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A B S T R A C T   

Tomographic imaging supports a great number of medical and material science applications. The collected 
projection data usually has different types of imaging artefacts and noise. Various image pre-processing and 
reconstruction methods are used to obtain volumetric datasets of high quality for further analysis. In order to 
minimise reconstruction artefacts, one can apply either filtering and/or data completion/inpainting techniques 
which can recover the data. Deep learning (DL) methods to remove artefacts and noise have been successfully 
applied in the past. In this paper, we present a novel approach based on conditional generative adversarial 
networks (cGANs) to remove stripe artefacts. The novelty of the presented technique is in how the training data 
for DL is extracted from the same tomographic dataset that needs recovery. We also provide new deterministic 
stripe detection and inpainting algorithms to support the development. The presented methods are compared 
with other stripe removal algorithms and applied to 3D and 4D high-resolution X-ray data collected at Diamond 
Light Source synchrotron, UK. The proposed DL method delivers reconstructed images with minimised ring 
artefacts while being a parameter-free approach. A similar DL strategy can also be applied to remove other types 
of artefacts in images.   

1. Introduction 

X-ray computed tomography (XCT) is a versatile non-invasive im
aging technique which supports many medical and material science 
applications [1,2]. The main physical principle of XCT is to collect 
2-dimensional (2D) radiographic projections by rotating the gantry of a 
scanner while keeping the scanned object fixed. Alternatively, one can 
rotate the object itself while keeping the detectors fixed, which is a 
set-up for synchrotron X-ray imaging. 

After a series of image radiographs/projections are collected, the 
three dimensional (3D) inner structure of an object can be resolved by 
using a reconstruction algorithm. Commonly used direct reconstruction 
methods include the Filtered Back Projection (FBP) algorithm for par
allel and fan-beam geometries, and the Feldkamp-Davis-Kress algorithm 
for cone-beam geometry [2]. 

Unfortunately, direct reconstruction techniques are not flexible 
enough to compensate for the variety of imaging artefacts and noise, 
which are a part of the collected data. This frequently results in various 
distortions in the reconstructed images due to unrealistic assumptions of 

the inversion model used for reconstruction [3]. 
There are two main strategies to deal with the problem of tomo

graphic data being inaccurate. The first approach is the pre-processing of 
the projection data before applying the direct reconstruction. The sec
ond is to use a more realistic mathematical model as a part of an iterative 
reconstruction method. Both approaches have their own advantages and 
disadvantages as it is shown in Table 1. 

Although iterative methods usually produce better quality recon
struction results as they rely on more rigorous mathematical models, 
they can be impractical for big data applications. 

In this paper, we focus on a series of data pre-processing strategies to 
eliminate certain artefacts that are routinely present in synchrotron X- 
ray data [4]. Stripe artefacts in projection data (in sinogram space) could 
be a result of different physical phenomena that affect the acquisition 
hardware. The list of possible factors is extensive, but the major 
contributor is usually scintillator defects [5]. Stripe artefacts contribute 
to the inconsistency of the collected data, and direct reconstruction will 
result in ring artefacts of different prominence in the reconstructed 
images. Iterative methods can minimise the ring artefacts by 
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incorporating a more complex model into the objective, but this usually 
results in a more complicated algorithm which is difficult to optimise 
and tune [6–8]. 

Recently, generative adversarial networks (GANs) have been suc
cessfully used for the more general problem of sinogram inpainting/data 
completion in tomography [9–12,13]. In our study, we mainly focus on a 
type of stripe artefact (‘unresponsive’ or ‘dead’ [5]) that suppresses all 
information about the underlying data, therefore the data needs to be 
recovered by data completion algorithms. Here we use a DL method 
based on a conditional generative adversarial network (cGAN) [14] to 
perform inpainting of the missing data in the stripe regions only. The 
conditioning of GANs is performed by knowing the exact location of an 
artefact in the image. This is implemented by using a novel stripe 
detection algorithm which is also presented. 

Since cGANs are a supervised DL technique, they require labelled 
training data. Having representative and generic training data can be a 
major hurdle in applying a DL method effectively. Here, we present a 
novel approach for extracting training data from the acquired raw data. 
This ensures a close proximity of the feature space of the trained model 
to the test data. To avoid over-fitting, we dilute the training data with 
data from different samples and demonstrate that the model can 
generalise well when applied to unseen data. 

We compare the presented DL technique and another novel 
inpainting method with two popular stripe removal filters. Notably, the 
majority of filters act on the whole image globally to remove an artefact, 
while we target only local areas where artefacts may be present. This 
minimises raw data changes which can lead to various distortions in the 
reconstructed images. 

The methods were applied to 3D and 4D (dynamic) real data 
collected at Diamond Light Source. 

2. Methods 

In this section, we present novel deterministic algorithms for stripe 
detection and data inpainting, as well as the neural network method
ology to perform data completion for missing data in stripes. 

2.1. Stripes detection approach 

In order to acquire the training dataset for the neural network, we 
need to establish where stripes are located in the data. This is needed to: 
a) identify stripe-free regions in the raw data; b) use stripe-free regions 
to simulate synthetic stripes and obtain targets and inputs for the 
training dataset; c) remove true stripes which were detected in the data. 

There are stripe-removal algorithms that use detection before 
applying a filter to minimise the artefacts [5,15]. Frequently, the 
detection problem is not decoupled from the filtering process and 
therefore it is hard to evaluate how well the detection algorithm per
formed. It is also critical to reduce the level of false alarms and therefore 
modifications of the raw data in areas where no artefacts are present. 
The detection methods which rely on averaging intensity along the 
angular axis in sinograms and detecting peaks in 1D signals [5] are too 
sensitive to various stripe-like features and frequently cannot differen
tiate between partial and full stripes. 

In order to establish a more robust and controlled stripe detection 

process, we have developed a novel stripe-detection algorithm. It is a 
non-local 3D method which helps to reduce the level of false alarms 
during the stripe detection process. The method can differentiate be
tween different types of stripes as well as features that belong to data 
and should be excluded. It is a versatile and parametrised algorithm 
which gives control over the sensitivity of a detection process to a user. 

The proposed method consists of two main parts: .  

1. Calculation of weights in the gradient space of the sinogram. 
2. Weights thresholding subject to morphological constraints to estab

lish a binary mask. 

In step 1, we calculate an image gradient using forward differences in x- 
direction as ∇xg(θ, x, y) = g(θ, x + h, y) − g(θ, x, y) of normalised 3D 
projection data g(θ, x, y). Here (x, y) coordinates are the horizontal and 
vertical coordinates of the 2D detector plane, respectively. In sinogram 
space, chosen x-direction aligns with the horizontal detector axis and 
orthogonal to the angular θ-axis. 

For every element of the gradient ∇xg(x), x = (θ, x, y), we apply a 
specially designed 3D stencil centred around voxel x, depicted in Fig. 1. 
We define a mean μ(∇xg)ΩA,B,C 

for A, B and C stencil regions respectively 
and calculate the following weights: 
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(2)  

and the final weight is calculated as ω(x) = min(ω1(x),ω2(x)), and the 
obtained weights are in the range ω ∈ (0, 1], where smaller weights 
represent more prominent stripes in the data. 

In order to minimise the amount of false alarms detected, we further 
apply a 1D median filter to ω in θ-direction, with a kernel size that de
pends on the length of stripes we expect to have in the data. 

The general idea for this method is to exploit the fact that the 
gradient jump in x-direction should be significantly larger than in 

Table 1 
Cons and pros of the data pre-processing and direct reconstruction compared to 
iterative reconstruction.   

Pre-processing/Direct recon. Iterative reconstruction 

Pros: Computationally efficient Practical 
for big data More controllable Less 
parameters involved 

Mathematically accurate A higher 
quality solution Versatile 

Cons: Heuristic Raw data modification Computationally challenging More 
parameters involved Fine tuning is 
problematic  

Fig. 1. 3D detection stencil which consists of a 2D 3 × 3 kernel A, which is 
parallel to θ-direction and two 1D 1 × 3 kernels B and C, which are parallel to 
detector’s x-direction. The stencil is centred around a voxel x at the centre of 
the stencil A (hidden). 
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θ-direction when the stripe is present. The non-local nature of the pre
sented stencil (see Fig. 1) ensures a robustness to noise for more accurate 
edge detection. The result of applying this method can be seen in Fig. 2 
(middle). See that the detected stripes have weights around 0.5 while 
the rest of the data is more than 0.6. 

In the step 2 of the detection method, in order to obtain a binary 
mask M (x), we process the estimated weights ω(x) by applying a 
thresholding process with additional morphological constraints. In 
Fig. 2 (middle) one can see that there are vertical features that belong to 
stripes but also to sample data (e.g. two features at the bottom right 
section of the image). The aim is to build a mask that would only have 
stripe artefacts and useful data features are excluded, meaning that we 
cannot accept any prominent vertical boundary to be a stripe. 

The method in step 2 checks the consistency of weights ω(x) in three 
dimensions in order to generate a mask M (x). We parametrise stripes by 
having geometrical constraints for length, width and depth (L, W, D). We 
assume that stripes do not usually extend deep (D constraint) compared 
to sample features and also can be reasonably lengthy (L constraint). The 
stripes are also usually not very thick (W constraint). 

First we test every weight element ω(x) that it is bellow a given 
threshold T. Then we test if the geometrical constraints above hold for 
the weight candidate and reject it if they are not met (3). The L, W, D 
parameters can be roughly estimated from the dimensions of the input 
data and the type of stripes present. Once they are established, they 
usually remain fixed for other datasets with the same dimensions and 
similar stripe features. For our experiments with data dimensions 
1801 × 2160 × 2560 voxels, we fixed them as L = 600; W = 22; D = 33 
in pixel units. While accepting insignificant deviations from the L, W, D 
values (sensitivity), we reject features that are shorter than L, thicker 
than W and deeper than D based on the obtained weights ω(x) (3). 

M (x) =
{

1, if ω(x) ≤ T s.t. geometrical constraints : L,W,D
0, otherwise. (3)  

Here T is a user defined threshold which controls the sensitivity of the 
detection. Usually the values between 0.5 and 0.7 provide good results; 
we used T = 0.63 in all our experiments. 

Fig. 2 (right) shows the resulting binary mask where one full and one 
partial stripe artefacts detected. Notably all other features, even those 
with the weights bellow the threshold T, have been excluded as they did 
not satisfy the imposed geometrical constraints. 

We tested this method extensively on different samples when 
generating training data for the DL inpainting approach (see Sec. 3.2). 
The method is proven to be reliable to detect different types of stripes in 
the data with a low level of false alarms. 

The presented method for stripes detection and mask generation is 
implemented in C language and integrated into open source TomoPy 
package with Python interface [16]. 

2.2. Data inpainting method 

Many inpainting techniques are based on various diffusion models, i. 
e. a subject to a solution of a partial differential equation (PDE) [17,18]. 
The PDE-based methods, however, frequently blur the inpainted region 
and also require implementing non-trivial iterative numerical schemes 
to ensure convergence stability. The expensive iterative PDE evolution 
can be also time-consuming and impractical for large data sizes in ma
terial science. Some inpainting methods try to predict the direction of 
smoothing [19,20], but for complex samples this is rarely possible. 

The proposed inpainting method was designed with several targets in 
mind: effectiveness, stability, minimum of free parameters and compu
tational feasibility for big data. It is a morphological approach, similar to 
methods in [21,22]. 

Let Ω be the region to be inpainted in the sinogram g(θ, x, y) and ∂Ω 
defines a one-voxel thick boundary between the missing data and the 
available data (see Fig. 3). For stripe artefacts, the ∂Ω boundaries are 
located on the opposite sides of the inpainted region Ω. In iterations, the 
boundary ∂Ω gets updated with new values and the front propagates 
until it merges with another boundary. 

We define a 3D non-local searching window N(x) for each boundary 
voxel such that x ∈ ∂Ω as (2N s(x) + 1)3, where N s is the half-width of 
the window. The inpainting algorithm propagates a random element 
N(x′) ∕∈ Ω into the point x ∈ ∂Ω. It is also possible to propagate mean or 
median of values in the neighbourhood N(x) (implemented in the 

Fig. 2. The results of applying stripe detection algorithm to sinogram data. Left image shows a sinogram with two stripes present, one full (around 1100 on the 
horizontal x-axis) and one partial and weaker (around 1650); Middle image shows the result of applying step 1 to calculate weights; Right image demonstrates the 
binary mask obtained from the weights. Note that this detection method was able to detect artefacts of different length and intensity and reject false alarms (features 
that belong to the sample) at the same time. 

Fig. 3. The image shows the process of inpainting the missing data in the Ω 
stripe region. The boundaries ∂Ω are located on the opposite sides of Ω and they 
contract in iterations while getting inpainted. Non-local window N(x) ∈ ∂Ω 
defines the area where a random element N(x′) ∕∈ Ω is selected for inpainting. 
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method), however, for this study we used only the random assignment 
method. 

The proposed approach has only two free parameters N s - the half- 
size of the searching window and the number of iterations to raster 
through the already inpainted area (relates to the smoothing effect). For 
our experiments we used N s = 5 and the number of iterations equals to 
5. The window N s should be relatively small to avoid N(x) containing 
neighbours that are too distant (see Sec. 5). 

To minimise the presence of outliers that can be generated by 
random selection, we apply a Gaussian filter after every iteration of the 
algorithm. 

Overall the proposed technique is simple and fast, yet generally 
effective, as we show in Sec. 4. The main idea of the method is to sample 
values from the neighbourhood of usable data. This method reduces the 
amount of blurring and regions overspilling compared to inpainting 
methods based on PDEs (e.g. linear or non-linear diffusion) or averaging 
(see Fig. 4). 

In Fig. 4, the morphological inpainting based on the mean value 
results in a blurred area with a significant level of intensity overspilling 
(see the diagonal edge area where brighter intensities merged into 
darker ones). The median-based inpainting reduces the overspilling, but 
introduces the vertical artefact where contracting boundaries meet 
during inpainting process. This can be minimised by using larger kernels 
N s ≥ 7, but the computational speed will decrease substantially. The 
proposed method based on the random value shows more naturally 
looking inpainted region with less overspill. The inpainting with cGAN 
shows an accurate recovery with the direction of features preserved and 
without intensity spill. It is also the most natural looking inpainted area 
without smoothing. 

2.3. Conditional generative adversarial networks 

2.3.1. Objective function 
GANs were first proposed in [23] as a minimax game consisting of 

two players; a Generator G and a Discriminator D. The goal of the 
Discriminator is to classify images as either real or generated. The goal 
of the Generator is to fool the Discrminator into classifying its generated 
data as real. Formally, this can be written as: 

min
G

max
D

J GAN(G,D) = Ey[logD(y)] + Ez[log(1 − D(G(z)))] (4)  

where z is a vector of random noise and y is a sample from the real data 
distribution. 

Conditional GANs [24] are a variant of GANs that involve condi
tioning the Generator and Discriminator on some extra information x: 

min
G

max
D

J GAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z)))] (5) 

Following the approach of [14], we do not provide G with the 
random noise vector z, instead providing G solely with the conditional 
information x. This is because for the problem of ring artefact removal, a 
machine learning method should be as deterministic as possible. Any 
randomness in the Generator’s input could lead to randomness in the 
inpainted stripes, which in turn could cause artefacts in the re
constructions. Removing z decreases the stochasticity of the network. So 
we re-write Eq. (5) as: 

min
G

max
D

J GAN(G,D) = Ex,y[logD(x, y)] + Ex[log(1 − D(x,G(x)))] (6) 

In our case, x is a sinogram with stripe artefacts, and y is the same 
sinogram but without stripes (a target). In theory, given x, G will learn to 
generate sinograms that look as close to y as possible. Practically, 
however, this is not always true. GANs are notoriously difficult to train, 
and often lead to problems such as mode collapse or early convergence 
[25], affecting the quality of generated images. 

Following the approach of [14], we include an L1 loss term in the 
objective of G to stabilise training and to encourage generated images to 
look similar to real images in an absolute sense: 

J L1 (G) = Ex,y[‖ y − G(x)‖1] (7)  

The objective of the GAN now becomes: 

min
G

max
D

J GAN(G,D) + λL1 min
G

L L1 (G) (8)  

where λL1 is a weighting hyperparameter. 
Preliminary testing showed that networks struggled to generate 

sinogram images with the resolution required for a high quality recon
struction. To avoid this problem, a binary mask M (3) is used to indicate 
the locations of stripe artefacts, where 1 = stripe and 0 = no stripe. 

Rather than conditioning the GAN on the sinogram with stripes x, we 
condition it on the mask M x. Additionally, as the non-stripe areas of the 
sinogram have no artefacts and do not need changing, we add a final 
post-processing step to G so that only stripe areas of the input are 
changed. The final objective with these changes is as follows: 

min
Ĝ

max
D

J GAN(Ĝ,D) + λL1 min
Ĝ

J L1 (Ĝ) (9)  

where 

Ĝ(x,M x) = (1 − M x) ⊙ x + M x ⊙ G((1 − M x) ⊙ x), (10)  

and ⊙ is the component-wise multiplication. 
The process of conditioning generator G on a binary mask M x is 

shown in the Fig. 5 and the training process in Fig. 6. 
We also re-formulate the L1 loss term so that it is only calculated on 

stripe regions of the generated image. As shown in Fig. 5 and formulated 
in Eq. (10), non-stripe regions in the generated image get replaced by the 
corresponding non-stripe regions in the input image. As the input is 
identical to the target apart from the stripes, the absolute error on non- 
stripe regions will be 0. This will skew the L1 loss when averaged across 
every pixel, and so the Generator will suffer from vanishing gradients. 
Therefore, in the backward pass, G’s weights should only be updated 
with respect to their contribution to stripe regions. 

The mask-conditioned L1 loss can be expressed as: 

J L1 (G,M x) = Ex,y[‖ (M x ⊙ y) − (M x ⊙ G(x))‖1] (11)  

2.3.2. Network architecture 
We apply our models to patches of sinograms of size 1801 × 256, 

rather than whole sinograms. This splitting ensures that the angular 
dimension where the stripe lies is full and not cropped. Notably, this is 
different to the PatchGAN approach of [14], where they use the 

Fig. 4. Applying different types of morphological inpainting and the proposed 
cGAN inpainting to a missing data region in the sinogram. Notice the natural 
looking inpainted region while using cGAN compared to other methods. 
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receptive field of the discriminator to virtually split an input image into 
patches. We split every image in the dataset into patches as a 
pre-processing step, and design our network architecture around this. 

We used a U-Net generator [26] with eight encoding layers and eight 
decoding layers (see the top image in Fig. 7). Each encoding layer 
consists of a 2D convolution with kernel size 4, stride 2 and padding 1, 
followed by batch normalisation with ϵ = 0.001, and finally a leaky 
ReLU with slope 0.2. The first and final decoding layers don’t include 
batch normalisation, and the final layer has a normal (non-leaky) ReLU 

activation. The first encoding layer has 64 convolutional filters, which 
doubles every layer down to layer 4, where it remains at 512 until the 
final encoding layer. Each decoding layer consists of a 2D transposed 
convolution with kernel size 4, stride 2 and padding 1, followed by batch 
normalisation with ϵ = 0.001, and finally a ReLU activation. The final 
decoding layer doesn’t include batch normalisation, and uses a tanh 
activation. Additionally, the first three decoding layers include dropout 
with p = 0.5. Skip connections concatenate the output of an encoding 
layer with a decoding layer, which is then input to the next decoding 

Fig. 5. Diagram showing how the Generator is conditioned on a binary mask (Ĝ as described in Eq. (10)). Here Stripe is a sinogram with stripes, Mask is a binary 
mask indicating the locations of those stripes, and Inverse Mask is the negation of Mask. The symbol ⊙ represents element-wise multiplication, and + represents 
element-wise addition. 

Fig. 6. The training procedure for objective function optimisation. Here Clean is the same sinogram as Stripe without stripes. Joint Loss represents the weighted 
summation of adversarial and L1 loss in Eq. (9). Solid lines indicate the forward pass, dotted lines indicate the backward pass. 
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layer. The first four decoding layers have 1024 convolutional filters, 
after which the number of filters halves up to layer 7 with 128 filters, 
followed by the final decoding layer which has 1 filter, outputting a 
single-channel greyscale image. 

Our discriminator architecture mirrors that of the generator’s 

encoder (see the bottom image in Fig. 7). It has eight layers, each con
sisting of a 2D convolution with kernel size 4, stride 2 and padding 1, 
followed by batch normalisation with ϵ = 0.001, and finally a leaky 
ReLU activation with slope 0.2. The first and final layers don’t include 
batch normalisation, and the final layer’s activation is a sigmoid 

Generator
Conv+LeakyReLU

Legend:

Conv+BatchNorm+LeakyReLU
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Fig. 7. The architecture of the Generator (top) and the Discriminator (bottom).  
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function. The number of convolutional filters for the discriminator be
gins at 64, and doubles every layer up to layer 4 with 512 filters. Layers 
5, 6, and 7 have 512 filters, and the final layer has 1 filter, outputting a 7- 
dimensional vector. The final output probability of D is calculated as the 
mean of the components of this vector. 

We optimise our models using Adam optimisation algorithm [27] 
with learning rate α = 0.0002, β1 = 0.5, β2 = 0.999 and ϵ = 10− 8, and 
we set the weighting parameter λL1 = 100. 

3. Data generation 

3.1. Data collection 

Measurements were collected at the Beamline I12-JEEP [28] at 
Diamond Light Source Ltd. A high-resolution pco.edge camera (Photon 
Lines Ltd.) with optical module 2 (pixel size 7.91 × 7.91 µm) was used 
for data collection with LuAG:Ce scintillator. The monochromatic X-ray 
radiation with energy E = 55 keV was selected. The detector resolution 
in pixels is 2160 × 2560. 

The dynamic process of liquid flow (colloidal solution of CaCO3 in 
water) through highly porous sandstones (with random pore sizes from 
micron size up to approx. 2 mm in diameter) was used as a model 
experiment. Calcium carbonate was used as a contrast agent due to 
relatively high X-ray absorption. High-resolution tomographic scans of 
pure sandstones in transparent vials were performed before each dy
namic experiment at different heights with vertical step 0.1 mm over a 
vertical translation of 2 mm. This means data can be recorded for mul
tiple overlapping volumes with scintillator defects covering different 
features of the sandstone at different vertical translations. 

A large amount of flats (200 frames) and darks (200 frames) were 
collected before each dynamic experiment, and during each dynamic 
experiment only projections were acquired. The tomography stage was 
continuously rotated at a fixed vertical translation for the duration of the 
dynamic experiment, allowing continuous acquisition of tomography 
data (1801 projections per tomography) with gaps. The calcium car
bonate solution was slowly injected into the transparent vial with 
sandstones via a remotely controlled syringe pump (Harvard Apparatus) 
with 20 ml syringes. After the injection of the solution, the slow diffu
sion process of the contrast agent CaCO3 into the pores of sandstones 
was observed in reconstructed tomography data. The total length of each 

dynamic experiment exceeded 20 min, allowing the completion of the 
diffusion process. 

In order to improve model generalisation, the datatset must include 
broader, more diverse samples. Two external datasets [36,37] were 
used: one was included in the training set [36], and another was used to 
analyse the model’s performance on unseen data [37]. Two samples of 
the sandstone data that was used for training were uploaded to Zenodo 
[38]. 

3.2. Data generation 

The training and testing datasets were created from five tomographic 
scans (see Sec. 3.1). To ensure successful training, pairs of artefact-free 
target images (‘clean’) and input images containing stripe artifacts 
(‘stripe’) were obtained (see Fig. 8). Each patch in a target-input pair 
must be identical apart from the simulated stripes, therefore the patches 
that contained stripes were excluded. 

We generated our training dataset as follows: . 

1. Applied the stripe detection algorithm (see Sec. 2.1) to the full vol
ume of 1801 × 2160 × 2560 voxels to get a binary mask with the 
detected stripes.  

2. Split each 1801 × 2560 sinogram into ten 1801 × 256 rectangular 
patches. Note that we preserved the full angular dimension (1801) in 
order to ensure the completeness of a stripe.  

3. For each patch, retrieved the corresponding mask from the full mask 
volume. If the sum of the mask was > = 1, then the patch contained a 
stripe and was discarded.  

4. Using only ‘clean’ patches, added simulated stripes of various width 
to the data using TomoPhantom software [29]. 

We also cropped out patches that did not contain any structural in
formation or solely contained noise, as these are not useful for training 
and could affect the model’s performance. Ultimately, we ended up with 
75,487 target/input pairs, which were split into train, validate and test 
sets with ratio 3: 1: 1. This meant we had 45,293 training images, 15,097 
validation images, and 15,097 testing images. We used a batch size of 
16, giving 2831 training batches, 944 validation batches, and 944 
testing batches. 

Fig. 8. This diagram shows the process of generating training data from real tomographic measurements for the subsequent use in the deep learning training. The 
stripe detection algorithm (see Sec. 2.1) helps to identify the ‘clean’ and ‘stripe’ data patches. Using the ‘clean’ data patches (no stripes present), the stripes are 
simulated and the pairs of targets and inputs are generated. 
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4. Results 

4.1. Software 

NoStripesNet1 is a software package containing the Python code 
which reproduces results presented in the paper. It is written using the 
machine learning framework PyTorch [30] and consists of modules for 
data generation, pre-processing, model training and visualisation. 

The model was trained for 100 epochs on 16 NVIDIA P100 GPUs, 
split across 4 nodes of a computer cluster. This parallelism was accom
plished using PyTorch’s DistributedDataParallel module, which in turn 
uses the NVIDIA Collective Communications Library. Training in this 
manner allowed us to achieve a speed of 4.9 times that of single-node, 
single-GPU training. The total training time was 18 h. 

A graph of Generator and Discriminator losses can be seen in Fig. 9. 
The graph shows expected behaviour from the two networks; whenever 
Discriminator loss drops, Generator loss rises, reflecting the adversarial 
nature of GANs. Interestingly, the Discriminator was quite stable for the 
first 10 epochs as its loss did not vary much. This could be because, in the 
early epochs of training, the Discriminator had not yet learnt how to 
distinguish between real and fake images and mostly outputted a 
probability of 0.5. This would result in a binary cross entropy loss of 
0.693, which is similar to that which is shown in Fig. 9. The model was 
then evaluated on the testing dataset, achieving a peak-signal-to-noise 
ratio (PSNR) of 45.114 for the whole region of interest (ROI). See 
more detailed analysis for separate ROIs in Tables 2 and 3. We also 
calculated the structural similarity metric [31], which resulted in values: 
0.9851 for the whole ROI, 0.85 for the ROI with simulated stripes only 
and 0.91 for the ROI when stripes were inpainted using GANs. 

We also trained our model for 100 more epochs, totalling 200, to 
assess whether more training would lead to better results. Fig. 10 shows 
the losses for the full 200 epochs. 

One can see that training for more than 100 epochs led to worse 
model performance. Generator loss increases and Discriminator loss 
decreases rapidly, meaning the Discriminator is better able to tell the 
difference between real and fake images, which in turn means the 
Generator produces worse outputs. Therefore, we opted to use the model 
trained for 100 epochs when calculating any further results. 

4.2. Stripes removal for real data 

We measured the performance of the model in two ways. First, we 
applied the model to synthetic stripes on real-life data. This means we 
have a ground-truth ‘clean’ image with no stripes which can be used as a 
reference to perform a quantitative analysis. Second, we applied the 
model to real-life stripes. As there is no usable reference image in this 
case, only a qualitative analysis can be performed. 

We also compared the model’s performance to the algorithmic 
inpainting method described in Sec. 2, as well as two popular ring 
removal methods: Fourier Wavelet (FW) filtering [32], and algorithm 
no. 3 from [5] (Sorting). 

4.2.1. Removing synthetic stripes 
We used the simulated synthetic stripes from Sec. 3.2 to evaluate the 

ring removal methods. We created two volumes from this data; one that 
contains no artefacts (‘clean’) and another that contains synthetic stripes 
(‘stripe’). We applied all methods to the ‘stripe’ volume, and then 
calculated the root mean squared error (RMSE) between the clean vol
ume and the method’s output. We calculated RMSE (see Table 2) in 
three different ways: on the whole sinogram, just stripe regions, and just 
non-stripe regions. Parameters for each method were optimised in a way 
to produce the lowest RMSE for the whole and the stripe region 
respectively. 

As shown in Table 2, the algorithmic inpainting had the lowest RMSE 
and cGAN inpainting very close to it, meaning it was able to most 
accurately restore the artefact areas to their original values. Both 
inpainting methods had an RMSE of 0 in non-stripe regions, as they only 
change data in stripe regions. This reflects one of the main differences 
with ring removal filters where the whole data is modified. Generally the 
latter should be avoided or minimised, but with filters this is rarely 
possible (see more on this in Sec. 5). 

The FW filtering method had the highest RMSE of all for whole 
sinograms and non-stripe ROIs. However, the sorting method had the 
highest RMSE for stripe ROIs. The FW method applies filtering in the 
Fourier space, after the Wavelet transform. It is possible that useful data 
components can be suppressed (filtered out) with the damping of ver
tical artefacts. The sorting method relies on the size of the median filter 
kernel for smoothing, which is related to the thickness of stripes present 
in the data. As the kernel of the filter is shift invariant, it is difficult to 
accommodate stripes of variable thickness with this algorithm (there is a 
separate algorithm for larger stripes in [5]). 

We also performed a qualitative analysis of stripe removal perfor
mance for synthetic stripes, the results of which can be seen in Fig. 11. 
We show the output of each method for a particular stripe sinogram, as 
well as the residual between each output and the equivalent clean 
sinogram. As expected, the two filtering methods (FW and sorting) 
change both stripe and non-stripe ROIs, whereas the inpainting methods 
only change stripe ROIs. Interestingly, FW filtering appears to make lots 
of medium intensity changes to the image as a whole, as shown by the 
mostly uniform purple residual. This explains why its RMSE for stripe 
and non-stripe ROIs are within the same order of magnitude, unlike the 
other methods. The sorting method is able to smooth out and remove 
small, high frequency stripes, which none of the other methods are able 
to do. However, it also makes changes to non-stripe regions, as shown by 
the high intensity areas around the centre of the image. 

In Table 3 we present a quantitative analysis of the reconstructed 
images with the simulated stripes using GridRec [33] reconstruction 
method from the TomoPy package [16]. Interestingly, in the recon
structed images applying the sorting algorithm resulted in the highest 
RMSE with the FW method close to it. Then the lowest value achieved 
using the algorithmic inpaiting and the cGAN method is slightly behind 
it. Although metric-wise the cGAN method is slightly underperforms 
compared to algorithmic inpainting, visually it is difficult to assess with 
certainty which one is better as we demonstrate it in the following 
section. 

4.2.2. Removing real stripes 
We use the normalised tomographic scan volume to analyse the 

performance of each method on real-life stripes. In order to know which 
sinograms contain real stripes, and so that the inpainting methods have 
masks to use, we use the 3D mask volume created using the stripe 
detection algorithm in Sec. 2.1. 

Similar to synthetic stripes, in Fig. 12 we show the output of each 
method and its residual. There is no clean image to use as a reference, so 
the residual is instead calculated between the stripe image and the 
output of each method. This means that the residuals in this section 
represent how much each image was changed, rather than how close 
each image was to being artefact-free. 

In Fig. 13, we also demonstrate the GridRec reconstruction applied to 
filtered and inpainted data from Fig. 12. 

Similar to synthetic data, FW filtering seems to uniformly effect 
almost the entire image, and the reconstruction residual is also very 
high. This filtering causes additional artefacts, as the centre of the image 
is darker than the outer section. The sorting method effectively removes 
the stripes, as can be seen by the two bright vertical lines in the centre of 
the residual. However, it also has an effect on non-stripe data, as residue 
of the sinogram can be seen in the residual. In the reconstruction space, 
the sorting method has a more local effect, however there is still some 
non-stripe information being changed in the centre of the residual. The 1 https://github.com/dkazanc/NoStripesNet 
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thicker rings are not fully removed with this method (see the magnified 
reconstructed images in Fig. 14). 

The two inpainting methods successfully restore the data only within 
stripe regions, as can be seen in the reconstructions. Both of the methods 
suppress the rings effectively, but the algorthmic inpainting introduces 
some streaks into the reconstruction (more obvious in Fig. 14), whereas 
the cGAN inpainting does not. The cGAN reconstruction residual, 
however, does seem to have slightly larger residue values than algo
rithmic inpainting. 

4.3. Model generalisation 

We performed two tests to analyse how well the cGAN model is able 

to generalise to data unseen during its training. 
One possible application of the proposed DL stripe removal method is 

in-situ dynamic tomographic imaging experiments [1]. Specifically, the 
studies of fluid dynamics processes in porous media [34,35]. The ‘dry’ 
tomographic scan for DL training can be initiated in the beginning of the 
experiment and the obtained model can then be used to process dynamic 
scans. In this case, the changes in the sample structure are not significant 
and we would expect the model to perform well. 

Another test for model generalisation capabilities involved a totally 
new sample, with structure dissimilar to anything in the model’s 
training dataset. In this case, it is unclear if the model will perform well. 

4.3.1. Generalisation to dynamic data 
In this case study, we applied the proposed method to a dynamic 

tomographic scan of a sandstone rock which had a solution of calcium 
carbonate dripped through it during the scan (see Sec. 3.1). Notably, the 
‘dry’ scan of the same sample was included in the training data; we did 
not train on any of ‘wet’ data. The results are presented in Figs. 15 and  
16. 

Similar to Sec. 4.2, the two filtering methods change sample infor
mation in addition to artefact information. The sorting method is 
somewhat successful, suppressing, but not removing, the artefact 
entirely. The inpainting methods are both quite effective, and the 
algorithmic inpainting does not seem to introduce streaks here. In 
general, both inpainting methods seem to work quite well and the cGAN 
inpainting generalises well in this case of applying the model to unseen 
dynamic data. 

4.3.2. Generalisation to unseen data 
Here, we applied the cGAN model to unseen data sourced from [37], 

which is a totally different sample from those which are used in the 
training set. The scan was pre-processed using the dataset creation 
routine detailed in section 3.2. The other stripe removal methods used 
for comparison in section 4.2 were also applied to this dataset, and the 
results are shown in Figs. 17 and 18. 

Fig. 9. Generator and Discriminator losses during training for 100 epochs. Generator loss is in blue with values on the left side of the graph, and Discriminator loss is 
in orange with values given on the right side of the graph. Generator peaks correspond to Discriminator troughs, and vice versa, which is expected due to the 
adversarial nature of GANs. 

Table 2 
Root mean squared Error (RMSE) on synthetic stripes of Fourier Wavelet (FW) 
filtering [32], algorithm no. 3 from [5] (Sorting), the algorithmic inpainting 
method described in Sec. 2.2, and the cGAN model. RMSE was calculated on the 
whole image (whole), just stripe regions (stripe) and just non-stripe regions 
(non-stripe). Notably the algorithmic inpainting provides the best result and the 
cGAN model inpainting is close to it in terms of RMSE. Both methods rely on the 
detection algorithm and therefore do not change the data outside the mask, 
hence RMSE in non-stripe ROI is zero for both.  

Method RMSE (whole) RMSE (stripe) RMSE (non-stripe) 

Fourier Wavelet  2066.95  3013.01 2017.49 
Sorting  677.88  3220.45 206.98 
Alg. inpainting  161.54  804.29 0 
cGAN Model  204.40  1017.64 0  

Table 3 
Root mean squared Error (RMSE) of the reconstructed volumes.  

Method: None FW Sorting Alg. inpaint. cGAN Model 

RMSE 0.024 0.012 0.014 0.0064 0.0088  

Fig. 10. Generator and Discriminator losses during training for 200 epochs. Generator loss is in blue with values on the left side of the graph, and Discriminator loss 
is in orange with values given on the right side of the graph. Notably, the performance worsens after 100 epochs, hence we used the model from the 100th epoch. 
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Fig. 11. Results of various methods on synthetic stripes. Top row shows sinograms, bottom row shows residuals between the output of each method and the ground 
truth clean sinogram. 

Fig. 12. Results of various methods on real stripes. Top row shows sinograms, bottom row shows residuals between the output of each method and the 
stripe sinogram. 

Fig. 13. Results of various methods on real stripes. Top row shows reconstructions, bottom row shows residuals between the output of each method and the stripe 
reconstruction. 

Fig. 14. Enlargement of ring artifact region in Fig. 13.  

D. Kazantsev et al.                                                                                                                                                                                                                              



Tomography of Materials and Structures 4 (2024) 100019

11

The model is quite successful at removing both stripes, however 
some residue of the larger stripe on the bottom can still be seen in 
Fig. 18. This residue is also present in the algorithmic inpainting, while 
both filtering methods fail to entirely remove the stripe. FW changes the 
whole image, which is shown especially well in the residual of the 
reconstruction. These residuals also show that the cGAN inpainting 
produces less streaks in reconstruction space than the algorithmic 
inpainting, even on data the model has not been trained on. 

These tests show that the cGAN model is able to generalise quite well. 
It is able to successfully remove most artefacts and replace them with 
accurate, realistic data consistent with the rest of the sample, even when 
no similar samples exist in the training dataset. However, sometimes the 
model struggles to remove some artefacts, but the other methods can 
also be prone to errors (see Sec. 5). 

5. Discussion and conclusions 

In this paper, we presented three novel algorithms that were used to 

detect and suppress vertical stripe artefacts in sinograms. We used a 
novel stripe detection algorithm to locate the stripes in the data, which is 
a crucial step in identifying stripe-free regions which were used for deep 
learning training to inpaint the data. This approach makes it possible to 
re-use the collected raw data for training and apply the model to the 
same or similar unseen data. We demonstrated cases of successfully 
applying the network to dynamic in-situ data as well as to unseen data. 

Arguably, data inpainting approach is not a generic solution for 
stripe or ring removal problems. There are cases when useful data in 
stripe regions can be restored almost exactly, without the need for new 
data generation. There are, however, situations when stripes in the data 
are severe (‘unresponsive’ or ‘dead’ stripes) and there is no any useful 
underlying information that can be used for a more gentle restoration. In 
this case, the presented data completion/inpainting methods would be 
the best choice. Furthermore, the detection of severe stripes could be a 
simple thresholding problem without the need of a sophisticated stripe 
detection algorithm. 

Unfortunately, it is still problematic to come up with a generic stripe 

Fig. 15. Results of various stripe removal methods on a dynamic tomographic scan. The top row shows sinograms, and the bottom row shows the residual between 
each sinogram and the sinogram with stripes (top left). 

Fig. 16. Results of various stripe removal methods on a dynamic tomographic scan. The top row shows reconstructions, and the bottom row shows the residual 
between each reconstruction and the reconstruction with stripes (top left). 

Fig. 17. Results of various stripe removal methods on tomographic data unseen by the cGAN model during training. The top row shows sinograms, and the bottom 
row shows the residual between each sinogram and the sinogram with stripes (top left). 
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removal method that would work equally well for all types of stripe 
artefacts. We are interested to explore the possibility of detecting and 
classifying different artefact types so that a particular stripe removal 
method can be applied. It is questionable if the whole process of stripes 
detection and restoration should be a part of one neural network. In this 
study, to make the problem less complex, we intentionally decoupled the 
general detection-removal problem so to specifically investigate the 
capabilities of the network to inpaint the data competitively. 

In addition to the conditional generative adversarial network for 
inpainting, we presented a new algorithmic inpainting method, which 
delivers competitive results. Although the development of such algo
rithm was not the main goal of this paper, we demonstrated the superior 
performance of the method in terms of quantitative metrics compared to 
the deep learning method. Qualitatively, however, it is arguable which 
method performs better. The reconstruction using the algorithmically 
inpainted data, produces more streak artefacts than the deep learning 
method. 

Possible improvements of the algorithmic inpainting could be more 
intelligent, rather than random, sampling. For example using Markov 
random field ideas of contextual connections in the images. This might 
have a better restorative effect on the existing boundaries in the data. 
Another interesting development will be to make the searching neigh
bourhood window in the method to be shift variant based on the dis
tance from the region of usable data. 

We would also like to add that the presented approach of collecting 
the training data using the available raw data and then applying the 
neural network, can be extended to other tomographic problems: 
removing metal artefacts or highly absorbing inclusions, removing 
outliers or clusters of outliers, and potentially other erroneous features 
in the data that can be detected and simulated. 
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