[
Y Zi

(
− Y

1− ε
+

1− Y
ε

)]
= E

[
Zi
]
E
[
Y

(
− Y

1− ε
+

1− Y
ε

)]
= 0

by using the independence of Y , Z1, . . . , Zd−1. For the V
dd, we have

V dd =
1

1− ε
+

1

ε
=

1

ε(1− ε)
.

Therefore, V −1/2X can be explicitly written as

V −1/2X = Y

(√
2

1− ε

d−1∑
i=1

Ziei −
√

ε

1− ε
ed

)
+

√
1− ε
ε

(1− Y )ed.

Thus we have ∥∥V −1/2X
∥∥2
2
≤ Y

2(d− 1) + ε

1− ε
+ (1− Y )

1− ε
ε

,
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and so

E
[∥∥V −1/2X

∥∥3
2

]
≤ (2(d− 1) + ε)3/2√

1− ε
+

(1− ε)3/2√
ε

≤ 4d3/2 + ε−1/2

holds when 0 < ε < 1/2. By using (2.20), we obtain

NX

E
[
∥V −1/2X∥32

]2 ≥ 1

2ε(4d3/2 + ε−1/2)2
=

1

2(4d3/2ε1/2 + 1)2
.

Therefore, by taking ε→ 0, we finally obtain the estimate

sup

 NX

E
[
∥V −1/2X∥32

]2
∣∣∣∣∣∣∣

X is d-dimensional, E[X] = 0,

V = E[X2] is nonsingular, E
[∥∥V −1/2X

∥∥3] <∞
 ≥ 1

2

as mentioned in Remark 2.5.
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Chapter 3

Hypercontractivity meets random
convex hulls

Given a test function vector φ : X → RD and a random variable x taking values

in X , we have analyzed the naive random sampling for constructing a cubature

in the previous chapter. However, it is not fully sufficient to explain what hap-

pens in the more concrete interesting cases. Here we analyze the computational

complexity of this approach when φ exhibits a graded structure by using so-called

hypercontractivity. The resulting theorem covers not only the classical cubature

case of multivariate polynomials but also integration on path-space and kernel

quadrature for product measures.

3.1 Introduction

Let X be a random variable that takes values in a set X , and F ⊂ RX a linear,

finite-dimensional space of functions satisfying E[|f(X)|] <∞ for each f ∈ F . A
cubature formula for (X,F) is a finite set of points (xi) ⊂ X and weights (wi) ⊂ R
such that

E[f(X)] =
n∑

i=1

wif(xi) for all f ∈ F . (3.1)

This is a reformulation of cubature introduced in Section 1.1 from the viewpoint

of function spaces. We also denote µ = Law(X) and refer to µ̂ =
∑n

i=1wiδxi

as the cubature measure for (X,F). The existence of such a cubature formula

that further satisfies n ≤ 1 + dimF , wi ≥ 0 and
∑n

i=1wi = 1 is guaranteed
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by Tchakaloff’s theorem (Theorem 1.1). Arguably the most famous applications

concern the case when X is a subset of Rd and F is the linear space of polynomials

up to a certain degree, that is F is spanned by monomials up to a certain degree.

However, more recent applications include the case when X is a space of paths and

F is spanned by iterated Ito–Stratonovich integrals [110], or kernel quadrature [84]

(see also Chapter 4) where X is a set that carries a positive definite kernel and F
is a subset of the associated reproducing kernel Hilbert space that is spanned by

some “test functions” including eigenfunctions of the integral operator induced by

this kernel.

Random convex hulls. If F is spanned by m functions φ1, . . . , φm : X → R,
then we can denote φ = (φ1, . . . , φm) : X → Rm and see that (3.1) is equivalent

to E[φ(X)] =
∑n

i=1wiφ(xi). Given an N(≫ n) i.i.d. sample X1, . . . , XN ∼ X, we

want to know the probability of the event

E[φ(X)] ∈ conv{φ(X1), . . . ,φ(XN)}, (3.2)

under which we can construct the desired cubature satisfying (3.1) by using linear

programming as explained in Section 1.1.

Empirically, this approach turns out to work well already for “reasonable”

magnitudes of N [66] (also see the experiments in the next chapter). The aim

of this chapter is to provide theoretical guarantees for the number of samples

N for which this approach leads to a successful cubature construction with high

probability, for a class of φ of practical interest.

Hypercontractivity. Our main tool is hypercontractivity. This allows us to

prove the existence of a constant C ′
m satisfying (mainly for p = 4)

E[|f(X)|p] ≤ C ′
mE
[
|f(X)|2

]p/2
uniformly for a large class of functions f , where X follows the product measure

µ⊗d. While hypercontractivity is classically studied for Gaussian, discrete, and

uniform probability measures on hypercubes or hyperspheres [20, 125, 13, 14], we

generalize it to function classes that have a certain graded structure.
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Contribution. Our main result is to provide an upper bound for the number of

samplesN such that anN -point i.i.d. sample of random vectors contains the expec-

tation in its convex hull, i.e. the event (3.2) occurs, with a reasonable probability.

Although the connection between the bound for N and the hypercontractivity of

the given random vector/function class has implicitly been proven in Chapter 2 in

the form of Theorem 2.17, generic conditions for having a good hypercontractiv-

ity constant and why the magnitude of required N becomes reasonably small in

practice have not been established or understood.

In this chapter, we address these questions by

• extending the hypercontractivity for the Wiener chaos to what we call gen-

eralized random polynomials (Section 3.3) and

• showing that this extension naturally applies to important examples in nu-

merical analysis including classical cubature, cubature on Wiener space, and

kernel quadrature (Section 3.4).

We explain the intuition behind these points by introducing Theorem 3.1 and

Example 3.2:

Theorem 3.1 (informal). Let µ be a probability measure on X . Suppose we have

a “natural” function class

F =
⊕
d≥1

⋃
m≥0

Fd,m,

where Fd,m denotes a set of functions from X d to R of “degree” up to m. Then,

under some integrability assumptions, there exists for every m a constant Cm =

Cm(µ,F) > 0 such that the following holds:

Let d and D be two positive integers and φ = (φ1, . . . , φD) : X d → RD

with φ1, . . . , φD ∈ Fd,m. Then, for all integers N ≥ CmD, we have

P(E[φ(X)] ∈ conv{φ(X1), . . . ,φ(XN)}) ≥
1

2
,

where X,X1, . . . , XN are i.i.d. samples from the product measure µ⊗d

on X d.
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Example 3.2. Although the above statement is somewhat abstract, the assump-

tion of a “natural” function class covers the following important examples:

• Classical Cubature [161]: µ is a probability measure with finite m mo-

ments and Fd,m is the space of d-variate polynomials up to degree m .

• Cubature on Wiener space [110]: µ is the Wiener measure and Fd,m is

spanned by up to m-times iterated Ito–Stratonovich integrals.

• Kernel quadrature [84] (also see the next chapter): µ is a probability

measure on set X that carries a positive definite kernel k and Fd,m is spanned

by some test functions suitable to k⊗d, e.g., eigenfunctions down to some

eigenvalue of the integral operator g 7→
∫
k⊗d(·, x)g(x) dµ⊗d(x), where k⊗d is

a tensor product kernel.

Related work. If the measure µ has finite support, the problem (3.1) is also

known as recombination. While in this case, the existence follows immediately

from Caratheodory’s theorem, the design of efficient algorithms to compute the

cubature measure is more recent; we mention efficient deterministic algorithms

[103, 163, 111] and randomized speedups [34]. For non-discrete measures, the

majority of the cubature constructions are typically limited to algebraic approaches

that cannot apply to general situations. Related to our convex hull approach but

different, is a line of research aiming at constructing general cubature formulas with

positive weights by using least-squares instead of the random convex hull approach

[55, 116]. As their theory is on the positivity of the resulting cubature formula given

by solving a certain least squares problem, requires more (or efficiently selected)

points than that needed for simply obtaining a positively weighted cubature.

Hypercontractivity is the key technical tool for our estimates. Although it is

a classic tool in probability, its use seems to be novel in the context of cubature

resp. random convex hull problems. Somewhat related to the special case of kernel

quadrature, [115] proves a generalization error bound for kernel ridge regression

with random features, however, hypercontractivity appears there just as a tech-

nical assumption. Further, for low-degree polynomials of a sequence of random

variables, Kim and Vu [90], Schudy and Sviridenko [149] give similar estimates on
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their higher order moments, but they mainly estimate the concentration of the

moments, and do not generally analyze the kurtosis-type values appearing in the

hypercontractivity.

Outline. In Section 3.2, we briefly explain recent results on random convex

hulls, and give some assertions that additionally follow from them. In Section

3.3, we introduce the Gaussian hypercontractivity and show its generalization

that is suitable for multivariate cubatures. Section 3.4 gives some applications

of Gaussian/generalized hypercontractivity to random convex hulls with product

structure, including cubature on Wiener space and kernel quadrature. The chapter

is concluded in Section 3.5. All the omitted proofs are given in Appendix 3.A.

3.2 Random convex hulls

Our main interest is the probability of the event (3.2) that the mean is contained

in the random convex hull. To quantify this probability, it turns out to be more

convenient to study a more general problem. Therefore we define

Definition 3.3. Let X be a D-dimensional random vector and X1, X2, . . . be iid

copies of X. For every integer N > 0 and θ ∈ RD define

pN,X(θ) := P(θ ∈ conv{X1, . . . , XN}) and NX(θ) := inf{N | pN,X(θ) ≥ 1/2}.

Both of these quantities are classically studied for symmetric X by Wendel

[178], but more recently sharp inequalities for general X [172] (also Chapter 2 of

the thesis) as well and calculations on the Gaussian case [81] have been established.

Note that, by considering m independent copies of (X1, . . . , XN), we have 1 −
pmN,X(θ) ≥ (1−pN,X(θ))

m, and so knowingNX(θ) also yields some high-probability

bounds.

Our main interest is the case θ = E[X]. We can bound NX(E[X]) if the distri-

bution of X satisfies some good properties including symmetry and log-concavity:

Proposition 3.4. For a D-dimensional random vector X for which E[X] exists,

we have:
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(a) If the distribution of X is symmetric about E[X], then NX(E[X]) ≤ 2D.

(b) If the distribution of X is log-concave, then NX(E[X]) ≤ ⌈3eD⌉.

Here, (a) is a well-known result [178] while (b) follows from a combination of

Caplin and Nalebuff [24] and Theorem 2.13; see Section 3.A.1 for details. However,

what we use for our main results is the following reformulation of Theorem 2.17.

We give its proof in Appendix 3.A.2 for completeness.

Corollary 3.5. Let X be any D-dimensional random vector with E[∥X∥3] < ∞.

If a constant K > 0 satisfies ∥c⊤(X − E[X])∥L3 ≤ K∥c⊤(X − E[X])∥L2 for all

c ∈ RD, then we have

NX(E[X]) ≤ 17(1 + 9K6/4)D.

This result recovers a sharp bound NX(E[X]) = O(D) up to constant for a

Gaussian, where we have detailed information about the marginals. The sort of

inequality assumed in the statement is also called Khintchin’s inequality (see e.g.,

[94, 47]) and there are known values of K for a certain class of X such as log-

concave distributions [108, Theorem 5.22] or a Rademacher vector. Indeed, we

can easily show the following estimate under a clear independence structure:

Proposition 3.6. Let X = (X1, . . . , XD)
⊤ be a D-dimensional random vector

whose coordinates are independent and identically distributed. If E[X1] = 0 and

∥X1∥L4 ≤ K∥X1∥L2 holds for a constant K > 0, then we have ∥c⊤X∥L4 ≤
K∥c⊤X∥L2 for all c ∈ RD.

While such an explicit independence yields NX(E[X]) = O(D), we can see that

we can go much further by carefully looking at how one can prove hypercontrac-

tivity in Gaussian Wiener chaos. In the following section, we generalize the whole

argument and provide natural conditions for X to achieve NX(E[X]) = O(D).

3.3 Hypercontractivity

The previous section provides bounds on NX but the assumptions–log-concavity

or coordinate-wise independence–are too strong for many applications. We now

develop an approach via hypercontractivity; this results in bounds that apply

under much less strict assumptions.
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Hypercontractivity: the Gaussian case. It is instructive to briefly review

the classical results for Gaussian measures by following Janson [79] since we need

several generalizations of this.

Theorem 3.7 (Wiener Chaos Decomposition). Let H be a Gaussian Hilbert space1

on a probability space (Ω,G,P) and let σ(H) be the σ-algebra generated by H. Then

L2(Ω, σ(H),P) =
∞⊕
n=0

H(n),

where H(n) := Pn(H) ∩ Pn−1(H)⊥ with

Pn(H) := {f(Y1, . . . , Ym) | f is a polynomial of degree ≤ n, Y1, . . . , Ym ∈ H, m ≥ 1}

with P−1(H) := {0} and Pn(H) denotes the completion in L2(Ω,G,P).

Hence, for each X ∈ L2(Ω, σ(H),P), we have a unique decomposition X =∑∞
n=0Xn such that Xn ∈ H(n). The simplest case is expanding a random variable

Y (measurable by a Gaussian variable X) with Hermite polynomials of X.

Theorem 3.8 (Hypercontractivity, [79], Theorem 5.8). For r ∈ [0, 1] denote

Tr : L
2(Ω, σ(H),P)→ L2(Ω, σ(H),P), X 7→

∞∑
n=0

rnXn.

If p > 2 and 0 < r ≤ (p− 1)−1/2, then we have

∥Tr(X)∥Lp ≤ ∥X∥L2 .

From this, we have the following moment bound on Pn(H), which is also re-

ferred to as hypercontractivity, see for example [127].

Theorem 3.9. Let n ≥ 0 be an integer. For each p > 2, we have

∥X∥Lp ≤ (p− 1)n/2∥X∥L2 , X ∈ Pn(H).

1A Gaussian Hilbert space is a closed linear subspace of L2(Ω,G,P) whose elements all follow
Gaussian distributions, where G is the σ-algebra of the given probability space.
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Proof. Let X =
∑n

m=0Xm with Xm ∈ H(m). For 0 < r ≤ (p− 1)−1/2, by Theorem

3.8, we have

∥X∥2Lp =

∥∥∥∥∥Tr
(

n∑
m=0

r−mXm

)∥∥∥∥∥
2

Lp

≤

∥∥∥∥∥
n∑

m=0

r−mXm

∥∥∥∥∥
2

L2

=
n∑

m=0

r−2m∥Xm∥2L2 ≤ r−2n∥X∥2L2 .

We obtain the conclusion by letting r = (p− 1)−1/2.

We included the proof since we are going to generalize it in the following.

Hypercontractivity for generalized random polynomials. The phenomenon

of hypercontractivity is not limited to the Gaussian setting. Indeed, the hyper-

contractivity of operators on the space of boolean functions (i.e., {−1, 1}n → R)
associated with the uniform measure was established even before the Gaussian

case [20, 154]. Our focus is to obtain estimates analogous to Theorem 3.9 when a

graded class of test function is given; we refer to such a class as generalized random

polynomials.

Definition 3.10. Under a probability space (Ω,G,P), a triplet G = (Y,Q, λ) is

called GRP if it satisfies the following conditions:

• Y is a random variable taking values in a topological space X .

• Q = (Qm)
∞
m=0 is a nondecreasing sequence of linear spaces of L

2(PY )-integrable

functions X → R. Namely, if we let Qm(Y ) := {f(Y ) | f ∈ Qm}, then each

Qm is a linear subspace of L2(P), with Q0 ⊂ Q1 ⊂ · · · ⊂ L2(P). We addi-

tionally assume Q0 is the set of constant functions.

• λ = (λm)
∞
m=0 satisfies 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ 0.

If G is a GRP, we also define d̃egGX := inf{1/λm | m ≥ 0, X ∈ Qm(Y )}.

Intuitively, each Qm is a generalization of degree-m polynomials and d̃egG

indicates the “degree” of such functions (though Y plays a role in the latter). In

the setting of actual polynomials like Wiener chaos, we can define λm = b−m for a

certain b > 1, and then we have degX = logb d̃egGX for the usual degree of X as

a random polynomial.
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Definition 3.11. Let G = (Y,Q, λ) be a GRP. We define

Hm(Y ) := Qm(Y ) ∩Qm−1(Y )⊥

in terms of L2(P) where Q−1(Y ) := {0} and

H∞ := L2(Ω, σ(Y ),P) ∩
( ∞⋃
m=0

Qm(Y )
)⊥
.

We refer

L2(Ω, σ(Y ),P) =

(
∞⊕

m=0

Hm(Y )

)
⊕H∞(Y )

as the orthogonal decomposition associated with G.

Definition 3.12. Let G = (Y,Q, λ) be a GRP. The operator T (G) is defined as

T (G) : L2(Ω, σ(Y ),P)→ L2(Ω, σ(Y ),P), X 7→
∞∑

m=0

λmXm,

where (Xm)m∈N∪∞ with Xm ∈ Hm(Y ) is the orthogonal decomposition of X asso-

ciated with the GRP G. By letting T (G)sX =
∑∞

m=0 λ
s
mXm for s > 0, we say that

a GRP G = (Y,Q, λ) is (2, p; s)-hypercontractive if

∥T (G)sX∥Lp ≤ ∥X∥L2 , X ∈ L2(Ω, σ(Y ),P).

Thus, if G is (2, p; s)-hypercontractive, it is (2, p; t)-hypercontractive for all

t ≥ s as T (G)t−s is a contraction in L2. The formulation of G associated with

“degree” concept given by λ then naturally extends to the multivariate case.

Definition 3.13. We call a set of d GRPs, G(i) = (Y (i), Q(i), λ(i)) for i = 1, . . . , d

independent, if the Y (i)’s are independent random variables taking values in X (i)’s.

For d independent GRPs, their product is a GRP G = (Y,Q, λ) that is defined as

• Y = (Y (1), . . . , Y (d)) ∈ X (1) × · · · × X (d).

• λm is the (m+1)-th largest value in the set
{∏d

i=1 λ
(i)
mi

∣∣∣λ(i)mi ∈ λ(i), i = 1, . . . , d
}
.

• Qm = span
{
f : (x1, . . . , xd) 7→

∏d
i=1 fi(xi)

∣∣∣ fi ∈ Q(i)
mi ,
∏d

i=1 λ
(i)
mi ≤ λm

}
.
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As Qm(Y ) ⊂ L2 it follows from independence for each m that G = (Y,Q, λ) is

indeed a GRP. We also denote it by G = G(1) ⊗ · · · ⊗G(d).

Example 3.14. Consider the case when Q
(i)
m are degree-m polynomials of Y (i) and

λ
(i)
m = tm for some t ∈ (0, 1) independent of i. This shows that the product GRP

generalizes the multivariate random polynomials. Also, when Y (i) are i.i.d. and

(Q(i), λ(i)) are the same for all i = 1, . . . , d, then we say G(i) are i.i.d. and we can

particular write G ≃ (G(1))⊗d.

A straightforward generalization follows from the classical way of proving hy-

percontractivity. This turns out to be useful for treating multivariate hypercon-

tractivity of our GRP setting.

Theorem 3.15. Let r ∈ (0, 1] and p > 2. If d independent GRPs G(1), . . . , G(d)

are all (2, p; s)-hypercontractive, then their product G = G(1) ⊗ · · · ⊗ G(d) is also

(2, p; s)-hypercontracitve.

Remark 3.1. We only use the (2, p; s)-hypercontractivity in this chapter, but we

can also deduce the same results for the general (q, p; s)-hypercontractivity with

1 ≤ q ≤ p <∞ (for the operator norm of Lq → Lp), analogous to e.g. Janson [79].

The following is analogous to Theorem 3.9 and the proof is almost identical.

Proposition 3.16. Let s > 0 and p > 2. If G is a GRP that is (2, p; s)-

hypercontractive, then we have ∥X∥Lp ≤ (d̃egGX)s∥X∥L2 for all X ∈ L2.

Remark 3.2. Although we have treated general GRPs G = (Y,Q, λ) in these

propositions, we are basically only interested in the moment inequality for X up

to some “degree” fixed beforehand (in the case of Wiener chaos, it suffices to treat

Pn(H) for some finite n to obtain Theorem 3.9). Thus, our main interest is in

“finite” GRPs, satisfying Qn = Qn+1 = · · · for some n, and their product in

practice, which might be better for readers to have in mind when reading the next

proposition.

We next show the following “converse” result for the relation of the hypercon-

tractivity and moment estimate for a (truncated) GRP when p = 4.
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Proposition 3.17. Let G = (Y,Q, λ) be a GRP. Suppose there exists a s > 0

such that

∥Xm∥L4 ≤ λ−s
m ∥Xm∥L2 , Xm ∈ Hm(Y )

holds for all m. If t > s satisfies
∑

m≥1 λ
t−s
m ≤ 1/

√
3 and λt1 ≤ 1/2, then G is

(2, 4; t)-hypercontractive.

By using this, we can also prove the following as a non-quantitative result.

Theorem 3.18. Let K > 0 and G be a GRP such that the space {X ∈ L2 |
d̃egGX ≤ K} is included in L4(Ω,G,P) and finite-dimensional. Then, there exists

a constant C = C(G,K) such that for an arbitrary d, ∥X∥L4 ≤ C∥X∥L2 holds if

we have d̃egG⊗dX ≤ K.

3.4 Applications

The generality of Proposition 3.17 and Theorem 3.18 allows quantifying the num-

ber of samples resp. probability of success of the random convex hull approach to

the problem of cubature. Concretely, we give formal statements of Theorem 3.1 for

various cubature constructions: (i) Classical Cubature, (ii) Cubature on Wiener

Space, (iii) Kernel Quadrature.

3.4.1 Classical polynomial cubatures

When the GRP G are actual random polynomials, we recover the following result.

Corollary 3.19. Let m be a positive integer and X(1), X(2), . . . be i.i.d. real-valued

random variables with E
[
|X(1)|4m

]
< ∞. Then, there exists a constant Cm > 0

such that

∥f(X(1), . . . , X(d))∥L4 ≤ Cm∥f(X(1), . . . , X(d))∥L2

for any positive integer d and any polynomial f : Rd → R with degree up to m.

Proof. By introducing a truncated GRP given by a random variable X(1), function

spaces Qi of univariate polynomials up to degree i, and λi = 2−i for 0 ≤ i ≤ m,

we can apply Theorem 3.18 to obtain the desired result.
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If we combine this with Corollary 3.5, we obtain the following result for poly-

nomial cubatures:

Corollary 3.20. Let m ≥ 1 be an integer and X(1), X(2), . . . be i.i.d. real-valued

random variables with E
[
|X(1)|4m

]
< ∞. Then, there exists a constant Cm > 0,

depending on the law of X(1), such that the following holds:

Let d ≥ 1 be an integer and φ : Rd → RD be a D-dimensional vector-

valued function such that each coordinate is given by a polynomial up to

degree m. If we let X
(1:d)
1 ,X

(1:d)
2 , . . . be independent copies of X(1:d) =

(X(1), . . . , X(d)), we have

P
(
E
[
φ(X(1:d))

]
∈ conv{φ(X(1:d)

1 ), . . . ,φ(X
(1:d)
N )}

)
≥ 1

2

for all integers N ≥ CmD.

3.4.2 Cubature on Wiener space

Cubature on Wiener space [110] is a weak approximation scheme for stochastic

differential equations; at the heart of it is constructing a finite measure on the

space of paths, such that the expectation of their first m-times iterated integrals

matches those of Brownian motion. Some algebraic constructions are known for

degree m = 3, 5 [110] as well as m = 7 [126]. The random convex hull approach

applies in principle for any m, however, a caveat is that the discretization of paths

becomes an issue in particular for high values of m; some experimental results are

available in [68] for constructing them by using random samples of piecewise linear

approximations of Brownian motion. In this section, we use hypercontractivity to

estimate the number of samples needed in this approach to cubature via sampling.

Random convex hulls of iterated integrals. For a bounded-variation (BV)

path x = (x0, . . . , xd) : [0, 1] → Rd+1 and a d-dimensional standard Brownian

motion B = (B1, . . . , Bd) with B0
t := t, we define the iterated integrals as

Iα(x) :=

∫
0<t1<···<tk<1

dxα1
t1 · · · dx

αk
tk
, Iα(B) :=

∫
0<t1<···<tk<1

◦ dBα1
t1 · · · ◦ dB

αk
tk
,
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where the latter is given by the Stratonovich stochastic integral. Then, a de-

gree m cubature formula on Wiener space for d-dimensional Brownian motion

is a set of BV paths x1, . . . , xn : [0, 1] → Rd+1 and convex weights w1, . . . , wn

such that
∑n

i=1wiI
α(xi) = E[Iα(B)] for all multi-indices α = (α1, . . . , αk) ∈⋃

ℓ≥1{0, 1, . . . , d}ℓ with ∥α∥ := k + |{j | αj = 0}| ≤ m.

Indeed, if we consider the Gaussian Hilbert space given by

H :=

{
d∑

i=1

∫ 1

0

fi(t) dB
i
t

∣∣∣∣∣ f1, . . . , fd ∈ L2([0, 1])

}
,

the iterated integral Iα(B) with ∥α∥ ≤ m is in the m-th Wiener chaos Pm(H) (see

Section 3.3) as it can be expressed as a limit of polynomials of increments of B.

We thus have the hypercontractivity given in Theorem 3.9 and the following:

Corollary 3.21. Let d,m ≥ 1 be integers and B be a d-dimensional Brownian

motion. Then, for an arbitrary linear combination X =
∑

∥α∥≤m cαI
α(B) with

cα ∈ R, we have ∥X∥L3 ≤ 2m/2∥X∥L2.

As the bound is independent of the dimension d of the underlying Brown-

ian motion, we have the following version of Theorem 3.1 by combining it with

Corollary 3.5 as follows:

Corollary 3.22. Let d,m ≥ 1 be integers and B,B1, B2, . . . be independent stan-

dard d-dimensional Brownian motions. Then, if φ(B) is a D-dimensional random

vector such that each coordinate is given by a linear combination of (Iα(B))∥α∥≤m,

then we have

P(E[φ(B)] ∈ conv{φ(B1), . . . ,φ(BN)}) ≥
1

2

for all integers N ≥ 17(1 + 18 · 8m−1)D.

The above allows to choose the number of candidate paths that need to be

sampled. However, as mentioned above, one challenge that is specific to cubature

on the space of paths is that one cannot sample a true Brownian trajectory which

leads to an additional discretization error. However, we conjecture that the number

of random samples divided by D and the number of time partitions for piecewise

linear approximation in constructing cubature on Wiener space can be independent

of the underlying dimension d.
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Remark 3.3. One can also apply these estimates to fractional Brownian motion

[134], though we also need to obtain the exact expectations of iterated integrals

of fractional Brownian motion (we can find some results on the Ito-type iterated

integrals without the time integral by B0
t = t in the literature [11, Theorem 31]).

3.4.3 Kernel quadrature for product measures

Recall the kernel quadrature problem introduced in Section 1.2; we are given a

positive definite kernel k and a Borel probability measure µ on a space X . Our

aim is to find a good kernel quadrature rule, a set of points xi ∈ X and weights

wi ∈ R such that Qn =
∑n

i=1wiδxi
with the small worst-case error wce(Qn;Hk, µ),

which we might just denote by wce(Qn). We call a kernel quadrature convex if Qn

is a probability measure, i.e., wi ≥ 0 and
∑n

i=1wi = 1.

In this section, we see that the complexity of randomized kernel quadrature

algorithm (a version of Algorithm 4.2 in the next chapter) is related to the hy-

percontractivity discussed in this chapter, and give some bounds based on GRPs

when RKHS has a product structure.

Tensor product kernels. With d space-kernel pairs (X1, k1), . . . , (Xd, kd), the

tensor product kernel on the product space X1 × · · · × Xd is defined as

(k1 ⊗ · · · ⊗ kd)(x, y) :=
d∏

i=1

ki(xi, yi),

where x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ X1 × · · · × Xd. This is indeed the

reproducing kernel of the tensor product Hk1 ⊗ · · · ⊗ Hkd in terms of RKHS [18].

The most important example of this construction is when the underlying d kernels

are the same, k⊗d = k⊗· · ·⊗k. Given a probability measure µ in the (conceptually

univariate) space X , constructing a kernel quadrature for µ⊗d with respect to k⊗d

is a natural multivariate extension of kernel quadrature that is widely studied in

the literature [131, 82, 6, 84], and corresponds to high-dimensional QMCs [41].

While we will ultimately consider kernel quadrature for (k⊗d, µ⊗d), let us start

from the “univariate” (k, µ) in the following.
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Mercer-like expansions and quadrature. Let us consider the Mercer-type

expansion:

k(x, y) =
∞∑
ℓ=1

σℓeℓ(x)eℓ(y), (3.3)

where we suppose σ1 ≥ σ2 ≥ · · · ≥ 0 and eℓ ∈ L2(µ) (not necessarily normalized).

Although (σℓ, eℓ)
∞
ℓ=1 are given by normalized eigenpairs of the integral operator

K : f 7→
∫
X k(·, y)f(y) dµ(y) in the case of Mercer expansion [160], we can also

use other expansions such as power-series expansion [185] and the Nyström-based

(truncated) expansion (discussed in the next two chapters). The following propo-

sition, which will formally be proven in a more general form as Proposition 4.8

in the next chapter, shows how a finite-dimensional cubature in the sense of (3.1)

yields some meaningful kernel quadrature.

Proposition 3.23. Let Qn = (wi, xi)
n
i=1 be a convex kernel quadrature satisfying∫

X eℓ(x) dµ(x) =
∑n

i=1wieℓ(xi) for each ℓ = 1, . . . , n−1. Then, by letting rn(x) :=∑∞
m=n σmem(x)

2, we have wce(Qn)
2 ≤ 4 supx∈X rn(x).

We can have more favorable bounds on wce(Qn) by assuming more (see the next

chapter), but the important fact here is that the event (3.2) for a vector-valued

φ given by “basis” functions e1, . . . , en−1 enables us to construct an interesting

numerical scheme. A similar approach, specialized to a Gaussian kernel over a

Gaussian measure can be found in [84]. Given a Mercer-like expansion (3.3), we

can also consider the multivariate version

k⊗d(x, y) =
∞∑

ℓ1,...,ℓd=1

σℓ1 · · ·σℓd(eℓ1 ⊗ · · · ⊗ eℓd)(x)(eℓ1 ⊗ · · · ⊗ eℓd)(y), (3.4)

and the same result as Proposition 3.23 holds for the properly reordered expansion.

For the interaction between the convergence rate and the dimension d in the case

of Mercer expansion, Bach [6, Section 3.4] provides some informative examples.

As the construction of such Qn in Proposition 3.23 for general k and µ relies

on random sampling, we want to estimate Nφ(X)(E[φ(X)]) for X ∼ µ and φ =

(e1, . . . , en−1), where our main interest lies in the multivariate case despite using

the univariate notation for simplicity.
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From RKHS to GRP. To make it compatible with the framework of GRPs

introduced in the previous section, we further assume the following condition,

which ensures that the kernel is in an appropriate scaling.

Assumption A. The expansion (3.3) converges pointwise,
∑∞

ℓ=1 σℓ <∞, σ1 ≤ 1,

and the strict inequality σℓ < 1 holds if eℓ ∈ L2(µ) is not constant.

Under Assumption A, we can naturally define a GRP G = (Y,Q, λ) with Y

following µ, Qm = span{1, e1, . . . , em} and λm = σm for m ≥ 1. Note that it

violates the condition λ1 < 1 if σ1 = 1 and e1 is constant, but in that case we can

simply decrement all the indices of (Qm, λm) by one. We call it the natural GRP

for k (with the expansion) and µ, and we denote it by G = Gk,µ.

Remark 3.4. The scaling given in Assumption A is essential to the hypercontrac-

tivity under the framework of tensor product kernels when considering “eigenspace

down to some eigenvalue”. Indeed, if σℓ ≥ 1 for some nonconstant eℓ, we have

∥e⊗d
ℓ ∥Lp(µ⊗d)

∥e⊗d
ℓ ∥L2(µ⊗d)

=

(
∥eℓ∥Lp(µ)

∥eℓ∥L2(µ)

)d

for p > 2, which increases exponentially as d grows, whereas the corresponding

(σℓ)
d is lower bounded by 1. So the hypercontractivity in our sense never gets

satisfied if σℓ ≥ 1 for a nonconstant eℓ.

By introducing GRPs as above, we can prove the following statement, written

without GRPs.

Proposition 3.24. Let k satisfy Assumption A and Y1, Y2, . . . independently follow

µ. For each ε > 0, define a set of random variables as

S(ε) := span({1}∪{eℓ1(Ym1) · · · eℓd(Ymd
) | d ≥ 1, m1 < · · · < md, σℓ1 · · ·σℓd ≥ ε}).

Then, if ∥eℓ(Y1)∥L4 <∞ holds for all ℓ with σℓ ≥ ε, then there is a constant Cε > 0

such that ∥X∥L4 ≤ Cε∥X∥L2 for all X ∈ S(ε).

Proof. The finiteness of the dimension of “eigenspace” for Y1, i.e, the finiteness of

the number of ℓ satisfying σℓ ≥ ε follows from
∑∞

ℓ=1 σℓ < ∞ in Assumption A.

Thus, Theorem 3.18 gives the conclusion.
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If we only had Y1, . . . , Yd, then S(ε) would correspond to the truncation of the

d-variate expansion (3.4). So this assertion includes a hypercontractivity statement

for an “eigenspace” of k⊗d and µ⊗d given the expansion (3.4). However, we can go

further to a quantitative statement by imposing another assumption in the case

of actual Mercer expansion.

Quantitative bounds for Mercer expansion. We first set up two additional

assumptions for obtaining a quantitative statement. We shall discuss The following

assumption says that (3.3) is actually the Mercer expansion.

Assumption B. (eℓ)
∞
ℓ=1 and (

√
σℓeℓ)

∞
ℓ=1 are orthonormal sets in L2(µ) and Hk,

respectively.

Mild conditions already imply that Assumption B holds, e.g., suppµ = X , k is

continuous, and x 7→ k(x, x) is in L1(µ) is sufficient, see [160]. Another assumption

requires further orthogonality of these test functions against a constant function.

Assumption C. The kernel k can be written as k = 1+ k0, where k0 : X ×X →
R is a positive definite kernel satisfying

∫
X k0(x, y) dµ(y) = 0 for (µ-almost) all

x ∈ X .

Under Assumption A, B, this is simply equivalent to e1 being constant. This

might seem artificial, but naturally arises in the following situations:

(a) X is a compact group and µ is its Haar measure. k is a positive definite kernel

given as k(x, y) = g(x−1y), where g : X → R≥0 and
∫
X g(x) dµ(x) = 1.

(b) k0 is a kernel called Stein kernel [129, 5] with appropriate scaling.

One theoretically sufficient condition for these assumptions can be described as

follows:

Proposition 3.25. Let X be compact metrizable and path-connected, suppµ = X ,
and k be continuous and nonnegative. If

∫
X k(x, y) dµ(y) = 1 holds for all x ∈ X ,

Assumption A–C hold.
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From this proposition, for instance, an appropriately scaled exponential/Gaussian

kernel over the n-sphere with the uniform measure satisfies Assumption A–C.

Under these two assumptions, the operator T (Gk,µ) in terms of GRPs cor-

responds to the integral operator K : f 7→
∫
X k(·, y)f(y) dµ(y), so the situ-

ation becomes simpler. We can directly apply Proposition 3.17 by replacing

λ’s with σ’s, but we also have the following sufficient conditions for the hyper-

contractivity without explicitly using the eigenvalue sequence. In the following,

∥K0∥ := σ2 < 1 is the operator norm of K0 : f 7→
∫
X k0(·, y)f(y) dµ(y) on L

2(µ),

and tr(K0) :=
∫
X k0(x, x) dµ(x). We have the following quantitative condition for

hypercontractivity.

Proposition 3.26. Let k = 1 + k0 satisfy Assumption A–C. When ∥K0∥ > 0, if

r, s ≥ 1 satisfy

∥K0∥−(r+s) ≥ 2, ∥K0∥−(r−1) ≥
√
3 tr(K0), ∥K0∥−(s−1) ≥ ∥k0∥L4(µ⊗µ),

then Gk,µ is (2, 4; r+s)-hypercontractive. In particular, if we have supx∈X |k0(x, x)| ≤
1/
√
3, then Gk,µ is (2, 4; 2)-hypercontractive.

Example 3.27 (Periodic Sobolev spaces over the torus.). Following Bach [6], we

consider periodic kernels over [0, 1]. Therefore let X = [0, 1], µ be the uniform

distribution on X , and define

kr,δ(x, y) = 1 + δ · (−1)
r−1(2π)2r

(2r)!
B2r(|x− y|) (3.5)

for each positive integer s and δ ∈ (0, 1), where B2r is the 2r-th Bernoulli polyno-

mial [173]. δ = 1 is assumed in the original definition, but it violates Assumption

A (see also Remark 3.4). Albeit this slight modification, the kernel kr,δ gives an

equivalent norm to the periodic Sobolev space in the literature. For δ ∈ (0, 1), kr,δ

satisfies Assumption A–C. The eigenvalues and eigenfunctions with respect to the

uniform measure are known [6]; the eigenvalues are: 1 for the constant function,

and δm−2r for cm(·) :=
√
2 cos(2πm ·) and sm(·) :=

√
2 sin(2πm ·) for m ≥ 1, 2, . . ..

We now apply Proposition 3.17 with (for sake of concreteness) δ = 1/3. This gives

∥cm∥L4(µ) = ∥sm∥L4(µ) = (3/2)1/4. Thus, to satisfy the condition of Proposition

3.17, it suffices for s < t to satisfy 3s ≥ (3/2)1/4, δt−sζ(2r(t − s)), 3t ≥ 2, where
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ζ is Riemann’s zeta function. Hence a simple numerical sufficient condition for

this is s = 0.1 and t = 1.1 for r = 1, and t = log3 2 ≤ 0.631 for r ≥ 2, which

can be derived by letting 2r(t − s) ≥ 2. To sum up, in the case r ≥ 2, we only

need O(λ−0.631D) times of sampling for meeting (3.2) with probability over a half,

if X ∼ µ⊗d and each coordinate of φ : X d → RD is in the eigenspace of the

eigenvalue λ.

3.5 Concluding remarks

We investigated the number of samples needed for the expectation vector to be

contained in their convex hull from the viewpoint of product/graded structure.

We demonstrated that we empirically only need O(D) times of sampling for the

D-dimensional random vector in practical examples can partially be explained by

the hypercontractivity in the Gaussian case as well as the generalized situation

including random polynomials and product kernels. There are also interesting

questions for further research; for example, although in the asymptotic d → ∞
we established that the required number of sampling divided by D is independent

of d, the constants are larger than what purely empirical estimates given in [66]

(and the next chapter, where 10D is sufficient in practice). Another direction, is

the case of cubature of Wiener space, as one cannot actually sample from Brow-

nian motion and discretization errors propagate to higher order m; a promising

research direction could be to study “approximate sampling” or consider unbiased

simulations [74] for the iterated integrals.

Appendix for Chapter 3

3.A Proofs

3.A.1 Proof of Proposition 3.4(b)

For a D-dimensional random vector X, recall the following Tukey depth defined

in Chapter 2:

αX(θ) := inf
c∈RD\{0}

P
(
c⊤(X − θ) ≤ 0

)
. (3.6)
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We have shown NX(θ) ≤ ⌈3D/αX(θ)⌉ in Theorem 2.13.

The above can be used to provide a novel bound on NX(E[X]) for a general

class of distributions called log-concave as in the statement of Proposition 3.4. A

function f : Rd → R≥0 is called log-concave if it satisfies

f(tx+ (1− t)y) ≥ f(x)tf(y)1−t

for all x, y ∈ Rd and t ∈ [0, 1]. A probability distribution with a log-concave

density is also called log-concave, and this class includes the multivariate Gaus-

sian/exponential/Wishart distributions, the uniform distribution over a convex

domain, and many more univariate common distributions [4, 21]. For the log-

concave random vectors, the following result is known:

Theorem 3.28 ([24]). If X is a d-dimensional random vector with log-concave

density, then we have αX(E[X]) ≥ 1/e.

The case, when X is uniform over a convex set, is proven in Grünbaum [59],

and Lovász and Vempala [108, Section 5] gives simpler proofs than the original

result in Caplin and Nalebuff [24].

Simply combining Theorem 3.28 and NX(E[X]) ≤ ⌈3D/αX(E[X])⌉ in Theo-

rem 2.13 yields the desired result.

3.A.2 Proof of Corollary 3.5

Proof. Let Y := X − E[X]. First assume that V := E
[
Y Y ⊤] is nonsingular, then

we have ∥c⊤Y ∥L2 =
√
c⊤V c = ∥V 1/2c∥2. Thus, we have

sup
c∈RD\{0}

∥c⊤Y ∥L3

∥c⊤Y ∥L2

= sup
c∈RD\{0}

∥(V 1/2c)⊤V −1/2Y ∥L3

∥V 1/2c∥2
= sup

a∈RD, ∥a∥2=1

∥a⊤V −1/2Y ∥L3 .

Therefore, the assertion follows by observing that the sixth power of the right-hand

side appears in the bound of Theorem 2.17 (by using Y instead of X).

We next consider the case when V is singular. We prove by induction on

D. D = 1 with a singular V implies that X is almost surely a constant and

NX(E[X]) = 1. Let us assume D > 1. Since V is singular, there exists a vector

u ∈ RD \ {0} such that u⊤V u = 0. Therefore, we have

0 = u⊤V u = u⊤E
[
Y Y ⊤]u = E

[
(u⊤Y )2

]
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and so u⊤Y = 0 almost surely. Therefore, there exists an index i such that Y (i)

(i-th entry of Y ) is (almost surely) determined by a linear combination of the other

entries. Say, Y (i) = v⊤Y ′ holds almost surely with v ∈ RD−1 and Y ′ being the

(D − 1)-dimensional random vector given by omitting the i-th entry of Y . Let

Ai ∈ R(D−1)×D be the linear map of omitting the i-th entry of the given vector.

For any c ∈ RD, we have

c⊤Y = (Aic)
⊤Y ′ + c(i)Y (i) = (Aic+ c(i)v)⊤Y ′

almost surely, so we have the same constant K in the assumption of the corollary

for Y and Y ′. Now it suffices to prove αY (0) = αY ′(0) from D − 1 ≤ D and the

induction hypothesis.

Indeed, let Y1, . . . , YN be independent copies of Y and Y ′
1 , . . . , Y

′
N be given

by omitting their i-th entries. The latter sequence is independent copies of Y ′.

Then, for c1, . . . , cN ≥ 0 with c1 + · · · + cN = 1,
∑N

j=1 cjYj = 0 clearly implies∑N
j=1 cjY

′
j = 0. The contrary also holds almost surely, because, for the i-th entries

Y
(i)
1 , . . . , Y

(i)
N , we almost surely have

N∑
j=1

cjY
(i)
j =

N∑
j=1

cjv
⊤Y ′

j = v⊤
N∑
j=1

cjY
′
j = 0

if
∑N

j=1 cjY
′
j = 0. Therefore, we have αY ′(0) = αY (0) = αX(E[X]) and obtain the

desired estimate for when the dimension is D.

3.A.3 Proof of Proposition 3.6

Proof. It suffices to consider the case ∥X1∥L4 <∞. If we write c = (c1, . . . , cD)
⊤,

then by using independence, we have

∥c⊤X∥4L4 = E
[
(c⊤X)4

]
=

D∑
i=1

c4iE
[
X4

i

]
+

∑
1≤i<j≤D

c2i c
2
jE
[
X2

i

]
E
[
X2

j

]
≤ K4

D∑
i=1

c4iE
[
X2

i

]2
+

∑
1≤i<j≤D

c2i c
2
jE
[
X2

i

]
E
[
X2

j

]
≤ K4

(
D∑
i=1

c2iE
[
X2

i

])2

≤ K4E
[
(c⊤X)2

]2
,

as we clearly have K ≥ 1 (or X = 0 almost surely).
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3.A.4 Proof of Theorem 3.15

Proof. We give the proof by generalizing the proof of Lemma 5.3 in Janson [79].

It suffices to prove the statement for d = 2, as the product of GRPs is as-

sociative. Let G(i) = (Y (i), Q(i), λ(i)) for i = 1, 2 be independent GRPs. Let

H
(i)
m (Y (i)) := Q

(i)
m (Y (i)) ∩ Q(i)

m−1(Y
(i))⊥ for i = 1, 2. If we denote the product

by G = G(1) ⊗ G(2). Then, for a random variable X =
∑

ℓ,mXℓ,m with Xℓ,m ∈
H

(1)
ℓ ⊗H

(2)
m , the operator T (G) acts as

T (G)X =
∑
ℓ,m

λ
(1)
ℓ λ(2)m Xℓ,m.

If each Xℓ,m can be written as a finite sum Xℓ,m =
∑

kX
(1)
k,ℓ,mX

(2)
k,ℓ,m with X

(1)
k,ℓ,m ∈

H
(1)
ℓ (Y (1)) and X

(2)
k,ℓ,m ∈ H

(2)
m (Y (2)), then by using Minkowski’s integral inequality

[65] and the (2, p; s)-hypercontractivity of G(1) and G(2), we have

∥T (G)sX∥Lp = EY (1)

[
EY (2)

[∣∣∣∣∣∑
ℓ,m

(λ
(1)
ℓ λ(2)m )sXℓ,m

∣∣∣∣∣
p]]1/p

= EY (1)

[
EY (2)

[∣∣∣∣∣∑
k,ℓ,m

(λ
(1)
ℓ )sX

(1)
k,ℓ,m(λ

(2)
m )sX

(2)
k,ℓ,m

∣∣∣∣∣
p]]1/p

≤ EY (1)

EY (2)

∣∣∣∣∣∑
k,ℓ,m

(λ
(1)
ℓ )sX

(1)
k,ℓ,mX

(2)
k,ℓ,m

∣∣∣∣∣
2
p/2


1/p

(by G(2))

≤ EY (2)

EY (1)

[∣∣∣∣∣∑
k,ℓ,m

(λ
(1)
ℓ )sX

(1)
k,ℓ,mX

(2)
k,ℓ,m

∣∣∣∣∣
p]2/p1/2

(by Minkowski)

≤ EY (2)

EY (1)

∣∣∣∣∣∑
k,ℓ,m

X
(1)
k,ℓ,mX

(2)
k,ℓ,m

∣∣∣∣∣
2
1/2

= ∥X∥L2 . (by G(1))

The general case follows from the limit argument.

3.A.5 Proof of Proposition 3.16

Proof. Let G = (Y,Q, λ). Suppose d̃egGX <∞ and let n be the minimum integer

satisfying X ∈ Qn(Y ). Then, by decomposing X =
∑n

m=0Xm with Xm ∈ Hm(Y ),
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we obtain

∥X∥Lp =

∥∥∥∥∥T (G)s
n∑

m=0

λ−s
m Xm

∥∥∥∥∥
Lp

≤

∥∥∥∥∥
n∑

m=0

λ−s
m Xm

∥∥∥∥∥
L2

≤ λ−s
m ∥X∥L2 ,

where we have used the (2, p; s)-hypercontractivity in the second inequality.

3.A.6 Proof of Proposition 3.17

Proof. It suffices to consider X having the decomposition X =
∑

mXm with Xm ∈
Hm(Y ). Recall that we have assumed that Q0 is the space of constant functions,

so X0 is a constant. First, suppose X0 = 0. In this case, for t > s, we have

∥T (G)tX∥2L4 =

∥∥∥∥∥∑
m≥1

λtmXm

∥∥∥∥∥
2

L4

≤

(∑
m≥1

λt−s
m λsm∥Xm∥L4

)2

≤

(∑
m≥1

λt−s
m ∥Xm∥L2

)2

≤

(∑
m≥1

λ2(t−s)
m

)
∥X∥2L2 . (Cauchy–Schwarz)

Therefore, when
∑

m≥1 λ
2(t−s)
m ≤ 1/

√
3 we have

∥T (G)tX∥L4 ≤ 3−1/4∥X∥L2 (3.7)

for all X satisfying X0 = 0.

In the case X0 ̸= 0, we can assume X0 = 1 without loss of generality. Let

W = X − 1 and Z = T (G)tW = T (G)tX − 1. Note that E[W ] = E[Z] = 0 holds

by the orthogonality. We can explicitly expand the L4 norm as follows:

∥T (G)tX∥4L4 = 1 + 6E
[
Z2
]
+ 4E

[
Z3
]
+ E

[
Z4
]

≤ 1 + 8E
[
Z2
]
+ 3E

[
Z4
]
. (AM–GM)

We also have

∥X∥4L2 = E
[
(1 +W )2

]2
= (1 + E

[
W 2
]
)2 = 1 + 2E

[
W 2
]
+ E

[
W 2
]2
.

So it suffices to show 4E[Z2] ≤ E[W 2] and 3E[Z4] ≤ E[W 2]
2
, but the latter imme-

diately follows from (3.7). The former holds when λt1 ≤ 1/2:

E
[
Z2
]
=
∑
m≥1

λ2tmE
[
X2

m

]
≤ λ2t1 E

[
W 2
]
.

Therefore, we have completed the proof.
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3.A.7 Proof of Theorem 3.18

Proof. Let G = (Y,Q, λ) and X be the space in which Y takes values. By

truncating Q and λ (i.e., ignoring Qm with 1/λm > K), we can assume that

Q(Y ) = {X ∈ L2 | d̃egGX ≤ K}. Then, as dimQ < ∞, we can take a vector-

valued measurable function

φ = (φ1, . . . , φN)
⊤ : X → RN

such that (φi(Y ))Ni=1 is an orthonormal basis of Q(Y ). Then, we have

sup
X∈Q(Y )\{0}

∥X∥L4

∥X∥L2

= sup
c∈RN\{0}

∥c⊤φ(Y )∥L4

∥c⊤φ(Y )∥L2

= sup
c∈RN , ∥c∥=1

∥c⊤φ(Y )∥L4 <∞,

where the right-hand side is the supremum of a continuous functions over a com-

pact domain, and so is indeed finite. Hence, we can apply Proposition 3.17, and

there exists a constant s > 0 such that∥∥T (G)tX∥∥
L4 ≤ ∥X∥L2 , X ∈ Q(Y ),

because λ1 < 1 and (λm)m is of finite length now. So G = (Y,Q, λ) (with trun-

cation by K) is actually (2, p; t)-hypercontractive and it extends to G⊗d for any d

by Theorem 3.15 (note that the truncation does not affect the random variables

with d̃egG⊗dX ≤ K). Then, we finally use Proposition 3.16 to obtain the desired

result with C = Kt.

3.A.8 Proof of Proposition 3.25

Proof. Let f ∈ L2(µ) be an eigenfunction with eigenvalue λ ≥ 0 of the integral

operator, i.e., it satisfies
∫
X k(x, y)f(y) dµ(y) = λf(x) (assume this equality holds

for all x, not just µ-almost all). As
∑∞

ℓ=1 σℓ < ∞ and Assumption B is met from

the general theory [160], it suffices to show λ ≥ 1 if and only if f is constant. Note

that f = 1 is an eigenfunction for λ = 1 by assumption.

Assume λ ≥ 1. Since k is bounded from the assumption, for an (xn)
∞
n=1 con-

verging to x, we have f(xn) =
1
λ

∫
X k(xn, y)f(y) dµ(y)→

1
λ

∫
X k(x, y)f(y) dµ(y) =
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f(x) by the dominated convergence theorem. Thus, f is continuous. Let F =

maxx∈X f(x). If x
∗ ∈ f−1({F}), then

0 = F − f(x∗) =
∫
X
k(x∗, y)

(
F − 1

λ
f(y)

)
dµ(y).

As k(x∗, ·) is a probability density (recall k ≥ 0 from the assumption) with respect

to µ and suppµ = X , we must have λ ≤ 1 and k(x∗, y) = 0 for all y ̸∈ f−1({F}).
Now, it suffices to prove f−1({F}) = X actually holds when λ = 1. Let K =

maxx,y∈X k(x, y). By taking an ε > 0 such that µ(f−1([F − ε, F ))) ≤ 1/(2K), we

have, for x ̸∈ f−1({F}),

f(x) =

∫
X
k(x, y)f(y) dµ(y)

≤
∫
f−1((−∞,F−ε))

k(x, y)f(y) dµ(y) +

∫
f−1([F−ε,F ))

k(x, y)f(y) dµ(y)

≤ (F − ε)
∫
f−1((−∞,F−ε))

k(x, y) dµ(y) + F

∫
f−1([F−ε,F ))

k(x, y) dµ(y)

≤ (F − ε) + ε

∫
f−1([F−ε,F ))

k(x, y) dµ(y) ≤ (F − ε) + ε

2
= F − ε

2
.

Therefore, if f−1({F}) = X , f is disconnected (because X is path-connected), and

it is a contradiction. This completes the proof.

3.A.9 Proof of Proposition 3.26

We first prove the following lemma.

Lemma 3.29. For p > 2, we have ∥K0f∥Lp ≤ ∥k0∥Lp(µ⊗µ)∥f∥L2 for all f ∈ L2(µ).
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Proof. By Minkowski’s integral inequality, we have

∥K0f∥Lp =

(∫
X

∣∣∣∣∫
X
k0(x, y)f(y) dµ(y)

∣∣∣∣p dµ(x)

)1/p

≤
∫
X

(∫
X
|k0(x, y)f(y)|p dµ(x)

)1/p

dµ(y)

≤
∫
X

(∫
X
|k0(x, y)|p dµ(x)

)1/p

|f(y)| dµ(y)

≤

(∫
X

(∫
X
|k0(x, y)|p dµ(x)

)2/p

dµ(y)

)1/2

∥f∥L2 (Cauchy–Schwarz)

≤ ∥k0∥Lp(µ⊗µ)∥f∥L2 .

From this lemma, we have

∥em∥Lp =
1

σm
∥K0em∥Lp ≤

∥k0∥Lp(µ⊗µ)

σm
∥em∥L2 (3.8)

for each m ≥ 2.

Proof of Proposition 3.26. It suffices to consider the case ∥k0∥L4(µ⊗µ) < ∞. Note

that λℓ−1 = σℓ for ℓ = 1, 2, . . . for the GRP Gk,µ, so λ1 = σ2 = ∥K0∥.
Let r0 be the minimum nonnegative number satisfying ∥K0∥−r0 ≥

√
3 tr(K0).

Then, for r := 1 + r0, we have

∞∑
ℓ=2

σr
ℓ ≤ σr0

2

∞∑
ℓ=2

σℓ = ∥K∥r0 tr(K0) ≤
1√
3

(3.9)

Let s0 be the minimum nonnegative number satisfying ∥K0∥−s0 ≥ ∥k0∥L4(µ⊗µ). As

∥K0∥ ∈ (0, 1) from Assumption A, s0 is well-defined. Then, for s := 1 + s0 and

m ≥ 2, from (3.8), we have

∥em∥L4 ≤
∥k0∥L4(µ⊗µ)

σm
∥em∥L2 ≤ 1

σm∥K0∥s0
∥em∥L2 ≤ σ−1−s0

m ∥em∥L2 . (3.10)

Thus, the condition for s and t := r+ s of Proposition 3.17 is satisfied, and so

we have the desired conclusion.
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Chapter 4

Positively weighted kernel
quadrature via subsampling

In this chapter, we study kernel quadrature rules with convex weights. Our ap-

proach combines the spectral properties of the kernel with recombination results

about point measures. This results in effective algorithms that construct convex

quadrature rules using only access to i.i.d. samples from the underlying measure

and evaluation of the kernel and that result in a small worst-case error. In addi-

tion to our theoretical results and the benefits resulting from convex weights, our

experiments indicate that this construction can compete with the optimal bounds

in well-known examples.1

4.1 Introduction

The goal of numerical quadrature/cubature is to provide, for a given probability

measure µ on a space X , a set of points x1, . . . , xn ∈ X and weights w1, . . . , wn ∈ R
such that

n∑
i=1

wif(xi) ≈
∫
X
f(x) dµ(x) (4.1)

holds for a large class of functions f : X → R. As already discussed in Section 1.2,

kernel quadrature focuses on the case when the function class forms a reproducing

kernel Hilbert space (RKHS). What makes kernel quadrature attractive, is that

1Code: https://github.com/satoshi-hayakawa/kernel-quadrature
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the kernel choice provides a simple and flexible way to encode the regularity prop-

erties of a function class. Exploiting such regularity properties is essential when

the integration domain X is high-dimensional or the function class is large. Addi-

tionally, the domain X does not have to be Euclidean but can be any topological

space that carries a positive definite kernel.

As we have already introduced the notation in Section 1.2, given a set (quadra-

ture) Qn = (wi, xi)
n
i=1 with (wi, xi) ∈ R × X , we also regard it as a quadrature

measure Qn =
∑n

i=1wiδxi
and try to minimize the worst-case error wce(Qn;Hk, µ),

where Hk denotes the RKHS associated with a positive definite kernel k. If the

weights satisfy wi ≥ 0 and
∑n

i=1wi = 1, we refer to Qn as a convex quadrature.

Contribution. The primary contribution of this chapter is to leverage recombi-

nation (a consequence of Carathéodory’s Theorem) with spectral analysis of kernels

to construct convex kernel quadrature rules and derive convergence rates. We also

provide efficient algorithms that compute these quadrature rules; they only need

access to i.i.d. samples from µ and the evaluation of the kernel k. See Table 4.1

for a comparison with other kernel quadrature constructions.

The table is written by using σn and rn, which represents a sort of decay of

the kernel with respect to µ. Typical regimes are σn ∼ n−β (e.g. Sobolev) or

σn ∼ exp(−γn) (e.g. Gaussian) depending on the ‘smoothness’ of the kernel [e.g.,

49, 6] (see also Section 4.B.3), and in such regimes (with β ≥ 2 or γ > 0), σn or

rn(≲ nσn) provide faster rates than wce2 ∼ 1/n of the usual Monte Carlo rate. For

more examples including multivariate Sobolev spaces, see Bach [6, Section 2.3].

Limitation. Our proposed methods are based on either Mercer or Nyström

approximation. Though our Mercer-based methods result in strong theoretical

bounds, they require the knowledge of Mercer decomposition like [6, 16, 17], which

is not available for general (k, µ). Our Nyström-based methods apply to much more

general situations and outperform existing methods in experiments, but the n/
√
ℓ

term makes their theoretical bound far from competitive. Further study is needed

to bridge the gap between theory and empirical results. This point is addressed in

the next chapter under additional assumptions on spectral decay.
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Table 4.1: Comparison on n-point kernel quadrature rules. We are omitting the
O notation throughout the table. Note that the assumption under which the the-
oretical guarantee holds varies from method to method, and this table displays
just a representative bound derived in the cited references. Here are remarks
on the notation. (1) σm is the m-th eigenvalue of the integral operator K, and
rm =

∑∞
i=m σi. (2) The symbols in the first line respectively mean C: convex, M:

not using the knowledge of Mercer decomposition, and E: not using the knowledge
of expectations such as

∫
X k(x, y) dµ(y). (3) The (m: global optimization) is in-

dicating the cost of globally optimizing a function whose evaluation costs Θ(m).
(4) N (Nφ) refers to the size of the candidate set from which we subsample, s is a
batch size in the batch herding, and ℓ is another parameter for the Nyström-based
methods. (†) Mercer/Nyström are the algorithms based on random convex hulls,
see Section 4.2.4 and Appendix 4.D. (‡) M./N. + empirical are the algorithms
discussed in the main text. References for the itemized methods are as follows:
Herding [30, 7], Batch herding [164], SBQ [78], Leveraged [6], DPP [16, 15], CVS
[17], RPCholesky [46], and KT++ [44, 45, 152]. We may have better bounds for
specific cases such as i.i.d. sampling for Sobolev spaces with uniform measure [96],
but such methods are not included.

Method Bound of squared wce Computational complexity C M E

Herding 1/n n · (n: global optimization) ✓ ✓

Batch herding (s log(n/s) logN)/n+ 1/N n2N s ✓ ✓

SBQ Not found n · (n2: global optimization) ✓

Leveraged σm, m ≲ n/ log n Unavailable

DPP rn+1 n3 · (rejection sampling)

CVS σn+1 (with assumptions) Unavailable ✓

RPCholesky rm+1

m , n ≳ m log( mσ1
rm+1

) n · (rejection sampling) ✓

KT++ (1/n2 + 1/N) polylog(N) N log3N ✓ ✓ ✓

Ours:

Mercer† rn nNφ + C(n,Nφ) ✓

M. + empirical‡ rn + 1
N nN + n3 log(N/n) ✓ ✓

Nyström† nσn + rn+1 +
n√
ℓ

nℓNφ + nℓ2 + C(n,Nφ) ✓ ✓

N. + empirical‡ nσn + rn+1 +
n√
ℓ
+ 1

N nℓN + nℓ2 + n3 log(N/n) ✓ ✓ ✓

Why convex weights? There are several reasons why convex weights are prefer-

able: (i) Positive integral operator: Kernel quadrature provides an approxi-

mation of the integration operator f 7→ I(f) =
∫
f(x) dµ(x). Hence, a natural re-
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quirement is to preserve some basic properties of this operator and positive weights

preserve the positivity of this operator. (ii) Uniform estimates and robust-

ness: In applications, the RKHS Hk may be misspecified and, if a quadrature rule

with possibly negative weights and large total variation (
∑n

i=1|wi| in (4.1)) is ap-

plied to a function f /∈ Hk, the approximation error (4.1) can get large; in contrast,

a simple estimate shows that convex weights give uniform bounds, see Appendix

4.B.4. (iii) Iteration: Consider the m-fold product of quadrature formulas for

approximating µ⊗m on Xm. This is a common construction for multidimensional

quadrature formulas (e.g., for polynomials) from one-dimensional formulas [163]

or numerics for stochastic differential equations [110]. In doing so, working with

a probability measure is strongly preferred, since otherwise, the total variation of

their m-fold product gets exponentially large as m increases (∥Q⊗m∥TV = ∥Q∥mTV

for a quadrature Q, where ∥·∥TV is the total variation norm).

Related literature. Roughly speaking, there have been two approaches to kernel-

based quadrature formulas: kernel herding and random sampling. In kernel herd-

ing or its variants, the points (xi)
n
i=1 are found iteratively, typically based on the

Frank–Wolfe gradient descent algorithm [30, 7, 78].

In the random sampling approach, (xi)
n
i=1 are sampled and subsequently, the

weights are optimized. Generically, this results only in a signed measure µQ but

not a probability measure. Bach [6] and Belhadji et al. [16] use the eigenvalues and

the eigenfunctions of the integral operator K : f 7→
∫
X k(·, y)f(y) dµ(y) to obtain

a Mercer-type decomposition of k [160]. Bach [6] then uses the eigenvalues and

eigenfunctions of K to define an optimized measure from which the points (xi)
n
i=1

are i.i.d. sampled. This achieves a near-optimal rate, but the exact sampling from

this measure is usually unavailable, although, for special cases, it can be done

efficiently. In contrast, Belhadji et al. [16] proposes non-independent sampling

based on determinantal point processes (DPPs [76]). These two papers also treat

the more general quadrature problem that includes a weight function g ∈ L2(µ),

i.e., approximating
∫
X f(x)g(x) dµ(x) for f ∈ Hk ⊂ L2(µ), which we do not discuss

in this chapter. Another recently introduced method is kernel thinning [44, 45],

which aims at efficient compression of empirical measures that can be obtained by
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sampling like our ‘+ empirical’ methods. Its acceleration [152] makes it competitive

in terms of compressing N ∼ n2 points (‘KT++’ in Table 4.1).

Finally, we emphasize that the kernel quadrature literature is vast, and the dis-

tinction between herding and sampling is only a rough dichotomy, see e.g. [39, 106,

22, 82, 129, 85, 83, 156]. Beyond kernel quadrature, our algorithms can also con-

tribute to the density estimation approach in [170] which relies on recombination

based on Fourier features although we do not pursue this further here.

Outline. Section 4.2 contains our main theoretical and methodological contri-

bution. Section 4.3 provides numerical experiments on common benchmarks. The

Appendix contains several extensions of our main result, proofs, and further ex-

periments and benchmarks.

4.2 Main result

Assume we are given a set2 of n−1 functions φ1, . . . , φn−1 : X → R such that their

linear combinations well approximate functions inHk. Then our kernel quadrature

problem reduces to the construction of an n-point discrete probability measure

µQn =
∑n

i=1wiδxi
such that∫

X
φi(x) dµ

Qn(x) =

∫
X
φi(x) dµ(x) for every i = 1, . . . , n− 1. (4.2)

A simple way to approximately construct this µQn is to first, sample N ≫ n points,

(yi)
N
i=1, from µ such that their empirical measure, µ̃N = 1

N

∑N
i=1 δyi , is a good

approximation to µ in the sense that
∫
φi dµ̃N ≈

∫
φi dµ for i = 1, . . . , n− 1, and

secondly, apply a so-called recombination algorithm (Remark 4.1) that takes as

input (yi)
N
i=1 and n functions φ1, . . . , φn−1 and outputs a measure µQn =

∑
wiδxi

by selecting a subset (xi)
n
i=1 of the points (yi)

N
i=1 and giving them weights (wi)

n
i=1

such that µQn is a probability measure that satisfies the equation (4.2) with µ

replaced by µ̃N .

2The number n− 1 stems from Carathéodory’s theorem, Remark 4.1, and leads to an n point
quadrature rule.
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The challenging parts of this approach are (i) to construct functions φ1, . . . , φn−1

that approximately span the RKHS Hk for a small n; (ii) to arrive at good quan-

titative bounds despite the (probabilistic) sampling error resulting from the use of

the empirical measure µ̃N , and the function approximation error via φ1, . . . , φn−1.

To address (i) we look for functions such that

k(x, y) ≈ k0(x, y) :=
n−1∑
i=1

ciφi(x)φi(y) (4.3)

with some ci ≥ 0. Two classic ways to do this are the Mercer and Nyström

approximations. The remaining, item (ii) is our main contribution. Theorem 4.1

shows that the worst-case error, (4.4), is controlled by the sum of two terms: the

first term stems from the kernel approximation (4.3), the second term stems from

the empirical measure.

Theorem 4.1. Let µ be a Borel probability measure on X and k a positive definite

kernel on X such that
∫
X k(x, x) dµ(x) < ∞. Further, let n be a positive integer

and assume k0 is a positive definite kernel on X such that

1. k − k0 is a positive definite kernel on X , and 2. dimHk0 < n.

There exists a function KQuad such that if DN is a set of N i.i.d. samples from

µ, then Qn = KQuad(DN) is a random n-point convex quadrature that satisfies

EDN

[
wce(Qn;Hk, µ)

2
]
≤ 8

∫
X
(k(x, x)− k0(x, x)) dµ(x) +

2ck,µ
N

. (4.4)

where ck,µ :=
∫
X k(x, x) dµ(x)−

∫∫
X×X k(x, y) dµ(x) dµ(y).

Moreover, the support of Qn is a subset of DN and given functions φ1, . . . , φn−1 ∈
L1(µ) with Hk0 ⊂ span{φ1, . . . , φn−1}, Qn = KQuad(DN) can be computed with

Algorithm 4.1 in O(nN + n3 log(N/n)) computational steps.

The function KQuad is deterministic but since DN is random, the resulting

quadrature ruleQn is random, hence also the resulting worst-case error wce(Q;Hk, µ)

and the expectation in (4.4) denotes the expectation over the N samples in DN .

The theoretical part of Theorem 4.1 follows from more general results that we

present and prove in the Appendix: Theorem 4.7 proves the inequality, essentially
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by comparing Hk with Hk0 ; Theorem 4.9 proves the existence. The algorithmic

part of Theorem4.1 is discussed in Section 4.2.1 below. Theorem 4.1 covers our

two main examples for the construction of k0, resp. the choice of φ1, . . . , φn−1, and

for which the error estimate gets quite explicit: the Mercer approximation, see

Section 4.2.2, and the Nyström approximation, see Section 4.2.3. The former re-

quires some knowledge about the spectrum of the kernel which is, however, known

for many popular kernels; the latter works in full generality but yields worse the-

oretical guarantees for the convergence rate. Finally, we emphasize that N and n

in Theorem 4.1 can be chosen independently and we will see that from a compu-

tational point the choice N ∼ n2 is preferable in which case (4.4) is a faster rate

than Monte Carlo, see also Table 4.1.

4.2.1 Algorithm

Algorithm 4.1 Kernel quadrature with convex weights via recombination KQuad

Input: A positive definite kernel k on X , a probability measure µ on X , integers
N ≥ n ≥ 1, another kernel k0, functions φ1, . . . , φn−1 on X with Hk0 ⊂
span{φ1, . . . , φn−1} and a set DN of N i.i.d. samples from µ.

Output: A set Qn := {(wi, xi) | i = 1, . . . , n} ⊂ R×X with wi ≥ 0,
∑n

i=1wi = 1
1: Apply a Recombination Algorithm (Remark 4.1) with ψ =

(φ1, . . . , φn−1, k1,diag)
⊤, to the empirical measure 1

N

∑
y∈DN

δy to obtain points

{x̃1, . . . , x̃n+1} ⊂ DN and weights v = (v1, . . . , vn+1)
⊤ ≥ 0 that satisfy 1⊤v = 1

and ψ(x̃)v = 1
N

∑N
i=1ψ(x̃i), where ψ(x̃) = [ψ(x̃1), . . . ,ψ(x̃n+1)] ∈ Rn×(n+1).

2: Apply SVD with the matrix A = [φi−1(yj)]ij ∈ Rn×(n+1) with φ0 = 1 to find a
nonzero vector u ∈ Rn+1 such that Au = 0 and k1,diag(x̃)

⊤u ≥ 0
3: Compute the smallest α ≥ 0 such that v − αu ≥ 0 and vj − αuj = 0 for a j
4: Return (wi)

n
i=1 ← (vk − αuk)k∈I and (xi)

n
i=1 ← (x̃k)k∈I , where I = {1, . . . , n+

1} \ {j}

Suppose we are given k0 and φ1, . . . , φn−1 ∈ L1(µ) withHk0 ⊂ span{φ1, . . . , φn−1},
and also N independent samples from µ denoted by DN = (y1, . . . , yN). Theo-

rem 4.7 in the Appendix shows that if we construct a convex quadrature Qn =

(wi, xi)
n
i=1 satisfying

n∑
i=1

wiφ(xi) =
1

N

N∑
i=1

φ(yi),
n∑

i=1

wik1,diag(xi) ≤
1

N

N∑
i=1

k1,diag(yi), (4.5)
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where φ = (φ1, . . . , φn−1)
⊤ and k1,diag(x) = k(x, x)−k0(x, x), it satisfies the bound

(4.4). For this problem, we can use the so-called recombination algorithms:

Remark 4.1 (Recombination). Given d−1 functions (called test functions) and a

probability measure supported on N > d points, there exists a probability measure

supported on a subset of d points that gives the same mean to these d−1 functions.

This follows from Carathéodory’s theorem and is known as recombination. Efficient

deterministic [103, 111, 163] as well as randomized [34] algorithms exist to compute

the new probability measure supported on d points; e.g. deterministic algorithms

perform the recombination, step 1, in O(cφN + d3 log(N/d)) time, where cφ is the

cost of computing all the test functions at one sample. If each function evaluation

is in constant time, cφ = O(d).

Let us briefly provide the intuition behind the deterministic recombination

algorithms. We can solve the problem of “reducing (weighted) 2d points to d points

in Rd while keeping the barycenter” by using linear programming or a variant of

it. If we apply this to 2d points each given by a barycenter of approximately N
2d

points, we can reduce the original problem of size N to a problem of size d · N
2d

= N
2
.

By repeating this procedure log2(
N
d
) times we obtain the desired measure.

Although the recombination introduced here only treats the equality con-

straints in (4.5) we can satisfy the remaining constraints just with n points by

modifying it. This is done in Algorithm 4.1 which works as follows: First, via

recombination, find an (n+1)-point convex quadrature Rn+1 = (vi, yi)
n+1
i=1 that ex-

actly integrates functions φ1, . . . , φn−1, k1,diag with regard to the empirical measure
1
N

∑N
i=1 δyi . Second, to reduce one point, find a direction (−u in the algorithm) in

the space of weights on (x̃i)
n+1
i=1 that does not change the integrals of φ1, . . . , φn−1

and the constant function 1, and does not increase the integral of k1,diag. Finally,

move the weight from v to the above direction until an entry becomes zero, at

v−αu. Such an α ≥ 0 exists, as u must have a positive entry since it is a nonzero

vector whose entries sum up to one. Now we have a convex weight vector with at

most n nonzero entries, so it outputs the desired quadrature satisfying (4.5).

89



4.2.2 Mercer approximation

In this section and Section 4.2.3, we assume that k has a pointwise convergent

Mercer decomposition k(x, y) =
∑∞

m=1 σmem(x)em(y) with σ1 ≥ σ2 ≥ · · · ≥ 0

and (em)
∞
m=1 ⊂ L2(µ) being orthonormal [160]. If we let K be the integral oper-

ator L2(µ) → L2(µ) given by f 7→
∫
X k(·, y)f(y) dµ(y), then (σm, em)

∞
m=1 are the

eigenpairs of this operator.

The first choice of the approximate kernel k0 is just the truncation of Mercer

decomposition.

Corollary 4.2. Theorem 4.1 applied with k0(x, y) =
∑n−1

m=1 σmem(x)em(y) yields

a random convex quadrature rule Qn such that

EDN

[
wce(Qn;Hk, µ)

2
]
≤ 8

∞∑
m=n

σm +
2ck,µ
N

. (4.6)

Proof. It suffices to prove the result under the assumption
∫
X k(x, x) dµ(x) =∑∞

m=1 σm <∞, as otherwise the right-hand side of (4.6) is infinity.

For k1 := k − k0, we have that k1(x, y) =
∑∞

m=n σmem(x)em(y) and it is the

inner product of Φ(x) := (
√
σmem(x))

∞
m=n and Φ(y) in ℓ2({n, n + 1, . . .}) and so

positive definite. Thus k and k0 satisfies the assumption of Theorem 4.1, and∫
X k1(x, x) dµ(x) =

∑∞
m=n σm applied to (4.4) yields the desired inequality.

4.2.3 Nyström approximation

Although the Nyström method [179, 43, 97] is primarily used for approximating a

large Gram matrix by a low-rank matrix, it can also be used for directly approxi-

mating the kernel function itself and this is how we use it. Given a set of ℓ points

Z = (zi)
ℓ
i=1 ⊂ X , the vanilla Nyström approximation of k(x, y) is given by

k(x, y) = ⟨k(·, x), k(·, y)⟩Hk
≈ ⟨PZk(·, x), PZk(·, y)⟩Hk

=: kZ(x, y), (4.7)

where PZ : Hk → Hk is a projection operator onto span{k(·, zi)}ℓi=1. In matrix

notation, we have

kZ(x, y) = k(x, Z)k(Z,Z)+k(Z, y) := [k(x, z1), . . . , k(x, zℓ)]k(Z,Z)
+

 k(z1, y)
...

k(zℓ, y)

 ,
(4.8)
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where k(Z,Z) := (k(zi, zj))
ℓ
i,j=1 is the Gram matrix for Z and k(Z,Z)+ denotes

its Moore–Penrose inverse. We discuss the equivalence between (4.7) and (4.8) in

Appendix 4.B.5. As kZ is an ℓ-dimensional kernel, there exists an (ℓ + 1)-point

quadrature formula that exactly integrates functions in HkZ . For a quadrature

formula, exactly integrating all the functions in HkZ is indeed equivalent to exactly

integrating k(zi, ·) for all 1 ≤ i ≤ ℓ, as long as the Gram matrix k(Z,Z) is

nonsingular. Proposition 4.8 in the Appendix provides a bound for the associated

worst-case error. From this viewpoint, the Nyström approximation offers a natural

set of test functions.

The Nyström method has a generalization with a low-rank approximation of

k(Z,Z). Concretely, let k(Z,Z)s be the best rank-s approximation of k(Z,Z)

(given by eigendecomposition), and we define the following s-dimensional kernel:

kZs (x, y) := k(x, Z)k(Z,Z)+s k(Z, y). (4.9)

Let k(Z,Z) = UΛU⊤ be the eigendecomposition of k(Z,Z), where U = [u1, . . . , uℓ] ∈
Rℓ×ℓ is a real orthogonal matrix and Λ = diag(λ1, . . . , λℓ) with λ1 ≥ · · · ≥ λℓ ≥ 0.

Then, if λs > 0 we have

kZs (x, y) =
s∑

i=1

1

λi
(u⊤i k(Z, x))(u

⊤
i k(Z, y)). (4.10)

So we can use functions u⊤i k(Z, ·) (i = 1, . . . , s) as test functions, which is chosen

from a larger dimensional space span{k(zi, ·)}ℓi=1. Although closer to the original

usage of the Nystöm method is to obtain u⊤i k(Z, ·) as an approximation of i-th

eigenfunction of the integral operator K with Z appropriately chosen with respect

to µ, we have adopted an explanation suitable for the machine learning literature

[43, 97].

The following is a continuous analogue of Kumar et al. [97, Theorem 2] showing

the effectiveness of the Nyström method. See also Jin et al. [80] for an analysis

specific to the case s = ℓ.

Theorem 4.3. Let s ≤ ℓ be positive integers and δ > 0. Let Z be an ℓ-point

independent sample from µ. If we define the integral operator KZ
s : L2(µ)→ L2(µ)
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by f 7→
∫
X k

Z
s (·, y)f(y) dµ(y), then we have, with probability at least 1−δ, in terms

of the operator norm,

∥KZ
s −K∥ ≤ σs+1 +

2 supx∈X k(x, x)√
ℓ

(
1 +

√
2 log

1

δ

)
. (4.11)

The proof is given in Appendix 4.C.5. By using this estimate, we obtain the

following guarantee for the random convex quadrature given by Algorithm 4.1 and

the Nyström approximation.

Corollary 4.4. Let DN be N-point independent sample from µ and let Z be an

ℓ-point independent sample from µ. Theorem 4.1 applied with the Nyström approx-

imation k0 = kZn−1 yields an random n-point convex quadrature rule Qn such that,

with probability at least 1− δ and kmax := supx∈X k(x, x),

EDN

[
wce(Qn;Hk, µ)

2
∣∣Z] ≤ 8

(
nσn +

∑
m>n

σm

)
+

16(n− 1)kmax√
ℓ

(
1 +

√
2 log

1

δ

)
+

2ck,µ
N

.

Proof. From (4.10), kZ(x, y) − kZn−1(x, y) =
∑ℓ

i=n λ
−1
i (u⊤i k(Z, x))(u

⊤
i k(Z, y)) (ig-

nore the terms with λi = 0 if necessary), and it is thus positive (semi)definite.

If we define P⊥
Z : Hk → Hk as the projection operator onto the orthogonal com-

plement of span{k(·, zi)}ℓi=1, then, from (4.7), we also have k(x, y) − kZ(x, y) =〈
P⊥
Z k(·, x), P⊥

Z k(·, y)
〉
Hk

. Now k−kZ is also positive definite since we have a⊤(k(X,X)−
kZ(X,X))a =

∑M
i,j=1 aiaj

〈
P⊥
Z k(·, xi), P⊥

Z k(·, xj)
〉
Hk

= ∥
∑M

i=1 aiP
⊥
Z k(·, xi)∥2Hk

for

any M > 0, a = (ai)
M
i=1 ∈ RM and X = (xi)

M
i=1 ∈ XM . In particular, k − kZn−1 =

(k−kZ)+(kZ−kZn−1) is positive definite. Also, it suffices to prove the result when∑∞
m=1 σm <∞, so we can now apply Theorem 4.1.

For k1 := k−kZn−1, we prove the inequality
∫
X k1(x, x) dµ(x) =

∑∞
m=1

〈
em, (K −KZ

s )em
〉
L2 ≤

(n − 1)∥K − KZ
s ∥ +

∑
m≥n σm (see (4.30) in Appendix 4.D.2 for details), and the

desired inequality follows by combining Theorem 4.1 and Theorem 4.3 (i.e., (4.4)

and (4.11)).

Remark 4.2. Algorithm 4.1 with the Nystöm approximation can be decomposed

into two parts: (a) Nystöm approximation by truncated singular value decompo-

sition (SVD) (the first n − 1 eigenvectors from an ℓ-point sample), (b) Recombi-

nation from an N-point empirical measure. The complexity of (a) is O(nℓ2), and
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it can also be approximated by randomized SVD in O(n2ℓ+ ℓ2 log n) [63]. The

cost of part (b) is O(nℓN + n3 log(N/n)), where nℓN stems from the evaluation

of k1,diag for all N sampling points. If we do not impose the inequality constraint

regarding k1,diag, which still works well in practice, the cost of part (b) becomes

O(ℓN + n2ℓ log(N/n)), by using the trick 1
N

∑N
i=1 U

⊤
n−1k(Z, yi) = U⊤

n−1
1
N

∑N
i=1 k(Z, yi),

where Un−1 = [u1, . . . , un−1] ∈ Rℓ×(n−1) is a truncation of the matrix that appears

in the Nyström approximation (4.9,4.10). So the overall complexity is given by

O(nℓN + nℓ2 + n3 log(N/n)) while an approximate algorithm (randomized SVD,

without the inequality constraint) runs in O(ℓN + ℓ2 log n+ n2ℓ log(N/n)).

4.2.4 Kernel quadrature using expectations of test func-
tions

Algorithm 4.1 and the bound (4.4) can be generally applicable once we obtain a

low-rank approximation k0 as we have seen in Section 4.2.2 and 4.2.3. However,

since by construction, we start by reducing the empirical measure given by DN , it

is inevitable to have the Ω(1/N) term in the error estimate and performance. We

can avoid this limitation by exploiting additional knowledge of expectations.

Let k0 and k1 be positive definite kernels with k = k0+k1. Letφ = (φ1, . . . , φn−1)
⊤

be the vector of test functions that spans Hk0 . When we know the expecta-

tions of them, i.e.,
∫
X φ(x) dµ(x), we can actually construct a convex quadrature

Qn = (wi, xi)
n
i=1 satisfying

n∑
i=1

wiφ(xi) =

∫
X
φ(x) dµ(x),

n∑
i=1

wik1(xi, xi) ≤
∫
X
k1(x, x) dµ(x) (4.12)

with a positive probability by an algorithm based on random convex hulls (Ap-

pendix 4.D, Algorithm 4.2). For this Qn, we have the following theoretical guar-

antee (see Theorem 4.6 in Appendix 4.B):

Theorem 4.5. If a convex quadrature Qn satisfies the condition (4.12), we have

wce(Qn;Hk, µ)
2 ≤ 4

∫
X
k1(x, x) dµ(x).

If k0 is given the Mercer/Nyström approximations, we immediately have the

following guarantees; they correspond to Mercer and Nyström in Table 4.1. See

also Theorem 4.14 and 4.16 for details.
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• If k0(x, y) =
∑n−1

m=1 σmem(x)em(y) is given by the Mercer approximation, for

a convex quadrature Qn satisfying (4.12), we have

wce(Qn;Hk, µ)
2 ≤ 4

∞∑
m=n

σm.

• Let k0 = kZn−1 be given by the Nyström approximation (4.9) with Z being

an ℓ-point independent sample from µ (with ℓ > n). Then, for a convex

quadrature Qn satisfying (4.12), with probability at least 1− δ (with respect

to Z) and kmax := supx∈X k(x, x), we have

wce(Qn;Hk, µ)
2 ≤ 4

(
nσn +

∑
m>n

σm

)
+

8(n− 1)kmax√
ℓ

(
1 +

√
2 log

1

δ

)
.

4.3 Numerical experiments

In this section, we compare our methods with several existing methods. In all the

experiments, we used the setting where we can compute
∫
X k(x, y) dµ(y) for x ∈ X

and
∫∫

X×X k(x, y) dµ(x) dµ(y) since then we can evaluate the worst-case error of

quadrature formulas explicitly. Indeed, if a quadrature formula Qn is given by

points X = (xi)
n
i=1 and weights w = (wi)

n
i=1, then we have

wce(Qn;Hk, µ)
2 = w⊤k(X,X)w − 2Ey[w

⊤k(X, y)] + Ey,y′ [k(y, y
′)] (4.13)

for independent y, y′ ∼ µ under
∫
X

√
k(x, x) dµ(x) <∞, which is a special case of

(1.2). An essential remark shown in Huszár and Duvenaud [78] is that the Bayesian

quadrature [131] with covariance kernel k given observation at points (xi)
n
i=1 (au-

tomatically) estimates the integral as
∑n

i=1wif(xi) with (wi)
n
i=1 minimizing the

above expression. Once given points (xi)
n
i=1 and additional knowledge of expecta-

tions, we can compute the optimal weights (wi)
n
i=1 by solving a convex quadratic

programming (CQP), either without any restrictions or with the condition that

(wi)
n
i=1 is convex. Although the former can be solved by matrix inversion, we have

used the optimizer Gurobi3 for both CQPs to avoid numerical instability. For the

3Version 9.1.2, https://www.gurobi.com/
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recombination part, we have modified the Python library by Cosentino et al. [34]

implementing the algorithm of [163].

Our theoretical bounds are close to optimal in classic examples and we see

that the algorithm even outperforms the theory in practice, especially in Section

4.3.1. We also execute a measure reduction of a large discrete measure in terms of

Gaussian RKHS and our methods show a fast convergence rate in two ML datasets

in Section 4.3.2. 4

4.3.1 Periodic Sobolev spaces with uniform measure

For a positive integer r, consider the Sobolev space of functions on [0, 1] endowed

with the norm ∥f∥2 = (
∫ 1

0
f(x) dx)2+(2π)2r

∫ 1

0
f (r)(x)2 dx, where f and its deriva-

tives f (1), . . . f (r) are periodic (i.e., f(0) = f(1) and so forth). This function space

can be identified as the RKHS of the kernel

kr(x, y) = 1 +
(−1)r−1(2π)2r

(2r)!
B2r(|x− y|)

for x, y ∈ [0, 1], where B2r is the 2r-th Bernoulli polynomial [173, 6]. If we let

µ be the uniform measure on [0, 1], the normalized eigenfunctions (of the integral

operator) are 1, cm(·) =
√
2 cos(2πm ·) and sm(·) =

√
2 sin(2πm ·) for m = 1, 2, . . .,

and the corresponding eigenvalues are 1 and m−2r (both for cm and sm). Although

the rectangle formula f 7→ n−1
∑n

i=1 f(i/n) (a.k.a. Uniform Grid below) is known

to be optimal for this kernel [183, 128] in the sense of worst-case error, this RKHS

is commonly used for testing the efficiency of general kernel quadrature methods

[6, 16, 83]. We also consider its multivariate extension on [0, 1]d, i.e., the RKHS

given by the product kernel k⊗d
r (x,y) :=

∏d
i=1 kr(xi, yi) for x = (x1, . . . , xd),y =

(y1, . . . , yd) ∈ [0, 1]d.

We carried out the experiment for (d, r) = (1, 1), (1, 3), (2, 1), (3, 3). For each

(d, r), we compared the following algorithms for n-point quadrature rules with

n ∈ {4, 8, 16, 32, 64, 128}.

N. + emp, N. + emp + opt: We used the functions u⊤i k(Z, ·) (i = 1, . . . , n−
1) given by the Nyström approximation (4.10) with s = n−1 as test functions

4All done on a MacBook Pro, CPU: 2.4 GHz Quad-Core Intel Core i5, RAM: 8 GB 2133 MHz
LPDDR3.
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(b) d = 1, r = 3
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(c) d = 2, r = 1
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(d) d = 3, r = 3

Figure 4.1: Periodic Sobolev spaces with kernel k⊗d
r : The average of

log10(wce(Qn;Hk, µ)
2) over 20 trials is plotted for each method of obtaining Qn.

The shaded regions show their standard deviation. The worst computational time
per trial was 57 seconds of Thin + opt in (d, r, n) = (3, 3, 128), where Thinning
was 56 seconds and N. + emp [+ opt] was 22 seconds.
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φ1, . . . , φn−1 in Algorithm 4.1. The set Z was given as an (ℓ =)10n-point

independent sample from µ. We used N = n2 samples from µ. In ‘+ opt’

we additionally optimized the convex weights using (4.13)

M. + emp, M. + emp + opt (d = 1): We used the first n−1 functions of the

sequence of eigenfunctions 1, c1, s1, c2, s2, . . . as test functions φ1, . . . , φn−1 in

Algorithm 4.1. We used N = n2 samples from µ. In ‘+ opt’ we additionally

optimized the convex weights using (4.13).

Monte Carlo, iid Bayes: With an n-point independent sample (xi)
n
i=1 from µ,

we used uniform weights 1/n in Monte Carlo and the weights optimized

using (4.13) in iid Bayes.

Uniform Grid (d = 1): We used the rectangle formula f 7→ n−1
∑n

i=1 f(i/n).

This is known to be optimal (not just up to constant, but exactly [183, 128]),

and thus equivalent to the Bayesian quadrature on the uniform grid, i.e., the

weights are already optimized.

Halton, Halton + opt (d ≥ 2): For an n-point sequence given by the Halton

sequence with Owen scrambling [64, 132], the uniform weights wi = 1/n is

adopted in Halton and the weights are additionally optimized using (4.13)

in Halton + opt.

Thinning, Thin + opt: Given anN -point independent sample (yi)
N
i=1 withN =

n2 from µ, an n-point subset (xi)
n
i=1 taken from a KT++ algorithm (kernel

thinning [44, 45] combined with Compress++ algorithm [152] with the over-

sampling parameter g = min{4, log2 n}, implemented with GoodPoints pack-

age: https://github.com/microsoft/goodpoints) is adopted in Thin-

ning. In ‘+ opt’ we additionally optimized the convex weights using (4.13).

The results are given in Figure 4.1. In d = 1, the optimal rate given by

Uniform Grid is known to be O(n−2r). As the uniform sampling is equal to

the optimized distribution of Bach [6] in this case, iid Bayes also achieves this

rate up to log factors. Although our theoretical guarantee for M. + emp is

O(n1−2r +N−1) with N = n2 (Corollary 4.2), in the case (d, r) = (1, 1), we can

observe that in the experiment it is better than iid Bayes and close to the optimal

97

https://github.com/microsoft/goodpoints


error of Uniform Grid, but slightly worse than Thinning. Moreover, N. +

emp, which does not use the information of spectral decomposition, is remarkably

almost as accurate as M. + emp in d = 1. Furthermore, if we additionally use

the knowledge of expectations, which iid Bayes is already doing, M./N. + emp

+ opt become surprisingly accurate even with N = n2. They are worse than

Thinn + opt when r = 1, but well outperform it when r = 3. Nonlinearity in the

graph of these methods when (d, r, n) = (1, 3, 128) should be from the numerical

accuracy of the CQP solver (see also Section 4.E.1).

The accuracy of N. + emp + opt becomes more remarkable in multivariate

cases. It behaves almost the same as Halton + opt in d = 2 and clearly beats it

in d = 3. Also, the sudden jump of our methods around n = 30 in (d, r) = (3, 3)

seems to be caused by the jump in eigenvalues. Indeed, for the integral operator

given by k⊗3
3 with uniform measure, the eigenspace of the largest eigenvalue 1

is of dimension 27, and the next largest eigenvalue is 1/64. Again in the latter

case, N. + emp + opt outperforms Thin + opt, and these results suggest that

our method works better when there is a strong spectral decay, as is explicitly

incorporated in our algorithm.

Note also that we can compare Figure 4.1 with Belhadji et al. [16, Figure

1] which includes some other methods such as DPPs, herding, and sequential

Bayesian quadrature, as we did experiments under almost the same setting. In

particular, in the case (d, r) = (1, 3) where the eigenvalue decay is fast, we see that

our method substantially outperforms the sequential Bayesian quadrature.

4.3.2 Measure reduction in machine learning datasets

We used two datasets from UCI Machine Learning Repository (https://archive.

ics.uci.edu/ml/datasets/). We set µ as the equally weighted measure over

(a subset of) the data points X = (X(1), . . . , X(d))⊤ (d = 3, 5, respectively),

where each entry is centered and normalized. We considered the Gaussian kernel

exp(−∥x − y∥2/(2λ2)) whose hyperparameter λ is determined by median heuris-

tics [50], and compared the performance of N. + emp, N. + emp + opt (with

ℓ = 10n, N = n2), Monte Carlo, iid Bayes, Thinning, Thin + opt. We
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(a) 3D Road Network data
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(b) Power Plant data

Figure 4.2: Measure reduction in Gaussian RKHS with two ML datasets: The aver-
age of log10(wce(Qn;Hk, µ)

2) over 20 trials is plotted for each method of obtaining
Qn. The shaded regions show their standard deviation. The worst computational
time per trial was 14 seconds of Thinning [+ opt] in Power Plant data with
n = 128, where N. + emp [+ opt] was 6.3 seconds.

also added Herding, an equally weighted greedy algorithm with global opti-

mization [30], and its weight optimization Herd + opt within convex quadra-

ture given by (4.13). Note that we chose the initial point for herding by uni-

form sampling, and this causes the randomness in Figure 4.5. We experimented

n ∈ {4, 8, 16, 32, 64, 128}.
The first is 3D Road Network Data Set [88]. The original dataset is 3-

dimensional real vectors at 434874 points. To be able to compute the worst-case

error (4.13) efficiently to evaluate each kernel quadrature, we used a random subset

X of size 43487 = ⌊434874/10⌋ (fixed throughout the experiment) and defined µ

as the uniform measure on it. We determined λ with the median heuristic by using

a random subset of X with size 10000 and used the same X and λ throughout the

experiment. The second is Combined Cycle Power Plant Data Set [89, 168].

The original dataset is 5-dimensional real vectors at 9568 points. We set the whole

data as X and defined µ as the uniform measure on it. We determined λ with

median heuristics by using the whole X .
Figure 4.2 shows the results. We can observe that in both experiments N. +

emp + opt successfully exploits the fast spectral decay of the Gaussian kernel and
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significantly outperforms other methods. Also, even without using the knowledge

of any expectations, N. + emp (and Thinning) show a decent convergence

rate comparable to Herding or iid Bayes, which actually use the additional

information. See also the end of Section 4.E.2 for the plot of wce(Qn;Hk, µ
′) for

another set of empirical data µ′.

4.4 Concluding remarks

We leveraged a classical measure reduction tool, recombination, with spectral prop-

erties of kernels to construct kernel quadrature rules with positive weights. The

resulting algorithms show strong performance within our experiments for small n

(up to around 100) despite their restriction to convex weights. Our method has

also recently been applied to Bayesian inference problems [1].

Although our method is applicable to fairly general situations, the usage or

performance can be limited when it is difficult or inefficient to directly sample

from the target measure µ. Hence, an interesting follow-up question, is how one

could replace the i.i.d. samples with smarter sampling (DPP, importance sampling,

etc) before the recombination is carried out. Further, our theoretical results do not

fully explain the empirical superiority; especially the 1/
√
ℓ term does not match

the experiments and it is a challenging future research question to reduce this

theoretical gap. Nevertheless, we believe that our Nyström-based method is the

first generally applicable algorithm with convex weights with a guarantee from

spectral decay, given access to i.i.d. samples from µ.

Appendix for Chapter 4

4.A Outline of Appendix

Appendix 4.B contains general results from which the results presented in the main

text, in particular, Theorem 4.1, follow as special cases. Appendix 4.C contains

the proofs of these theoretical results and needed technical lemmas. Appendix 4.D

shows that if the expectations
∫
φi(x) dµ(x) are known, then this knowledge can be

used to further improve the theoretical bounds; it also gives a simple modification
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of Algorithm 4.1 doing this efficiently. Appendix 4.E provides additional numerical

experiments and benchmarks.

4.B Theoretical results and remarks

In this section, we present theoretical results that include our main results as a

special case. The proofs are given in Section 4.C.

Notation. For simplicity, for a quadratureQn given by points (xi)
n
i=1 and weights

(wi)
n
i=1 and a probability measure µ, we denote the integration of an integrable

function f on X with respect to these measures by

Qn(f) =
n∑

i=1

wif(xi), µ(f) =

∫
X
f(x) dµ(x),

respectively. We also write the inner product and norm of an RKHS Hk by ⟨·, ·⟩Hk

and ∥·∥Hk
. Furthermore, we use the probability simplex ∆n and convex hull convA

of a set A ⊂ Rd in the proofs:

∆n :=

{
(wi)

n
i=1

∣∣∣∣∣wi ≥ 0,
n∑

i=1

wi = 1

}
, convA :=

{
n∑

i=1

wiai

∣∣∣∣∣ (wi) ∈ ∆n, ai ∈ A, n ≥ 1

}
.

4.B.1 Quantitative results

We work under the following setting as in the assumption of Theorem 4.1.

Assumption A. µ is a Borel probability measure on X , and k is a positive definite

kernel on X such that
∫
X k(x, x) dµ(x) < ∞. Further, k0 is a positive definite

kernel on X such that k1 := k − k0 is a positive definite kernel on X .

The following is a general result regarding a quadrature formula exactly inte-

grating functions in Hk0 .

Theorem 4.6. Under Assumption A, if an n-point convex quadrature Qn on X
satisfies Qn(f) = µ(f) for any f = k0(·, x) with x ∈ X , we have

wce(Qn;Hk, µ) ≤ Qn(g) + µ(g), (4.14)

where g is the function given by g(x) =
√
k1(x, x). In particular, the following

assertions hold for such a quadrature Qn:
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(a) We have wce(Qn;Hk, µ) ≤ 2∥g∥∞ = 2 supx∈X
√
k1(x, x).

(b) If we additionally have Qn(g) ≤ µ(g), then we have wce(Qn;Hk, µ) ≤ 2µ(g).

(c) If we additionally have Qn(g
2) ≤ µ(g2) instead of (b), we still have

wce(Qn;Hk, µ)
2 ≤ 4

∫
X
k1(x, x) dµ(x).

Remark 4.3. For a Borel probability measure ν on X and a nonnegative function

h : X → R≥0, we have an inequality
∫
X

√
h(x) dν(x) ≤

(∫
X h(x) dν(x)

)1/2
, so the

above µ(g) can be upper bounded by
∫
X k1(x, x) dµ(x), which is equal to the trace

of the integral operator given by k1. Also, the assumption in Theorem 4.6 can be

weakened to the integrability of
√
k(x, x) from the same inequality as you can see

in the proof.

We can combine Theorem 4.6 with an empirical approximation of µ to obtain

the following result, which essentially implies Theorem 4.1.

Theorem 4.7. Under Assumption A, let DN be a set of N independent samples

from µ, and µ̃N be its empirical measure, i.e., µ̃N = 1
N

∑
y∈DN

δy. Then, if an

n-point convex quadrature Qn on X satisfies Qn(f) = µ̃N(f) for any f = k0(·, x)
with x ∈ X , we have

E
[
wce(Qn;Hk, µ)

2
]
≤ 2E

[
(Qn(g) + µ̃N(g))

2
]
+

2ck,µ
N

, (4.15)

where g(x) :=
√
k1(x, x) and ck,µ :=

∫
X k(x, x) dµ(x)−

∫∫
X×X k(x, y) dµ(x) dµ(y).

In particular, the following assertions hold for such a quadrature Qn:

(a) We have E[wce(Qn;Hk, µ)
2] ≤ 8 supx∈X k1(x, x) + 2ck,µ/N .

(b) If we additionally always require Qn(g) ≤ µ̃N(g), then we have

E
[
wce(Qn;Hk, µ)

2
]
≤ 8

∫
X
k1(x, x) dµ(x) +

2ck,µ
N

.

The requirement Qn(g) ≤ µ̃N(g) can be replaced by Qn(g
2) ≤ µ̃N(g

2)

Although we have assumed k−k0 is positive definite in the previous assertions,

the uniform bound works without the assumption as follows.
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Proposition 4.8. Let µ be a Borel probability measure on X . Let k and k0 be

positive definite kernels on X satisfying
∫
X

√
k(x, x) dµ(x),

∫
X

√
k0(x, x) dµ(x) <

∞. If an n-point convex quadrature Qn on X satisfies Qn(f) = µ(f) for any

f = k0(·, x) with x ∈ X , we have

wce(Qn;Hk, µ) ≤ 2 sup
x,y∈X

√
|k(x, y)− k0(x, y)|.

Furthermore, if dimHk0 < n, there exists an n-point convex quadrature Qn satis-

fying Qn(f) = µ(f) for each f = k0(·, x).

In this chapter, we focus on the cases where k0 is either given by the truncated

Mercer decomposition or Nyström approximation. For many important kernels,

however, we may also use the random Fourier features [139] or its periodic version

[165] which can easily be combined with Proposition 4.8, but it is beyond the scope

of this chapter to choose its appropriate variant for each kernel (see Liu et al. [105]

for a list of variants).

4.B.2 Existence results

The existence of quadrature formulas satisfying the estimate of Theorem 4.6 or

Theorem 4.7 is guaranteed when dimHk0 < n.

Theorem 4.9. Under Assumption A, if dimHk0 < n, there exists an n-point

convex quadrature Qn satisfying Qn(f) = µ(f) for each f = k0(·, x). This still

holds even if we additionally require Qn(g) ≤ µ(g) or Qn(g
2) ≤ µ(g2) for g(x) =√

k1(x, x).

Remark 4.4. This also implies the existence result of Qn satisfying the condition

in Theorem 4.7 if we replace µ by µ̃N .

The algorithm for constructing a kernel quadrature with Theorem 4.7 is given

in the main body, see Algorithm 4.1. The ones with Theorem 4.6 requires further

knowledge of the expectation of test functions, i.e., the values of
∫
X φi(x) dµ(x)

with Hk0 ⊂ span{φ1, . . . , φn−1}. Under this additional information, we have an

algorithm (Algorithm 4.2) based on random sampling given in the following sec-

tion.
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4.B.3 Eigenvalue estimate for Gaussian kernels

We provide proof of a folklore estimate on the eigenvalues of integral operators

given by a Gaussian kernel. Let k(x, y) = exp(− 1
2ℓ2

(x − y)2) for an ℓ > 0 and

x, y ∈ R. Then, it has the following expansion [117, 86]:

k(x, y) =
∞∑

m=0

φm(x)φm(y), φm(x) =
1

ℓm
√
m!
xm exp

(
− x2

2ℓ2

)
. (4.16)

Let µ be a Borel probability measure supported on a compact domain, i.e., µ({x ∈
R | |x| > R}) = 0 for some R > 0. Let us consider the RKHS given by k over

X := suppµ.

Recall that σn is the n-th eigenvalue of the integral operator

K : L2(µ)→ L2(µ); f 7→ Kf =

∫
X
k(·, y)f(y) dµ(y).

From the minimax property of eigenvalues of compact Hermitian operators,

σn = inf
g1,...,gn−1∈L2(µ)

sup
f∈L2(µ)∩{g1,...,gn−1}⊥, ∥f∥L2(µ)=1

⟨f,Kf⟩L2(µ)

≤ sup
f∈L2(µ)∩{φ0,...,φn−2}⊥, ∥f∥L2(µ)=1

⟨f,Kf⟩L2(µ)

hold, where the orthogonal complement is taken in terms of L2(µ)-inner prod-

uct and φm are functions given in (4.16). They are indeed in L2(µ) as µ is

compactly supported. Now, let kn(x, y) :=
∑∞

m=n−1 φm(x)φm(y). For an f ∈
L2(µ) ∩ {φ0, . . . , φn−2}⊥, we have

⟨f,Kf⟩L2(µ) =

∫∫
X×X

f(x)k(x, y)f(y) dµ(y) dµ(x)

=

∫∫
X×X

f(x)kn(x, y)f(y) dµ(y) dµ(x)

≤
∫∫

X×X
f(x)

√
kn(x, x)

√
kn(y, y)f(y) dµ(y) dµ(x)

(positive definiteness)

=

(∫
X

√
kn(x, x)f(x) dµ(x)

)2

≤
(∫

X
kn(x, x) dµ(x)

)
∥f∥2L2(µ). (Cauchy–Schwarz)
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Therefore, we have the estimate σn ≤
∫
X kn(x, x) dµ(x). We have

kn(x, x) =
∞∑

m=n−1

1

m!

(x
ℓ

)2m
exp

(
−
(x
ℓ

)2)
,

and this can be regarded as the remainder term of the Maclaurin expansion, so

there is a θ ∈ (0, 1) such that

kn(x, x) =
1

(n− 1)!
exp

(
−θ
(x
ℓ

)2)(x
ℓ

)2(n−1)

≤ (x/ℓ)2(n−1)

(n− 1)!
.

In particular, if we have |x| ≤ R for µ-almost all x, we have a factorial decay

σn ≤ (R/ℓ)2(n−1)

(n−1)!
.

4.B.4 Uniform robustness

In applications, the RKHS Hk may be misspecified and the quadrature rule µQ

when computed for the misspecified function class Hk but applied to a function

f /∈ Hk leads only to the attainable bound∣∣∣∣∫
X
f(x) dµQ(x)−

∫
X
f(x) dµ(x)

∣∣∣∣
≤ sup

x∈X

∣∣f(x)− f̃(x)∣∣(|µQ|TV + |µ|TV) +
∥∥f̃∥∥Hk

wce(µQ;Hk, µ)

via triangle equality and standard integral estimates. Note that | · |TV denotes the

total variation norm and the above applies to any f̃ ∈ Hk; in particular, to the

best approximation in uniform norm to f in Hk. Since µ is a probability measure,

|µ|TV = 1 but if µQ is a signed measure with non-convex weights, its total variation

|µQ|TV can be large, resulting in arbitrary large integration errors.

4.B.5 Equivalence between the projection/matrix Nyström
approximations

Let k be a positive definite kernel on X , Z = (zi)
ℓ
i=1 ⊂ X . Let PZ : Hk → Hk be

the projection operator onto span{k(·, zi) | i = 1, . . . , ℓ}. For arbitrary x, y ∈ X ,
we can write

PZk(·, x) =
ℓ∑

i=1

aik(·, zi), PZk(·, y) =
ℓ∑

i=1

bik(·, zi),
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where a = (ai)
ℓ
i=1, b = (bi)

ℓ
i=1 ∈ Rℓ. From the properties of projection, we have

k(zj, x) = ⟨k(·, zj), k(·, x)⟩Hk
= ⟨k(·, zj), PZk(·, x)⟩Hk

=
ℓ∑

i=1

aik(zj, zi).

In matrix notation, we have k(Z, x) = k(Z,Z)a, and k(Z, y) = k(Z,Z)b from

the same argument. Thus, by combining it with the property of Moore–Penrose

inverse, we have

⟨PZk(·, x), PZk(·, y)⟩Hk
= a⊤k(Z,Z)b

= a⊤k(Z,Z)k(Z,Z)+k(Z,Z)b (Moore–Penrose)

= k(x, Z)k(Z,Z)+k(Z, y).

This shows the desired equivalence.

4.C Proofs

4.C.1 Proof of Theorem 4.6

Before proceeding to the proof of the theorem, we prepare a couple of assertions.

The following is a well-known estimate proven by using the Cauchy–Schwarz in-

equality (see, e.g., Muandet et al. [123, Lemma 3.1 and its proof]).

Proposition 4.10. Let k be a positive definite kernel on X , and ν be a Borel

probability measure with
∫
X

√
k(x, x) dν(x) <∞. Then, for each f ∈ Hk, we have∣∣∣∣∫

X
f(x) dν(x)

∣∣∣∣ ≤ ∥f∥Hk

∫
X

√
k(x, x) dν(x).

By using the proposition, we obtain the following technical lemma.

Lemma 4.11. Let k and k1 be a positive definite kernels on X such that k − k1
is also positive definite. Let ν be a Borel probability measure on X . Then, for

any n ≥ 1, a1, . . . , an ∈ R, x1, . . . , xn ∈ X , if we let f =
∑n

i=1 aik(·, xi) and

f1 =
∑n

i=1 aik1(·, xi), then we have∣∣∣∣∫
X
f1(x) dν(x)

∣∣∣∣ ≤ ∥f∥Hk

∫
X

√
k1(x, x) dν(x).
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Proof. From the positive definiteness of k0 := k − k1, we have

∥f1∥2Hk1
=

n∑
i,j=1

aiajk1(xi, xj) ≤
n∑

i,j=1

aiajk1(xi, xj) +
n∑

i,j=1

aiajk0(xi, xj)

=
n∑

i,j=1

aiajk(xi, xj) = ∥f∥2Hk
.

Hence it suffices to prove |ν(f1)| ≤ ∥f1∥Hk1
ν(g) for g(x) :=

√
k1(x, x), but it

directly follows from Proposition 4.10.

Proof of Theorem 4.6. Note first that, for each f ∈ Hk0 , f is integrable with

respect to µ. Indeed, we have

|f(x)| = |⟨f, k0(·, x)⟩Hk0
| ≤ ∥f∥Hk0

∥k0(·, x)∥Hk0
= ∥f∥Hk0

√
k0(x, x) ≤ ∥f∥Hk0

√
k(x, x),

and it is integrable from assumption, so the equality Qn(f) = µ(f) with f =

k0(·, x) is attained at a finite value.

Once we establish (4.14), item (b) is clear, and (a) follows from the fact that

Qn(g) and µ(g) are both integrals of the function g with respect to a probability

measure. Also, (c) is justified as follows:

wce(Qn;Hk, µ)
2 ≤ (Qn(g)+µ(g))

2 ≤ 2Qn(g)
2+2µ(g)2 ≤ 2Qn(g

2)+2µ(g2) ≤ 4µ(g2),

where µ(Qn)
2 ≤ µ(Q2

n) and µ(g)
2 ≤ µ(g2) follows from the Cauchy–Schwarz.

To prove (4.14),we first prove

|Qn(f)− µ(f)| ≤ ∥f∥Hk
(Qn(g) + µ(g)) (4.17)

for any f of the form f =
∑n

i=1 aik(·, xi) with n ≥ 0 and a1, . . . , an ∈ R. Given

such an f , we have Qn(f0) = µ(f0) for f0 :=
∑n

i=1 aik0(·, xi) from the assumption.

Thus, by letting f1 := f − f0 =
∑n

i=1 aik1(·, xi), we have

Qn(f)− µ(f) = (Qn(f)− µ(f))− (Qn(f0)− µ(f0)) = Qn(f1)− µ(f1).

As we have |ν(f1)| ≤ ∥f∥Hk
ν(g) for ν = Qn, µ from Lemma 4.11, we obtain

|Qn(f1)− µ(f1)| ≤ ∥f∥Hk
(Qn(g) + µ(g)), and so (4.17) is shown for f of the form

f =
∑n

i=1 aik(·, xi).
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Finally, we generalize (4.17) to any f ∈ Hk. Let f̃ ∈ Hk can be written in the

form
∑n

i=1 aik(·, xi). If we let h(x) =
√
k(x, x), from Proposition 4.10, we have

|Qn(f − f̃)| ≤ ∥f − f̃∥Hk
Qn(h), |µ(f − f̃)| ≤ ∥f − f̃∥Hk

µ(h).

Note that µ(h) < ∞ follows from the integrability of k(x, x) in Assumption A.

Therefore, we have

|Qn(f)− µ(f)| ≤ |Qn(f̃)− µ(f̃)|+ |Qn(f − f̃)− µ(f − f̃)|

≤ ∥f̃∥Hk
(Qn(g) + µ(g)) + ∥f − f̃∥Hk

(Qn(h) + µ(h))

≤ ∥f∥Hk
(Qn(g) + µ(g)) + ∥f − f̃∥Hk

(Qn(g) + µ(g) +Qn(h) + µ(h)).

As we can make ∥f − f̃∥Hk
arbitrarily small from the definition of Hk, the proof

of (4.14) is completed by taking the limit.

4.C.2 Proof of Theorem 4.7

Proof. Denote DN = {y1, . . . , yN} and note that the result follows from (4.15) and

E
[
µ̃N(g)

2
]
= E

[
µ̃N(g

2)
]
≤ E

[
1

N

N∑
i=1

g(yi)
2

]
=

∫
X
k1(x, x) dµ(x), (4.18)

where the first inequality is given by the Cauchy–Schwarz.

Indeed, (a) is an immediate consequence of (4.15) and Qn and µ̃N making a

probability measure, and (b) is obtained as 2E[(Qn(g) + µ̃N(g))
2] ≤ 8E[µ̃N(g)

2] ≤
8
∫
X k1(x, x) dµ(x) by using (4.18) and the requirement Qn(g) ≤ µ̃N(g).

When the requirement is Qn(g
2) ≤ µ̃N(g

2), as we have Qn(g)
2 ≤ Qn(g

2) and

µ̃N(g)
2 ≤ µ̃N(g

2) by the Cauchy–Schwarz, we also have by the AM–GM,

2E
[
(Qn(g) + µ̃N(g))

2
]
≤ 4E

[
Qn(g)

2
]
+ 4E

[
µ̃N(g)

2
]

≤ 4E
[
Qn(g

2)
]
+ 4E

[
µ̃N(g

2)
]

≤ 8E
[
µ̃N(g

2)
]
≤ 8

∫
X
k1(x, x) dµ(x)

For showing (4.15), we remark that we always have

wce(Qn;Hk, µ̃N) ≤ Qn(g) + µ̃N(g) (4.19)
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by applying Theorem 4.6 with µ̃N instead of µ.

Let h(µ), h(µ̃N), h(Qn) ∈ Hk be the kernel mean embeddings of µ, µ̃N and µQn ,

i.e.,

h(µ) :=

∫
X
k(·, x) dµ(x), h(µ̃N) :=

1

N

N∑
i=1

k(·, yi), h(Qn) :=
n∑

i=1

wik(·, xi),

where (wi)
n
i=1 and (xi)

n
i=1 are weights and points defining the quadrature Qn. Re-

mark that h(µ) is well-defined as
∫
X k(x, x) dµ(x) < ∞ [123, Lemma 3.1]. As we

can rewrite the worst-case error as

wce(Qn;Hk, µ̃N) = ∥h(Qn)− h(µ̃N)∥Hk
, wce(Qn;Hk, µ) = ∥h(Qn)− h(µ)∥Hk

,

by triangle inequality and the AM–GM, we obtain

E
[
wce(Qn;Hk, µ)

2
]
≤ E

[
(wce(Qn;Hk, µ̃N) + ∥h(µ)− h(µ̃N)∥Hk

)2
]

≤ 2E
[
wce(Qn;Hk, µ̃N)

2
]
+ 2E

[
∥h(µ)− h(µ̃N)∥2Hk

]
≤ 2E

[
(Qn(g) + µ̃N(g))

2
]
+ 2E

[
∥h(µ)− h(µ̃N)∥2Hk

]
,

where we have used (4.19) in the last inequality. It now suffices to prove E
[
∥h(µ)− h(µ̃N)∥2Hk

]
=

ck,µ/N for showing (4.15).

Indeed, we have

E
[
∥h(µ)− h(µ̃N)∥2Hk

]
= E

[
∥h(µ)∥2Hk

]
− 2E

[
⟨h(µ), h(µ̃N)⟩Hk

]
+ E

[
∥h(µ)∥2Hk

]
=

∫∫
X×X

k(x, y) dµ(x) dµ(y)− 2

N

N∑
i=1

∫
X
E[k(x, yi)] dµ(x) +

1

N2

N∑
i,j=1

E[k(yi, yj)]

=
1

N2

N∑
i=1

E[k(yi, yi)] +
(
1− 2 +

N(N − 1)

N2

)∫∫
X×X

k(x, y) dµ(x) dµ(y) =
ck
N
,

since
∫∫

X×X k(x, y) dµ(x) dµ(y) =
∫
X E[k(x, yi)] dµ(x) = E[k(yi, yj)] holds for i ̸=

j. Thus, the proof is completed.
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4.C.3 Proof of Proposition 4.8

Proof. As Qn exactly integrates the functions inHk0 , we have wce(Qn;Hk0 , µ) = 0.

So, if we set Qn(f) =
∑n

i=1wif(xi), then we have, from (4.13) with kernel k0,

0 =
n∑

i,j=1

wiwjk0(xi, xj)− 2
n∑

i=1

wi

∫
X
k0(xi, y) dµ(y) +

∫∫
X×X

k0(x, y) dµ(x) dµ(y).

(4.20)

If we extract this from the formula (4.13) for the kernel k, we have, by letting

k1 := k − k0,

wce(Qn;Hk, µ)
2 = wce(Qn;Hk, µ)

2 − wce(Qn;Hk0 , µ)
2

=
n∑

i,j=1

wiwjk1(xi, xj)− 2
n∑

i=1

wi

∫
X
k1(xi, y) dµ(y)

+

∫∫
X×X

k1(x, y) dµ(x) dµ(y).

So, if we define M := supx∈X |k1(x, y)| = supx∈X |k(x, y)− k0(x, y)|, we have

wce(Qn;Hk, µ)
2 ≤

(
n∑

i,j=1

wiwjM + 2
n∑

i=1

wi

∫
X
M dµ(y) +

∫∫
X×X

M dµ(x) dµ(y)

)
= 4M,

as Qn is a convex quadrature. The existence follows from almost the same proof as

in the proof of Theorem 4.6, but in this case, it directly follows from Tchakaloff’s

thorem [162, 12].

4.C.4 Proof of Theorem 4.9

Proof. We prove the existence of the version Qn(g) ≤ µ(g). The other follows just

by replacing every g in the proof below by g2.

Let φ1, . . . , φn−1 ∈ Hk0 satisfy Hk0 = span{φ1, . . . , φn−1}. Also, let y, y1, y2, . . .
be independent samples from µ. Now, consider the vector-valued function ψ =

(φ1, . . . , φn−1, g)
⊤ ∈ Rn. Note that E[∥ψ(y)∥] < ∞ follows from the integrability

of elements in Hk0 and g with respect to µ. Therefore, by [66, Theorem 11], with

probability 1, there exists an N such that E[ψ(y)] ∈ conv{ψ(y1), . . . ,ψ(yN)}. So,
in particular, there exist deterministic points x1, . . . , xN ∈ X satisfying E[ψ(y)] ∈
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conv{ψ(x1), . . . ,ψ(xN)}. For such (xi)
N
i=1, consider an optimal solution that is

also a basic feasible solution of the following linear programming problem:

minimize
N∑
i=1

wig(xi)

subject to [φ(x1) · · ·φ(xN)]w =

∫
X
φ(x) dµ(x), w ≥ 0,

(4.21)

where φ = (1, φ1, . . . , φn−1)
⊤ ∈ Rn is another vector-valued function (note that its

first coordinate is constant so that any feasible solution of (4.21) sums up to one).

Such a basic solution w has at most n nonzero entries, say (wi1 , . . . , win) ∈ ∆n

with 1 ≤ i1 < · · · < in ≤ N . Then, the quadrature Qn given by weights (wij)
n
j=1

and points (xij)
n
j=1 satisfies Qn(φ) = µ(φ) and Qn(g) ≤ µ(g). The latter follows

from the optimality of w and the fact that E[ψ(y)] ∈ conv{ψ(y1), . . . , ψ(yN)} leads
to a feasible solution with the objective E[g(y)] = µ(g)).

4.C.5 Proof of Theorem 4.3

We prove the theorem by using an existing bound regarding the Nystöm approxi-

mation for matrices, which is more common in the machine learning literature.

Let A = (Aij)
N
i,j=1 ∈ RN×N be a symmetric positive semi-definite matrix. Let

us denote it as A = [a1, . . . ,aN ] by using a1, . . . ,aN ∈ RN . Then, we inde-

pendently sample i1, . . . , iℓ from {1, . . . , N} uniformly, and construct a submatrix

B = (aijik)
ℓ
j,k=1. If we let Bs be the best rank-s approximation of B and B+

s its

pseudoinverse, the matrix

Ã = [ai1 , . . . ,aiℓ ]B
+
s

 ai1
...
aiℓ

 (4.22)

works as a rank-s approximation of A.

We use the following result on this matrix version:

Proposition 4.12 ([97, Theorem 2]). For a positive semi-definite matrix A, the

rank-s approximation Ã given above satisfies, with probability at least 1 − δ, the
following:

∥A− Ã∥2 ≤ ∥A− As∥2 +
2N√
ℓ
Amax

(
1 +

√
DA

max

Amax

N − ℓ
N − 1/2

1

β(ℓ,N)
log

1

δ

)
,
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where β(ℓ,N) = 1− 1
2max{ℓ,N−ℓ} , Amax = maxiAii, D

A
max = maxi,j(Aii+Ajj−2Aij)

and As is the best rank-s approximation of A.

As DA
max ≤ 2Amax, if we have N ≥ 2ℓ, it holds that

DA
max

Amax

N − ℓ
N − 1/2

1

β(ℓ,N)
≤ 2

N − ℓ
N − 1/2

N − ℓ− 1/2

N − ℓ
≤ 2,

and we can just state

∥A− Ã∥2 ≤ ∥A− As∥2 +
2N√
ℓ
Amax

(
1 +

√
2 log

1

δ

)
. (4.23)

We show the following lemma as a consequence of this proposition.

Lemma 4.13. Let s ≤ ℓ be positive integers and δ > 0. Let k : X × X be

a symmetric and positive definite kernel and y1, y2, . . . be i.i.d. random variables

taking values in X . For each N , define the N ×N matrices K(N), Ks(N), KZ
s (N)

by

K(N)ij =
k(yi, yj)

N
, Ks(N)ij =

1

N

s∑
m=1

σmem(yi)em(yj), KZ
s (N)ij =

kZs (yi, yj)

N
,

where Z = (y1, . . . , yℓ).

Then, there exists a sequence εN → 0 such that

∥K(N)−KZ
s (N)∥2 ≤ ∥K(N)−Ks(N)∥2+

2 supx k(x, x)√
ℓ

(
1 +

√
2 log

1

δ

)
(4.24)

is met with probability at least 1− δ − εN .

Proof. We assume N ≥ 2ℓ. Let i1, . . . , iℓ be independent uniform samples from

{1, . . . , N}. Consider the event EN that i1, . . . , iℓ are all different. Then, P(EN) =∏ℓ
i=1

N+1−i
N

converges to 1 as N → ∞, and let εN = 1 − P(EN). By using

Proposition 4.12, (4.24) and maxiK(N)ii ≤ N−1 supx k(x, x), we have that the

probability

P

(
∥K(N)− K̃s(N)∥2 ≤ ∥K(N)−Ks(N)∥2+

2 supx k(x, x)√
ℓ

(
1 +

√
2 log

1

δ

)∣∣∣∣∣EN

)
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is at least (1− δ − εN)/P(EN) ≥ 1− δ − εN , where K̃s(N) is the rank-s Nyström

approximation of the matrix K(N) by using indices i1, . . . , iℓ. From (4.22), if we

take W̃ = k(yij , yik)
ℓ
j,k=1 and W̃s its best rank-s approximation, it actually satisfies

K̃s(N)ij =
1

N
k(yi, D)W̃+

s k(D, yj) =
1

N
kDs (yi, yj),

where D = (yi1 , . . . , yiℓ) and k
D
s is the Nyström approximation given in the main

body.

As y1, . . . , yN are i.i.d. samples, we can see that (Z, (yi)
N
i=1) (without any con-

ditioning) and (D, (yi)
N
i=1) conditioned on EN actually have the same distribution,

so we are done.

We finally prove the result for the Nyström approximation of integral operators.

Proof of Theorem 4.3. Take a sufficiently largeN and let us useK(N), Ks(N), KZ
s (N)

defined in the previous lemma with y1, y2, . . . independently sampled from µ.

It suffices to consider the case Ck := supx∈X k(x, x) < ∞. It is clear that

Ks(N)ii ≤ K(N)ii ≤ Ck/N , and from (4.9), we also have

kZs (x, x) = k(x, Z)W+
s k(Z, x) ≤ k(x, Z)W+k(Z, x) = ∥PZk(·, x)∥2Hk

≤ ∥k(·x)∥2Hk
= k(x, x),

and so KZ
s (N)ii ≤ Ck/N .

For a matrix A(N) ∈ RN×N defined by A(N)ij = (1 − δij)(K(N) −KZ
s (N)),

i.e., the matrix given by deleting the diagonal, we have ∥A(N)∥2 → ∥KZ
s −K∥ as

N → ∞ almost surely [93, Theorem 3.1]. Since we have observed that ∥K(N) −
KZ

s (N)− A(N)∥2 ≤ Ck/N , we have

∥K(N)−KZ
s (N)∥2 → ∥KZ

s −K∥, N →∞

almost surely. The same argument yields ∥K(N)−Ks(N)∥2 → σs+1, as it converges

to the norm of the integral operator given by the kernel
∑

m≥s+1 σmem(x)em(y).

Now, by letting AN be the event that (4.24) holds (so P(AN) ≥ 1 − δ − εN),
the desired inequality (4.11) almost surely holds under the event lim supAN =⋂

N>ℓ

⋃
M≥N AM . Indeed, under this event, we can just take the limit of both sides

of (4.24) for an appropriate subsequence of (2ℓ, 2ℓ+ 1, . . .). As we have

P(lim supAN) = lim
N→∞

P

( ⋃
M≥N

AN

)
≥ lim

N→∞
(1− δ − εN) = 1− δ,

the proof is completed.
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4.D Kernel quadrature when expectations are

known

When we use an approximate kernel k0 and know the exact expectations of test

functions φ1, . . . , φn−1 with Hk0 ⊂ span{φ1, . . . , φn−1}, we can obtain an n-point

kernel quadrature that exactly integrates φ1, . . . , φn−1 by Algorithm 4.2.

Algorithm 4.2 Kernel quadrature with random convex hulls

Input: A positive definite kernel k on X , a probability measure µ on X , integers
N ≥ n ≥ 1, another kernel k0 and functions φ1, . . . , φn−1 on X with Hk0 ⊂
span{φ1, . . . , φn−1}

Output: With some probability, returns Qn := {(wi, xi) | i = 1, . . . , n} ⊂ R× X
with (wi) ∈ ∆n

1: Calculate the expectations
∫
X φ1(x) dµ(x), . . . ,

∫
X φn−1(x) dµ(x)

2: Sample y1, . . . , yN independently from µ
3: For a vector-valued function φ = (φ1, . . . , φn−1)

⊤ and k1,diag(x) = k(x, x) −
k0(x, x), solve the linear programming problem (|·|0 denotes the number of
nonzero entries)

minimize w⊤k1,diag(x)

subject to [φ(y1) · · ·φ(yN)]w =

∫
X
φ(x) dµ(x),

w ≥ 0, 1⊤w = 1, |w|0 ≤ n.

(4.25)

to obtain points {x1, . . . , xn} ⊂ {y1, . . . , yN} and weights (wi) ∈ ∆n satisfying

n∑
i=1

wiφ(xi) =

∫
X
φ(x) dµ(x)

if (4.25) is feasible.

We make several remarks on this algorithm. First, the problem (4.25) is, strictly

speaking, not a linear programming (LP) problem, as it includes the sparsity

constraint |w|0 ≤ n. However, as it only contains n equality constraints, its basic

feasible solution always satisfies |w|0 ≤ n and the simplex algorithm automatically

gives such a sparse (and optimal) solution even if we do not explicitly impose this

constraint, so we call it an LP for simplicity. Second, this algorithm occasionally

fails to output Qn as, with some probability, the LP has no feasible solution.

114



Although we can repeat the algorithm until we succeed, the number N should be

chosen appropriately. See Remark 4.5 for this point. Finally, our algorithm has

possibly related approaches such as sparse optimization and Sard’s method, see

Remark 4.6 and 4.7.

Remark 4.5. A simple approach for constructing a quadrature formula [66] was

recently proposed: randomly sample candidate points and find a solution by using a

linear programming (LP) solver. Indeed, for an independent sample y1, . . . , yN ∼
µ, we can construct a quadrature formula with convex weights exactly integrating

the functions in F = span{φ1, . . . , φn−1} using a subset of these points if and only

if we have ∫
X
φ(x) dµ(x) ∈ conv{φ(y1), . . . ,φ(yN)}, (4.26)

where φ = (φ1, . . . , φn−1)
⊤ : X → Rn−1 and convA denotes the convex hull of

A. Several sharp estimates for the probability of the event (4.26) are available in

Chapter 2 & 3. Under the event (4.26), we can find a desired rule by using the

simplex method for the LP problem (4.25).

Remark 4.6. From the viewpoint of subsampling, a direct way to obtain quadra-

ture formulas with convex weights supported on a small number of points, is to first

sample N candidate points DN = (x1, . . . , xN) and then solve the following sparse

optimization problem:

minimize w⊤k(DN , DN)w − 2w⊤ ∫
X k(DN , y) dµ(y)

subject to w ≥ 0, 1⊤w = 1, |w|0 ≤ n,
(4.27)

where k(DN , DN) is the corresponding N×N Gram matrix. Unfortunately, exactly

solving this problem is computationally challenging, in particular in contrast to our

approach that exploits the spectral properties of k and µ. Nevertheless, one could

use sparse optimization to obtain an approximate solution of (4.27): although the

simplex constraint (w ≥ 0, 1⊤w = 1) makes it impossible to exploit the classical

ℓ1 regulatization, there are possible alternatives under this constraint [137, 98, 102]

or use the DC (difference of convex functions) algorithm to incorporate the sparsity

constraint to find local minima [57]. This is a promising research direction, and

our general sample estimates might provide a first step toward this direction.
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Remark 4.7. Sard’s method [147, 99] for constructing numerical integration rules

uses the n degree of freedom (of choosing weights in our setting) separately; m

(≤ n) for exactness over a certain m-dimensional space of test functions, and the

remaining n −m for minimizing an error criterion such as the worst-case error.

In the context of kernel quadrature, one way to use Sard’s method with exactness

over F (an m-dimensional space of test functions) is as follows [85, 156]:

minimize w⊤k(Dn,xn)w − 2w⊤ ∫
X k(xn, y) dµ(y)

subject to w⊤f(Dn) =
∫
X f(y) dµ(y), ∀f ∈ F ,

(4.28)

where Dn = (x1, . . . , xn)
⊤, f(Dn) = (f(x1), . . . , f(xn))

⊤. This amounts to solving

a convex quadratic programming for w in an (n−m)-dimensional subspace of Rn

(without constraint). This is similar to our approach in that it enforces exactness

in a certain finite-dimensional space of test functions. One key difference is that

Sard’s approach aims for a quadrature formula on a given set of points, whereas

our method determines also the points themselves. Hence, the combination of these

two approaches seems to be an interesting future research topic.5

Computational complexity. A tricky part of this approach, essentially based

on random convex hulls, is that the algorithm possibly does not output a quadra-

ture formula. Hence, the following quantity plays an important role to estimate

the essential complexity of the algorithm:

Nφ = inf

{
N ≥ 1

∣∣∣∣P(E[φ(y)] ∈ conv{φ(y1), . . . ,φ(yN)}) ≥
1

2

}
,

where y, y1, y2, . . . are independent samples from µ. This value is known to be finite

and estimated under a variety of conditions on φ(y) (see Chapter 2 & 3 for details).

If we have some knowledge of µ, we can just keep trying the algorithm with N =

Nφ until it succeeds, and its expected computational time is O(nNφ + C(n,Nφ)),

where C(a, b) is the (expected) cost of solving an a× b LP with a simplex method.

Note that, though the worst-case computational time of the simplex method is

5For example, we can pick the first m eigenfunctions of the integral operator as test functions,
and find n points and weights that minimize the worst-case error while exactly integrating the
test functions from a larger set of candidate points. An obvious challenge is that quadratic
programming does not supply sparsity, whereas the approach of this chapter has been fully
based on the sparsity of a basic feasible solution of an LP problem.
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exponential, it is empirically O(abmin{a, b}) in practice [133, 151]. In addition,

Nφ = O(n) holds in examples with some symmetry [178, 66], so in that case we

have a heuristic complexity estimate of O(n3).

Choice of approximate kernels. Similarly to the empirical version discussed

in the main text, we prove quantitative estimates when k0 is given by the Mercer

approximation or Nyström approximation. Remark that the necessary information

for using these methods is different. Whereas using the Mercer approximation re-

quires the knowledge of Mercer decomposition k(x, y) =
∑∞

m=1 σmem(x)em(y) and

their exact integration
∫
X em(x) dµ(x), the Nyström approximation only requires

the exact integral values of the kernel,
∫
X k(x, y) dµ(y), and so is more generally

applicable. See the following sections for details.

In the following, we assume that the kernel attains the Mercer decomposition

k(x, y) =
∑∞

m=1 σmem(x)em(y), where σ1 ≥ σ2 ≥ · · · ≥ 0 and (em)
∞
m=1 is an

orthonormal set of L2(µ).

4.D.1 Algorithm 4.2 with Mercer approximation

If we use the truncated Mercer decomposition as an approximate kernel, we have

the following result.

Theorem 4.14. If Algorithm 4.2 with k0 :=
∑n−1

m=1 σmem(x)em(y) and φi = ei

successfully outputs a convex quadrature Qn, then it satisfies the following:

(a) If C := supm≥1∥em∥∞ <∞, we have wce(Qn;Hk, µ)
2 ≤ 4C2

∑∞
m=n σm.

(b) As N in Algorithm 4.2 tends to infinity, we have

P

(
wce(Qn;Hk, µ)

2 ≤ 4
∞∑

m=n

σm

)
→ 1.

Proof. As in the proof of Corollary 4.2, k − k0 is positive definite. Thus, when∑∞
m=n σm < ∞, the kernel and the measure µ satisfies Assumption A. So The-

orem 4.6(a) implies (a) of this theorem, since k1(x, x) =
∑∞

m=n σmem(x)
2 ≤

C2
∑∞

m=n σm.
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For (b), if we have Qn(k1,diag) ≤ µ(k1,diag), then Theorem 4.6 implies

wce(Qn;Hk, µ)
2 ≤ 4

∫
X
k1(x, x) dµ(x) =

∫
X

∞∑
m=n

σmem(x)
2 dµ(x) = 4

∞∑
m=n

σm.

So it suffices to prove P(Qn(k1,diag) ≤ µ(k1,diag))→ 1 as N →∞, and it is shown by

considering the optimal basic feasible solution of the LP (4.25) and the following

fact [66, Theorem 11]:

P(E[ψ(y)] ∈ conv{ψ(y1), . . . ,ψ(yN)})→ 1, N →∞,

where ψ = (φ1, . . . , φn−1, k1,diag)
⊤. Indeed, if ψ(y) ∈ conv{ψ(y1), . . . ,ψ(yN)}, the

LP becomes feasible and Qn(k1,diag) ≤ µ(k1,diag) follows from optimality. See the

proof of Theorem 4.9 (Section 4.C.4) for a more detailed explanation.

Note that the boundedness of C is a typical assumption [see 109, Assumption

3.2 and references therein], while it does not necessarily hold [118, Section 3]. Un-

der some assumptions, we can quantify the probability that the LP (4.25) becomes

feasible.

Sampling bound. Suppose 1 is an eigenfunction of K. This is satisfied, e.g., in
the following cases:

• µ is a Haar measure on a compact group and k is shift-invariant.

• k is a kernel based on Stein’s identity [129, 156, 5] with respect to µ.

In this case, we have a theoretical bound of the required N in Algorithm 4.2 as

follows.

Theorem 4.15. Suppose 1 is an eigenfunction of K, i.e.,
∫
X k(·, y) dµ(y) is a

constant function. Then, for each n ≥ 2 and N ≥ 6(n − 1) supx∈X
∑n−1

m=1 em(x)
2,

Algorithm 4.2 returns a feasible quadrature with probability at least 1− 21−n, i.e.,

for an independent sample y1, . . . , yN from µ, we have

P
(∫

X
φ(x) dµ(x) ∈ conv{φ(y1), . . . ,φ(yN)}

)
≥ 1− 1

2n−1
,

where φ = (e1, . . . , en−1)
⊤. If the value C = supm≥1∥em∥∞ is finite, N ≥ 6C(n−

1)2 is also sufficient for the above estimate.

Proof. This follows from Theorem 2.12 and Theorem 2.15.
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4.D.2 Algorithm 4.2 with Nyström approximation

Although the method discussed in the previous section requires the exact infor-

mation on Mercer decomposition, if we make use of the Nyström approximation,

we only require the values of
∫
X k(x, y) dµ(y) for x ∈ X .

Recall that kZs (x, y) is the rank-s Nyström approximation of the kernel k based

on the point set Z = (z1, . . . , zℓ). From (4.10), we can use φZ
i := u⊤i k(Z, ·) as test

functions.

Theorem 4.16. Let n ≤ ℓ and δ > 0, and let Z be an ℓ-point independent sample

from µ. If Algorithm 4.2 with k0 = kZn−1 and φi = φZ
i successfully outputs a convex

quadrature Qn, then with probability at least 1− δ, we have

wce(Qn;Hk, µ)
2 ≤ 4nσn + 4

∞∑
m=n+1

σm +
8(n− 1) supx∈X k(x, x)√

ℓ

(
1 +

√
2 log

1

δ

)

Proof. As in the proof of Corollary 4.4, k − kZn−1 is positive definite. Also, we can

assume
∑∞

m=1 σm < ∞, as otherwise the right-hand side is infinity. Thus k and

k0 = kZn−1 satisfy Assumption A.

Note that for a function of the form c(x, y) = a · b(x)b(y) with a ∈ R and b ∈
L2(µ), and an orthonormal set (fi)i∈I ⊂ L2(µ) of L2(µ) with b ∈ span{fi | i ∈ I},
we have∑

i∈I

∫∫
X×X

fi(x)c(x, y)fi(y) dµ(x) dµ(y) = a
∑
i∈I

⟨b, fi⟩2L2

= a∥b∥2L2 =

∫
X
c(x, x) dµ(x). (4.29)

If we here use the orthonormal set (em)
∞
m=1 that appears in the Mercer decom-

position, by letting k1 := k − kZn−1 and using the linear extension of (4.29), we
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have ∫
X
k1(x, x) dµ(x) =

∫
X
(k(x, x)− k0(x, x)) dµ(x)

=
∞∑

m=1

〈
em, (K −KZ

n−1)em
〉
L2

≤
∞∑

m=n

⟨em,Kem⟩L2 +
n−1∑
m=1

∥K − KZ
n−1∥∥em∥2L2

=
∞∑

m=n

σm + (n− 1)∥K − KZ
n−1∥. (4.30)

Then, by combining this with Theorem 4.3 and Theorem 4.6(c), we obtain the

desired estimate.

Remark 4.8. If we denote by Nφ the required number of samples, the computa-

tional complexity of the above algorithm becomes O(nℓNφ + nℓ2 + C(n,Nφ)), in-

cluding the cost of computing the Nyström approximation as well as test functions

at Nφ samples (see also Remark 4.2).

4.E Additional numerical experiments

In this section, we provide additional experiments on Algorithm 4.2 using random

convex hulls, as well as the approximated version of the N. + emp described

in Remark 4.2. Section 4.E.1 shows the comparison of Algorithm 4.2 (with Mer-

cer/Nyström approximation) with some of the methods mentioned in the main

text under the periodic Sobolev spaces with uniform measure. Section 4.E.2 inves-

tigates Algorithm 4.2 (with Nystöm approximation) as well as the approximate but

fast algorithm for N. + emp, under the setting of empirical measure reduction.

4.E.1 Periodic Sobolev spaces with uniform measure

We conducted experiments under the same setting as in Section 4.3.1, except that

we additionally have the following methods:

Nyström, Nyström + opt: We used the same test functions as N. + emp

with the random set Z of size ℓ = 10n, but for Algorithm 4.2. We used
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N = 10n samples for the LP (4.25). In Nyström + opt we additionally

optimized the convex weights using (4.13).

Mercer, Mercer + opt (d = 1): We used the same test functions as M. +

emp, but for Algorithm 4.2. We used N = 10n samples for the LP (4.25). In

Mercer + opt we additionally optimized the convex weights using (4.13).

The results are given in Figure 4.3. The weights of Nyström and Mercer are

already almost optimized as they exactly integrate a certain family of functions, so

the additional CQP (4.13) does not change the error so much. Surprising is that

N. + emp + opt is almost as good as Nyström + opt or even better. This

implies that the recombination points with respect to a moderately large (N = n2

in this case) empirical measure can provide a good convergence rate in Bayesian

quadrature [78], even though the (equally weighted) empirical measure itself is not

that close to the true measure.

Odd behavior of ‘Mercer’. As we can see in Figure 4.3(a,b), the methods

based on the exact Mercer decomposition becomes very close to optimal when

n = 15, 65. As it seemed to be caused by the parity of n, we carried out an-

other experiment for n ∈ {5, 9, 15, 19, 29, 39, 49, 65, 79} (Figure 4.4), then Mercer

and its optimization clearly became the best methods except the exact optimal

Unifrom Grid. It might be related to the structure of the periodic Sobolev

space, that has, for each eigenvalue except for 1, two-dimensional eigenspace (cos

and sin), but needs further investigation. Also, in the case (d, r) = (1, 3), we see ‘+

opt’ make the quadrature less accurate for a big n, but it is theoretically almost

impossible, so it seems to be caused by the numerical accuracy of the CQP solver.

4.E.2 Measure reduction in machine learning datasets

We conducted experiments under the same setting as in Section 4.3.2. We addi-

tionally adopted Nyström, Nyström + opt (with N = 20n), and FNE, FNE

+ opt, where FNE (stands for ‘fast N. + emp’) is the approximate algorithm for

N. + emp by omitting the inequality in (4.5) and using the randomized SVD [63]

(see Remark 4.2).
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Figure 4.3: Periodic Sobolev spaces with kernel k⊗d
r : The average of

log10(wce(Qn;Hk, µ)
2) over 50 trials is plotted for each method of obtaining Qn.

The shaded regions are sample standard deviations. The worst computational time
per trial was 5 seconds ofN. + emp andN. + emp + opt in (d, r, n) = (3, 3, 80),
while Nyström and Nyström + opt ran in 0.9 seconds under the same setting.
There were no infeasible LPs.
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Figure 4.4: Supplemental experiments for Figure 4.3. n is all odd.
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(a) 3D Road Network data
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Figure 4.5: Measure reduction in Gaussian RKHS with two ML datasets: The aver-
age of log10(wce(Qn;Hk, µ)

2) over 50 trials is plotted for each method of obtaining
Qn. The shaded regions are sample standard deviations. The worst computational
time per trial was 13 seconds of N. + emp and N. + emp + opt in 3D Road
Network data with n = 160. There were 7 infeasible LPs (and 800 feasible LPs) in
the experiment (a) with Nyström or Nyström + opt. There were no infeasible
LPs in (b).

The results are given in Figure 4.5. N. + emp + opt and FNE + opt

show almost the same convergence. While in the largest case n = 160, the average

runtime of (N. + emp + opt, FNE + opt) was (13.0, 2.07) seconds in 3D Road

Network data and (12.8, 2.09) seconds in Power Plant data, respectively. Although
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our theoretical guarantee no longer holds for FNE, it accelerates the algorithm

while surprisingly maintaining the accuracy. Nystöm or Nyström + opt behave

much better than iid Bayes, but are slightly less accurate than N. + emp +

opt and FNE + opt, whereas they have good theoretical guarantees (Theorem

4.16). Their computational time was basically between that of FNE + opt and

N. + emp + opt.

Comparison with another empirical measure. The setting of ‘ML datasets’

treated here is empirical measures given by some real data, so it is also just an

approximation of a true distribution from the viewpoint of frequentists. Therefore,

if we want to evaluate the performance of measure reduction methods with regard

to the true distribution, we should measure the worst-case error using it. As it is

not feasible in reality, we take another empirical measure µ′ (of the same size as

but different from the empirical measure µ, used in the construction of a kernel

quadrature rule Qn), and plot the quantities of wce(Qn;Hk, µ
′) to better estimate

the actual performance of Qn in this section.

The overall setting is the same as in Section 4.3.2, except for the following

points:

• In the 3D Road Network Data Set, we used another random 43487-point

subset from the remaining 434874− 43487 data points to define µ′.

• In the Combined Cycle Power Plant Data Set, we used exactly half of the

whole data points to define µ (so the size of suppµ is different from the

original experiment) and the other half to define µ′.

Note that µ and µ′ were randomly taken at first and fixed throughout the experi-

ment. The median heuristics as well as the normalization of the data (for both of

the points in µ and µ′) was carried out by using the statistical information solely

given by µ.
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(b) Power Plant data

Figure 4.6: Measure reduction in Gaussian RKHS with two ML datasets with
another empirical measure: The average of log10(wce(Qn;Hk, µ

′)2) over 20 trials is
plotted for each method of obtaining Qn. The shaded regions show their standard
deviation. The worst computational time per trial was 14 seconds of Thinning
[+ opt] in Power Plant data with n = 128, where N. + emp [+ opt] was 6.2
[6.1] seconds.

The results are given in Figure 4.6. We can see that, though our methods are

still competitive, the error eventually becomes dominated by the (MMD-)distance

between µ and µ′ as n gets larger. This is inevitable as we are only using the

empirical measure µ to construct Qn, so in an application to this kind of setting,

we can just pick any method whose error is sufficiently small compared to the

‘inevitable’ error.
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Chapter 5

Sampling-based Nyström
approximation and kernel
quadrature

We analyze the Nyström approximation of a positive definite kernel associated with

a probability measure. We first prove an improved error bound for the conventional

Nyström approximation with i.i.d. sampling and singular-value decomposition in

the continuous regime; the proof techniques are borrowed from statistical learning

theory. We further introduce a refined selection of subspaces in Nyström approxi-

mation with theoretical guarantees that is applicable to non-i.i.d. landmark points.

Finally, we discuss their application to convex kernel quadrature and give novel

theoretical guarantees as well as numerical observations.

5.1 Introduction

Kernel methods form a prominent part of modern machine-learning tools. How-

ever, making kernel methods scalable to large datasets is an ongoing challenge.

The main bottleneck is that the kernel Gram matrix scales quadratically in the

number of data points. For large-scale problems, the number of matrix entries

can easily be of the order of hundreds-thousands or millions so even storing the

full Gram matrix can become too costly. Several approaches have been developed

to deal with these, among the most prominent are the Random Fourier Features

and the Nyström method. In this chapter, we revisit and generalize the Nyström
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Table 5.1: Main quantitative results. Individual bounds are available in Re-
mark 5.1, Theorem 5.11, and Proposition 5.13. For the explanation on each
kernel, see at the end of Contribution section. Here are remarks on the no-
tation. (a) σi is the i-th eigenvalue of the integral operator K : L2(µ) →
L2(µ); g 7→

∫
X k(·, x)g(x) dµ(x). (b) µX denotes the equally weighted empirical

measure 1
N

∑N
i=1 δxi

given by X = (xi)
N
i=1. (c) µ(·) and µX(·) denote the integrals

over the diagonal. See (5.4).

Quantity Bound Assumption

E[µ(
√
k − kZs )]

E[µ(k − kZs )]
O

(√∑
i>s

σi +
(log ℓ)2d+1

ℓ

) {
Z ∼iid µ, k: bounded

σi ≲ exp(−βi1/d)

µ(
√
kZ − kZs,µ)2

µ(kZ − kZs,µ)

∑
i>s

σi Z: fixed

E[µX(
√
kZ − kZs,X)]2

E[µX(k
Z − kZs,X)]

∑
i>s

σi Z: fixed, X ∼iid µ

method and provide new error estimates. Consequences are theoretical guarantees

for kernel quadrature and improvements on the standard Nyström method that

goes beyond uniform subsampling of data points.

Nyström approximation. While already discussed in Section 4.2.3, the main

idea of the Nyström method is to replace the original positive definite kernel k with

another kernel kapp that is constructed by random projection of the elements in the

(in general infinite-dimensional) RKHS associated with k into a low-dimensional

RKHS. A consequence of this is that the Gram matrix of kapp is a low-rank ap-

proximation of the original Gram matrix. Concretely, let µ denote a probability

measure on a (Hausdorff) space X and k a kernel on X ; then the standard Nyström

approximation uses the random kernel

kZ(x, y) := k(x, Z)k(Z,Z)+k(Z, y). (5.1)

where Z = (zi)
ℓ
i=1 is an ℓ-point subset of X usually taken i.i.d. from µ [43, 97].

127



Further s-rank approximation. While less common, the following rank-reduced

version is of interest in the context of kernel quadrature, as explained in Sec-

tion 4.2.3:

kapp(x, y) = kZs (x, y) := k(x, Z)k(Z,Z)+s k(Z, y), (5.2)

where k(Z,Z)+s is the Moore–Penrose pseudo-inverse of the best s-rank approx-

imation of the Gram matrix k(Z,Z) = (k(zi, zj))
ℓ
i,j=1 with s ≤ ℓ. Note that

kZℓ = kZ .

Let us briefly review our motivation for this rank reduction coming from kernel

quadrature. If we are given an s-rank kernel kapp and a probability measure µ, by

Tchakaloff’s theorem there is a discrete probability measure ν supported over at

most s+1 points satisfying
∫
X f dµ =

∫
X f dν for all f ∈ Hkapp , where Hkapp is the

finite-dimensional RKHS associated with the kernel kapp. Such a measure ν works

as a kernel quadrature rule if the kapp well approximates the original kernel k, and

the rank s directly affects the number of (possibly expensive) function evaluations

we need to estimate each integral. The primary error criterion in this chapter is∫
X

√
k(x, x)− kapp(x, x) dµ(x), (5.3)

which arises from the error estimate in kernel/Bayesian quadrature (Chapter 4

and [1]).

Contribution. Our first theoretical result is that the expectation of (5.3) is of

the order O
(√∑

i>s σi + polylog(ℓ)/ℓ
)
when the eigenvalues (σi)

∞
i=1 of the ker-

nel integral operator induced by (k, µ) enjoy exponential convergence (the expec-

tation is taken over the empirical sample Z). Key to the proof of this bound

is the use of concepts from statistical learning theory; in particular, the (lo-

cal) Rademacher complexity. This error estimate is far better than the bound

O
(
spectral term + s1/2/ℓ1/4

)
that follows from the existing high-probability esti-

mate
∫
X (k(x, x) − kZs (x, x)) dµ(x) = O(sσs +

∑
i>s σi + s/

√
ℓ) (see the proof of

Corollary 4.4). Combining our new bound with known kernel quadrature esti-

mates explains the strong empirical performance of the convex kernel quadrature

given in Chapter 4; the theoretical bounds in Chapter 4 were not even better than

Monte-Carlo in terms of ℓ.
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Our second contribution is the use of other kapp than kZs with better bounds

of (5.3), for a general class of landmark points Z rather than just an i.i.d. sample

from µ. This generalization allows to use other sets Z in (5.2) to achieve better

overall performance; e.g. sampling Z from determinantal point processes (DPPs)

on X is known to be advantageous in applications. To construct and provide

theoretical guarantees for such improved Nyström constructions we revisit and

generalize a method that was proposed in Santin and Schaback [146] and give

further theoretical guarantees applicable to kernel quadrature rules.

The following is the list of low-rank approximations presented in the chapter:

• kZ and kZs : Usual Nyström approximations using landmark points Z. See

(5.1) and (5.2).

• kZs,µ: The s-rank truncated Mercer decomposition of the kernel kZ with re-

spect to the measure µ. See (5.11).

• kZs,X : A version of kZs,µ with µ given by the empirical measure 1
N

∑N
i=1 δxi

of

the set X = (xi)
N
i=1. This actually coincides with kZs when X = Z; see (5.6).

See Table 5.1 for a summary of our quantitative results.

Outline. Section 5.2 discusses the existing literature and introduces some nota-

tion. Section 5.3 contains our first main result, namely the analysis of kZs for an

i.i.d. Z; Appendix 5.A provides the necessary background from statistical learning

theory. In Section 5.4, we then treat a general Z to give refined low-rank approx-

imations together with theoretical guarantees, rather than the conventional kZs .

In Section 5.5, we discuss how our bounds yields new theories and methods for

the recent random kernel quadrature construction, which enables us to explain the

empirical performance as well as to build some strong candidates whose perfor-

mance is assessed by numerical experiments. All the omitted proofs are given in

Appendix 5.B.
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5.2 Related literature and notation

To simplify the notation, we denote

ν(f) :=

∫
X
f(x) dν(x), ν(h) :=

∫
X
h(x, x) dν(x) (5.4)

for any functions f : X → R, h : X ×X → R and a (probability) measure ν on X ,
whenever the integrals are well-defined. In this notation, the aim of this chapter is

to bound µ(
√
k − kapp) or µ(k − kapp) for a class of low-rank approximation kapp.

Also, A+ denotes the Moore–Penrose pseudo-inverse of a matrix A.

Approximation of the Gram matrix. The standard use of the Nyström

method in ML is to replace the Gram matrix k(X,X) for a set X = (xi)
N
i=1 by

the low-rank matrix kZ(X,X) where kZ is defined as in (5.1). A well-developed

literature studies the case when Z = (zi)
ℓ
i=1 is uniformly and independently sam-

pled from X, see Drineas et al. [43], Kumar et al. [97], Yang et al. [181], Jin et al.

[80], Li et al. [101]. Further, the cases of leverage-based sampling [54], DPPs

[100], and kernel K-means samples [130] have received attention. Moreover, two

variants of the standard Nyström method have been studied: the first replaces

the Moore-Penrose inverse of k(Z,Z) in (5.1) with the pseudo-inverse of the best

s-rank approximation of k(Z,Z) as in (5.2) via SVD [43, 97, 101]; the second uses

the best s-rank approximation of kZ(X,X), see [166, 177]. For a brief overview in

this regard, see Wang et al. [177, Remark 1].

Approximation of the integral operator. The matrix k(X,X) can be re-

garded as a finite-dimensional representation of the linear (integral) operator

K : L2(µ)→ L2(µ), (Kf)(x) =
∫
X
k(x, y)f(y) dµ(y).

We denote with (σi, ei)
∞
i=1 the eigenpairs of the operator K, and assume the eigen-

values are ordered σ1 ≥ σ2 ≥ · · · ≥ 0. The Mercer decomposition exists under mild

assumptions (for example, suppµ = X , k is continuous and
∫
X k(x, x) dµ(x) <∞

[160] are sufficient) and gives the representation

k(x, y) =
∞∑
i=1

σiei(x)ei(y), (5.5)
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where ∥ei∥L2(µ) = 1, and (
√
σiei)

∞
i=1 is an orthonormal basis of the RKHS Hk of

k. Hence, a natural approach is to just truncate this expansion after s terms,

kapp =
∑s

i=1 σiei(x)ei(y), to get a finite-dimensional approximation of the kernel

k. This approach is natural since the approximation quality of the operator K
determines the resulting error estimates. Unfortunately, it is often rendered useless

since the Mercer decomposition depends on the tuple (k, µ), and while explicit

expression is known for special choices, in general, it is unlikely to have a closed-

form representation of the eigenpairs (σi, ei)
∞
i=1.

Other approximations. A compromise that is relevant to our work is proposed

in Santin and Schaback [146]. Instead of using the Mercer decomposition of K one

uses the Mercer decomposition of (5.1). Our main result allows to generalize this

approach and to provide theoretical guarantees missing in the reference. Related

is the paper Gauthier [51] that studies the interactions of several Hilbert-Schmidt

spaces of (integral) operators given by a Nyström approximation/projection of a

kernel-measure pair as in the present chapter; further, Chatalic et al. [29] consid-

ers a low-rank approximation of an empirical kernel mean embedding by using a

Nyström-based projection. The leverage-based sampling studied in Gittens and

Mahoney [54] has continuous counterparts. One with a slight modification is in

the kernel literature [6], while the exact counterpart can be found in a context

from approximation theory [31] under the name of optimally-weighted sampling,

which essentially proposes sampling from s−1
∑s

i=1 e
2
i (x) dµ(x).

The power function. Finally, the square root of the diagonal term
√
k(x, x)− kZ(x, x)

or its generalization is known as the power function in the literature on kernel-based

interpolation [38, 145, 87]. There the primary interest is its L∞ (uniform) norm,

rather than the L1(µ) norm, µ(
√
k − kapp), or the L2(µ) norm, µ(k − kapp), that

appear in kernel quadrature estimates and error estimates of the Nyström/Mercer

type decompositions.

Kernel quadrature. The literature on kernel quadrature other than Chapter 4

includes herding [30, 7, 78, 167], weighted/correlated sampling [6, 16, 17, 15, 46],

a subsampling method called thinning [44, 45, 152]. We refer to Table 4.1 in
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the previous chapter for a comparison of existing algorithms in terms of their

convergence guarantees and computational complexities.

5.3 Analyzing kZs for i.i.d. Z via statistical learn-

ing theory

Let Z = (zi)
ℓ
i=1 ⊂ X and kZs be the s-dimensional kernel given by kZs (x, y) =

k(x, Z)k(Z,Z)+s k(Z, y) as in the usual Nyström approximation. Throughout the

chapter, suppose we are provided the singular value decomposition of the matrix

k(Z,Z) = U diag(λ1, . . . , λℓ)U
⊤ with an orthogonal matrix U = [u1, . . . , uℓ] and

λ1 ≥ · · · ≥ λℓ ≥ 0. Note that

kZs (x, y) =
s∑

i=1

1{λi>0}
1

λ i
(u⊤i k(Z, x))(u

⊤
i k(Z, y)) (5.6)

is actually a truncated Mercer decomposition of kZ with regard to the measure

µZ = 1
ℓ

∑ℓ
i=1 δzi , since 〈

u⊤i k(Z, ·), u⊤j k(Z, ·)
〉
L2(µZ)

=
1

ℓ
u⊤i k(Z,Z)k(Z,Z)uj =

λiλj
ℓ
δij.

This fact is at the heart of our analysis: kZs is ‘optimal’ s-rank approximation for

the measure µZ , and the statistical learning theory connects estimates in empirical

measure and the original measure.

Let us denote by PZ,s : Hk → Hk the linear operator given by k(·, x) 7→ kZs (·, x)
for all x ∈ X . We shall also simply write PZ = PZ,ℓ.

Lemma 5.1. PZ,s is an orthogonal projection in H.

This projection is related to the quantity of interest, in that

kZs (x, x) = ⟨k(·, x), PZ,sk(·, x)⟩Hk
= ∥PZ,sk(·, x)∥2Hk

.

Thus, we have k(x, x) − kZs (x, x) = ∥P⊥
Z,sk(·, x)∥2Hk

by using P⊥
Z,s, the orthog-

onal complement of PZ,s. So we are now interested in estimating the integral
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µ(
√
k − kZs ) =

∫
X∥P

⊥
Z,sk(·, x)∥Hk

dµ(x) from the viewpoint of the projection opera-

tor. We first estimate its empirical counterpart µZ(
√
k − kZs ) = 1

ℓ

∑ℓ
i=1∥P⊥

Z,sk(·, zi)∥Hk
,

where µZ = 1
ℓ

∑ℓ
i=1 δzi is the empirical measure. Indeed, we have the following

identity regarding µZ(k − kZs ):

Lemma 5.2. For any ℓ-point sample Z ⊂ X , we have

µZ(
√
k − kZs )2 ≤ µZ(k − kZs ) =

1

ℓ

ℓ∑
i=s+1

λi

where λ1 ≥ · · · ≥ λℓ are eigenvalues of k(Z,Z).

When Z is given by an i.i.d. sampling, the decay of eigenvalues λi enjoys the

rapid decay given by σi in the following sense:

Lemma 5.3. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent sample from µ. Then, for

the eigenvalues λ1 ≥ · · · ≥ λℓ of k(Z,Z), we have

E

[
1

ℓ

ℓ∑
i=s+1

λi

]
≤
∑
i>s

σi.

For a general random orthogonal projection operator, we can prove the follow-

ing bound by using arguments in statistical learning theory (Section 5.A). Recall

from the previous chapter that we have defined kmax := supx∈X k(x, x).

Theorem 5.4. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent sample from µ and P be

a random orthogonal projection in Hk possibly depending on Z. For any integer

m ≥ 1, we have the following bound:

E
[∫

X
∥Pk(·, x)∥Hk

dµ(x)

]
≤ E

[
2

ℓ

ℓ∑
i=1

∥Pk(·, zi)∥Hk

]

+ 4

√∑
i>m

σi +

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
,

where the expectation is taken regarding the draws of Z.

Recall that µ(
√
k − kZs ) =

∫
X∥P

⊥
Z,sk(·, x)∥Hk

dµ(x). By combining this theo-

rem when P = P⊥
Z,s and Lemma 5.2 & 5.3, we can obtain the following:
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Corollary 5.5. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent sample from µ. Then,

for any integer m ≥ 1, we have

E
[
µ(
√
k − kZs )

]
≤ 2

√∑
i>s

σi + 4

√∑
i>m

σi

+

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
.

Remark 5.1. When σj ≲ e−βi1/d with a constant β > 0 and a positive integer

d [typical for d-dimensional Gaussian kernel, see, e.g., 1, Section A.2], by taking

m ∼ (log ℓ)d, we have a bound

E
[
µ(
√
k − kZs )

]
= O

√∑
i>s

σi +
(log ℓ)2d+1

ℓ


for ℓ ≥ 3; see Appendix 5.B.6 for the proof. Since k − kZs ≤

√
kmax

√
k − kZs ,

the same estimate applies to E[µ(
√
k − kZs )]. These also lead to an (s + 1)-point

randomized convex kernel quadrature Qs+1 with the same order of E[wce(Qs+1)].

See Section 5.5 for details.

5.4 A refined low-rank approximation with gen-

eral Z

The process of obtaining a good approximation kapp of k using kZ can be decom-

posed into two parts:

k − kapp = k − kZ︸ ︷︷ ︸
A

+ kZ − kapp︸ ︷︷ ︸
B

.

In the previous section, we have analyzed the case Z is i.i.d. and kapp = kZs .

However, we can consider more general Z, and indeed we actually have a better

way to select a subspace (i.e., kapp) from the finite-rank kernel kZ rather than just

using kZs .
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5.4.1 Part A: Estimating the error of kZ for general Z

This part is relatively well-studied. Indeed, µ(k−kZ) =
∫
X (k(x, x)−k

Z(x, x)) dµ(x)

for some non-i.i.d. Z can be bounded by using the results of weighted kernel

quadrature. For example, Belhadji et al. [16] consider the worst-case error for the

weighted integral

µ(fg) =

∫
X
f(x)g(x) dµ(x) ≈

ℓ∑
i=1

wif(zi) (5.7)

for any ∥f∥Hk
≤ 1 and a fixed g ∈ L2(µ) with Z = (zi)

ℓ
i=1 following a certain

DPP. Now consider the optimal worst-case error in the above approximation for

the fixed point configuration Z:

inf
wi

sup
∥f∥Hk

≤1

∣∣∣∣∣µ(fg)−
ℓ∑

i=1

wif(zi)

∣∣∣∣∣ = sup
∥f∥≤1

∣∣∣∣∣∣
〈
f,

∫
X
k(·, x)g(x) dµ(x)−

ℓ∑
i=1

wik(·, zi)

〉
Hk

∣∣∣∣∣∣
= inf

wi

∥∥∥∥∥Kg −
ℓ∑

i=1

wik(·, zi)

∥∥∥∥∥
Hk

= ∥P⊥
Z Kg∥Hk

.

(5.8)

By using this, we can prove the following estimate:

Proposition 5.6. For any finite subset Z ⊂ X and any integer m ≥ 0, we have

µ(k − kZ) =
∞∑
i=1

∥P⊥
Z Kei∥2Hk

≤
m∑
i=1

∥P⊥
Z Kei∥2Hk

+
∑
i>m

σi

where (σi, ei)
∞
i=1 are the eigenpairs of K.

The papers Belhadji et al. [16, 17], Belhadji [15] give bounds on the worst-case

error of the weighted kernel quadrature (5.8) when Z is given by some correlated

sampling, whereas Bach [6] gives another bound when Z is given by an optimized

weighted sampling rather than sampling from µ. By using (5.8) and Proposition

5.6, we can import their bounds on weighted kernel quadrature with non-i.i.d. Z

to the estimate of µ(k−kZ) =
∫
X
∥P⊥

Z k(·, x)∥2Hk
dµ(x). Here, we just give one such

example:
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Corollary 5.7. Let Z = (zi)
ℓ
i=1 be taken from a DPP given by the projection

kernel p(x, y) =
∑ℓ

i=1 ei(x)ei(y) with a reference measure µ, i.e., P(Z ∈ A) =
1
ℓ!

∫
A
det p(Z,Z) dµ⊗ℓ(Z) for any Borel set A ⊂ X d. Then, for any integer m ≥ 0,

we have

E
[
µ(k − kZ)

]
≤
∑
i>m

σi + 4m
∑
i>ℓ

σi,

where the expectation is taken regarding the draws of Z.

In any case, by using those non-i.i.d. points, we can obtain a better Z in the

sense that
∫
X (k(x, x) − kZ(x, x)) dµ(x) attains a sharper upper bound than the

bound given in the previous section for an ℓ-point i.i.d. sample from µ. However,

for a general Z, it is not necessary sensible to execute the SVD of k(Z,Z) and

get kZs accordingly, as an SVD of k(Z,Z) corresponds to approximating µ by the

empirical measure 1
ℓ

∑ℓ
i=1 δzi (indeed, this observation is the key to the results in

the previous section). Thus, for points Z not given by i.i.d. sampling, there should

exist a better choice of kapp than kZs . We discuss this in the following section.

5.4.2 Part B: Mercer decomposition of kZ

Instead of using kZs , we propose to compute the Mercer decomposition of kZ with

respect to µ and truncate it to get kZs,µ, which is defined in the following. This

is doable if we have knowledge of hµ(x, y) :=
∫
X k(x, t)k(t, y) dµ(t), since k

Z is a

finite-dimensional kernel. We can prove the following:

Lemma 5.8. We have hµ(x, y) =
∑∞

i=1 σ
2
i ei(x)ei(y).

We now discuss how hµ can be used to derive the Mercer decomposition of

kZ . Note that this can be regarded as a generalization of Santin and Schaback

[146, Section 6]. Let KZ : L2(µ) → L2(µ) be the integral operator given by

g 7→
∫
X k

Z(·, x)g(x) dµ(x).
For functions of the form f = a⊤k(Z, ·) and g = b⊤k(Z, ·) with a, b ∈ Rℓ, we

have

⟨f, g⟩L2(µ) =

∫
X
a⊤k(Z, x)k(x, Z)b dµ(x) = a⊤hµ(Z,Z)b. (5.9)
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So, if we write hµ(Z,Z) = H⊤H by using an H ∈ Rℓ×ℓ (since hµ(Z,Z) is positive

semi-definite), an element f = a⊤k(Z, ·) ∈ L2(µ) is non-zero if and only if Ha ̸= 0.

Furthermore, we have

KZf =

∫
X
k(·, Z)k(Z,Z)+k(Z, x)k(x, Z)a dµ(x)

= k(·, Z)k(Z,Z)+hµ(Z,Z)a

=
[
k(Z,Z)+hµ(Z,Z)a

]⊤
k(Z, ·). (5.10)

Thus, f is a nontrivial eigenfunction of KZ , if Ha ̸= 0 and a is an eigenvec-

tor of k(Z,Z)+hµ(Z,Z). It is equivalent to c = Ha being an eigenvector of

Hk(Z,Z)+H⊤.

Let us decompose this matrix by SVD asHk(Z,Z)+H⊤ = V diag(κ1, . . . , κℓ)V
⊤,

where the V = [v1, . . . , vℓ] ∈ Rℓ×ℓ is an orthogonal matrix and κ1 ≥ · · · ≥ κℓ ≥ 0.

Then, we have

Hk(Z,Z)+H⊤ =
ℓ∑

i=1

κiviv
⊤
i .

Let us consider fi = (H+vi)
⊤k(Z, ·) = v⊤i (H

+)⊤k(Z, ·) for i = 1, . . . , ℓ as candi-

dates of eigenfunctions of KZ . We can actually prove the following:

Lemma 5.9. The set {fi | i ≥ 1, κi > 0} forms an orthonormal subset of L2(µ)

whose elements are eigenfunctions of KZ.

Let us define kZµ (x, y) :=
∑ℓ

i=1 κifi(x)fi(y); note that this is computable. From

the above lemma, this expression is a natural candidate for “Mercer decomposi-

tion” of kZ . We can prove that it actually coincides with kZ(x, y) µ-almost every-

where, and so the decomposition is independent of the choice of H up to µ-null

sets:

Proposition 5.10. There exists a measurable set A ⊂ X depending on Z with

µ(A) = 1 such that kZ(x, y) = kZµ (x, y) holds for all x, y ∈ A. Moreover, we can

take A = X if kerhµ(Z,Z) ⊂ ker k(Z,Z).

Now we just define kZs,µ for s ≤ ℓ as follows:

kZs,µ(x, y) :=
s∑

i=1

κifi(x)fi(y). (5.11)
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Theorem 5.11. We have µ(kZµ − kZs,µ) ≤
∑ℓ

i=s+1 σi for any Z = (zi)
ℓ
i=1 ⊂ X .

Proof. The left-hand side is equal to
∑ℓ

i=s+1 κi from Lemma 5.9 and the definition

of the kernels. Thus, it suffices to prove κi ≤ σi for each i. It directly follows from

the min-max principle (or Weyl’s inequality) as k − kZµ is positive definite on an

A ⊂ X with µ(A) = 1 from Proposition 5.10.

Remark 5.2. The choice of the matrix H with H⊤H = hµ(Z,Z) does not affect

the theory but might affect the numerical errors. We have used the matrix square-

root hµ(Z,Z)
1/2, i.e., the symmetric and positive semi-definite matrix H with

H2 = hµ(Z,Z), throughout the experiments in Section 5.5, so that we just need

to take the pseudo-inverse of positive semi-definite matrices.

Approximate Mercer decomposition. When we have no access to the func-

tion hµ, we can just approximate it by using an empirical measure. For a X =

(xj)
M
j=1 ⊂ X , denote by hX the function given by replacing µ in hµ with the

empirical measure with points X:

hX(x, y) =
1

M

M∑
j=1

k(x, xj)k(xj, y) =
1

M
k(x,X)k(X, y).

We can actually replace every hµ by hX in the above construction to define kZX
and kZs,X . This approximation is already mentioned by Santin and Schaback [146]

without theoretical guarantee. Another remark is that when restricted on the set

X, it is equivalent to the best s-rank approximation of kZ(X,X) in the Gram-

matrix case [166, 177], since the L2-norm for the uniform measure on X just

corresponds to the ℓ2-norm in R|X|.

Note that we have kZX(X,X) = kZ(X,X) from Proposition 5.10 in the discrete

case. As we have kerhX(Z,Z) = ker k(Z,X)k(X,Z) = ker k(X,Z), we addition-

ally obtain the following sufficient condition from Proposition 5.10.

Proposition 5.12. kZX(x, y) = kZ(x, y) holds for all x, y ∈ X. Moreover, if

ker k(X,Z) ⊂ ker k(Z,Z), then we have kZX = kZ over the whole X .

In particular, we have kZX = kZ whenever Z ⊂ X. These (at least µ-a.s.)

equalities given in Proposition 5.10 & 5.12 are necessary for the applications to
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kernel quadrature, since we need k− kapp to be positive definite for exploiting the

existing guarantees such as Theorem 5.15 in the next section.

Although checking kZX = kZ is not an easy task, from the first part of Propo-

sition 5.12, kZs,X satisfies the following estimate in terms of the empirical measure

µX .

Proposition 5.13. Let Z ⊂ X be a fixed subset and X be an M-point independent

sample from µ. Then, we have

E
[
µX(k

Z − kZs,X)
]
= E

[
µX(k

Z
X − kZs,X)

]
≤
∑
i>s

σi,

where the expectation is taken regarding the draws of X.

We can also give a bound of the resulting error µ(kZ − kZs,X) again by us-

ing the arguments from learning theory, but under an additional assumption as

stated in the following. Nevertheless, Proposition 5.13 is already sufficient for our

application in kernel quadrature; see Theorem 5.16.

Proposition 5.14. Under the same setting as in Proposition 5.13, if ker k(X,Z) ⊂
ker k(Z,Z) holds almost surely for the draws of X, we have

E
[
µ(
√
kZ − kZs,X)

]
≤ 2

√∑
i>M

σi + 4

√∑
i>m

σi +

√
kmax

M

(
80m2 log(1 + 2M)

9
+ 69

)
.

for any integer m ≥ 1.

Remark 5.3. The assumption ker k(X,Z) ⊂ ker k(Z,Z) seems to be very hard to

check in practice. An example with this property is (X , k, µ) such that X = RD

with D,M > ℓ, the kernel k is just the Euclidean inner product on RD, and µ is

given by a Gaussian distribution with a nonsingular covariance matrix.

This being said, we have some ways to avoid this issue in practice. One way

is to use X ∪ Z instead of X so that the condition automatically holds. Then,

the above order of estimate should still hold when ℓ≪ M , though it complicates

the analysis. Another way is effective when we use kZX for constructing a kernel

quadrature from an empirical measure given by X itself; see the next section for

details.
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5.5 Application to kernel quadrature

Let us give error bounds for kernel quadrature as a consequence of the previous

sections. We are mainly concerned with the kernel quadrature of the form (5.7)

without the weight function, i.e., the case when g = 1, for efficiently discretizing

the probability measure µ.

Given an n-point quadrature rule Qn : f 7→
∑n

i=1wif(xi) with weights wi ∈
R and points xi ∈ X , the worst-case error of Qn with respect to the RKHS

Hk and the target measure µ is defined as wce(Qn;Hk, µ) = MMDk(Qn, µ) =

sup∥f∥Hk
≤1|Qn(f) − µ(f)| as explained in Section 1.2. We again call Qn convex if

it forms a probability measure, i.e., wi ≥ 0 and
∑n

i=1wi = 1.

Suppose we are given an s-rank kernel approximation kapp(x, y) =
∑s

i=1 ciφi(x)φi(y)

with ci ≥ 0 and k − kapp being positive definite (µ-almost surely). The following

is taken from the previous chapter (Theorem 4.6 & 4.9 combined).

Theorem 5.15. If an n-point convex quadrature Qn satisfies Qn(φi) = µ(φi) for

1 ≤ i ≤ s and Qn(
√
k − kapp) ≤ µ(

√
k − kapp), then we have

wce(Qn;Hk, µ) ≤ 2µ(
√
k − kapp).

Moreover, such a quadrature Qn exists with n = s+ 1.

Although there is a randomized algorithm for constructing the Qn stated in

the above theorem (Algorithm 4.2 with modification), it has two issues; it requires

exact values of µ(φi) (and µ(
√
k − kapp)) and its computational complexity has no

useful upper bound unless we have additional assumptions such as well-behaved

moments of test functions φi or structure like a product kernel with a product

measure as in Chapter 3. This being said, we can deduce updated convergence

results for outputs of the algorithm as in Remark 5.1.

5.5.1 Kernel recombination

Instead of considering an “exact” quadrature, what we do in practice in this low-

rank approach is matching the integrals against a large empirical measure [see also
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1, Section 6], say µY = 1
N

∑N
i=1 δyi with Y = (yi)

N
i=1. If we have{

Qn(φi) = µY (φi), 1 ≤ i ≤ s,

Qn(
√
k − kapp) ≤ µY (

√
k − kapp),

(5.12)

then, from Theorem 5.15 with a target measure µY and the triangle inequality of

MMD, we have

wce(Qn;Hk, µ) ≤ MMDk(Qn, µY ) + MMDk(µY , µ)

≤ 2µY (
√
k − kapp) + MMDk(µY , µ). (5.13)

Indeed, such a quadrature Qn with n = s+1 points given by a subset of Y can be

constructed via an algorithm called recombination [103, 163, 34].

Existing approaches with this kernel recombination have then been using an

approximation kapp typically given by kZs whose randomness is independent of the

sample Y , but it is not a necessary requirement as long as we can expect an efficient

bound of µY (
√
k − kapp) in some sense. Another small but novel observation is

that k − kapp being positive definite is only required on the sample Y in deriving

the estimate (5.13); not over the support of µ in contrast to Theorem 5.15. These

observations circumvent the issues mentioned in Remark 5.3 when using kapp = kZY
(kZs,X with X = Y ).

Let us now denote the kernel recombination in the form of a function as Qn =

KQuad(kapp, Y ), where the output Qn is an n-point convex quadrature satisfying

n = s + 1 and (5.12); note that the constraint is slightly different from what is

given in Algorithm 4.1, but we can achieve (5.12) by replacing k1,diag with
√
k1,diag

in the cited algorithm.

We can now prove the performance of low-rank approximations given in the

previous section. Indeed, kZs,Y and kZs,µ with s = n − 1 have the following same

estimate.

Theorem 5.16. Let Z ⊂ X be a fixed subset and Y be an N-point independent

sample from µ. The random convex quadrature Qn = KQuad(kZn−1,Y , Y ) satisfies

E[wce(Qn;Hk, µ)] ≤ 2µ(
√
k − kZ) + 2

√∑
i≥n

σi +

√
ck,µ
N

, (5.14)

where ck,µ := µ(k)−
∫∫

X×X k(x, y) dµ(x) dµ(y) and the expectation is taken regard-

ing the draws of Y . The estimate (5.14) holds also for Qn = KQuad(kZn−1,µ, Y ).
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5.5.2 Numerical examples

In this section, we compare the numerical performance of kZs,Y and kZs,µ for kernel

quadrature with the conventional Nyström approximation for a non-i.i.d. Z in the

setting that we can explicitly compute the worst-case error.

Periodic Sobolev spaces. The class of RKHS we use is called periodic Sobolev

spaces of functions on X = [0, 1] (a.k.a. Korobov spaces), and given by the follow-

ing kernel for a positive integer r:

kr(x, y) = 1 +
(−1)r−1(2π)2r

(2r)!
B2r(|x− y|),

where B2r is the 2r-th Bernoulli polynomial [173, 6]. We consider the case µ

being the uniform measure, where the eigenfunctions of the integral operator

K are known to be 1,
√
2 cos(2πm ·),

√
2 sin(2πm ·) with eigenvalues respectively

1,m−2r,m−2r for each positive integer m. This RKHS is commonly used for mea-

suring the performance of kernel quadrature methods [82, 6, 16]. We also consider

its products: k⊗d
r (x,y) =

∏d
i=1 kr(xi, yi) and µ being the uniform measure on the

hypercube X = [0, 1]d.

By considering the eigenvalues, we can see that hµ = k⊗d
2r for each kernel k⊗d

r

from Remark 5.8.

Experiments. In the experiments for the kernel k⊗d
r , we compared the worst-

case error of n-point kernel quadrature rules given by Qn = KQuad(kapp, Y ) with

kapp = kHs , k
Z
s , k

Z
s,Y , k

Z
s,µ (s = n− 1) under the following setting:

• Y is an N -point independent sample from µ with N = n2 (Figure 5.1) or

N = n3 (Figure 5.2).

• H is the uniform grid {i/n | i = 1, . . . , n} (d = 1) or the Halton sequence

with Owen scrambling [64, 132] (d ≥ 2).

• Z is the union of H and another 20n-point independent sample from ν⊗d,

where ν is the 1-dimensional (2, 5)-Beta distribution, whose density is pro-

portional to x(1− x)4 for x ∈ [0, 1].
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We additionally compared ‘Monte Carlo’: uniform weights 1/n with i.i.d. sam-

ple (xi)
n
i=1 from µ, ‘Uniform Grid’ (d = 1): points in H with uniform weights 1/n

(known to be optimal for each n), and ‘Halton’ (d ≥ 2): points in an independent

copy of H with uniform weights 1/n.

The aim of this experiment was to see if the proposed methods (kZs,Y and

kZs,µ) can actually recover a ‘good’ subspace of the RKHS given by kZ with Z not

summarizing µ. To do so, we mixedH (a ‘good’ summary of µ) and an i.i.d. sample

from ν to determine Z.
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Figure 5.1: Experiments in periodic Sobolev spaces with reproducing kernel k⊗d
r .

Average of log10(wce(Qn;Hk, µ)
2) over 20 samples plotted with their standard

deviation.

Figure 5.1 shows the results for (d, r) = (1, 1), (2, 1), (3, 3) with N = n2 and

143



n = 4, 8, 16, 32, 64, 128. From Figure 5.1(a, b), we can see that our methods indeed

recover (and perform slightly better than) the rate of kH from a contaminated

sample Z. In Figure 5.1(c), the four low-rank methods all perform equally well, and

it seems that the dominating error is given by the term caused by MMDk(µY , µ).
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Figure 5.2: Experiments in k2 with N = n2, n3 for recombination algorithms.
Average of log10(wce(Qn;Hk, µ)

2) over 20 samples plotted with their standard
deviation.

Figure 5.2 shows the results for (d, r) = (1, 2) with N = n2 or N = n3 and

n = 4, 8, 16, 32, 64. In this case, we can see that kZs,Y or kZs,µ eventually suffers

from numerical instability, which is also reported by Santin and Schaback [146].

Since their error inflation is not completely hidden even in the case N = n2 unlike

the previous experiments, one possible reason for the instability is that taking the

pseudo-inverse of k(Z,Z) or hµ(Z,Z)
1/2 in the algorithm becomes highly unstable

when the spectral decay is fast. Although they have preferable guarantees in

theory, its numerical error seems to harm the overall efficiency, and this issue

needs to be addressed e.g. by circumventing the use of pseudo-inverse in future

work.

Remark 5.4. Unlike the kernel quadrature with kZs,µ or kZs,Y , that with kZs does

not suffer from a similar numerical instability despite the use of k(Z,Z)+s . This

phenomenon can be explained by the nature of Algorithm 4.1; it only requires (sta-

ble) test functions φi = u⊤i k(Z, ·) (i = 1, . . . , s) for its equality constraints, where

ui is the i-th eigenvector of k(Z,Z), while the (possibly unstable) diagonal term
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kZs (x, x) appears in the inequality constraint, which can empirically be omitted

(see Section 4.E.2).

Computational complexity. By letting ℓ,N (larger than s) respectively be the

cardinality of Z and Y , we can express the computational steps of KQuad(kapp, Y )

with kapp = kZs , k
Z
s,Y , k

Z
s,µ as follows:

• Using kZs takes O(sℓN + sℓ2 + s3 log(N/s)), but by omitting the (empirically

unnecessary) inequality constraint, it can be reduced toO(ℓN + sℓ2 + s3 log(N/s))

(see Remark 4.2).

• Using kZs,Y takes O(ℓ3 + ℓ2N + s3 log(N/s)), where O(ℓ3) and O(ℓ2N) re-

spectively come from computing k(Z,Z)+ and hY (Z,Z).

• Using kZs,µ takes O(ℓ3 + sℓN + s3 log(N/s)) (if hµ available), where O(ℓ3) is
from computing k(Z,Z)+.

For example, in the case of Figure 5.1(c) with n = 128, the average time per trial

was respectively 26.5, 226, 216 seconds for kZs , k
Z
s,Y , k

Z
s,µ, while it was 52.6, 57.8,

41.2 seconds for the case of Figure 5.2(b) with n = 64.1

5.6 Concluding remarks

In this chapter, we have studied the performance of several Nyström-type approx-

imations kapp of a positive definite kernel k associated with a probability measure

µ, in terms of the error µ(
√
k − kapp). We first improved the bounds for kZs , the

conventional Nyström approximation based on an i.i.d. Z and the use of SVD,

by leveraging results in statistical learning theory. We then went beyond the

i.i.d. setting and considered general Z including DPPs; we further introduced two

competitors of kZs , i.e., k
Z
s,µ and kZs,X , which are given by directly computing the

Mercer decomposition of the finite-rank kernel kZ against the measure µ and the

empirical measure µX , respectively. Finally, we used our results to improve the

1All the experiments were conducted on a MacBook Pro with Apple M1 Max chip and
32GB unified memory. Code is available at the nystrom folder in https://github.com/

satoshi-hayakawa/kernel-quadrature.
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theoretical guarantees for convex kernel quadrature introduced in Chapter 4, and

provided numerical results to illustrate the difference between the conventional kZs

and the newly proposed kZs,µ and kZs,X .

Despite its nice theoretical properties, a limitation of our second contribution

(i.e., the proposed kernel approximations) is that they involve the computation of

a pseudo-inverse, which can be numerically unstable when there is a rapid spectral

decay. This point should be addressed in future work, but one promising approach

in the context of kernel quadrature is to conceptually learn from the stability of

kZs mentioned in Remark 5.4; if we see the construction of the low-rank kernel

as optimization of the vectors ui for which functions u⊤i k(Z, ·) well approximate

HkZ in terms of L2(µ) metric, we can possibly leverage the stability of convex

optimization for instance.

Appendix for Chapter 5

5.A Tools from statistical learning theory

In this section, F always denotes a class of functions from X to R, i.e., F ⊂ RX .

Let us define the Rademacher complexity of F with respect to the sample Z =

(zi)
ℓ
i=1 ⊂ X as follows [121, Definition 3.1]:

RZ(F) := E

[
sup
f∈F

1

ℓ

ℓ∑
j=1

sjf(zj)

∣∣∣∣∣Z
]

where the conditional expectation is taken with regard to the Rademacher vari-

ables, i.e., i.i.d. variables sj uniform in {±1}.
The following is a version of the uniform law of large numbers, though we only

use one side of the inequality.

Proposition 5.17 (121, Theorem 3.3). Let Z be an ℓ-point independent sample

from µ. If there is a B > 0 such that ∥f∥∞ ≤ B for every f ∈ F , then with

probability at least 1− δ, we have

sup
f∈F

(µ(f)− µZ(f)) ≤ 2E[RZ(F)] +
√

2B2

ℓ
log

1

δ
.
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For a pseudo metric d on F , we denote the ε-convering number of F by

N (F , d; ε). Namely, N (F , d; ε) is the infimum of positive integers N such that

there exist f1, . . . , fN ∈ F satisfying min1≤i≤N d(fi, g) ≤ ε for all g ∈ F .
Let us define a pseudo-metric dZ(f, g) :=

√
1
ℓ

∑ℓ
j=1(f(zi)− g(zi))2. The fol-

lowing assertion is a version of Dudley’s integral entropy bound [158, Lemma A.3;

see Srebro and Sridharan [157] for a correction of the constant].

Proposition 5.18 (Dudley integral). For any ℓ-point sample Z = (zi)
ℓ
i=1 ⊂ X ,

we have

RZ(F) ≤
12√
ℓ

∫ ∞

0

√
logN (F , dZ ; ε) dε.

The following is a straightforward modification of Schmidt-Hieber [148, Lemma

4] tailored to our setting. It originates from an analysis of empirical risk minimiz-

ers, and this kind of technique has also been known in earlier work under the name

of local Rademacher complexities [62, 92, 53].

Proposition 5.19. Let F ⊂ L∞(µ) be a set of functions with f ≥ 0 and ∥f∥L∞(µ) ≤
F for all f ∈ F , where F > 0 is a constant. If f̂ is a random function in F possibly

depending on Z, then, for every ε > 0, we have

E
[
µ(f̂)

]
≤ 2E

[
µZ(f̂)

]
+
F

ℓ

(
80

9
logN + 64

)
+ 5ε,

where N := max{3,N (F , ∥·∥L1(µ); ε)}.

Proof. The proof here essentially follows the original proof, where we re-compute

the constants as the condition is slightly different; see also Hayakawa and Suzuki

[67, Theorem 2.6] and its remark.

Let Z ′ = (z′1, . . . z
′
ℓ) be an independent copy of Z. Let Fε be an ε-covering of

F in L1(µ) with the cardinality N and f ∗ be a random element of Fε such that

µ(|f̂ − f ∗|) ≤ ε. Then, we have

∣∣∣E[µZ(f̂)
]
− E

[
µ(f̂)

]∣∣∣ = ∣∣∣∣∣E
[
1

ℓ

ℓ∑
i=1

(f̂(zi)− f̂(z′i))

]∣∣∣∣∣ ≤ E

[∣∣∣∣∣ 1n
ℓ∑

i=1

(f ∗(zi)− f ∗(z′i))

∣∣∣∣∣
]
+2ε

(5.15)
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Define T := maxf∈Fε

∑ℓ
i=1(f(zi)−f(z′i))

r(f)
, where we let r(f) := max{c

√
logN

ℓ
,
√
µ(f)}

for each f ∈ Fε with a constant c > 0 fixed afterwards. Thus, we obtain

E

[∣∣∣∣∣ 1n
ℓ∑

i=1

(f ∗(zi)− f ∗(z′i))

∣∣∣∣∣
]
≤ E

[
r(f ∗)T

ℓ

]
≤ 1

2
E
[
r(f ∗)2

]
+

1

2ℓ2
E
[
T 2
]
. (5.16)

The first term can be evaluated as

E
[
r(f ∗)2

]
≤ c2

logN

ℓ
+ E[µ(f ∗)] ≤ c2

logN

ℓ
+ E[µ(f̂)] + ε. (5.17)

For the second term, we first have

ℓ∑
i=1

E

[(
f(zi)− f(z′i)

r(f)

)2
]
≤

ℓ∑
i=1

E
[
f(zi)

2 + f(z′i)
2

r(f)2

]
≤ 2Fℓ, f ∈ Fε.

Since we have |f(zi) − f(z′i)|/r(f) ≤ 2F/r(f) ≤ 2F
√
ℓ

c
√
logN

uniformly for f ∈ Fε,

Bernstein’s inequality combined with the union-bound yields

P
(
T 2 ≥ t

)
= P

(
T ≥

√
t
)
≤ 2N exp

− t

4F (ℓ+
√
ℓt

3c
√
logN

)

 ≤ 2N exp

(
−3c
√
logN

8F
√
ℓ

√
t

)

for t ≥ 9c2ℓ logN . Therefore, we have

E
[
T 2
]
=

∫ ∞

0

P
(
T 2 ≥ t

)
dt ≤ 9c2ℓ logN +

∫ ∞

9c2ℓ logN

2N exp

(
−3c
√
logN

8F
√
ℓ

√
t

)
dt

= 9c2ℓ logN + 4N

(
8Fℓ+

64F 2ℓ

9c2 logN

)
exp

(
−9c2 logN

8F

)
Let us now set c =

√
8F/9 so that 9c2 = 8F . Then, we obtain E[T 2] ≤ 8Fℓ logN+

64Fℓ since N ≥ 3 by assumption. By combining it with (5.15)–(5.17), we finally

obtain ∣∣∣E[µZ(f̂)
]
− E

[
µ(f̂)

]∣∣∣ ≤ 1

2
E
[
µ(f̂)

]
+

(40
9
F logN + 32F )

ℓ
+

5

2
ε,

from which the desired inequality readily follows.
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5.B Proofs

5.B.1 Properties of the pseudo-inverse

For a matrix A ∈ Rm×n, its Moore–Penrose pseudo-inverse A+ [136] is defined as

the unique matrix X ∈ Rn×m that satisfies

AXA = A, XAX = X, (AX)⊤ = AX, (XA)⊤ = XA.

It also satisfies that A+A is the orthogonal projection onto the orthogonal com-

plement of kerA (the range of A⊤), while AA+ is the orthogonal projection onto

the range of A [136, 153]. We use these general properties of A+ throughout

Section 5.B. See e.g. Drineas et al. [43] for the concrete construction of such a

matrix.

5.B.2 Proof of Lemma 5.1

Proof. Recall that we have the SVD k(Z,Z) = U diag(λ1, . . . , λℓ)U
⊤ with an or-

thogonal matrix U = [u1, . . . , uℓ]. and λ1 ≥ · · · ≥ λℓ ≥ 0. By using this notation,

we have

kZs (x, y) =
∑
1≤j≤s
λj>0

1

λ j
(u⊤j k(Z, x))(u

⊤
j k(Z, y)). (5.18)

If we denote by Qj : Hk → Hk the projection onto span{u⊤j k(Z, ·)}, we have

(u⊤j k(Z, x))(u
⊤
j k(Z, y)) =

〈
u⊤j k(Z, ·), k(·, x)

〉
Hk

〈
u⊤j k(Z, ·), k(·, y)

〉
Hk

= ∥u⊤j k(Z, ·)∥2Hk
⟨Qjk(·, x), Qjk(·, y)⟩Hk

= λj ⟨Qjk(·, x), Qjk(·, y)⟩Hk
, (5.19)

where the last inequality follows from
〈
u⊤i k(Z, ·), u⊤j k(Z, ·)

〉
Hk

= u⊤i k(Z,Z)uj =

δijλj. Now let P̃Z,s be the orthogonal projection onto span{u⊤j k(Z, ·)}sj=1 in Hk.

We prove P̃Z,s = PZ,s. From the orthogonality of {u⊤j k(Z, ·)}sj=1 we have P̃Z,s =∑s
j=1Qj and

〈
k(·, x), kZs (·, y)

〉
Hk

= kZs (x, y) =
s∑

j=1

⟨Qjk(·, x), Qjk(·, y)⟩Hk

=
〈
P̃Z,sk(·, x), P̃Z,sk(·, y)

〉
Hk

=
〈
k(·, x), P̃Z,sk(·, y)

〉
Hk

149



for all x, y ∈ X . In particular, kZs (·, y) = P̃Z,sk(·, y), so we have P̃Z,s = PZ,s.

5.B.3 Proof of Lemma 5.2

Proof. The inequality follows from Cauchy–Schwarz. Let us prove the equality.

We use the notationQj from the proof of Lemma 5.1. We first obtain PZk(·, zi) =
k(·, zi) for i = 1, . . . , ℓ, since PZ is a projection onto span{k(·, zi)}ℓi=1. Thus, we

have P⊥
Z,sk(·, zi) = (PZ − PZ,s)k(·, zi) = (Qs+1 + · · ·+Qℓ)k(·, zi), and so

1

ℓ

ℓ∑
i=1

∥P⊥
Z,sk(·, zi)∥2Hk

=
1

ℓ

ℓ∑
i=1

∑
s+1≤j≤ℓ
λj>0

1

λj
(u⊤j k(Z, zi))

2

by using (5.19). Since k(Z,Z) = U diag(λ1, . . . , λℓ)U
⊤ =

∑ℓ
i=1 λiuiu

⊤
i , we can

explicitly calculate

u⊤j k(Z, zi) = u⊤j

ℓ∑
i=1

λiuiu
⊤
i 1j = λju

⊤
i 1j,

where 1j ∈ Rℓ is the vector with 1 in the j-th coordinate and 0 in the other

coordinates. As U is an ℓ×ℓ orthogonal matrix, we actually have
∑ℓ

i=1(u
⊤
i 1j)

2 = 1

for each j = 1, . . . , ℓ.

1

ℓ

ℓ∑
i=1

∑
s+1≤j≤ℓ
λj>0

1

λj
(u⊤j k(Z, zi))

2 =
1

ℓ

ℓ∑
i=1

ℓ∑
j=s+1

λj(u
⊤
i 1j)

2 =
1

ℓ

ℓ∑
j=s+1

λj, (5.20)

and the proof is complete.

5.B.4 Proof of Lemma 5.3

Proof. From the min-max principle, we have

λj = min
Vj−1⊂Rℓ

dimVj−1≤j−1

max
xj∈V ⊥

j−1, ∥xj∥2=1
x⊤j k(Z,Z)xj, (5.21)

where Vj−1 is a linear subspace of Rℓ. Recall the Mercer expansion k(x, y) =∑∞
i=1 σiei(x)ei(y). By letting ej(Z) = (ej(z1), . . . , ej(zℓ))

⊤ ∈ Rℓ, we can write

150



k(Z,Z) =
∑∞

i=1 σiei(Z)ei(Z)
⊤. We assume that this equality holds in the fol-

lowing. We especially write the remainder term as ks+1(Z,Z) := k(Z,Z) −∑s
i=1 σiei(Z)ei(Z)

⊤

Consider taking Vs = span{e1(Z), . . . , es(Z)} and

xj ∈ argmax
x∈V ⊥

j−1, ∥x∥2=1

x⊤k(Z,Z)x, Vj = span(Vj−1 ∪ {xj})

for j = s+ 1, . . . , ℓ in (5.21). Then, λ′j := x⊤j k(Z,Z)x satisfies λj ≤ λ′j, and so we

have
ℓ∑

j=s+1

λj ≤
ℓ∑

j=s+1

λ′k =
ℓ∑

j=s+1

x⊤j k(Z,Z)xj =
ℓ∑

j=s+1

x⊤j ks+1(Z,Z)xj,

where we have used that x⊤j ei(Z) = 0 for any i ≤ s < j in the last inequality. By

taking some {x1, . . . , xs} ⊂ Rℓ, we can make {x1, . . . , xℓ} a orthonormal basis of

Rℓ, so we obtain

ℓ∑
j=s+1

λj ≤
ℓ∑

j=s+1

x⊤j ks+1(Z,Z)xj ≤
ℓ∑

j=1

x⊤j ks+1(Z,Z)xj = tr ks+1(Z,Z).

Therefore, we have

1

ℓ

ℓ∑
j=s+1

λj ≤
1

ℓ
tr ks+1(Z,Z) =

1

ℓ

ℓ∑
i=1

ks+1(zi, zi),

and we obtain the desired inequality in expectation since E[ks+1(zi, zi)] =
∑∞

j=s+1 σj.

5.B.5 Proof of Theorem 5.4

We first prove the following generic proposition by exploiting the ingredients given

in Section 5.A.

Proposition 5.20. Let Q be an arbitrary deterministic m-dimensional orthogonal

projection in Hk. Then, for any random orthogonal projection P possibly depending

on Z, we have

µ(∥PQk(·, x)∥Hk
) ≤ µZ(∥PQk(·, x)∥Hk

) +

√
kmax

ℓ

(
36m+

√
2 log

1

δ

)
(5.22)
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with probability at least 1− δ.
Furthermore, with regard to the expectation, we also have

E[µ(∥PQk(·, x)∥Hk
)] ≤ 2E[µZ(∥PQk(·, x)∥Hk

)]+

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
.

(5.23)

Proof. Let {v1, . . . , vm} be an orthonormal basis of QHk. Let also {ui}i∈I and

{ui}i∈J be respectively an orthonormal basis of PHk and (PHk)
⊥, so {ui}i∈I∪J is

an orthonormal basis of Hk.

Let us compute ∥PQk(·, x)∥2Hk
. Since we have

PQk(·, x) = P

(
m∑
j=1

⟨vj, k(·, x)⟩Hk
vj

)
=

m∑
j=1

vj(x)Pvj =
∑
i∈I

m∑
j=1

vj(x) ⟨ui, vj⟩Hk
ui

(where we can exchange the summation as they converge in Hk), we obtain

∥PQk(·, x)∥2Hk
=
∑
i∈I

(
m∑
j=1

vj(x) ⟨ui, vj⟩Hk

)2

= ∥AP,Qvx∥2ℓ2(I) = v⊤xA∗
P,QAP,Qvx,

where vx = (v1(x), . . . , vm(x))
⊤ ∈ Rm and AP,Q is a linear operator Rm → ℓ2(I)

given by a = (a1, . . . , am)
⊤ 7→ (

∑m
j=1 ⟨ui, vj⟩Hk

aj)i∈I , and A∗
P,Q : ℓ2(I) → Rm is

its dual (defined by the property
〈
a,A∗

P,Qb
〉
Rm = ⟨AP,Qa, b⟩ℓ2(I)), which can be

understood as the “transpose” of AP,Q. Note that A∗
P,QAP,Q can be regarded as

an m×m matrix and we have

(A∗
P,QAP,Q)j,h =

∑
i∈I

⟨ui, vj⟩Hk
⟨ui, vh⟩Hk

= ⟨Pvj, Pvh⟩Hk
.

We can also define BP,Q = AP⊥,Q by replacing P with P⊥. Then we have

(A∗
P,QAP,Q)j,h+(B∗

P,QBP,Q)j,h = ⟨Pvj, Pvh⟩Hk
+
〈
P⊥vj, P

⊥vh
〉
Hk

= ⟨vj, vh⟩Hk
= δjh,

so A⊤
P,QAP,Q is an m×m positive semi-definite matrix with A⊤

P,QAP,Q ≤ Im.

It thus suffices to consider a uniform estimate of µ(
√
v⊤x Svx)− µZ(

√
v⊤x Svx)

with a positive semi-definite matrix S ≤ Im. This S can be written as S = U⊤U

by using a U ∈ Rm×m with ∥U∥2 ≤ 1, so we shall solve the following problem:

152



Find a uniform upper bound of µ(∥Uvx∥2)−µZ(∥Uvx∥2) for any matrix

U ∈ Rm×m with ∥U∥2 ≤ 1.

Now we can reduce our problem to a routine work of bounding the covering number

of the function class F := {fU := x 7→ ∥Uvx∥2 | U ∈ U}, where U := {U ∈ Rm×m |
∥U∥2 ≤ 1}.

For any x ∈ X , we have

∥vx∥22 =
ℓ∑

j=1

vj(x)
2 = ∥Qk(·, x)∥2Hk

≤ ∥k(·, x)∥2Hk
= k(x, x).

If Uδ is a δ-covering of U , then {fU}U∈Uδ
gives a δ

√
kmax-covering. Indeed, for any

U, V ∈ U with ∥U − V ∥2 ≤ δ, we have

dZ(fU , fV )
2 =

1

ℓ

ℓ∑
i=1

(∥Uvzi∥2 − ∥V vzi∥2)2

≤ 1

ℓ

ℓ∑
i=1

∥(U − V )vzi∥22 ≤ δ2
1

ℓ

ℓ∑
i=1

∥vzi∥22 ≤ δ2kmax.

Here, we have the covering number bound logN (U , ∥·∥2; δ) ≤ m2 log
(
1 + 2

δ

)
for

δ ≤ 1 (and 0 for δ ≥ 1) as U can be seen as a unit ball of Rm2
in a certain norm

[174, Example 5.8], so logN (F , dZ ; ε) ≤ m2 log(1 + 2
√
kmax/ε) for ε ≤

√
kmax.

Therefore, from Proposition 5.18, we have

RZ(F) ≤
12√
ℓ

∫ √
kmax

0

√
m2 log

(
1 +

2
√
kmax

ε

)
dε

=
12m
√
kmax√
ℓ

∫ 1

0

√
log

(
1 +

2

t

)
dt ≤ 18m

√
kmax√
ℓ

,

where we have used the estimate∫ 1

0

√
log

(
1 +

2

t

)
dt ≤

∫ 1

0

1

2

(
1 + log

(
1 +

2

t

))
dt =

1

2
+

1

2
log

27

4
≤ 3

2
.

Since we also have a bound ∥fU∥∞ ≤ ∥U∥2
√
kmax, we can use Proposition 5.17
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to obtain

µ(∥PQk(·, x)∥Hk
)− µZ(∥PQk(·, x)∥Hk

) ≤ sup
f∈F

(µZ(f)− µ(f))

≤
√
kmax

ℓ

(
36m+

√
2 log

1

δ

)

with probability at least 1− δ. So we have proven (5.22).

We next prove (5.23) by using Proposition 5.19. We have the same bound for

logN (F , ∥·∥L1(µ); ε) from the same argument as above, and so we especially get

logN

(
F , ∥·∥L1(µ);

√
kmax

ℓ

)
≤ m2 log(1 + 2ℓ).

As ∥f∥L∞(µ) ≤
√
kmax =: F holds for all f ∈ F , we can now apply Proposition

5.19 with ε = F/ℓ to obtain the desired conclusion.

We next prove the following proposition that includes the desired assertion by

using Proposition 5.20.

Proposition 5.21. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent sample from µ. Let

P be a random orthogonal projection in Hk possibly depending on Z. For any

integer m ≥ 1, with probability at least 1− δ, we have∫
X
∥Pk(·, x)∥Hk

dµ(x) ≤ 1

ℓ

ℓ∑
i=1

∥Pk(·, zi)∥Hk
+

√
kmax

ℓ

(
36m+

√
9

2
log

2

δ

)
+3

√∑
j>m

σj.

Furthermore, in expectation, we have the following bound:

E
[∫

X
∥Pk(·, x)∥Hk

dµ(x)

]
≤ E

[
2

ℓ

ℓ∑
i=1

∥Pk(·, zi)∥Hk

]

+

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
+ 4

√∑
j>m

σj.

(5.24)

Proof. Note that we use the fact that for any projection operator P ∥Pf∥ ≤ ∥f∥
frequently within the proof. For an ℓ-point sample Z = (z1, . . . , zℓ) ⊂ X , let us
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denote µZ be the mapping f 7→ 1
ℓ

∑ℓ
i=1 f(zi). If we have f−, f ∈ L1(µ) with

f− ≤ f , we can generally obtain

µ(f)− µZ(f) = (µ(f)− µ(f−)) + (µ(f−)− µZ(f−)) + (µZ(f−)− µZ(f))

≤ µ(f − f−) + (µ(f−)− µZ(f−)). (5.25)

We here use f(x) = ∥Pk(·, x)∥Hk
and f−(x) = ∥PPmk(·, x)∥Hk

− ∥PP⊥
mk(·, x)∥Hk

for an m, where Pm is the projection operator onto span{e1, . . . , em} in Hk and

P⊥
m is its orthogonal complement. In this case, µ(f − f−) can easily be estimated

by Cauchy–Schwarz as follows:

µ(f − f−) ≤ µ(2∥PP⊥
mk(·, x)∥Hk

) ≤ 2µ(∥P⊥
mk(·, x)∥Hk

)

≤ 2
√
µ(∥P⊥

mk(·, x)∥2Hk
) = 2

√∑
j>m

σj, (5.26)

where we have used the fact

∥P⊥
mk(·, x)∥2Hk

= ∥k(·, x)∥2Hk
−∥Pmk(·, x)∥2Hk

= k(x, x)−
m∑
i=1

σiei(x)
2 =

∞∑
i=m+1

σiei(x)
2.

We also bound µ(f−)− µZ(f−) by

µ(f−)−µZ(f−) ≤ µ(∥PPmk(·, x)∥Hk
)−µZ(∥PPmk(·, x)∥Hk

)+µZ(∥P⊥
mk(·, x)∥Hk

),

(5.27)

where we have used the second inequality in (5.26) for µZ . The last term µZ(∥P⊥
mk(·, x)∥Hk

)

above is estimated either in expectation or in high probability as follows:
E
[
µZ(∥P⊥

mk(·, x)∥Hk
)
]
≤
√∑

j>m

σj.

µZ(∥P⊥
mk(·, x)∥Hk

) ≤
√∑

j>m

σj +

√
kmax

2ℓ
log

1

δ
with probability at least 1− δ.

(5.28)

The latter follows from a simple calculation of Hoeffing’s inequality.

Thus, it suffices to derive a bound for µ(∥PPmk(·, x)∥Hk
)−µZ(∥PPmk(·, x)∥Hk

)

or its expectation; we do it by letting Q = Pm and f̂ = f in Proposition 5.20. By

combining (just summing up) the inequalities (5.25)–(5.28), and (5.22), we obtain
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the desired inequality in high probability. For the result in expectation, we first

combine the inequalities (5.25)–(5.28), and (5.23) to get the bound

E[µ(f)]−E[µZ(f)] ≤ E[µZ(∥PPmk(·, x)∥Hk
)]+

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
+3

√∑
j>m

σj

(recall f(x) = ∥Pk(·, x)∥Hk
). Since we can also estimate E[µZ(∥PPmk(·, x)∥Hk

)]

as

E[µZ(∥PPmk(·, x)∥Hk
)] ≤ E[µZ(∥Pk(·, x)∥Hk

)] + E
[
µZ(∥PP⊥

mk(·, x)∥Hk
)
]

≤ E[µZ(∥Pk(·, x)∥Hk
)] +

√∑
j>m

σj,

we obtain the desired conclusion.

5.B.6 Proof of Remark 5.1

Proof. We assume ℓ ≥ 3 here. Let F (x) := −β−1x1−1/d exp(−βx1/d). If d ≥ 2, its

derivative is

F ′(x) = exp(−βx1/d)−1− 1/d

β
x−1/d exp(−βx1/d) =

(
1− 1− 1/d

β
x−1/d

)
exp(−βx1/d).

Thus, if x ≥ (log ℓ)d/βd, we have F ′(x) ≥ d exp(−βx1/d). This inequality is still

true if d = 1. By taking m = ⌊(2 log ℓ)d/βd⌋, we obtain∑
i>m

σi ≲
∫ ∞

2(log ℓ)d/βd

exp(−βx1/d) dx ≤ −dF (2(log ℓ)d/βd) =
2d−1d

βd
· (log ℓ)

d−1

ℓ2
.

Therefore, this choice of m satisfies√∑
i>m

σi = O
(
(log ℓ)(d−1)/2

ℓ

)
, m2 = O

(
(log ℓ)2d

)
.

Combining these with the inequality in Corollary 5.5 gives the desired estimate.

5.B.7 Proof of Proposition 5.6

Proof. We basically just compute the trace of the operator P⊥
Z K. Indeed, we have∫

X
∥P⊥

Z k(·, x)∥2Hk
=

∫
X
(k(x, x)− kZ(x, x)) dµ(x), (5.29)
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and, from (5.5), we also have the following identity:∫
X
k(x, x) dµ(x) =

∞∑
i=1

⟨ei,Kei⟩L2(µ) . (5.30)

For kZ , as we can write kZ(x, y) =
∑ℓ

i=1 gi(x)gi(y) by using gi ∈ L2(µ) (see e.g.,

(5.18)), we can also have∫
X
kZ(x, x) dµ(x) =

∑
i∈I

〈
ei,KZei

〉
L2(µ)

=
∞∑
i=1

〈
ei,KZei

〉
L2(µ)

, (5.31)

whereKZ : L2(µ)→ L2(µ) is the integral operator given by g 7→
∫
X k

Z(·, x)g(x) dµ(x),
and (ei)i∈I is an orthonormal basis of L2(µ) including (ei)

∞
i=1. The second equality

follows from the fact that K−KZ is a (semi-)positive definite operator since k−kZ

is a positive definite kernel, and so we have 0 ≤
〈
ei,KZei

〉
L2(µ)

≤ ⟨ei,Kei⟩L2(µ) = 0

for any i ∈ I \ Z>0. For this integral operator, since we have kZ(·, x) = PZk(·, x),
we can prove

KZg =

∫
X
PZk(·, x)g(x) dµ(x) = PZ

∫
X
k(·, x)g(x) dµ(x) = PZKg

for any g ∈ L2(µ) under the well-definedness of K. Thus, from (5.29)–(5.31), we

have∫
X
∥P⊥

Z k(·, x)∥2Hk
=

∞∑
i=1

〈
ei, (K −KZ)ei

〉
L2(µ)

=
∞∑
i=1

〈
ei, P

⊥
Z Kei

〉
L2(µ)

. (5.32)

For general f ∈ Hk and g ∈ L2(µ), we can prove

⟨f,Kg⟩Hk
=

〈
f,

∫
X
k(·, x)g(x) dµ(x)

〉
Hk

=

∫
X
⟨f, k(·, x)⟩Hk

g(x) dµ(x) = ⟨f, g⟩L2(µ) ,

so that in particular〈
g, P⊥

Z Kg
〉
L2(µ)

=
〈
Kg, P⊥

Z Kg
〉
Hk

= ∥P⊥
Z Kg∥2Hk

.

By letting g = ei in the above equation, we can deduce the desired equality from

(5.32). For the inequality, use the bound

∥P⊥
Z Kei∥2Hk

≤ ∥Kei∥2Hk
= ∥σiei∥2Hk

= σi∥
√
σiei∥2Hk

= σi

for each i > m.
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5.B.8 Proof of Corollary 5.7

Proof. From Proposition 5.6 and (5.8), it suffices to prove for an arbitrary g ∈
L2(µ) that

∥P⊥
Z Kg∥2Hk

= inf
wi

sup
∥f∥Hk

≤1

∣∣∣∣∣µ(fg)−
ℓ∑

i=1

wif(zi)

∣∣∣∣∣
2

≤ 4
∑
i>ℓ

σi.

It is indeed an immediate consequence of Belhadji [15, Theorem 4].

5.B.9 Proof of Lemma 5.8

Proof. Given the Mercer decomposition k(x, y) =
∑∞

i=1 σiei(x)ei(y), we can com-

pute

hµ(x, y) =

∫
X
k(x, t)k(t, y) dµ(t)

=
∞∑

i,j=1

σiσjei(x)ej(y)

∫
X
ei(t)ei(t) dµ(t)

=
∞∑

i,j=1

δijσiσjei(x)ej(y) =
∞∑
i=1

σ2
i ei(x)ei(y),

where we have used the fact that (ei)
∞
i=1 is an orthonormal set in L2(µ).

5.B.10 Proof of Lemma 5.9

Proof. From (5.9), we have

⟨fi, fj⟩L2(µ) = v⊤i (H
+)⊤H⊤HH+vj = (HH+vi)

⊤(HH+vj). (5.33)

Here, note that {vi, κi > 0} ⊂ (kerH⊤)⊥ as we have, for any v ∈ kerH⊤,

0 = v⊤Hk(Z,Z)+H⊤v =
ℓ∑

i=1

κiv
⊤viv

⊤
i v =

ℓ∑
i=1

κi(v
⊤vi)

2.

Therefore, HH+vi = vi if κi > 0 since HH+ is the projection onto (kerH⊤)⊥,

and so {fi, κi > 0} is orthonormal from (5.33). We can also see that fi =

(H+vi)
⊤k(Z, ·) is an eigenfunction ofKZ from the remark below (5.10) andHH+vi =

vi.
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5.B.11 Proof of Proposition 5.10

Proof. We rewrite kZµ in terms of another summation as follows:

kZµ (x, y) :=
ℓ∑

i=1

κifi(x)fi(y)

= k(x, Z)H+

(
ℓ∑

i=1

κiviv
⊤
i

)
(H⊤)+k(Z, y)

= k(x, Z)H+Hk(Z,Z)+H⊤(H⊤)+k(Z, y)

=
∑
λi>0

1

λi
u⊤i H

⊤(H+)⊤k(Z, x)k(y, Z)H+Hui, (5.34)

where (λi, ui) are eigenpairs of k(Z,Z). Recall also that we have

kZ(x, y) = k(x, Z)k(Z,Z)+k(Z, y) =
∑
λi>0

1

λi
u⊤i k(Z, x)k(y, Z)ui. (5.35)

From (5.34) and this, it suffices to prove u⊤k(Z, ·) = u⊤H⊤(H+)⊤k(Z, ·) in L2(µ)

for any u ∈ Rℓ. Indeed, we have∫
X

(
u⊤k(Z, x)− u⊤H⊤(H+)⊤k(Z, x)

)2
dµ(x)

=

∫
X

(
u⊤
(
Iℓ −H⊤(H+)⊤

)
k(Z, x)

)2
dµ(x)

= u⊤
(
Iℓ −H⊤(H+)⊤

)(∫
X
k(Z, x)k(x, Z) dµ(x)

)
(Iℓ −H+H)u

= u⊤
(
Iℓ −H⊤(H+)⊤

)
H⊤H(Iℓ −H+H)u = 0

since H⊤(H+)⊤H⊤ = H⊤ and HH+H = H hold (Iℓ is the identity matrix). Thus,

we obtain the desired assertion.

Finally, we prove that kZµ and kZ coincide when kerhµ(Z,Z) ⊂ ker k(Z,Z).

From (5.34) and (5.35), it suffices to prove H+Hui = ui for indices i with λi > 0.

Note that H+H is the orthogonal projection onto the orthogonal complement

of kerH = kerH⊤H = hµ(Z,Z) from a general property of the pseudo-inverse.

Since ui is an eigenvector of k(Z,Z) with a positive eigenvalue λi, it is orthogonal

to any v ∈ ker k(Z,Z) (as u⊤i v = λ−1
i u⊤i k(Z,Z)v = 0). Therefore, if we have

kerhµ(Z,Z) ⊂ ker k(Z,Z), ui is also orthogonal to kerhµ(Z,Z) and so H+Hui =

ui as desired.
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5.B.12 Proof of Proposition 5.13

First, we give a proof for a folklore property of products of positive semi-definite

matrices.

Lemma 5.22. Let ℓ,m ≥ n be positive integers and A,B ∈ Rn×n be (symmetric)

positive semi-definite matrices. Assume B = C⊤C = D⊤D for a real matrix

C ∈ Rm×n and D ∈ Rℓ×n. Then, CAC⊤ and DAD⊤ have the same set of nonzero

eigenvalues with the same multiplicity (in terms of real eigenvectors).

Proof. For a real square matrix M ∈ Rj×j and a real number λ, let us define

Sλ(M) := {v ∈ Rj |Mv = λv} be the real eigenspace of M corresponding to λ.

We shall prove there is a bijection between Sλ(AB) and Sλ(CAC
⊤) for each

real λ ̸= 0 (and the same for Sλ(DAD
⊤) by symmetry). Once we establish this,

we see that each λ ̸= 0 has the same multiplicity as an eigenvalue of CAC⊤ and

DAD⊤ (multiplicity can be zero; in that case λ is not an eigenvalue), and the

desired assertion follows.

Let us fix λ ̸= 0. If v ∈ Sλ(CAC
⊤), we have CAC⊤(Cv) = CABv = λ(Cv), so

Cv ∈ Sλ(CAC
⊤). We also have Cv′ ̸= Cv for another element (v ̸=)v′ ∈ Sλ(AB)

since AC⊤(Cv′ − Cv) = AB(v′ − v) = λ(v′ − v) ̸= 0. Thus, matrix multiplication

by C is an injective map from Sλ(AB) to Sλ(CAC
⊤).

Let us finally prove Sλ(AB) ∋ v 7→ Cv ∈ Sλ(CAC
⊤) is surjective. Let u ∈

Sλ(CAC
⊤). Then, u = λ−1(λu) = λ−1CAC⊤u = C(λ−1AC⊤u), so we can write

u = Cv for v = λ−1AC⊤u. It remains to prove v ∈ Sλ(AB), but we can see it as

follows:

ABv = AB

(
1

λ
AC⊤u

)
=

1

λ
(AC⊤C)AC⊤u =

1

λ
AC⊤(CAC⊤u) =

1

λ
AC⊤(λu) = λv.

Therefore, we have a bijection between Sλ(AB) and Sλ(CAC
⊤) and we are done.

Recall µ(kZµ − kZs,µ) ≤
∑ℓ

i=s+1 κi holds for eigenvalues κ1 ≥ · · ·κℓ ≥ 0 of

Hµk(Z,Z)
+H⊤

µ with H⊤
µ Hµ = hµ(Z,Z) (that immediately follows from the defi-

nitions of kZµ and kZs,µ, and that fi are L
2(µ)-orthonormal). By replacing µ with

µX , we have µX(k
Z
X − kZs,X) ≤

∑ℓ
i=s+1 κ

X
i for eigenvalues of κX1 ≥ · · · ≥ κXℓ ≥ 0 of

HXk(Z,Z)
+H⊤

X , where H
⊤
XHX = hX(Z,Z) =

1
M
k(Z,X)k(X,Z).
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By using the lemma, we can see that κXi are actually the same as the eigenvalues

of 1
M
k(X,Z)k(Z,Z)+k(Z,X) = 1

M
kZ(X,X). As k−kZ is a positive definite kernel,

k(X,X)−kZ(X,X) is a positive semi-definite matrix, the i-th largest eigenvalue of

kZ(X,X) is bounded by the i-th largest eigenvalue of k(X,X) (Weyl’s inequality).

Now, let λX1 ≥ λX2 ≥ · · · ≥ 0 be the eigenvalues of k(X,X). From the above

argument, we have

µX(k
Z
X − kZs,X) ≤

ℓ∑
i=s+1

κXi ≤
1

M

ℓ∑
i=s+1

λXi ≤
1

M

M∑
i=s+1

λXi .

Notice that we can apply Lemma 5.3 withX instead of Z, and obtain E
[
µX(k

Z
X − kZs,X)

]
≤∑

i>s σi as desired.

5.B.13 Proof of Proposition 5.14

Proof. Fix a sample X with ker k(X,Z) ⊂ ker k(Z,Z) and let us use the same

notation as in µ, i.e.,

• H⊤H = hX(Z,Z) =
1
M
k(Z,X)k(X,Z);

• Hk(Z,Z)+H⊤ = V diag(κ1, . . . , κℓ)V
⊤ with κ1 ≥ · · ·κℓ ≥ 0 and V being

orthogonal;

• fi = (H+vi)
⊤k(Z, ·) and kZX(x, y) =

∑ℓ
i=1 κifi(x)fi(y).

In this case, from the same argument as the last paragraph in the proof

of Proposition 5.10, we have H+H is an identity map over (kerhX(Z,Z))
⊥ =

(ker k(X,Z))⊥ ⊃ (ker k(Z,Z))⊥. By considering the SVD of k(Z,Z), we see

that (ker k(Z,Z))⊥ is exactly the linear subspace of Rℓ spanned by eigenvectors

of k(Z,Z) with nonzero eigenvalues, which is equal to {k(Z,Z)v | v ∈ Rℓ} =

{k(Z,Z)+v | v ∈ Rℓ}. In particular, we have H+Hk(Z,Z)+ = k(Z,Z)+.

We now prove that {√κifi | i ≥ 1, κi > 0} actually forms an orthonoramal set
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in Hk. Indeed, if κi, κj > 0, we have〈√
κifi,

√
κjfj

〉
Hk

=
√
κiκjv

⊤
i (H

+)⊤k(Z,Z)H+vj

=
1

√
κiκj

v⊤i
[
Hk(Z,Z)+H⊤] (H+)⊤k(Z,Z)H+

[
Hk(Z,Z)+H⊤] vj

=
1

√
κiκj

v⊤i Hk(Z,Z)
+k(Z,Z)k(Z,Z)+H⊤vj

=
1

√
κiκj

v⊤i Hk(Z,Z)
+H⊤vj = δij,

where we have used the fact that vi and vj are eigenvectors of Hk(Z,Z)
+H⊤ with

eigenvalues κi and κj, respectively.

Let P : Hk → Hk be the orthogonal projection onto span{√κifi | i > s, κi >

0}. Then, we have

Pk(·, x) =
ℓ∑

i=s+1

⟨
√
κifi, k(·, x)⟩Hk

√
κifi =

ℓ∑
i=s+1

√
κifi(x)

√
κifi,

and so ∥Pk(·, x)∥2Hk
=
∑ℓ

i=s+1 κifi(x)
2 = kZ(x, x) − kZs,X(x, x). Note that the

projection P is a random operator depending on the sample X. Now, we can use

Theorem 5.4 with the empirical measure given by X instead of Z to obtain

E
[
µ(
√
kZ − kZs,X)

]
≤ 2E

[
µX(

√
kZX − kZs,X)

]
+ 4

√∑
i>m

σi +

√
kmax

M

(
80m2 log(1 + 2M)

9
+ 69

)
.

(5.36)

for any integerm ≥ 1, where we have used ∥Pk(·, x)∥Hk
=
√
kZ(x, x)− kZs,X(x, x) =√

kZX(x, x)− kZs,X(x, x) almost surely. From Proposition 5.13, we have

E
[
µX(

√
kZX − kZs,X)

]2
≤ E

[
µX(

√
kZX − kZs,X)

2
]
≤ E

[
µX(k

Z
X − kZs,X)

]
≤
∑
i>s

σi,

and combining it with (5.36) leads to the desired conclusion.
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5.B.14 Proof of Theorem 5.16

Proof. We first prove the result forQn = KQuad(ks,Y,Y). Since k(x, x) ≥ kZ(x, x) =

kZY (x, x) ≥ kYs,Z(x, x) for x ∈ Y from Proposition 5.12, we have

µY (
√
k − kZs,Y ) ≤ µY (

√
k − kZ) + µY (

√
kZY − kZs,Y ).

From Proposition 5.13, by taking the expectation with regard to Y , we have

E
[
µY (
√
kZY − kZs,Y )

]
≤
√
E
[
µY (kZY − kZs,Y )

]
≤
√∑

i>s

σi,

and so we obtain

E
[
µY (
√
k − kZs,Y )

]
≤ µ(

√
k − kZ) +

√∑
i>s

σi

By combining it with (5.13), it is now sufficient to show E[MMDk(µY , µ)] ≤√
ck,µ/N , but actually, it follows from the identity E[MMDk(µY , µ)

2] = ck,µ/N ,

which can be shown by a straightforward calculation (see, e.g., proof of Theo-

rem 4.7).

In the case of Qn = KQuad(kZs,µ, Y ), we instead have the decomposition

µY (
√
k − kZs,µ) ≤ µY (

√
k − kZ) + µY (

√
kZµ − kZs,µ);

Theorem 5.11 yields the desired estimate for expectation.
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Chapter 6

Conclusion

We have studied the discretization of probability measures from two viewpoints.

For random convex hulls, we have derived sharp bounds on the probability pn,X(θ),

which enables us to estimate the computational complexity of randomized con-

struction of general cubature rules for a random vector X. For kernel quadrature,

we have proposed an algorithm for constructing a kernel quadrature rule that en-

joys (1) a practical algorithm with recombination and the Nyström approximation

and (2) theoretical guarantees based on the spectral decay associated with the

given kernel-measure pair.

To conclude it, we shall discuss the studies of Bayesian methods [1, 2, 3] ob-

tained as applications of our research in Section 6.1 and other possible future

research directions after this thesis in Section 6.2.

6.1 Bayesian numerical methods

As a direct application of our study, we work on Bayesian numerical methods.

The setting is that we have an unknown function, which we want to estimate or

optimize, modeled by a Gaussian process f ∼ GP(m, k), where m : X → R is the

mean function and k : X × X → R is the covariance kernel (i.e., E[f(x)] = m(x),

E[(f(x)−m(x))(f(y)−m(y))] = k(x, y)).

There can be several regimes on the nature of the problem, but we assume

that evaluating the function f is expensive but can be queried in parallel, such as

simulation-based parameter estimation [113] or drug discovery [26]. In this setting,
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we observe functions values in a batch X = (xi)
n
i=1; we observe n function values

y = f(X) = (f(xi))
n
i=1 at the same time. Our task here is to find a good point set

X to reduce the uncertainty as much as we can, i.e., to reduce the variance of the

posterior GP f |y ∼ GP(my, ky) with

my(x) = m(x) + k(x,X)k(X,X)−1y,

ky(x, x
′) = k(x, x′)− k(x,X)k(X,X)−1k(X, x′).

In batch Bayesian quadrature/inference/optimization, we query the function val-

ues at an optimized batch X, update the GP as above, and repeat this iteration

to reduce the uncertainty. In reality, this GP can be warped (e.g., we can only

observe the square f 2, not f) and we also need to take into account the optimiza-

tion and update of hyperparameters of the prior covariance k, but we here only

consider the vanilla GP for simplicity.

In Adachi et al. [1], we address the problem of Bayesian quadrature [131], where

we want to estimate an integral Z =
∫
X f(x) dµ(x) for a Borel probability measure

µ. From the linearity, the posterior Z |y is a Gaussian variable with

E[Z |y] =
∫
X

my(x) dµ(x), Var[Z |y] =
∫∫

X×X
ky(x, y) dµ(x) dµ(y).

This is closely related to kernel quadrature, that we discussed in the previous

section. Let us consider the quadrature Qw,X given by weights w = (wi)
n
i=1 and

points X = (xi)
n
i=1. Then, the posterior variance after observing y = f(X) can be

represented as the minimum worst-case error for the fixed point configuration X

[78]:

Var[Z |y] = inf
w∈Rn

wce(Qw,X ;Hk, µ)
2.

By using this equivalence, we can import our method in kernel quadrature to this

iterative batch Bayesian quadrature. Although we need some engineering, e.g.,

when sampling from µ is not easy, our proposed method works as a scalable batch

Bayesian quadrature as well as additional Bayesian inference.

In the more recent papers [2, 3], we approach the batch Bayesian optimization

problem from the viewpoint of discretization of measures. When we have a function
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ftrue we want to maximize, it can be seen as optimization over P (X ), the set of all
the Borel probability measures on X :

δx∗ ∈ argmax
µ∈P (X )

∫
X
ftrue(x) dµ(x) if x∗ ∈ argmax

x∈X
ftrue(x).

Our basic idea then is to iteratively update the probability measure µ representing

the estimated location of the maximum x∗ and efficiently discretize this “region of

interest” by kernel/Bayesian quadrature to find an informative point configuration

as the next batch sample. This can also be seen as an acceleration of the batch

Thompson sampling [75], and shows a strong empirical performance in terms of

sample efficiency as well as wall-clock computational time.

We believe that these are just a part of many possible applications of numerical

quadrature to the field of Bayesian numerics. One problem with our approach

is that, since Bayesian methods iteratively update the Gaussian process, we do

not have a theoretical guarantee of the full quadrature/optimization process yet,

whereas efficiency within one iteration can be explained by the spectral decay of

the covariance kernel. In other words, we lose track of the change in spectral decay

over iterations; this is an outstanding theoretical question.

6.2 Future directions

At last, we discuss a few directions for future research that can follow from this

thesis.

Weighted sampling. When we construct a quadrature, what we often do is

first sample a large number of candidate points from the target distribution µ and

take its weighted subset for approximating µ, as described in Chapter 4.

However, in the setting of kernel quadrature with kernel k, it has been suggested

that sampling from ν with dν(x) ∝
√
k(x, x) dµ(x) has better properties, such as

smaller error of kernel mean embedding [1, 176]. Another example is that, when

we are given an n-dimensional subspace Vn ⊂ L2(µ) spanned by an orthonormal

basis {e1, . . . , en}, sampling from ν with dν(x) = n−1(e1(x)
2 + · · ·+ en(x)

2) dµ(x)

has favorable properties in terms of function approximation [31] and numerical

integration [116] with respect to Vn.
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In our context, it would be great to understand the behavior of the random

convex hulls given by the above-mentioned (or more general) weighted sampling.

In this way, we could construct a cubature with random convex hulls, even with a

small Tukey depth αX(E[X]).

Signature kernels. The initial motivation of hypercontractivity studies in Chap-

ter 3 was on the possibility of random construction of the cubature on Wiener

space [110] with general degree and dimension. Cubature on Winer space can be

regarded as an exact kernel quadrature for a truncated signature kernel [91] with

respect to the Wiener measure. We can naturally consider its untruncated version

with an appropriate signature kernel and apply our method; the relation between

signature kernel quadrature and cubature on Wiener space is also discussed in Cass

et al. [28, Section 7.2]. So the interesting problem in this regard is the spectral

decay of the integral operator (1.3) of the (lifted or unlifted) signature kernel with

the Wiener measure.

Stochastic optimization. A typical setting of applications of stochastic op-

timization is that, we want to minimize a loss function L(θ) := E[fθ(X)] with

respect to θ ∈ Θ, where X ∼ µ is random “data” taking values in X and (fθ)θ∈Θ

is a parametrized family of functions X → R. When µ is a massive discrete mea-

sure or an intractable continuous measure, by the so-called mini-batch stochastic

gradient descent, we approximate the gradient ∇θL(θ) as

∇θL(θ) = E[∂θfθ(X)] ≈ 1

N

N∑
i=1

∂θfθ(Xi),

where X1, . . . , XN are i.i.d. sample from µ.

This is basically a Monte Carlo estimate of the gradient, and it is reported

that increasing the batch size N (i.e., having a more accurate gradient estimator)

has a practical benefit in training high-quality GANs [23]. Ways to reduce the

computational complexity (by carefully choosing a non-i.i.d. smaller batch) while

keeping the accuracy of the gradient estimate are explored, e.g., coresets [155],

DPPs [9], and Carathéodory subsampling [35]. If we choose an appropriate RKHS

that fits ∂θfθ, we could apply our kernel quadrature algorithms for updating the

parameters.
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de la societe mathematique de France, 80:183–215, 1952.

[144] Peter J Rousseeuw and Ida Ruts. The depth function of a population dis-

tribution. Metrika, 49(3):213–244, 1999.

[145] Gabriele Santin and Bernard Haasdonk. Convergence rate of the data-

independent P-greedy algorithm in kernel-based approximation. Dolomites

Research Notes on Approximation, 10, 2017.

[146] Gabriele Santin and Robert Schaback. Approximation of eigenfunctions in

kernel-based spaces. Advances in Computational Mathematics, 42(4):973–

993, 2016.

[147] Arthur Sard. Best approximate integration formulas; best approximation

formulas. American Journal of Mathematics, 71(1):80–91, 1949.

182



[148] Johannes Schmidt-Hieber. Nonparametric regression using deep neural net-

works with ReLU activation function. The Annals of Statistics, 48(4):1875–

1897, 2020.

[149] Warren Schudy and Maxim Sviridenko. Concentration and moment inequal-

ities for polynomials of independent random variables. In Proceedings of the

twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages

437–446. SIAM, 2012.
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