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Preface 

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and 

providing essential ecosystem services to societies. Despite being the largest unfrozen 

freshwater resource, in a period of depletion by extraction and pollution, groundwater 

environments have been repeatedly overlooked in global biodiversity conservation agendas. 

Disregarding the importance of groundwater as an ecosystem ignores its critical role in 

preserving surface biomes. To foster timely global conservation of groundwater, we propose 

elevating the concept of keystone species into the realm of ecosystems, claiming groundwater 

as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our 

global analysis shows that over half of land surface areas (52.6%) has a medium-to-high 

interaction with groundwater, reaching up to 75% when deserts and high mountains are 

excluded. We postulate that the intrinsic transboundary features of groundwater are critical for 

shifting perspectives toward more holistic approaches in aquatic ecology and beyond. 

Furthermore, we propose eight key themes to develop a science-policy integrated groundwater 

conservation agenda. Given ecosystems above and below the ground intersect at many levels, 

considering groundwater as an essential component of planetary health it is pivotal to the 

reduction of biodiversity loss and buffering against climate change. 
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Introduction 

Groundwater is the most extensive unfrozen continental reserve of freshwater on Earth1,2. From 

deep karstic aquifers to shallow alluvial sediments, groundwater is globally ubiquitous and 

functionally connected to surficial aquatic and terrestrial groundwater-dependent ecosystems 

(GDEs). Groundwater interacts with the five global surface aquatic biomes (Fig. 1) and, 

together with oceans and the atmosphere, is the backbone of the global water cycle3. While 

often exclusively regarded as an economic resource, providing drinking water and water for 

irrigation and industrial uses4, groundwater is also an ecosystem. It hosts a vast diversity of 

microbial and metazoan species sustaining essential functions and processes5,6, many of which 

are endemic and highly specialised to a life in permanent darkness7. Together, these specialised 

organisms account for a unique share of the global taxonomic, phylogenetic, and functional 

diversity8, with recent research estimating that more than 25,000 aquatic metazoan species exist 

in freshwater and saline groundwaters worldwide9. 

The groundwater ecosystem is facing mounting anthropogenic pressure10. Water 

depletion driven by urbanisation, industry, agriculture, and exacerbated by climate change, has 

been documented on both regional and global scales11. According to estimations, nearly 50% 

of the world’s urban population depends on groundwater resources4, with the human demand 

currently being about 3.5 times the actual volume of aquifers12. Predictably, this situation is 

likely to further deteriorate. As the intensification of drought and flood events induced by 

climate and land use change increases, the demand and dependence on groundwater for human 

consumption, agricultural irrigation, and environmental water needs will also escalate13,14. 

Furthermore, salinization and contamination of groundwaters by persistent organic pollutants 

such as nitrate, heavy metals, oil, and microplastics is a major threat to diverse subterranean 

ecosystems and, in turn, to the integrity of the global water cycle10. Subterranean waters are 

often old: once meteoric waters enter subterranean systems, it may take months, years, and 

sometimes millennia before they resurface15. Hence, there is often a generational lag between 

contamination event and effect, and even major conservation efforts might take an epoch before 

these ecosystems recover if groundwater quality deterioration is not urgently considered. 

Ultimately, we risk compromising the insurance policy of life on Earth: the largest body of 

liquid freshwater.  

Despite growing concerns over global groundwater depletion and degradation, and the 

feedback effect on diverse surface ecosystems, subterranean ecosystems remain the dark exotic 

siblings of surface water bodies when it comes to conservation7. Indeed, groundwaters have so 
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far been largely overlooked in global conservation policies, and biodiversity and climate 

change agendas for water resources16,17,18. For example, as many as 85% of protected areas 

with GDEs have groundwater-sheds (or catchments) that are unprotected19. Foremost, this is 

because of the still incomplete knowledge about the spatial distribution, biodiversity, 

vulnerability, and biochemical processes and services of groundwater ecosystems17,20,21. While 

divers can physically explore submerged caves and cenotes, the vast majority of subterranean 

water bodies are inaccessible to humans unless by indirect means22,23,24. Indeed, access to 

groundwater organisms is often restricted to caves, wells, and springs that serve as windows to 

the subterranean world8. The real extent of groundwater ecosystems is therefore roughly 

estimated (between 22.6 and 23.6 million km3 in the upper 2 km of continental crust1,2) and we 

have only a partial understanding of their three-dimensionality and verticality—i.e., structural 

diversity25. Furthermore, as the adage “out of sight, out of mind” goes, there is generally poor 

awareness about the importance of the groundwater biodiversity and ecosystem services across 

policymakers, stakeholders, and the general public alike (Supplementary Section 1). This lack 

of awareness reflects the conservation status of groundwaters: in many areas of the world, 

groundwater ecosystem protection is confined to aquifers with economic value or the 

unplanned overlap between valuable groundwater ecosystems and protected areas established 

for surface ecosystems16,26. 

As a result, a global approach to policy that incorporates the value of groundwater 

ecosystems and their services is required to protect these precious resources. With this in mind, 

we propose the application of the keystone ecosystem concept to groundwater, as this approach 

has proven to be extremely valuable in nature conservation27. By mapping predicted 

groundwater biodiversity and its overlap with surface biodiversity at global scale, we provide 

both conceptual and empirical evidence that this focus is scientifically sound, timely, and 

beneficial for the broader context of groundwater conservation. Following the GDEs 

categorization proposed by Eamus et al.28, we focus on the ecological and functional links 

between groundwater ecosystems (e.g., aquifers and caves where aquatic subterranean biota 

reside; GDE class I) and GDEs requiring the surface expression of groundwater (e.g., wetlands 

and rivers; GDE class II) or GDEs dependent on groundwater availability for their biodiversity, 

growth and productivity (e.g., forests, GDE class III).  

With the goal of taking a step further towards inter-realm approaches, we also highlight 

eight directions – spanning from biomonitoring to transboundary policies – to advance 

conservation of groundwater and groundwater-dependent ecosystems over two interlinked axes 

of science and policy. A much stronger focus on groundwater conservation is needed in the 
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face of accelerating global climate change and uncontrolled biodiversity loss, and we advocate 

that such a change in perspective and management strategies will consistently increase the 

efficacy of our global conservation strategies. 

 

Fig. 1|Schematic representation of interactions and functional links of groundwater 

ecosystems (in dark blue) with the five unfrozen surface water biomes (marine and 

freshwater) composing the global water cycle (in light blue). See Supplementary Section 2 

for a detailed description of the ecological and hydrological connections between them. For 

conciseness, anthropogenic impacts are not illustrated; gaps between groundwater 

environments and the five unfrozen surface water biomes have been added for illustrative 

purposes. 

 

1. Current conservation efforts of groundwater ecosystems: the challenge of 

protecting the “unknown” 

Comprehensive protection of groundwaters, whether direct or indirect via conservation of 

GDEs, is lacking or not implemented in most regions29,30. Globally, there are only a few 

examples of direct conservation measures for subterranean habitats or groundwater species30. 

Global treaties on biodiversity or conservation frequently fail to recognise groundwaters7,31 or 



Groundwater keystone ecosystem                                                      Saccò, Mammola, et al. 2023  

are hindered by the limited taxonomic description of most groundwater biota30. The application 

of direct conservation measures is complicated by inconsistencies between conservation and 

natural resource legislation32 and often the boundaries of aquifers transcend those of 

jurisdictions or surface catchments that are the typical focus of land and water management19. 

 Until recently, direct protection and conservation measures for groundwater 

ecosystems have focused on protecting rare, iconic species or habitats21,30,33, being generally 

informed by habitat mapping34 and species-occurrence databases35. This focus has enabled the 

conservation of globally significant areas32,36, but is ineffective in areas where the knowledge 

of habitats is limited and biota are unknown or undescribed37,38. Phylogenetic or functional 

diversity can be used to prioritise conservation sites when taxonomic information is lacking39; 

conservation biogeography and species distribution modelling approaches also have potential 

as management tools40 but are challenged by a lack of robust theoretical models to explain the 

distribution of biota at relevant spatial and temporal scales30 and the high endemism typical of 

groundwater fauna40.  

 The sustainable management of groundwater resources has been insufficient in 

protecting groundwater ecosystems, partly because its primary focus is the availability of water 

for humans rather than the ecological needs of the organisms therein. Although limiting 

groundwater allocations indirectly benefits groundwater ecosystems, this anthropocentric 

focus often ignores the quality and quantity of water needed for maintaining ecosystem 

processes41,42. Groundwater vulnerability mapping43 has promise as a means for assessing and 

managing risks to groundwaters but is generally more focused on a single resource protection 

than ecosystem protection. This is problematic because only through the preservation of 

healthy groundwater biota, including both microbes and metazoans, can we ensure the 

maintenance of key ecological processes and the functional links with surface water 

ecosystems (Fig. 1). 

 Ultimately, groundwater and connected GDEs should be managed and conserved 

together, under a “one water” framework44,45. However, human needs often triumph over 

environmental water needs where knowledge is limited46, rendering this an unrealistic option 

for conservation. As a result, other approaches must be explored and implemented to ensure 

the preservation of a healthy groundwater ecosystem. Like climate change more broadly, 

current inaction (“too little”) is not only generating increased contamination, habitat 

fragmentation, and higher rates of biodiversity loss, but also risks compromising the efficacy 

of our future actions (“too late”) because they will be implemented on already deteriorated 

groundwater ecosystems.  
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2. Shaping groundwater as a keystone ecosystem 

Assessment, monitoring and management of biodiversity frequently relies on the use 

of community representatives such as flagship, umbrella and keystone species, whose 

protection effectively preserves many other species47. While all these proxy species approaches 

are constantly constrained by their intrinsic metaphorical nature48, the emphasis of the keystone 

species on links among species has been raised as an “appropriate target for management”, 

given the implementation of this approach can provide a good compromise between species-

oriented and ecosystem function-oriented conservation strategies49.  

Initially coined by Robert T. Paine (1933–2016), the term “keystone species” was 

intended for species of high trophic status, whose activities exert disproportionate influence on 

the structure and function of biological communities50,51. This concept argues that a single top 

predator indirectly controls resource-use at lower trophic levels. Upon its removal, one species 

would monopolize resources, exclude competitor species, and cause a decline of biodiversity52. 

The use of keystone or any other proxy species in nature conservation is frequently advocated 

for systems where the number of species being protected or monitored is uncertain53, such as 

groundwater54. However, while keystone species appear to be a promising approach for 

protection and monitoring of groundwater ecosystems, its implementation is hindered by 

conceptual and applied issues (Box 1). 
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BOX 1: Keystone species in groundwater ecosystems: an impossible task? 

 There are many obstacles to the implementation of the concept of keystone species in 

groundwater ecosystems, emphasizing the need to adopt a “keystone ecosystem” approach. 

The first, main challenge lies in the identification of appropriate keystone species. The term 

“keystone” has been broadly debated55,56 and refined such that it could apply to all species from 

any trophic level. The ultimate recognition of keystone species, however, remains a two-step 

procedure that first applies operational criteria to identify keystone candidates, and then 

empirically tests how their removal impacts species diversity in a community56. Nonetheless, 

the application of this procedure to groundwater is theoretically questionable and technically 

challenging because a clear picture of trophic structure for all GDEs is missing. For example, 

until recently, groundwater was considered a bottom-truncated ecosystem, with no primary 

producers and few specialized top predators57. Since then, some evidence for trophic 

specialization within trophic levels has been identified58,59,60, as well as for multiple trophic 

levels within species-rich groundwater communities61,62,63,64 making it difficult to identify 

suitable keystone species in most cases. 

 Second, there is a remarkably high frequency of narrow range endemics among 

groundwater species65. High spatial turnover in groundwater species composition at larger 

geographical scales emerges as a consequence of the dominance of species with small 

distributional ranges66,67. Identifying keystone species on a scale of some ten kilometres is often 

an impossible task. 

 Third, the vertical dimension of groundwater exacerbates the aforementioned issues. 

Groundwater is not a homogenous habitat, but an array of interconnected habitats68,69. In 

groundwater ecosystems, life has evolved to use space in three dimensions. In karstic massifs 

alone, at the same geographic point, species from fissure systems in the unsaturated zone live 

under different environmental conditions to species from the permanently flooded zone70, 

leading to vertically stratified communities. Such vertically distributed communities may be 

only weakly connected functionally, with predators in lower zones hardly influencing 

dynamics in upper zones. 

The extension of the keystone concept to communities or ecosystems71 is a plausible 

area to explore for easing some of the current roadblocks in groundwater conservation efforts 

(Supplementary Section 1). Since the early 1990s, conservation strategies across the globe have 

shifted their focus from species- to habitat/ecosystem-level72. Complementarity between both 

approaches has been recognized as beneficial72, but overall, the increased cost-effectiveness 

and elaboration of more effective management guidelines are reported for the ecosystem-level 
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focus73, as well as reducing funding bias74. The value of this approach is enhanced when 

applied to groundwater habitats, where biodiversity is still mostly spared from macro-

organismal invasive species possibly due to the selective conditions and isolation of these 

environments75. As a result, compared to other surface counterparts such as rivers and lakes, 

groundwaters can be broadly considered less biologically degraded (even if still mostly 

unprotected worldwide) ecosystems, a common prerogative for conservational purposes 

through keystone ecosystems approaches71.  

Concurrently, recent investigations into GDEs (class II and III according to Eamus et 

al.28) indicate that they are widely distributed in dry climate zones (accounting for almost a 

third of the total global surface area76), and groundwater supports riparian and floodplain 

vegetation in tropical and temperate zones77. Globally, groundwater has strong 

physical/ecological relationships with surface water (e.g., intermittent streams), and the 

presence of surface water in some geographic areas is highly related (at least in some periods 

of the year) to groundwater level (e.g., groundwater-fed streams in semi-arid areas)28. For 

instance, shallow groundwater influences 22 to 32% of global land area, and 15% of 

groundwater-fed surface water features and plant rooting zones78. 

 Similar to the transition from species- to ecosystem-level conservation agendas, the 

shift from local to regional and continental studies in groundwater ecology has been 

undoubtedly enabled by the increased availability of data, combined with the enhanced 

awareness of the importance of groundwater at global scale19. As a result of all these 

observations, groundwater provides a uniquely valid conceptual candidate to be a keystone 

ecosystem, defined as ecological structures “providing resources, shelter or ‘goods and 

services’ crucial for other species”27. 

Partially due to the lack of groundwater accessibility and the resultant lack of 

subterranean spatial analysis, data sources for environmental parameters driving groundwater 

biodiversity patterns on a global scale are currently limited to estimates of water quantity (e.g., 

groundwater recharge and water table depth). To evaluate the potential of groundwater 

ecosystems as keystone ecosystems, we modelled available data to map the biodiversity of 

groundwater ecosystems in combination with groundwater interaction with the surface (Fig. 

2). This analysis is based on an indicator composed by four proxies: three proxies that are 

positively associated with groundwater ecosystem biodiversity, (i) groundwater recharge79, 

proxy for high biodiversity because groundwater recharge regimes are associated with the 

inflow of nutrients, replenishment of water, and oxygen regeneration; (ii) existence of karst80, 

proxy for habitat availability and connectivity (iii) interaction between groundwater and 
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surface water81, another proxy for high biodiversity being a key factor in enriching oligotrophic 

groundwater environments with carbon loads and fresher water resources; and (iv) 

groundwater water table depth as negatively associated proxy to the same biodiversity factor78 

(see Supplementary Section 3 for further information).  

 Globally, 7.1% of the land area shows a high degree of groundwater biodiversity (90th 

percentile globally) and high interconnectivity to surface water bodies (90th percentile 

globally). 52.6% of global areas have medium to high interactions, independent to the modelled 

groundwater biodiversity considered. In almost a third of the global area (29.8%) there is only 

low (10th percentile) predicted subsurface biodiversity coupled with groundwater - surface 

water interaction. Within this category, a vast portion is occupied by deserts (e.g., Sahara 

Desert covering 8% of total global area) and high mountains, regions where the water table can 

be very deep (e.g., Andes), the recharge rates are very low (e.g., Arabian Desert), and/or surface 

environments host low biodiversity (e.g., Kalahari Desert). Once those areas with modelled 

low biodiversity and low interactions are removed from the global analysis, the proportion of 

areas with medium to high interactions jumps to 75%. Nonetheless, within these broad regions 

categorised as low biodiverse, important pockets of groundwater biodiversity do exist. For 

instance, the Pilbara in Australia is considered a major subterranean biodiversity hotspot 

globally82, and the seemingly inhospitable Sahara Desert hosts endemic species of copepods in 

its groundwater ecosystems83. An in-depth global analysis on these “islands under the desert”84 

would shed further light on the understanding of functional groundwater-surface water 

interactions, and will only be possible once further data is gathered. 

 Having mapped where groundwater biodiversity is potentially high and connected to 

the surface, we incorporated the occurrence of surface ecosystems into the analysis (Fig. 3a-

b). We combined the previous map (Fig. 2) with an indicator for surface ecosystem biodiversity 

(consisting of the integration of four proxies: soil bacteria, plant diversity, macrophyte 

occurrence and riverine species richness; Supplementary Section 3). Our goal was to estimate 

the overlaps and interdependence between groundwater and surficial ecosystems’ biodiversity 

patterns. Therefore, we excluded higher-order biodiversity indicators such as avian or 

mammalian diversity, given that these taxa are not necessarily associated with the interlinked 

groundwater-surface ecosystems at a global scale. Indeed, an analysis involving groups such 

as marine animals85 or reptiles86, and modelling their degree of direct or indirect 

dependency/functional links with groundwater resources could be of much interest, but it lies 

outside of the scope of current work. 
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Globally, for 10.1% of the land area there is an overlap between predicted high 

groundwater biodiversity and interactions (90th percentile globally), and predicted high surface 

biodiversity (90th percentile globally). Half of global surficial area (50.0%) has high 

biodiversity with some extent of groundwater interactions, reaching up to 71.7% when 

groundwater-sheds19 are considered (see Supplementary Section 3). For all the three surface 

biodiversity categories (low, medium and high), the areas with the lowest groundwater 

biodiversity and interactions (10th percentiles) were the most abundant (8.4%, 32.1% and 

23.9%, respectively). However, the choice of aggregation of Fig. 2 (compare Fig. S11) 

influences this outcome towards more areas with low biodiversity and interaction.  

Overall, our findings suggest that global groundwater biodiversity and interactions can 

be considered as a first order estimator for surface biodiversity (Fig. 3a). For example, when 

we focussed into the Po (North Italy) (Fig. 2b and Fig. S14b) and Mekong (Southeast Asia) 

(Fig. 2c and Fig. S16b) river basins, two areas that in 2022 experienced the worst droughts in 

70 years87,88, distinctive patterns emerged. The Po basin shows a high groundwater ecosystem 

biodiversity close to the Alps and the Mediterranean Sea with medium interconnectivity to 

surface waters compared to other global systems (Supplementary Section 3). On the other hand, 

the Mekong shows a high groundwater ecosystem biodiversity and interconnection between 

groundwater and surface water. When surface biodiversity is incorporated in the modelling, 

the Po basin (Fig. S14b) shows hotspots of groundwater ecosystem biodiversity and surface 

ecosystem biodiversity closer to the delta and the pre-Alp areas. In contrast, hotspots of 

interconnectivity remain as in Fig. 2b. The Mekong shows extensive areas of high surface and 

subsurface ecosystem biodiversity together with a highly interconnected system (Fig. S16). 

Groundwater and surface systems are often inter-connected, and focusing only on one, 

limits the effectiveness of conservation efforts. Only a holistic view that includes groundwater 

ecosystems will enable us to understand how excessive groundwater extraction will also affect 

surface ecosystems89 and how land cover changes, e.g., deforestation, agricultural use or effect 

of river incision, will affect the groundwater quantity and quality and, in turn, the connected 

ecosystems. Without further research, the global role of groundwater in the carbon cycle 

remains unclear. When prioritizing areas for biodiversity conservation, integrating surface and 

groundwater biodiversity is more effective90. Combined protection of surface and subsurface 

areas is most efficient in terms of costs, available space, and societal awareness. Recognizing 

groundwater as a keystone ecosystem highlights the cascading effects that would be triggered 

if we further contaminate and/or deplete groundwater. While some authors have already 

discussed the hydrological transboundary role of groundwater at global scale91, to the best of 
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our knowledge, this is the first ecological quantification of groundwater ecosystems' relevance 

for the Earth system. 

 

Fig. 2|Linkages between predicted groundwater ecosystem biodiversity and 

groundwater-surface water exchange fluxes. Dark green areas indicate a high groundwater 

ecosystem biodiversity and a high interaction between groundwater and surface water. Light 

green indicates areas with high groundwater biodiversity but low interactions, blue indicates 

high interactions (in both directions) between surface water and groundwater but low 

groundwater biodiversity. Groundwater ecosystem biodiversity is approximated by 

groundwater recharge, karst and water table depth. The interactions between groundwater and 

surface water are based on a global groundwater model. The categories of biodiversity and 

exchange fluxes are based on quantiles of normalized data. Orange markers identify focus 

regions used to evaluate the map. (See Supplementary Section 3 for an in-depth development 

and discussion of this figure). 
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Fig. 3|Linkages between predicted surface ecosystem biodiversity and connected 

groundwater biodiversity. Here we show how categories of groundwater biodiversity and 

interaction (Fig. 2) relate to surface ecosystem biodiversity. With higher groundwater 

ecosystem biodiversity and interaction (C1 = lowest; C9 = highest), surface ecosystem 

biodiversity increases as well a). This relationship is mapped into nine new categories of 

surface ecosystem biodiversity and groundwater ecosystem biodiversity and interaction (D1 = 

lowest; D9 = highest) shown on a global map b). Dark blue in b) indicates areas of high 

ecosystem biodiversity, high groundwater ecosystem biodiversity, and high interactions 

between groundwater and surface water. Pink areas indicate only a high surface biodiversity, 

and turquoise, areas without large surface ecosystem biodiversity. Groundwater-surface 

interactions and groundwater ecosystem biodiversity are based on Figure 2. Surface ecosystem 

biodiversity is based on soil bacteria, fish diversity, macrophyte diversity, and vascular plant 

diversity, and the biodiversity categories are based on normalized data quantiles (see 

Supplementary Section 3). 

 

 

3. Setting the ground(water) for a more effective protection of aquatic 

subterranean ecosystems 

The success of groundwater conservation in the 21st century will be contingent on our ability 

to limit climate change92, minimize contamination4, and reduce overexploitation of natural 

resources93. However, the magnitude of the challenge ahead is in stark contrast with ongoing 



Groundwater keystone ecosystem                                                      Saccò, Mammola, et al. 2023  

conservation inaction16,21,37. Amidst an increasingly unpredictable climate, widespread 

aridification, and scattered rainfall events94, many rivers and lakes are transitioning from 

permanent to intermittent95, glaciers and snowfields are melting away, and thus two major 

freshwater sources are rapidly disappearing across several regions96. As a result, the reliance 

of surficial watersheds on aquifers is increasing, with aquifers providing the only permanent 

(if replenished) freshwater resource available for many areas worldwide. Given the uneven 

distribution of global groundwater97, inequitable access, and the limited replenishment of 

ancient global groundwater reserves, shifts in the dependence of ecosystems from surface to 

groundwater will be spatially variable98. Therefore, effective groundwater governance will be 

a crucial aspect to mitigate the impact of droughts on economies, societies, and diverse 

environments99.  

Recent research has demonstrated that groundwater ecosystems and their biota actively 

assimilate terrigenous carbon100, acting as carbon sinks101 analogous to freshwater wetlands. 

Hence, maintaining the carbon assimilation capacity of groundwater ecosystems is essential to 

maximise the terrestrial carbon sink and minimise climate change effects. Aquifers are also 

crucial for maintaining surface environments102, including their biodiversity, within natural and 

anthropogenic contexts103 (Fig. 4). However, current lack of implementation of effective 

groundwater management strategies is hindering also the preservation of associated GDEs. The 

development of biodiversity indices for groundwater ecosystems, similarly to biodiversity 

variables proposed to monitor biodiversity at global levels104,105 and for discrete targeted 

purposes106, could provide a solution to overcome this roadblock. By initially targeting well-

studied regions with comprehensive diversity datasets (e.g., the Krim region in Slovenia107 or 

the Pilbara in Western Australia89) regional biodiversity indices can be designed, with the goal 

to expand the foci as groundwater biodiversity data from less studied systems become 

available. 

 Overall, our analysis emphasizes the high interconnectedness between groundwater and 

surface systems, and demonstrates how focusing only on one compartment limits the 

effectiveness, scope, and comprehensiveness of conservation efforts. To achieve more holistic 

conservation strategies, we will need to find effective strategies able to overcome the surface-

subterranean divide. With this in mind, we advocate for a two-tiered approach for the 

conservation of groundwaters, composed by science and policy, and we propose eight key focal 

areas to develop an effective global strategy. 

(i) Create standardized global datasets. Global dataset’s record information on groundwater 

fauna is abundant, but generally scattered across myriad databases, publications, and personal 
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datasets, often not openly accessible and lacking inter-operability due to different data 

standards and vocabularies. Two ongoing ambitious projects, the World Register for marine 

Cave Species (WoRCS)108 and Stygofauna Mundi9, aim to create a centralized, openly 

available, and comprehensive taxonomic and ecological database of all groundwater 

organisms. If successful, this will break a major barrier hampering conservation, offering 

much-needed data for accurate assessments of global groundwater biodiversity and providing 

information for evidence-based conservation21. Similar to rivers and lakes, integration of this 

information with available hydrogeological data will directly enhance the quality of 

groundwater environmental assessments. At transboundary ecosystem levels, published global 

data on the distribution of GDEs are not available to date. However, successful initiatives such 

as the Australian GDE Atlas109 provide a promising initial step towards the creation of a 

scientifically sound global GDE map. Like in other disciplines, application of FAIR Data 

Principles110 to all global groundwater-based generated data should be ensured, assuring 

effective findability, accessibility, interoperability, and reuse of these digital assets. 

(ii) Test and apply novel biomonitoring approaches. Novel biomonitoring of groundwater and 

its typical biota is a crucial aspect of environmental management, as many ecosystem services 

are dependent on a healthy environment and diversity of species that, despite being almost 

invariably overlooked, are irreplaceable5. While monitoring of physical-chemical properties or 

chemical pollutants in groundwater is a regular practice across the world, the biota are often 

overlooked if not in connection with pollutant contamination. Therefore, novel tools are 

required to monitor these ecosystems. Particularly promising is the use of DNA extracted from 

environmental samples (environmental DNA or eDNA)111 to assess diversity of, and map the 

distributions of, species112. First applications of eDNA to groundwater systems have been 

promising, recovering vast biodiversity hitherto mostly undocumented113,114,115,116. For selected 

taxa such as subterranean salamanders and cavefish, bioacoustics, the study of animal sounds, 

can be used to not only detect species, but also inform on their welfare and behaviour 117,118.  

(iii) Advance science to better understand ecosystem function. Capturing the entire diversity 

of subterranean species is currently not logistically feasible. For instance, it is estimated that 

80% of the world’s biggest subterranean biodiversity hotspot region, Western Australia, is 

undescribed119. Therefore, traditional diversity metrics may not provide a mechanistic 

understanding of disturbance effects120. To circumvent this, the use of trait-based (functional) 

methods is gaining ground in recent ecological studies. This approach highlights how 

functional traits (intended, in a broad sense, as morphological, ecological, physiological, 

behavioural features measured at the species level121) mediate a species’ ability to respond to 
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changes in their environment122,123. However, functional studies targeting groundwater 

ecosystems are still rare89,124. At a global level, an in-depth and groundwater-specific functional 

characterisation proposed by Keith et al.125 could be informative. Microbes and aquatic 

invertebrates are essential for subterranean ecosystem functioning, contributing to nutrient 

cycling, energy flow, water filtration, and biodiversity8,126,127. Therefore, targeting these 

components of underground aquatic ecosystems unveils crucial aspects of functioning and 

resilience. 

(iv) Involve interdisciplinary approaches: A cross-pollination of ideas among researchers from 

different scientific backgrounds — e.g., hydrologists, hydrogeologists, climatologists, 

geochemists, ecologists and taxonomists — and operating both above and below the ground 

would enhance the implementation of conservation interventions able to embrace the entirety 

of the surface-subterranean continuum. Some possible ways forward to break the artificial 

divide between surface- and subterranean-based scientists and foster cooperation could 

include: a) limiting discipline-specific jargon in communication128; b) broadening reading 

habits outside one’s own niche expertise; c) seeking active collaboration by exposing oneself 

to different scientific cultures (e.g., by attending scientific meeting outside one’s own 

expertise) and d) fostering open data policies to ensure data exchange among researchers, 

groups, and companies as well as data availability for future generations. 

(v) Implement global policies to protect transboundary waters. Conservation of biodiversity 

often requires operating across country boundaries129, an endeavour often complicated by 

bureaucracy and geopolitical instability130,131. Worldwide, 468 transboundary aquifers (namely 

aquifers crossing multiple states132) have been delineated133, several of which are subject to 

mounting human pressure134. However, there is currently no specific global convention or law 

for the management of transboundary aquifers. Today, transboundary aquifers are still 

governed by the 1997 UN Watercourses Convention which applies to groundwater systems, 

“[…] but only to the extent that an aquifer is connected hydrologically to a system of surface 

waters, parts of which are situated in different States”135. Transboundary aquifers cooperation 

is still lagging as it is directly related to the capacity of the States to understand and value the 

groundwater systems and associated ecosystems they depend upon. Efforts should be made on 

valuing groundwater as a shared resource beyond frontiers—e.g., by reporting evidence of 

anthropogenic impact on transboundary groundwater ecosystems to showcase and boost 

transboundary aquifers’ cooperation136. 

(vi) Improve water management and governance. It is essential to achieve a more balanced 

effort (both financial and conservational) to the management of the different components of 
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the hydrosphere and biosphere. The historical focus on surface water in freshwater 

management93, in part reflects knowledge deficits on the role of groundwater ecosystems at the 

time when the main freshwater policies were set up137 and the lack of ability in updating and 

adjusting strategies as scientific research progresses138 (Supplementary Section 1). Now, thirty 

years after the publication of the cornerstone book “The Freshwater imperative”139, inter-realm 

monitoring and management are more imperative than ever140. It is just a matter of treasure 

lessons learned, expanding views, and being ambitious141. Most ecosystems will benefit from 

this timely (almost overdue) shift in perspectives. 

(vii) Develop restoration and monitoring programs. Hydrogeological restoration of aquifers142 

and surface-groundwater interactions143 have been the focus of extensive research over the last 

three decades, yet studies on the ecological restoration of groundwater ecosystems are still 

rare144. As data on groundwater biodiversity and resilience to contamination and climate 

change are gathered, integration of comprehensive biotic-driven restoration guidelines is 

essential for the effective management of groundwater pollution both in natural and 

anthropogenic contexts3. 

(viii) Encourage participatory approaches. The value of a natural resource is only 

acknowledged when citizens are involved145. Alther et al.113 and Raghavan et al.146 employed 

participatory approaches to raise awareness on the importance of aquatic subterranean fauna, 

in projects that also led to the discovery of new species (amphipod genus Niphargus and catfish 

Horaglanis populi). Extension and upscaling of such an initiative to other regions, countries, 

and continents can provide a highly effective tool to increase societal awareness and advance 

science. Concurrently, the incorporation of local indigenous knowledge into ecological science 

harbours enormous potential to increase the efficacy of conservation and management 

strategies147. For instance, by harnessing the power of local knowledge through participatory 

science programs, the opportunity exists to build up a database of active and inactive global 

spring locations148. Such community-led monitoring programs could also provide information 

about groundwater quality (levels of eutrophication and contamination) and provide the 

catalyst to building a groundswell of support for rehabilitating and restoration of inactive 

springs to benefit surface and subsurface biodiversity. 



Groundwater keystone ecosystem                                                      Saccò, Mammola, et al. 2023  

 

Fig. 4|Examples of groundwater ecosystem services within anthropic (a, b, c) and natural 

(d, e, f, g) frameworks and recommended guidelines for groundwater conservation in 

terms of scientific advancements (top right) and policy developments (top left). Anthropic 

environment: a, clean groundwater plays a key role in maintaining the agrobiodiversity149; b, 

interchanges between urban wetlands and groundwater can maintain the diversity of aquatic 

species and the functional integrity of urban wetlands150; c, water for urbanisation can also 

supply a key resource for the maintenance of urban vegetation151; natural environment: d, 

terrestrial vegetation groundwater dependent ecosystem (GDE)152; e, lotic GDE153; f, lentic 

GDE154; g, coastal GDE155. 

 

Conclusions 

Water is the basis of life on Earth: by overlooking the ecological integrity of groundwater, we 

are threatening the long-term prospects of entire ecosystems and ultimately of humanity itself. 

Too often, current conservation efforts consider groundwater as disjoint from the rest of the 

components of the global water cycle, despite the multiple functional interlinks between the 

subterranean, surface and atmospheric realms. The application of the keystone ecosystem 

concept to groundwater would enable breaking the conceptual and mechanistic barriers still 

existing in water science and policy. We provide evidence that most habitable global areas 
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(75%) have a medium to high level of ecological interactions with groundwater. We also 

provide the first indication that groundwater biodiversity and interconnections can represent 

an ecological estimator for global surface biodiversity patterns. Given this foundation, 

conservation and water resource policies are pivotal to assure the maintenance of the essential 

ecosystem services provided by groundwater ecosystems worldwide. We argue that the overall 

benefits of this approach extend beyond the dark underworld, allowing the preservation of 

diverse terrestrial and aquatic ecosystems. This is urgent for wise water management plans 

within the current climate change scenario, considering that many regions across the globe are 

already experiencing a water crisis.  
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