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Abstract: Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads
to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular
symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead
to death. This remarkable increase in cytokines and other inflammatory molecules is primarily
caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein
specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces
proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments
production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-
derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as
a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the
immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through
pattern recognition receptors of dsRNA such as TLRs.

Keywords: SARS-CoV-2; COVID-19; ORF8; cytokine storm

1. Introduction

Severe acute respiratory syndrome (SARS) coronavirus (CoV) type 2 (SARS-CoV-2),
the causative agent of coronavirus infectious disease 2019 (COVID-19), is a member of the
β-coronavirus family, along with SARS-CoV and Middle East respiratory syndrome (MERS)
virus [1–4]. In the majority of healthy individuals, SARS-CoV-2 infection is asymptomatic
or causes mild to moderate illness with symptoms such as fever, headache, cough, and
breathlessness. However, severe cases develop acute respiratory distress syndrome (ARDS)
and acute lung injury, leading to morbidity and mortality [2,3]. It is well-established that the
severity of COVID-19 correlates with viral replication and hyper-responsiveness of the host
immune system. The latter frequently involves an excessive production of cytokines by the
host, referred to as a ‘cytokine storm’. This exacerbated cytokine response can lead to multi-
organ failure and, in some cases, to a fatal outcome [5–7]. COVID-19 patients with severe
disease, mainly those with specific co-morbidities and the elderly, have an exacerbated
inflammatory response, evidenced by high levels of inflammatory markers (C-reactive
protein, ferritin, D-dimer) in the blood, an increased neutrophil-to-lymphocyte ratio, high
serum levels of pro-inflammatory chemokines and cytokines, such as interleukins IL-2,
IL-6, IL-10, and IFN-γ, and low serum levels of type I and III interferons (IFNs) [8–12].
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The SARS-CoV-2 genome is a positive-strand RNA that comprises 14 open reading
frames (ORFs). ORF1a and ORF1b, the largest ORFs, are translated into polyproteins pp1a
and pp1ab, which are cleaved to produce non-structural proteins Nsp1 to Nsp6. The other
ORFs encode the structural proteins spike (S), membrane (M), envelope (E), and nucleo-
capsid (N), as well as the accessory proteins ORF3a, ORF4, ORF6, ORF7a, ORF7b, ORF8,
ORF9b, and ORF10 [13]. The accessory proteins of coronaviruses are not considered to be
primarily required for viral replication in vitro; however, they serve important functions
during virus infection in vivo, contributing to immune evasion, cytokine induction, and
enhanced virulence [14–16].

SARS-CoV-2 ORF8 is poorly conserved among other human coronaviruses but shares
95% amino acid sequence similarity with Bat-RaTG13-CoV, suggesting it originated from
Bat-RaTG13-CoV ORF8 [17,18]. The ORF8 has high susceptibility to deletions and to point
mutations which are associated with disease progression and outcome [19–24]. Notably,
a mutation at position 84 that changes a leucine to a serine (ORF8 L84S) was the most
frequent mutation in the first six months of the pandemic and underwent significant
selection pressure [24,25]. This mutation has been related to mild disease outcome [23],
similarly to SARS-CoV-2 strains that lack the ORF8 gene [26], indicating that ORF8 is a
virulence factor. ORF8 is abundantly secreted both in vitro and in vivo, and it is highly
immunogenic [27–30]. Among the accessory proteins of SARS-CoV-2, ORF8 has the largest
protein interactome network [28], and several studies performed in the past few years
have reported several biological properties of this protein, including immune evasion and
signaling activation.

Here, we summarize research on SARS-CoV-2 ORF8 as a modulator of the cytokine
response, in particular the pathways linked to type I IFN (IFN-α and IFN-β) and IL-6.
ORF8 structure, evolution, roles in adaptive immunity, and overall functions have been
extensively reviewed elsewhere [31–36]. We focus on ORF8’s capacity to modulate type I
IFN and other cytokine responses, discussing the existing data. Additionally, we introduce
new findings from our laboratory which indicate that the ORF8 L84S variant induces
expression of IL-6 in presence of polyinosinic:polycytidylic acid (poly(I:C)) in human
embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). Together
with other, previous data, we hypothesize that ORF8 augments IL-6 production through
Toll-like receptor signaling. Finally, we discuss the possible outcomes of cytokine induction
for the host and the virus.

2. Cytokine Responses to SARS-CoV-2

Cytokine storm syndrome is characterized by a systemic inflammatory condition
involving excessive circulating cytokine levels associated with endothelial damage,
vascular permeability, coagulopathy, and infiltration of immune cells into tissues, which
can consequently lead to multi-organ failure [37,38]. In severe cases of COVID-19,
exacerbated cytokine dysregulation is a hallmark of the disease [39,40]. Clinical and
experimental data indicate that there is an excessive production of pro-inflammatory
IL-6, as well as TNF-alpha and IL-12, in SARS-CoV-2-infected patients, cells, and animal
models [24,41–43].

Individuals with risk factors such as obesity, cardiovascular disease, acute kidney
injury, pulmonary disease, male gender, impaired immunity, and old age are more
likely to have an inappropriate immune responses and succumb to the disease [44,45].
Additionally, host genetics are implicated in disease outcome [46]. In particular, elderly
individuals are more vulnerable due to decreased immunity and the age-related chronic
pro-inflammatory status of their immune system, which increases tissue damage caused
by the infection [47–49].

Importantly, SARS-CoV-2 is also associated with multisystem inflammatory syndrome
(MIS) in pediatric patients, likely due to a post-viral immunological reaction to the virus [50].
Notably, there is increasing evidence pointing to a role of mitochondria in the pathogenesis
of COVID-19. Damage of mitochondria occurs in age-related disorders, specially mal-
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functioning of the immune system, increasing pathogenesis in elderly individuals [51,52].
Moreover, alterations in mitochondria are associated with other disorders such as diabetes
and obesity, impacting negatively the outcome of COVID-19 [53,54].

3. Immunity against SARS-CoV-2

Innate antiviral immunity is triggered by the recognition of viral pathogen-associated
molecular patterns (PAMPs) or (DAMPs), released by damaged tissues, via cell pattern
recognition receptors (PRRs), leading to the production of type I IFNs and pro-inflammatory
cytokines. These cytokines function to inhibit viral replication and to regulate induction
of adaptive immunity [55]. Type I IFNs constitute one of the first lines of defense against
viruses. IFN production leads to induction of several IFN-stimulated genes (ISGs), via
the janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway,
which leads to the induction of proteins which restrict viral replication in infected and
neighbouring cells [56,57].

In RNA viruses, including SARS-CoV, SARS-CoV-2, and MERS virus, the double-
strand RNA (dsRNA) generated during genome replication and transcription is sensed
in the endosome by Toll-like receptors (TLRs) 3 and 7, or in the cytoplasm by the
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), RIG-I and/or melanoma
differentiation-associated protein (MDA5) [58]. RIG-I and MDA5 interact with the
adapter mitochondrial antiviral signaling (MAVS) protein, recruiting two IκB kinase
(IKK)-related kinases, TANK-binding kinase 1 (TBK1) and inducible IκB kinase (IKKi).
These kinases phosphorylate interferon regulatory factor (IRF) 3 and 7, leading to their
dimerization and translocation to the nucleus, resulting in the activation of IFN-α/β
expression. Additionally, MAVS recruits TANK1 via tumor necrosis factor receptor
associated factor 6 (TRAF6) and activates the NF-κB signaling pathway, leading to
cytokine production. Alternatively, sensing of viral RNAs by most TLRs, except for
TLR3, involves the adaptor myeloid differentiation primary response gene 88 (MyD88).
After TLR engagement, MyD88 forms a complex with IL-1 receptor-associated kinase
(IRAK) family members, including IRAK1, IRAK2, and IRAK4, referred to as the
Myddosome. IRAK1 associates with the RING-domain E3 ubiquitin ligase TRAF6,
leading to activation of TAK1 followed by the activation of the NF-κB and mitogen-
activated protein kinase (MAPK) pathways and the production of pro-inflammatory
cytokines [59,60]. TLRs localized in endosomes (TLR3, TLR7, TLR8, and TLR9) activate
NF-κB and IRF7. While TLR7, TLR8, and TLR9 use MyD88, TLR3 uses the adaptor
TIR-domain-containing adaptor-inducing interferon-β (TRIF) and TLR4 uses both
MyD88 and TRIF adaptors. TRIF binds to TRAF3, which then recruits the IKK-related
kinases TBK1 and IKKε, activating IRF3 that mediates transcription of type I IFNs.
Additionally, TRIF interacts with TRAF6 and promotes the activation of NF-κB and
MAPKs [59,60].

Notably, recent studies have shown that RNA virus infection activates the cytoplas-
mic DNA sensor cGAS/STING by directly recognizing viral components or by sensing
cellular DNA released from mitochondria or nuclei during cellular stress [61]. Accordingly,
Neufeldt et al. (2022) showed that SARS-CoV-2 directs a cGAS-STING-mediated, NF-κB-
driven inflammatory immune response in human epithelial cells that likely contributes to
the inflammatory responses seen in patients [62].

The production of cytokines by the innate immune system, such as Type I IFN,
TNF-alpha, IL-12, and IL-6, leads to the activation of adaptive immune defenses, result-
ing in the production of specific CD8+ cytotoxic T cells, CD4+ helper T cells, antigen
specific B cells, and antibody production [63,64]. Currently, research indicates that CD4
“helper” T cells and CD8 “killer” T cells have a more protective role against the disease
and that antibodies may play a secondary role in ultimately clearing SARS-CoV-2 [65].
The adaptive immune response works to control the viral infection and the level of
damage caused by the cytokine storm [66], and subsequently the majority of individu-
als with SARS-CoV-2 remain asymptomatic or develop only mild symptoms [67–69].
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However, in the case of failure to produce an adequate adaptive response to the per-
sistent inflammation induced by innate immunity, the continuous cytokine storm can
lead to multi organ infection and, potentially, organ failure [63,70]. One of the features
of the uncontrolled immune response is an increase in innate immune cells and a
high production of IL-6 associated with continued T cell activation that culminates in
functional T cell exhaustion, loss of function, and, consequently, failure to eliminate
the virus [71–73]. The importance of the adaptive immune response in controlling the
cytokine storm is reflected in the fact that age-related immune senescence plays an
important role in the development of the disease, mainly because of the reduction of
de novo T cell responsiveness in elderly individuals [74–76].

In conclusion, SARS-CoV-2 infection can activate a strong innate immune system
that leads to production of helper T cells (Th) and cytotoxic T cells (CTLs), Ref. [77],
able to eliminate the virus. However, severe disease occurs when activation of the
innate immune system fails to induce an adequate adaptive response to control the
cytokine storm [63].

4. SARS-CoV-2 Antagonism of the Immune System

The viral antagonism of host immune responses is critical for virus replication
and is an important player in the outcome of infection. Like other coronaviruses,
SARS-CoV-2 has several mechanisms to usurp or inactivate both innate and adaptive
host immune pathways [78–81]. During innate immune activation, the production
of type I IFN is the first line of defense to limit viral replication and spread [82–84].
In response, several SARS-CoV-2 proteins employ strategies to efficiently block IFN
induction and signaling pathways. As such, IFN responses in SARS-CoV-2-infected
patients are weak and inadequate, reflecting the potent IFN antiviral antagonism [42].
Among the viral IFN antagonists are Nsp1, Nsp3, Nsp12, Nsp13, Nsp14, Nsp15, M, N,
S, ORF3b, ORF6, and ORF8 [29,30,41,85,86].

The SARS-CoV-2 mechanisms to evade adaptive immunity are less understood;
however, the virus appears to have strategies to combat T cell activation. One of them
is the acquisition of mutations, which enable the virus to escape T cells’ responses.
These mutations reduce the binding of viral antigens to HLA molecules and their
subsequent presentation to T cells [87–89]. For instance, SARS-CoV-2 can readily alter
its Spike protein via a single amino acid substitution which alters the Spike protein,
preventing it from being recognized by CD8 T cells that target the most prevalent
epitope in Spike [90]. Another important mechanism of viral adaptive immune evasion
is down regulation of MHC I, which the virus achieves via the ORF8 protein [91].

5. SARS-CoV-2 ORF8 as an Immunomodulator

Among the SARS-CoV-2 accessory proteins, ORF8 is particularly remarkable as an
immune system modulator. ORF8 interacts with the major histocompatibility complex
class I (MHC-I), targeting it for degradation at lysosomes and causing SARS-CoV-2-
infected cells to be more resistant to lysis by cytotoxic T-cells [91]. ORF8 has also been
implicated in the escape of humoral immune responses. It binds to monocytes, causing
a decrease in the levels of CD16 and a reduction in the ability to mediate antibody-
dependent cellular cytotoxicity (ADCC) [92]. Additionally, its interaction with the
human complement components C3/C3b and their metabolites leads to complement
inhibitory activity [93]. In particular, the roles of ORF8 in modulation of type I IFN
and other cytokine responses are discussed.

6. SARS-CoV-2 ORF8 as a Type I IFN Antagonist

In experiments performed in our laboratory, we observed that upon poly(I:C)
stimulation, ORF8 L84S inhibits IFN-β in HEK-293 cells, while the same effect was
not observed monocyte-derived dendritic cells (mono-DCs) (Figure 1C,E). In fact,
we observed that ORF8 L84S can augment type I IFN-β expression via transfected



Viruses 2024, 16, 161 5 of 15

poly(I:C) in mono-DCs (Figure 1E), as further discussed. Our findings corroborate
several previous studies showing that ORF8 inhibit activation of IFN-β responsive
promoter induced by Sendai virus [29] and poly IC in HEK-293 cells [94] and Hela
cells [95]. This ability was found to be associated with a decrease in the nuclear
translocation of IRF3 [94], and further evidence suggests that ORF8 causes deamida-
tion of IRF3 via cellular CTP synthetase 1 (CTPS1), resulting in a loss of binding to
IRF3-responsive promoters and reduced IFN expression [96]. Interestingly, in HeLa
cells, ORF8 was shown to interact with heat shock protein 90 β family member 1
(HSP90B1), a molecular chaperone of ER, inhibiting its function and suggesting a
further mechanism of IFN inhibition [95]. ORF8 can also affect IFN-β signaling, as
demonstrated by its capacity to inhibit the IFN-stimulated response element (ISRE)
upon treatment with IFN-β [29].

Furthermore, evidence indicates that ORF8 affects the IFN-β pathway in a cell-
type-specific manner, since ORF8 84L inhibited expression of ISGs responsive to IFN-β
via poly(I:C) stimulation, such as OAS3 and IFITM1 in HEK-293 but not A549 cells [97].
As such, our analyses indicate that while ORF8 84L inhibits IFN-β expression via
poly(I:C) stimulation in HEK-293 cells, the same does not happen in monocyte-derived
dendritic cells (mono-DCs) (Figure 1C,E).

Notably, in addition to antagonization of IFN-β production, ORF8 84L and L84S
induce endoplasmic reticulum (ER) stress [94]. Indeed, induction of ER stress and
activation of the Unfolded protein response (UPR) occurs during SARS-CoV-2 infec-
tion [98] and detailed analysis demonstrated that non-secreted ORF8 interacts with
multiple ER chaperones such as BiP and calnexin, and with the ER stress sensors IRE1α,
PERK, and ATF6 [91].

Furthermore, ORF8 expression in HEK 293T or HepG2 cells induces activation
of UPR pathways. The ability to interact with ER proteins promotes ORF8 escaping
from degradation, causing its accumulation in the ER lumen. Additionally, activation
of the UPR regulates protein folding, remodels ER morphology, and accelerates protein
trafficking. Importantly, recent studies show that there is direct crosstalk between
the UPR and immune responses [99–101], and both studies described above observed
concomitant inhibition of IFN-β with induction of ER stress and UPR in cells expressing
ORF8 [94,102].

Significantly, in another study, SARS-CoV-2 infection was found to activate NF-kB
protein expression and pathway activation in association with increased MAPK signal-
ing and expression of the UPR inducer IRE-1α, suggesting a relationship between UPR
signaling and NF-kB activity [101]. Consequently, additional studies are important to
clarify the role of intracellular ORF8 in induction of UPR and inflammatory responses.

Finally, contrary to the previous findings indicating inhibition of IFN-β production
and signaling, ORF8 did not inhibit activation of the IFN-β promoter by the RIG-I
caspase recruitment domains (CARDs) [41,85] or the Sendai virus [41].

Overall, although several studies have pointed to a role of ORF8 in IFN-β antag-
onism, there are clearly inconsistences and the reasons for these discrepancies may
be explained by differences in cell types, assay methods, assay timing after IFN-β
stimulation, or amino acid variations in ORF8. Therefore, further experiments are
necessary to clearly establish the possible role of ORF8 in the type I IFN antagonis-
tic activity and to identify under which conditions it may occur. Arguably, if ORF8
has IFN regulatory activity, it may not be its primary function since there are also
other SARS-CoV-2 proteins, such as ORF6, which is a well-established potent IFN-β
antagonist [85].
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Figure 1. Relative expression levels of IL-6 and IFN-β genes after ORF8 expression. (A) Experimental
design; (B,C) HEK-293 cells were transfected with ORF8 or empty plasmid (PCAGGS). To induce an
immune response, Poly(I:C) (2 µg/mL) was added into the media (+med.) after 24 h of transfection
with Lipofectamine™ 3000 (Invitrogen, Waltham, MA, USA). The relative expression of IL-6 (B) and
IFN-β (C) were evaluated after 48 h of transfection. (D,E) Supernatants from HEK-293 cells transfected
with ORF8 and empty vector were added onto mono-DCs isolated from blood according to Silva
et al. (2207) [103], either alone (−), in combination with Poly(I:C) (2 µg/mL) in the media (+med.), or
transfected (+transf.). After 48 h, cells were subjected to real time-quantitative PCR (rt-qPCR using
SYBR green (Promega) and primers previously described [104]. Relative expression was determined
using primers for the Glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) gene as previously
described [105].

7. SARS-CoV-2 ORF8 as a Pro-Inflammatory Virokine

In addition to its role in immune evasion, plenty of evidence suggests that ORF8 acts
as a virokine inducing pro-inflammatory responses. As mentioned, ORF8 is secreted from
infected cells [30,106–108], and various studies indicate that the extracellular protein is able
to activate inflammatory cytokines. This idea matches the observation that the presence of
ORF8 in the plasma of infected individuals is conversely associated with survival [109,110].
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Several studies have shown modulation of pathways linked to cytokine expression
by ORF8 in vitro. Interactome and effectome analyses indicate that ORF8 interacts with
the transforming growth factor (TGF)-β1-latent TGF-β binding protein 1 (LTBP1) complex,
potentially dysregulating the TGF-β signaling pathway [111]. ORF8 was also shown
to interact with the PRR nucleotide oligomerization domain (NOD)-like receptor family
pyrin domain containing 3 (NLRP3) in CD14+/CD16+ monocytes, inducing a cytokine
response. According to the proposed model, ORF8 enters monocytes through a non-
receptor-mediated process and binds NLRP3 intracellularly, a process that needs to be
further investigated [110].

Two subsequent studies indicate that ORF8 has the ability to mimic the pro-inflammatory
human IL-17 cytokine and binds to RAW 264.7 in murine macrophages, as well as in human
CD14+ THP-1 and U973 monocytes [30,112]. Similar to IL-17, ORF8 binds to the human hIL-
17RA/C complex and induces heterodimerization and subsequent activation of downstream
inflammatory responses. These responses include phosphorylation of p65 and IκBα, as
well as degradation of IκBα and subsequent activation of the NF-κB signaling pathway
(Figure 2). However, despite the similarities, signaling induced by ORF8 appears to have
some differences from the IL-17 pathway because ORF8 induces expression of genes coding
for pro-inflammatory factors of the IL-17 receptor pathway, including CCL20, CXCL1, CXCL2,
and IL-6, in THP-1 and U937 cells but also causes overexpression of genes not known to be
induced by IL-17, such as COL17A1, MMP10, and SERPINB2 [30]. Interesting, variations
in ORF8 appear to affect its ability to induce cytokine expression, given that the ORF8 L84S
variant, and, to a lesser extent, variants V62L and S24L, showed reduction in expression of
CCL20, CXCL1, and IL-6 compared to wild-type ORF8 (84L), suggesting that these variants
are associated with an attenuated inflammation phenotype [30].
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Figure 2. Possible signaling pathways activated by ORF8. ORF8 accessory protein can act through
IL-17 RA (left), TLR 3 (left, center), TLR 7,8,9 (center), or TLR 2,4,5 (right). In the IL-17 RA cascade,
ORF8 leads to IkB/P65 phosphorylation, causing degradation of IκBα and subsequent activation of
the NF-κB signaling pathway. Recognition of ORF8 by TLRs activates TRIF and/or MyD88 pathways,
enhancing gene transcription of NF-κB genes or pro-inflammatory cytokines, such as IL-6.

In addition to the effects of mutations on ORF8 function, glycosylation appears to
affect protein activity. Accordingly, X-ray crystallographic structure analysis of ORF8 indi-
cates that four pairs of disulfide bonds and glycosylation at residue N78 are essential for
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stabilizing protein structure and that glycosylation regulates binding to monocytes [113],
which appears to be required for cytokine induction [30]. It was demonstrated that secretion
of glycosylated ORF8 occurs via the conventional method, through the Golgi apparatus,
while unglycosylated ORF8 is secreted via unconventional pathways. However, only the
unglycosylated ORF8, due to a mutation at the N78 residue, was able to bind to the IL-17RA
receptor and induce cytokine expression in macrophages or mice in one study [107]. Con-
versely, in another study, glycosylated ORF8 (purified from HEK-293 culture supernatants)
induced inflammation, whereas the unglycosylated form (produced in E. coli) did not.
However, in the same work, ORF8 induced high levels of cytokine synthesis, even when
protein glycosylation levels were reduced with Brefeldin A or Monensin treatment [30].
Therefore, further studies are required to clarify the role of glycosylated versus ungly-
cosylated forms of ORF8 regarding differential functions and relevance during infection,
especially since glycosylated ORF8 seems to be predominantly secreted in supernatants of
SARS-CoV-2-infected cells and sera of COVID-19 patients [110].

Importantly, as described above, non-secreted ORF8 was shown to interact with
ER stress sensors and induce activation of UPR pathways and possibly inflammatory
response [94]; therefore, both secreted and non-secreted forms may be able to induce
cytokine expression in different ways.

8. SARS-CoV-2 ORF8 as a Potential Cytokine Modulator through TLRs

Intriguingly, a recent study by Ponde et al. (2023) challenges previous findings in
myeloid cells [30,112], showing that IL-17RA and IL-17RC are not required for ORF8
signaling in macrophages and monocytes but that it depends on the TLR/IL-1 family
adaptor MyD88, indicating that it occurs though TLR recognition (Figure 2) [114]. The
authors argue that the co-immunoprecipitation and ligation assays performed in previous
studies do not prove a direct interaction between the IL-17 receptor and ORF8 [30,112].
Therefore, additional experiments may be required to convincingly demonstrate binding to
and signaling through the IL-17 receptor by ORF8.

Our own observations demonstrated that secreted ORF8 L84S expressed in HEK-293
cells augments expression of IL-6 in HEK-293 cells and mono-DCs as measured with RT-
qPCR (Figure 1B,D) and enzyme-linked immunosorbent assay (ELISA) (Figure 3). As
mentioned earlier, we also observed induction of IFN-β in mono-DCs (Figure 1E), but not
in HEK-293 cells (Figure 1C) in the presence of poly(I:C). Notably, ORF8 alone (without
poly(I:C) stimulation) did not induce cytokine expression in any cells (Figure 1).

In agreement with our findings, as reported in by Kriplani et al. [108], ORF8 L84S vari-
ant, but not ORF8 L84, induces IL-6 production in primary monocyte-derived macrophages
(MDMs) in the presence of poly(I:C). However, neither ORF8 84L and L84S combined
with poly(I:C) induced or inhibited IFN-β production. This observation appears to be at
odds to our findings and may be explained by differences in cell types. Although we did
not test ORF8 L84 in our assays, these findings suggest that ORF8 L84S can induce IL-6
production in mono-DCs and MDMs, likely in a sequence-specific manner. We believe
that the most plausible explanation for these findings is that ORF8 acts through one or
more cellular PRRs which sense dsRNA (poly(I:C)), such as TLR3, RIG-I, or MDA5 [115],
increasing IFN-β and IL6. TLR3 localizes to both the plasma membrane and the endosome
in HEK-293 cells [116] 64, 65, and 71 but is exclusively intracellular in immature dendritic
cells (iDCs) [117]. Coupled with our observation that activation of IL-6 occurs in HEK-
293 cells with media-supplemented poly(I:C), but only upon transfection in mono-DCs
(Figure 1B,D); we hypothesize that ORF8 is acting through TLR3 (Figure 2). However, the
involvement of other PPRs that sense the SARS-CoV-2 RNA genome cannot be ruled out.

Consistent with this idea, the work by Ponde et al. (2023) demonstrated that ORF8
signaling depends on MyD88, the canonical adaptor for inflammatory signaling down-
stream of several TLR family members (TLR2, TLR4, TLR5, TLR7, TLR8, and TLR9), except
TLR3, which uses the adaptor TRIF [114] (Figure 2). However, recent evidence indicates
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that TLR3 might nonetheless use, at least in certain circumstances, the MyD88-mediated
pathway [118].
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Figure 3. IL-6 levels induced by ORF8 measured with enzyme-linked immunosorbent assay (ELISA)
assay. (A) Experimental design used for the experiment. (B) After 24 h post transfection, supernatants
from HEK-293 cells transfected with ORF8 and empty vector (PCAGGS), using Lipofectamine™ 3000
(Invitrogen, Waltham, MA, USA), were added onto mono-DCs, either alone (−), in combination with
Poly(I:C) (2 µg/mL) in the media (+med.), or transfected (+transf.). After 24 h, the supernatants
were collected and subjected to ELISA (R&D Systems) for IL-6. The bars represent the mean value
normalized by the control (empty supernatant).

Interestingly, it is not uncommon for viral proteins to enhance poly(I:C)- and viral
dsRNA-induced TLR3 signaling, as exemplified by polymerases from two genotypes of
hepatitis C virus and three viral capsid proteins (1bD21, 2a.m26–30, B-cp, Rcp, and H-
cp183). These proteins have the common ability to bind dsRNA [119]. It is possible that viral
proteins, released by cell lysis or secreted from infected cells, act as PAMPs binding to RNA
and/or cell surface or intracellular receptors after being taken up by cells, subsequently
activating innate immune responses.

Based on the available evidence, including our new findings, we believe that it is
necessary to investigate whether TLR3s or other PRRs are required for ORF8-activated
innate immune signaling.

9. Conclusions, Challenges, and Future Prospects

As discussed, there is plenty of evidence that ORF8 is a modulator of cytokine re-
sponses during SARS-CoV-2 infection. ORF8 has the capability to induce inflammatory
responses, yet conversely, several studies indicate that it inhibits type I Interferon, even
though not all studies have consistently supported this inhibition effect. These two activities
diverge from one to another between studies and the precise mechanisms, by which ORF8
functions are still not known. It is possible that ORF8 acts as an anti- and pro-inflammatory
factor in different phases of infection, at early and late stages, respectively, and more studies
need to be done to unveil the mechanisms of these observations. One important question is
if the release of secreted ORF8 activating inflammation has any benefit for the virus or if it
is just a consequence of viral replication contributing to immune pathology associated with
viral infection.
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During viral infection, many viral glycoproteins, viral RNA, and other viral proteins
are recognized by cellular PRRs, stimulating cytokine and chemokine production, and
consequently, the virus has several strategies to block this response. The outcome of
the interplay between host immunity and viral countermeasures dictates the degree of
virulence as well as the nature of the immune response. The antiviral effects of cytokines
are important in controlling viral infection and for host survival. Moreover, viral induction
of cytokines inhibiting viral replication may also represent a strategy that viruses have
evolved to reduce their visibility to the immune system and, therefore, promote viral
persistence by escaping immune recognition. There is plenty of evidence to suggest that
ORF8 has the capability to induce inflammatory responses, mainly IL-6, likely contributing
to ‘cytokine storm’-related disease. In this regard, it will be important to elucidate if
ORF8 indeed acts as a virokine to modulate immunity upon its secretion, as in the case of
activation of the IL-17 RA cascade [30,112]. It is possible that ORF8 also acts as a secreted
PAMP that is recognized by cell PRRs, activating inflammatory responses independently of
cellular infection. In fact, other SARS-CoV-2 proteins might function as PAMPs and induce
signaling through TLRs, such as the S1 subunit [120] and the E protein [121], which induce
neuroinflammatory responses through TLR4 and TLR2, respectively.

Notably, in our studies, ORF8 only induced IL-6 production in the presence of poly IC.
One might speculate that when high levels of viral replication are achieved, secreted ORF8
(ORF8 L84S) is able to induce cytokine expression, in the presence of viral RNA released
by infected cells, in order to control the virus and benefit viral persistence by escaping
immune recognition, a hypothesis that requires more investigation.

We have commented here about the current data indicating that ORF8 interferes with
the immune response, and we pointed to a number of unanswered questions that might be
addressed in future studies. To summarize, one of the major challenges in virology is to
clearly understand virus-induced signaling and how this affects viral replication and the
host-induced disease. In the case of SARS-CoV-2 ORF8, much work has been conducted,
showing several biological properties of this intriguing protein. However, future studies
are necessary to define its precise role in the pathogenesis of COVID-19.
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