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Abstract
Recent years have seen a tremendous growth in Artificial Intelligence (AI)-based methodological development in a broad 
range of domains. In this rapidly evolving field, large number of methods are being reported using machine learning (ML) 
and Deep Learning (DL) models. Majority of these models are inherently complex and lacks explanations of the decision 
making process causing these models to be termed as 'Black-Box'. One of the major bottlenecks to adopt such models in 
mission-critical application domains, such as banking, e-commerce, healthcare, and public services and safety, is the diffi-
culty in interpreting them. Due to the rapid proleferation of these AI models, explaining their learning and decision making 
process are getting harder which require transparency and easy predictability. Aiming to collate the current state-of-the-art 
in interpreting the black-box models, this study provides a comprehensive analysis of the explainable AI (XAI) models. 
To reduce false negative and false positive outcomes of these back-box models, finding flaws in them is still difficult and 
inefficient. In this paper, the development of XAI is reviewed meticulously through careful selection and analysis of the 
current state-of-the-art of XAI research. It also provides a comprehensive and in-depth evaluation of the XAI frameworks 
and their efficacy to serve as a starting point of XAI for applied and theoretical researchers. Towards the end, it highlights 
emerging and critical issues pertaining to XAI research to showcase major, model-specific trends for better explanation, 
enhanced transparency, and improved prediction accuracy.
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Introduction

A Brief Historical Perspective

Artificial Intelligence (AI) technology is finding its way 
into transforming various application domains [1, 2]. These 
machine learning (ML) and deep learning (DL)-empowered 
methods are proving their dominance with their utilisation 
going from automated chess-playing computers to self-
driving cars. The implementation of DL-based methods in 
the field of computer vision (CV) has been very successful 
and outperformed traditional methods. Human beings have 
been defeated for the first time in related open challenges 
[3] (e.g., ImageNet image-classification [4], COCO object-
detection [5]) since the introduction of AlexNet [6]. Follow-
ing their success, DL methods gradually got employed in 
numerous fields, such as natural language tasks which 
involved automated translation [7] and visually-guided ques-
tion answering [8]. One of the significant milestones was 
witnessed in 2016 when an AI player AlphaGo [9, 10], was 
able to defeat the human world champion Sedol Lee in a 
game of Go. Since then, deep reinforcement learning (RL)-
based programs and applications have been developed to 
determine the degree to which they can compete with human 
champion players in various games like Texas hold’em poker 
[11] and Dota 2 [12]. Taking into consideration the revolu-
tionary success of AI, researchers predict that it will snow-
ball in the next few years, reaching $190.61 billion market 
value in 2025 [13–15]. Consequently, the proliferation of 
AI has made people think, “How comfortable are we trust-
ing blindly on these AI-generated predictions and results? 
Who will be held accountable when things go wrong?” It is 
essential to note that the highly efficient predictions of AI 
models are derived from Deep Neural Networks (DNNs) 
which originate from extremely complex non-linear statisti-
cal models and innumerable parameters, thus compromis-
ing the aforementioned algorithms’ transparency [16, 17]. 
Due to this, AI algorithms suffer from opacity i.e., the situ-
ation in which a system is unable to offer any reason or suit-
able explanation involved behind its decisions, commonly 
referred to as “the black-box problem.” A black-box nature 
is poorly understandable by humans. Entrusting crucial 
decisions to a black-box model creates a necessary need for 
AI algorithms to be explainable for their decision-making 
process [18].

Over the last few years, ML-based predictions have faced 
a lot of scepticism, especially when it comes to life-changing 
decisions such as the early detection of a terminal disease in 
the healthcare field or AI-engineered military drones. The 
topic of how to explain ML predictions has generated a lot 
of discussions [19]. Methods and techniques have advanced 
at such a rapid rate that a new field has been created around 

them: explainable artificial intelligence (XAI). The field 
seeks to develop AI systems that not only provide accurate 
predictions but also provide explicit and interpretable expla-
nations for their decisions and actions, thereby making them 
more trustworthy for human users.

XAI aims to equip engineers with extensive resources to 
understand the elusive black-box nature of AI, emphasising 
transparency and the interpretability of AI models employed 
to reach conclusions. [20].

Objectives and Structure

Existing surveys [21–24] focus on answering “What, Why, 
and How” to encompass all aspects of XAI. The “What” tries 
to explain the existing definitions of explainable AI and the 
importance of explaining a user’s role. The “Why” provides 
an overview of key factors driving XAI research, including 
building trust, meeting regulatory requirements, identifying 
bias, ensuring generalisation in AI models, and debugging. The 
“How” section examines the methods for attaining explainability 
before the modeling stage, including techniques for thoroughly 
understanding and documenting the datasets utilised in mod-
eling. Meanwhile, only some of them have attempted to adopt a 
more formalistic approach towards addressing the taxonomies 
and evaluation metrics of XAI. Unlike the existing literature 
and studies around XAI, we reflect upon a multidisciplinary 
approach towards research and development in this emerging 
field that opens up a new path towards exploring the importance 
of human–computer interaction (HCI) skills for making trans-
parent models [25, 26]. The existing methodology surveys the 
need to keep humans in the loop as a key prospect to consider 
while making the ML model human-understandable. Following 
that, we come to the idea of responsible artificial intelligence, 
which is an AI that takes into account societal values as well as 
moral and ethical issues to improve the usability of AI models 
in real-world applications [27, 28]. Figure 1 shows the overall 
structure of this survey.

We organise this survey study with the following contri-
butions to open up new directions for future research:

• This paper provides a completely revised hierarchical 
taxonomy that lays down the building block for future 
researchers to learn about the key aspects of XAI.

• Using popular works in this field, we stress on the latest 
findings about XAI and its implications.

This article is organised as the following: the “Introduc-
tion” section introduces fundamental concepts and back-
ground. After a deep understanding of taxonomy, we pro-
ceed to the “The Need for XAI” section, which addresses 
the need for XAI and how it can promote explainability and 
trustfulness in AI. The “XAI Evaluation Framework” section 
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provides a comprehensive and in-depth evaluation of the 
XAI framework by reviewing the techniques for XAI as well 
as inspecting their efficacy. The “Challenges for Enabling 
XAI” section points out the main challenges of enabling 
XAI. The “Discussion and Reflection” section provides a 
holistic discussion and reflection on XAI’s prospects and 
implications. The survey paper is finally concluded in the 
“Conclusion” section.

Fundamental Concepts of XAI

Since the early 1980s, research scholars have been seek-
ing to expand the scope of AI by incorporating the explain-
ability factor and enhancing trust among end-users. With 
XAI now being recognised as a necessity rather than just 
a choice, explanation methods have come a long way, from 
textual formats to visual aids [29, 30]. However, to ensure 
that the concept of XAI is fully grasped, we put forward 
in the following section the underlying concepts that will 
serve as a solid baseline for comprehensive and up-to-date 
navigation of this rapidly growing area of research. Distinc-
tively, we first address the black-box problem which led to 
the beginning of XAI. It is followed by an approach aimed 
at making ML algorithms more interpretable. Finally, we 
put forward the different types of interpretability offered to 
achieve explainability.

Black‑Box Model

A black-box model in XAI refers to a machine learning 
model that operates as an opaque system where the internal 
workings of the model are not easily accessible or interpret-
able. These models make predictions based on input data, 
but the decision-making process and reasoning behind the 
predictions are not transparent to the user [31]. This lack of 
transparency makes it strenuous for users to understand the 
model’s behavior, detect potential biases or errors, or hold 
the model accountable for its decisions.

In XAI, the term “black box” is often used to contrast 
with “white box” or “transparent” models, where the internal 
workings and reasoning behind the predictions are easily 
accessible and interpretable. Overall, it helps users deeply 
understand and trust the decisions made by these systems. In 
general, highly successful prediction models, such as DNNs, 
have some inherited drawbacks in terms of transparency that 
need to be addressed to justify the use of these models in 
many scenarios.

Interpretable Machine Learning

The first thing that springs to mind whenever black-box 
models are brought up in a conversation is always a basic 
interpretation of these models. When ML models are utilised 
in a product, interpretable systems are frequently a decisive 

Fig. 1  Overview of the survey
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element. In machine learning, interpretability is a crucial 
component. Nevertheless, it is still unclear how to quantify 
it. Because of this ambiguity, academics frequently conflate 
the terms “interpretability” and “explainability.” Only when 
machine learning models are explicable can they be audited 
and debugged. Even in a trustworthy field, like movie 
reviews, it is difficult to interpret whether a review is posi-
tive or negative because the movie rating and the emotion 
do not match [32, 33]. When a product is put into use, things 
can go wrong. An incorrect prediction’s interpretation aids 
in determining its root cause. It provides guidance on how 
to repair the system. An excellent (artificial) example of 
ambiguity is the task of classifying wolf vs. Siberian husky 
from [34], where a DNN is shown to incorrectly label some 
canines as wolves. The experiment predicts a “Wolf” if there 
is snow and a “Husky” otherwise, regardless of animal color, 
position, pose, etc. The experiment begins as follows: First, 
a wolf without a snowy background is presented (which 
is classified as a husky) and then one husky with a snowy 
background is presented (which is classified as a wolf) [34].

Another example of an incorrect prediction by ML that 
could be fixed by interpretability is the case of a deep learn-
ing model that was developed to predict which patients 
would benefit from an antidepressant medication called esci-
talopram [35]. A large set of clinical data, including patient 
demographics, symptom severity, and genetic information, 
was used to train the model. However, when the model was 
evaluated on a new set of patients, in some instances, it made 
inaccurate predictions. In particular, the model predicted 
that some patients who benefited from the medication would 
not, and vice versa. This could have severe consequences for 
patients, as prescribing the incorrect medication could result 
in ineffective treatment and potentially dangerous adverse 
effects. The researchers utilised the SHapley Additive exEx-
planations (SHAP) technique to construct an interpretable 
version of the deep learning model for predicting treatment 
outcomes in depression. SHAP is a procedure that can be 
applied to any machine learning model in order to provide 
explanations for specific predictions. Using SHAP, the 
researchers were able to identify the most influential factors 
influencing the model’s predictions for each patient. These 
characteristics included demographic variables such as age 
and gender, in addition to genetic markers associated with 
treatment response. By providing these explanations to cli-
nicians, the researchers hoped to increase the accuracy and 
reliability of the model’s predictions and to identify potential 
errors or biases in the underlying data. With approximately 
70% accuracy, the interpretable version of the model was 
able to identify patients who were more likely to benefit 
from escitalopram.

Modern methods are being created every day to make AI 
more understandable. Trying to keep up with everything that 
is published would be absurd and impossible.

Types of Interpretability

The degree to which a person can comprehend and foresee 
the results of an ML model is known as interpretability. To 
date, numerous frameworks have been proposed for achiev-
ing interpretability which justifies their work through one 
criterion or another [36–38]. Tjoa et al. [39] proposed two 
major classes of interpretability, i.e., perceptive interpret-
ability and interpretability by mathematical structures.

• Perceptive interpretability unifies all the interpretabi-
lites that are well perceived by humans as they gen-
erally provide visual evidence. However, this obvious 
nature of the class lacks in fulfilling the true motive 
behind XAI because the black-box algorithm is yet to 
be unboxed. One of the integral methods to achieve 
perceptive interpretability is saliency which formulates 
its explanation based on the relative importance of all 
the input features. The resultant values could be in the 
form of probabilities (the LIME model [34]), super-
pixels (ACE algorithm [40]), and heatmaps (CAM and 
LRP [41–45]).

• Interpretability by mathematical structures unifies all 
the interpretabilities that reveal the mechanisms behind 
deeper layers (which store all the complex information) 
of NN algorithms [46]. An example of this approach is 
testing with concept activation vectors (TCAV) [47]. 
Several other methods, such as t-distributed stochastic 
neighbor embedding (t-SNE) and correlation-based sin-
gular vector canonical correlation analysis (SVCCA) 
[48], play a significant role in directing towards the sub-
space of input for error-free predictions.

The effectiveness and efficiency of XAI models and strat-
egies can depend on many factors. A few of the components 
of a black-box model that play a role in Interpretability are 
Model Architecture, Feature Selection, and even Explain-
ability Techniques itself.

The model’s architecture can have a substantial effect on 
its interpretability. Some architectures, including decision 
trees and rule-based models, are intrinsically more inter-
pretable than others, including deep neural networks. The 
selection of model features can also affect its interpretability. 
Using readily understandable and explainable features can 
make the model more interpretable, whereas using complex 
or abstract features can make it more challenging to compre-
hend. The specific techniques used to generate explanations 
for the decision-making process of the model can also play a 
significant role in interpretability. Techniques such as sali-
ency maps, feature importance scores, and counterfactual 
explanations can assist users in comprehending the model’s 
decision-making process. Even the design and usability of 
the model’s user interface can influence its interpretability 
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(Table 1). Providing plain and intuitive visualisations of the 
model’s decision-making process can assist users in compre-
hending its behavior and gaining confidence in its outputs.

Fundamental Concepts and Background

Interaction of Explainability With AI

Explainability is becoming increasingly important as AI sys-
tems are being used to make decisions that have significant 
impacts on people’s lives, such as in healthcare, finance, and 
criminal justice [49]. Here are some ways that explainability 
is influencing AI:

• Model interpretability: There is a growing focus on 
developing AI models that are interpretable, meaning 

that their decision-making process can be understood 
and explained to users.

• Regulatory requirements: In some industries and regions, 
regulations are being introduced to require AI systems 
to be explainable in order to ensure accountability and 
transparency.

• Trust and adoption: Explainability can play a role in 
building trust in AI systems, which is crucial for their 
widespread adoption and use.

• Model validation: Explainability can help validate the 
decisions made by AI models, ensuring that they are free 
from biases and errors.

• Debugging and improvement: Explainability can pro-
vide insights into how AI models are making decisions, 
making it easier to identify and address sources of error 
or bias.

Overall, the interaction of explainability with AI high-
lights the importance of developing AI systems that are 
transparent, interpretable, and trustworthy in order to 
ensure their responsible and effective deployment in vari-
ous domains [50–52].

Different Application Domains of XAI

It is natural to state that the importance of a thing is derived 
from its degree of need in society. Considering the signifi-
cant increase in the emphasis on explainability in AI algo-
rithms, we put forward some of the critical domains where 
XAI can prove to be a revolutionary change (Fig. 2).

Automated Transport

Automated transportation has gone from being a topic of 
science fiction to being a reality thanks to the development 
of AI [53, 54]. Artificial intelligence is undoubtedly the 
most significant and complex part of self-driving cars, 
with a huge potential to eliminate unsafe driving behaviors. 

Table 1  List of abbreviations

Abbreviation Description

XAI Explainable artificial intelligence
FAT Fairness-accountability-transparency
ML Machine learning
DNN Deep neural networks
AGI Artificial general intelligence
MLP Multilayer perceptrons
IAI Interpretable artificial intelligence
DL Deep learning
CNN Convolutional neural network
RNN Recurrent neural networks
HCI Human–computer interaction
NLU Natural language understanding
ANI Artificial narrow intelligence
NLP Natural language processing
NN Neural network

Fig. 2  XAI can have deep 
impacts in mission critical 
fields, such as finance, health-
care and public service
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However, a technology that may take the role of a human’s 
cognitive and motor talents is currently lacking in dependa-
ble and secure autonomous cars. A 2016 incident in which a 
Tesla on autopilot attempted to plow through an 18-wheeler 
truck trying to cross the highway lends credence to the 
aforementioned claims. According to the National Highway 
Traffic Safety Administration, the vehicle was unable to 
discern between the white side of the truck and a brightly lit 
sky, preventing the need to brake that may have caused the 
passengers to suffer significant injuries [55]. These tragic 
events demonstrate the importance of self-driving systems 
being comprehensible.

Recent times have observed some of the notable works 
attempting to theoretically build humans’ trust in self-driving 
vehicles. Mittu et al. [55]. study revealed that when an example 
supported the decision of a self-driving car abruptly changing 
lanes, passengers were more comfortable. Petersen et al. [56] 
specifically focused on trying to increase passengers’ trust 
through augmentation of their situational awareness and con-
sideration of actual applications of semi-autonomous vehicles. 
Contrary to popular belief, Haspiel et al. [57] presented another 
point of view by investigating the influence of explanations 
on the trust-building process that were provided at different 
time frames. The study successfully proved that explanations 
generated before vehicle-taking actions yielded the best trust 
among humans.

Medical

A significant body of work on automated diagnosis and 
prognosis using machine learning has lately acquired popu-
larity in the medical sector [58, 59]. The issue of interpret-
ability holds significantly more magnitude in the medical 
area than just intellectual curiosity. A range of elements that 
other fields typically neglect must be taken into account 
more carefully when making critical decisions where human 
lives are at stake.

Extensively data-driven and context-sensitive AI pre-
dictions are being used as decision support for delirium, a 
highly relative syndrome in elderly patients. One example 
of this is the use of machine learning algorithms to analyse 
electronic health records (EHRs) to identify patients at risk 
of delirium. These algorithms can take into account a wide 
range of patient-specific data, including demographic infor-
mation, laboratory test results, and medication use, to make 
predictions about a patient’s risk of delirium [60].

Although these models are highly optimised on the train-
ing data set using [61, 62], user acceptability remains under 
question. Therefore, an explanatory component capable of 
providing appropriate reasoning for its predictions was intro-
duced. Supported by the patient’s medical history, it played a 
pivotal role in establishing confidence and increasing patient 
safety [63]. Thus, it can be inferred that the healthcare 

industry is one of the few industries where the accuracy and 
explainability of AI algorithms need to go hand in hand to 
gain user acceptance.

Financial

As AI developed over the years, the modern era saw finan-
cial institutions adopting these algorithms to reduce risks 
and optimise efficiency to supplement banking practices 
such as Anti-Money Laundering (AML), Counter-Terrorism 
Financing (CTF), risk management, and market abuse. Par-
allel to this developments, financial giants firmly believe 
that interpretability and explainability are essential prereq-
uisites for the use of AI models in thin, highly regulated, 
opaque, and uncontrollable sectors [64]. Thus, relying on 
black-box models for crucial decisions such as “fair lend-
ing” could pose some severe problems. Explainability of 
the results and functionality of AI systems have appeared 
as an obligation since the financial sector is subject to 
higher societal requirements for trust and openness. Sincere 
attempts have been undertaken to increase the transparency 
of these financial algorithms’ decision-making capabili-
ties. Lecue and Wu [65] successfully predicted abnormal 
expenses through combined knowledge of Semantic Web 
and ML technologies. The study of generated data through 
visualisation was an integral part of the Artificial Intel-
ligence Finance System (AIFS). Akur8 [66] used General-
ised Linear Models (GLM) to devise interpretable as well 
as automated systems to determine insurance prices, with 
the main objective being to achieve a competitive level of 
performance.

Despite the aforementioned application fields, XAI is also 
finding use in a number of additional sectors as explainabil-
ity’s significance and requirement grow progressively each 
day. The Future of Privacy Forum [67] cites a number of areas 
of life where automated decisions could be risky and where 
justification could make them wise and reliable choices.

Related Works

A thorough and systematic survey is still lacking despite the 
large number of surveys that have been conducted to under-
stand the explainability and interpretability of AI. Accord-
ing to researchers, there are currently only a few research 
papers in this area that give us a brief overview of the best 
XAI practices.

An early survey on the matter by Angelov et al. [68] pro-
vides an analytical review of explainable artificial intelli-
gence (XAI) methods with a focus on developing AI models 
that are transparent and interpretable to humans. The authors 
provide an overview of the current state of XAI, including a 
review of the various techniques and approaches proposed 
for achieving explainability in AI models. In addition, they 
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discuss the difficulties and limitations of current approaches, 
such as the trade-off between accuracy and interpretability 
and the difficulty of determining the efficacy of XAI meth-
ods. The review highlights the potential advantages of XAI 
for facilitating greater human-AI collaboration and enhanc-
ing AI systems’ credibility and accountability.

Guidotti et  al. [69] have conducted a comprehensive 
assessment of approaches for illuminating black-box models 
that combine machine learning and data mining. They pro-
vided a thorough taxonomy that classified the different chal-
lenges encountered. Even though the survey was extremely 
clear about the concepts underlying the idea of explainabil-
ity, the absence of evaluation as an essential explainability 
component suggested its inadequacy.

Dosilovic et al. [70]. provided a general review of XAI 
in their paper’s closing remarks. They discussed improve-
ments in machine learning models’ explainability, paying 
particular attention to DNNs. This essay demonstrates how 
human intelligence and artificial general intelligence are 
interdependent and offers the reader fresh ideas.

Table 2 summarises the contributions of various works 
done in the field, along with their strengths and weaknesses.

A general overview of XAI is provided, along with a 
detailed breakdown of its contributions, as seen from several 
angles. While investigating various explicable techniques, 
we adhere to cognitivism and clarity while exploring differ-
ent explainable approaches.

The Need For XAI

Why Explainability Matters

With the primary goal of building trust and confidence 
when putting AI models into production, XAI was devel-
oped. The newly developed AI discipline may be able to 
effectively explain AI results irrespective of any potential 
biases and prejudices. However, As seen in Fig. 3, the 
results of these AI Models (Black Box) often give Unex-
plainable, Unjustifiable, and Unaccountable results. In this 
section, we shall dig deeper into the root causes that lead 
to the need for XAI.

Need For Reasoning

The reasoning for a decision made by AI algorithms mainly 
involves providing explanations and justifications for that 
particular outcome. Humans generally look for reasoning 
rather than an incomprehensive description of the inner 
workings of the algorithms and logic behind the decision-
making process.

XAI holds the promise to provide the equivalent pre-
dictions as black-box models without their drawbacks i.e., 
lack of explainability. It also reaffirms that besides being 
accurate, these predictions are trustworthy and accountable 
for their decisions. With the aim of providing an expla-
nation for legal judgment predictions generated by Legal 
Judgement Prediction (LJP), Zhong et al. [71] designed the 
QAjudge. The model used the concept of reinforcement 
learning, which followed a process of asking a series of 
human-readable questions and then generating explanations 
based on the responses by humans.

Further, much more than societal needs, the legislation 
demands AI to be explainable under the “right to explana-
tion” act. This act was included in the General Data Protec-
tion Regulation (GDPR) that comes into effect across the 
EU on 25 May 2018 [72].

Need For Innovation

Explanation fulfils the constant desire to innovate for more 
effective algorithms and sophisticated neural networks. 
Recent years have also witnessed humans discovering that 
these algorithms may learn novel concepts and ideas. This 
newly gained knowledge can be applied to open a new 
course of action and hidden laws in various fields like neuro-
science, astronomy, etc. Medical research has also confirmed 
the predictions and early conclusions that were presented by 
the LIME model and various DNNs, which were not pos-
sible by humans at that time [78]. Doctors are now able 
to use medical image technology to diagnose diseases and 
understand the patient’s condition [79, 80]. XAI helps us to 
get knowledge about the hidden layers of some black-box 
models which are neural networks that fosters a closer link 
between humans and machines.

Need For Regulation

Despite the excellent performance of DNNs in predicting 
outcomes, it is shown to be fragile and vulnerable to adver-
sarial perturbation [81–85]. The Local Interpretable Model-
Agnostic explanation (LIME) model, when subjected to such 
perturbations, developed self-learned patterns that produced 
false results [34]. It creates synthetic data based on the input 
data, trains a basic ML model (with the synthetic data) that 
performs similarly to the complex black-box model, and uti-
lises the weights of this model to determine the significance 
of features.

Need For Advancement

At present, advancements in technology such as AI are 
aimed towards gaining acceptance and becoming flaw-
less. This highlights that the key to the success of AI is 
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the continuous progress made in this field. With XAI, new 
insights into the system and understanding will guide engi-
neers to improve specific parameters. One such example 
is the introduction of the CrystalCandle tool in a Linkedin 
software sales team [86], whose explanations increased its 
subscription revenue by 8%. Thus, XAI can act as a stepping 
stone for AI to achieve accuracy and recognition.

Fair and Ethical Decision Making

AI ethics are a set of principles that guide what is right or 
wrong, good, or bad in a way. The extant research on XAI 
has focused on technical issues, but it is more desirable 
to have a branch that deals with trade-off problems and 
ethical issues. Human judgment is imperfect and does not 
contain qualitative and quantitative simplification. On the 
basis of three components of the Independent High-Level 
Expert Group on AI (LEG), an algorithm can be said to 
be ethical [87].

• It should comply with all laws and regulations and be 
lawful.

• It should have good intentions and should be robust, 
both from a social and technical perspective.

• It should demonstrate respect and should adhere to all 
principle and values.

• For XAI to achieve this goal, it is important to care-
fully consider and address the key components of fair 
and ethical decision-making, including data quality, 

algorithmic bias, explainability, ethical principles, and 
human oversight.

Here are some methods to achieve algorithm fairness:

• Counterfactuals: This is a well-liked strategy for illu-
minating AI and making sense of algorithmic fair-
ness. An excellent application of counterfactuals is 
risk management. A classic example of this is a bank. 
A bank may use counterfactual analysis to evaluate 
the potential outcomes of a loan application under 
different scenarios. For example, if the borrower loses 
their job or if interest rates increase unexpectedly. By 
simulating these potential scenarios, the bank can bet-
ter understand the risks associated with the loan and 
make more informed decisions about whether or not 
to approve the application.

Proxy fairness methods: These methods use proxies, 
such as demographic information, to correct for bias in AI 
systems. For example, a model trained on data that is not 
representative of a particular demographic group may be 
corrected by adjusting the model’s output based on demo-
graphic information.

• Fairness through awareness: This approach involves 
training AI models on data that is specifically designed 
to capture relevant factors contributing to fairness and 
ethical considerations. This can help to ensure that the 
models produce fair and ethical outcomes.

• Fairness constraints: Fairness constraints are mathemati-
cal formulations of fairness criteria that can be used to 
optimise AI models. For example, a fairness constraint 
may be used to ensure that an AI model does not dis-
criminate against certain demographic groups.

• Human-in-the-loop approaches: Human-in-the-loop 
approaches involve incorporating human oversight into 
the decision-making process of AI systems. For example, 
a human may be involved in validating or adjusting the 
decisions made by an AI model to ensure that they are 
fair and ethical.

XAI Evaluation Frameworks

Design Principles For Interactive XAI

Since the emergence of XAI, researchers have tried to 
address the multidisciplinary nature of the process involved 
in interpreting a black-box model. To gain continual 
advancement in this field, a multifaceted approach involv-
ing collaborative efforts from independent research horizons 
is advocated. In addition, a determinant factor is to adhere 

Fig. 3  Most ML models behave as black-box models
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to the demands and interests of multiple stakeholders: the 
designers, decision-makers as well as end consumers. Given 
the disciplinary efforts being carried out to keep humans 
in the loop, seeking a more formal and holistic standard of 
procedure for the explanation of opaque AI algorithms is 
the need of the hour. As a result, it is advised that the inte-
gration and application of interpretation in AI design and 
deployment workflows adhere to the principal principles 
listed below:

Adeptness to the User Behavior

XAI’s effectiveness depends on the degree of motivation it 
brings about in the user to interact with the AI. Zhu et al. 
[88] noticed that instead of focusing on the practicality and 
efficacy of current XAI practices, most works are coming 
up with new methods of explanations. Thus, acknowledging 
the importance of user behavior will help the XAI models 
to better utilise their functions and parameters to interpret 
the black-box model.

Align Perception of XAI With Human Understandability

Human-centered design principles are considered a valuable 
resource in order to develop explanations that carry a contex-
tual value with them. Developers should aim to involve the 
user in the early stages of the development process, which 
will ensure their active participation. Empowering users to 
self-explain the logic involved in an AI algorithm aids in 
making the XAI model more sensible as well as practical.

Collaborative Techniques Should Be Implemented More

An ideal explanation is one which incorporates expertise 
from multiple domains of knowledge. HCI skills such as 
philosophy, psychology, and cognitive science have proven 
their worth in the field of XAI by developing explanations 
that were able to stimulate the human explanation process 
[89]. It is imperative to shed some light on how some model-
agnostic methods (later discussed in this section) combine 
the global and local scope of interpretability to reinforce the 
objective of explainable AI models.

Explanations Have More Dimensions Than Just Performance

Appropriately evaluating the capability of the explanation 
method goes beyond determining whether they just work 
or not. Since each explanation generated carries its own 
impact, they should be assessed along dimensions such 
as qualitative performance (satisfaction, trust, and under-
standing), achievement of the end task, mitigation, and error 
analysis. Designers should aim at developing an evaluation 

benchmark that could measure the qualitative and quantita-
tive ability of the explanations. Goal-centric explanations 
should be encouraged, which would enable designers to 
decide beforehand what consequences the explanation will 
have on the AI algorithm.

Contradictions Provide Alternative Approaches

The utilisation of contradictions and counterfactuals is 
termed as one of the best practices that XAI designers need 
to involve in their development process. One example of this 
statement is the development of AI-based medical diagnostic 
systems [90]. Utilising contradictions and counterfactuals 
in the design process can help ensure that the diagnostic 
system is able to identify and handle rare or unusual cases, 
which can be critical in medical diagnosis. For example, 
by providing the system with counterfactual examples of 
patients who have similar symptoms but different diagnoses, 
the system can learn to identify the unique characteristics 
that distinguish one diagnosis from another. Additionally, 
by exposing the system to contradictory examples where 
the same symptoms can indicate different diseases, the sys-
tem can learn to evaluate multiple possibilities and make a 
more accurate diagnosis [91]. This can increase trust in the 
system’s diagnosis and improve patient outcomes. Besides 
giving valuable knowledge about the system’s limiting con-
ditions, they also help in discovering its vulnerabilities.

Are Explanations Always Important?

In the spirit of holism, Bunt et al. [92] originally raised this 
question in their work mainly due to the efficiency of expla-
nation techniques deployed in systems that offer users low-
cost decisions. They found that although these systems were 
opaque and provided no reasoning behind their predictions, 
they were still positively perceived by the users. Therefore, 
an important question was raised: “Does the cost of getting 
an explanation outweigh its benefit.”

Amendments Go a Long Way

To date, XAI is considered a new concept in the techno-
logical field. As more and more research is done, the gained 
experience will help in changing the beliefs of people. There-
fore, it is crucial to understand that the process of generat-
ing an explanation is never a “one-off.” Especially from the 
viewpoint of dynamic environments, constantly flourishing 
users with modified explanations will ultimately advance the 
state of the art of explainability [93]. Addressing questions 
such as “How do the modifications affect the algorithm” and 
“Why should I consider this explanation instead of the previ-
ous one” will ensure positive feedback and will benefit XAI 
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designers given their long-term interaction with the users. So, 
along with a strong foundation, necessary amendments will 
always help in adding more to the structure of XAI, which 
will lead to a greater impact [94, 95].

To sum up, we distilled a range of design principles 
that have been suggested for the design and development 
of explainable systems. However, simply making out some 
guidelines does not necessarily guarantee success. While 
implementation of some principles is ongoing, some have 
resulted in no progress also. XAI designers have stated that 
in order to get strong conclusions in explainability, rigor-
ous research and testing will be required, accompanied by 
reasonable pieces of evidence and relevant work context.

Techniques For XAI Implementation

While designing an explanation method for a typical ML 
model, it is expected from the method to answer some foun-
dational questions: Why the model produced this prediction, 
and what are the logic and reasoning involved behind the 
model’s decisions? However, as progress towards advance-
ment continues, researchers came across other questions that 
could not be answered by the current design of the explana-
tion method. Hence, different types of explanations were 
designed to serve the purpose of distinct behaviors, prob-
lems, and types of users. Since a typical end-user is focused 
on case-specific (local) interests and a domain expert needs 
to have a full understanding (global) of the AI prediction, 
the method of explainability needs to be exhaustive in its 
explanation.

It is interesting to note that most of the preliminary work 
in XAI is done from the perspective of an explainer, for 
example, a domain expert who was able to understand the 
working of an AI prediction and the logic used behind it. 

Conversely, methods to provide a satisfactory explanation to 
an explainee, for example, end-users, are rarely seen. This 
hindrance to exhaustive explanation stems from the fact that 
domain experts currently working in the field of developing 
AI models are the ones that also develop their XAI counter-
parts. Thus, their works in XAI seldom involve a focus on 
the explainee.

Therefore, as our framework suggests, it is important 
to keep end-users in mind while designing and developing 
XAI models.

From our conducted survey of the literature, we propose a 
categorisation of all the types of explanations which aim to 
interpret the logic of black-box algorithms. Figure 4 shows 
the general structure of our approach.

Based on Scope

On the basis of scope, interpretability mainly involves 
deriving explanations in either of the two directions: 
by considering a holistic view of all explanations of the 
model, i.e., global explanations, or by considering indi-
vidual instances of explanations provided by the model, 
i.e., local explanations.

Global Interpretability

Global interpretable approaches are intended to make it 
easier to comprehend a model’s overarching logic as well 
as the whole justification used to produce specific predic-
tions. These strategies frequently aid large-scale decisions 
like drug usage or climatic changes because they concentrate 
on compiling explanations for all potential scenarios. We 
categorise the various approaches to achieving explainability 
globally into the following subclasses:

Fig. 4  Types of interpretabilities
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Model Extraction In order to properly mimic the black-box 
model’s judgments, model extraction entails training an 
interpretable model (such as a linear model or a decision 
tree) on the predictions of the black-box model. The global 
surrogate model is another name for the model produced by 
this procedure. The following are the steps needed to create 
a global surrogate model [3]:

• A desirable dataset X is chosen, which may either be the 
same black-box model’s training dataset or a brand-new 
dataset with comparable distributions.

• The trained black-box model generates predictions from 
the chosen dataset.

• To fit the black-box model’s predictions, an interpretable 
model is chosen and trained on dataset X.

The aforementioned procedure has been reproduced in 
other studies to draw information from the black-box mod-
els. Rule extraction and model distillation are the two strate-
gies that are primarily used in the creation of model extrac-
tion algorithms.

Rule Extraction One of the most popular methods for 
extracting models from highly complex black-box models 
is rule extraction. An approach was provided in the study 
by Craven et al. [96] in 1994 that entailed the iterative crea-
tion and updating of a set of rules applied across the input 
and output classes of the ANN until all of the target classes 
have been processed. Ras et al. [97] proposed three modes 
to extract rules: (i) pedagogical rule extraction, (ii) decom-
positional rule extraction, and (iii) eclectic rule extraction. 
They did this by using the categorisation of different rule 
extraction methodologies provided.

The G-REX approach was used by Johanson et al. [98] to 
extract rules from genetic programming. To handle regression 
and classification issues using regression trees and fuzzy rules, 
respectively, the authors further created G-REX [99]. The 
Rule Extraction from Neural Network Ensemble (REFNE), 
developed by Zhou et al. [100], was able to prevent pointless 
discretisations by using adaptive intervals. To address catego-
risation issues, Biswak et al. [101] developed Rule Extraction 
by Reverse Engineering the Neural Networks (RxREN).

Model Distillation Only explainer-specific models with a nar-
row range of black-box techniques can be created using the 
rule extraction method. Hinton et al. [102] proposed transpar-
ent model distillation, a unified technique for model extrac-
tion, which was used to tackle the above-stated issue. Specifi-
cally, their paper reflected on how dark knowledge i.e., hidden 
knowledge from a complex and sophisticated model (teacher 
model) can be transferred to a simpler (student) model that 
will be able equally competent to the deep models in terms of 
predictions while at the same time being more interpretable.

Distillation turns out to be a more effective method for 
obtaining interpretable models. Tan et al. [103]. expanded on 
the notion of distilling intricate black-box models into trans-
parent ones known as iGAMs through model distillation.

Che et  al. proposed Interpretable Mimic Learning, a 
model distillation-based method that has the capacity to 
learn interpretable phenotypic traits for providing potent 
predictions [104]. Xu et al. [105] developed DarkSight, a 
visualisation technique for producing interpretations of a 
black-box model on a specific dataset, which was motivated 
by the idea of dark knowledge. This technique also supple-
mented the extraction of informative patterns and purposeful 
features from deep models.

Feature‑Based Methods Although model extraction was 
successful in providing global explanations of black-box 
models, researchers found compromised accuracy due to 
the oversimplification of the model complexity. Hence, a 
method that could provide explanations as well as maintain 
the desired level of accuracy was needed. Methods looking 
at the impact or significance of input features in an algo-
rithm were investigated to meet these needs. The proposed 
approach was further extended into two alternative paths, 
which were used to measure the input feature’s relevance: 
(i) feature importance and (ii) feature interaction.

Feature Interaction The impact of one feature depends on 
the value of the other if an AI algorithm bases a forecast on 
two features. Due to how the individual feature effects inter-
act with one another, the prediction that is created cannot be 
described as the total of these effects. Freidman established 
the H-statistic and discovered a mechanism to gauge the 
strength of feature interaction [106].

The following equation [107] is a mathematical represen-
tation of the H-statistic developed by Friedman and Popescu 
for interaction between any two features j and k. It collates 
the variation between the observed partial dependence (PD) 
function and the decomposed one without any interactions 
between the features.

A random forest is trained to predict cervical cancer and 
is examined for the interaction between its properties. The 
chart (Fig. 5) shows that IUD has the least proportional 
interaction effect with other variables compared to years of 
using hormonal contraception [107].

Feature Importance By calculating each feature’s contri-
bution to the predictions, a model’s feature importance is 
calculated. One of the noteworthy methods is the permuta-
tion feature importance (PFI) by Breiman [108] for random 
forests. The degree to which the prediction error increases 
when the values of the feature are shuffled determines the 
importance. Fisher et al. [109] expanded on this notion by 
proposing Model Class Reliance, a model-independent 
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variant of feature significance theory (MCR). This paper 
presents an approach to model interpretability that offers 
several advantages. By studying an entire class of mod-
els simultaneously, the approach is able to provide a more 
comprehensive understanding of the relationships between 
variables and predictions compared to approaches that study 
individual models. This approach can also help to identify 
variables that are consistently important across different 
models, providing more robust and trustworthy explanations. 
However, one potential disadvantage of this approach is that 
it may be computationally expensive, as it requires train-
ing and evaluating multiple models. Another disadvantage 
is that the approach may struggle with handling complex 
models, especially those with many variables or non-linear 
relationships. The success of this work for explainability 
depends on the specific context and application. For some 
datasets and problems, this approach may provide more 
accurate and trustworthy explanations than other methods 
[110, 111].

At the same time, for other datasets and problems, 
other methods may be more suitable or perform better. It 
is important to note that interpretability and explainability 
are challenging and active areas of research, and there is 
no one-size-fits-all solution. The effectiveness and success 
of any interpretability method will depend on the specific 
context and 

Local Interpretability

Local interpretability focuses on providing explanations sep-
arately for each choice and prediction rather than providing 
a detailed description of the intricate mechanism underly-
ing the entire black-box model. In these models, each input 
feature is associated with a weight, and the final prediction is 
made by taking the dot product of the input features and their 
corresponding weights plus a bias term. This means that the 
importance of each input feature can be easily determined 
by looking at the corresponding weight. Additionally, it is 
possible to understand the impact of a specific feature by 
holding all other features constant and varying the feature 
of interest.

For example, in a linear regression model, if one wants 
to understand the effect of a specific feature on the pre-
dicted output, one can calculate the partial derivative of 
the output with respect to that feature and interpret it as 
the average change in the output for a one-unit change in 
that feature, holding all other features constant. Compared 
to global interpretability methods, developing explanations 
for black-box model local behavior is easier. However, this 
might not be always true. It is dependent on the black-box 
model. Furthermore, straightforward explanations are more 
useful than complex ones. Numerous research publications 
have put forth strategies to investigate local explanation 

Fig. 5  The degree of interac-
tion (H-statistic) between each 
feature and each other feature in 
a random forest that predicts the 
likelihood of cervical cancer
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techniques. The next section provides a thorough overview 
of some of the key justification techniques found in the pub-
lications we analysed.

To develop local explanations for black-box models, 
Ribeiro et al. introduced the Local Interpretable Model-
Agnostic explanation (LIME) [34]. It operates by training 
nearby substitute models to approximate certain model 
predictions. Below is a succinct explanation of LIME’s 
working theory:

• From the predictions made by the black box, an instance 
of interest is chosen for which explanation is desired.

• A fresh dataset is formed consisting of perturbed sam-
ples, and their respective predictions are extracted from 
the black-box model.

• The new samples are weighted depending on their prox-
imity to the instance of interest accordingly.

• Now, the black-box model can be explained via an inter-
pretable model trained on the perturbed dataset with help 
of the following equation [107]:

It can be noted LIME generated surrogate models that 
have high local fidelity, meaning that they accurately repre-
sent the behavior of the black-box model in the local region 
around a specific instance. The goal of LIME is to create 
a simple, interpretable model that mimics the behavior of 

(1)Explanation (x) = arg min
g�G

L
(

f , g, �x
)

+ Ω(g)

the black-box model in the vicinity of the instance being 
explained. By doing this, LIME provides an accurate and 
trustworthy explanation of the predictions made by the 
black-box model without requiring a deep understanding of 
its inner workings. The local fidelity of LIME-generated sur-
rogate models is a key factor in their ability to provide useful 
and reliable explanations of black-box model predictions.

An extension of LIME can be found in anchors [112] 
proposed by the same creators. Anchor is a method that 
uses LIME to explain the predictions of machine learn-
ing models in a more efficient and scalable manner. The 
main idea behind Anchors is to precompute explanations 
for a subset of the instances in the dataset, called anchors, 
and then use these explanations to generate explanations 
for other instances. This approach reduces the computa-
tional cost of generating explanations and makes it possible 
to explain the predictions of large, complex models. The 
extension of LIME found in Anchors is designed to provide 
more accurate and efficient explanations of machine learn-
ing models while still preserving the local fidelity of the 
original LIME method.

Another significant work to be noted is by Ying et al. 
[113], who tried to devote more attention to the feasible local 
approximations for Graph Neural Networks (GNN). This 
work exhausted the limited information available to explain 
the predictions of GNN with the help of a sub-graph cor-
related with nodes and edges. Such work is renowned for 
becoming the first successful investigation in the field of 
local approximation of GNN [114, 115].

Fig. 6  Expectation Shapley 
(ES) values help connect differ-
ent interpretation methods and 
provide a clear view of their 
correlation with each other
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Further development was marked by the introduction 
of Shapley Values by Lundberg and Lee [116]. They used 
the preliminary information available from the work pro-
posed by Štrumbelj and Kononenko [117] to design a new 
set of values called the expectation Shapley (ES) values 
which were able to unify and justify a broad spectrum of 
approaches (e.g., LIME, DeepLift, and Layer-Wise Rel-
evance Propagation) for black-box model interpretations.

In Fig. 6, the arrows signify how different prediction 
methods gain the advantage over the ES values and vice versa 
[116]. The combined bubble of LRP and DeepLIFT symbol-
ises their equivalency as proved by Shrikumar et al. [118].

An interesting feature to note about local explainability 
is that besides being the most applied forms of explana-
tion methods for DNNs, they hold the potential to generate 
explanations for various classes of neural networks. Local 
explainability methods are indeed widely applied to DNNs 
and other types of machine learning models, as they provide 
insight into how the model makes specific decisions. Addi-
tionally, some local explainability methods are considered 
to be model-agnostic, meaning that they can be applied to a 
variety of different types of models. However, not all local 
explainability methods are model-agnostic, and other areas 
of research, such as model-specific explainability, also exist.

The aforementioned sections uncovered some crucial 
methods and strategies for achieving interpretability on a 
worldwide scale. Despite this, it appears that this mode of 
interpretability is difficult to use in practice, particularly for 
models with a lot of different parameters. Similar to how 
humans naturally seek out the logic and reasoning behind 
a particular model component in order to comprehend the 
entire model, local interpretability is more widely applicable 
and acceptable.

Based on Stage

The next category of model explanatory methods is based on 
the stage of interpretability. This includes ante hoc interpre-
tations, which comprise classical approaches for analysing 
black-box models before their training, and post hoc inter-
pretations, which comprise approaches for analysing black-
box models after their training.

Ante‑Hoc Interpretability

Ante Hoc interpretability techniques mostly consist of tra-
ditional AI practices. Designed with the idea of keeping 
an uncomplicated structure so that complexity is limited 
to a certain extent, such techniques are termed glass box 
techniques. Due to this, ante hoc interpretability has a close 
relation to intrinsic interpretability. Ante hoc interpretabil-
ity mostly involves dealing with the data itself since data 
evaluation gives the much-needed insight and understanding 
of the model to be explained. Following are some com-
monly used explainable techniques:

Linear regression leverages a linear relationship among 
features of the input model as a means of providing an 
explanation for its predictions.

The weighted sum of the input features(βi) [119] equals 
the projected outcome (y). The linearity of a model holds a 
significant weightage in its interpretation. However, this strat-
egy is only shown to be workable for a small set of features. 
L1 and L2 regularisation provide a novel solution in handling 
the overfitting and feature selection for such cases [120, 121].

(2)y = �0 + �1x1 + ⋅ ⋅ ⋅ + �pxp + �

Fig. 7  An algorithm designed to 
predict loan approval applicants 
visualised through decision tree
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Logistic regression models are a modification of linear 
regression to serve as a solution for classification prob-
lems with two possible outcomes.

Leaf node, explanations are given. Figure 7 shows one 
such decision tree [123].

Rule-based learners: This class of model makes rules 
to characterise data from its input data. These rules can 
either be if-else rules or a set of more complex combina-
tions. Fuzzy-rule-based systems (FRBS) are models which 
are rule-based learners and are based on fuzzy sets. These 
models tackle real-world problems involving uncertainty 
and imprecision. An explanation of studies using FRBS 
can be found in [124].

K-NNs: This method is non-parametric and classifies 
instances simply and methodically. In XAI, KNN can be 
considered an interpretable algorithm as it provides a clear 
explanation for its predictions. The explanation is based 
on the principle that the algorithm classifies a new data 
point based on the class labels of its nearest neighbos in 
the training dataset [125]. This makes it relatively easy for 
a human to understand and verify the reasoning behind the 
predictions. However, KNN may not always provide the 
most accurate predictions compared to other, more com-
plex algorithms.

Letham et al. [126] proposed a model called Bayesian 
Rule Lists (BRL), which is based on decision trees as men-
tioned in [127]. It was able to pick out certain data patterns 
that may be used as criteria to produce decision lists. Ini-
tial models produced encouraging results and had room for 
refinement to build trust at the domain level.

Trees are not found to be efficient in the case of linear 
relationships among input features. They are also vulnerable. 
Using the above logistic function [107], the regression model 
fits the output of the linear model between 0 and 1, thus 
making the linear influence of weights negligible. One of the 
major disadvantages that the logistic regression model poses 
is its comparatively more challenging interpretation because 
of the multiplicative nature of the weights considered.

Decision trees are used to overcome the problem of 
non-linearity and correlation in features for which linear 
regression models fail to generate interpretations. Decision 
trees function by continuously segmenting the input data 
into nodes of a tree, each of which represents a subset that 
belongs to a particular instance from the dataset [122]. By 
moving through a specific section of the tree from the root 
node to even the slightest of changes in the training dataset, 
thus providing unstable results.

Due to their ease in providing explanations, ante hoc 
interpretable methods have always been superior to other 

(3)logistic(n) =
1

1 + exp (−n)

“black-box” methods. However, accuracy suffers as a result 
of this intrinsic interpretability [128]. This unfeasible 
tradeoff between accuracy and interpretability suggested 
post hoc procedures to be taken into account in a deliber-
ate manner [129].

Post‑Hoc Interpretability

Contradictory to ante hoc methods, post hoc interpretability 
refers to the class of techniques which involve the research 
and development of black-box models post their training. 
One interesting feature to note about post hoc methods is 
their diversified applications in the field of XAI, which also 
extends to applications in intrinsically interpretable models. 
The permutation feature, a post hoc interpretation method, 
is utilised for the computation of decision trees.

Model‑Specific Methods Though helpful, model-specific 
methods of explainability offer a very finite range of inter-
pretations for predictions provided by opaque AI algorithms. 
Thus, the availability of limited choices hinders their accept-
ance into the mainstream research of XAI methods. Regard-
less, a silver lining can be found in their specificity, which is 
leveraged in the case of a dominant model representation and 
prediction. To counter this incapability, researchers came 
up with model-agnostic methods of interpretability, which 
are model-independent and provide competitive results. We 
shall discuss these methods in detail in the following section.

Model‑Agnostic Methods Model-agnostic methods of inter-
pretability are applicable to different types of ANN and 
black-box models. Their universal nature is achieved by 
simultaneous analysis of the feature’s input and output. But 
their structural definition restricts them from gaining model 
insights such as weights and crucial parameters. Collabora-
tive work from researchers around the globe has witnessed 
a surge in the development of model-agnostic methods to 
cover a broader aspect of XAI. Upon review of the literature, 
we propose a classification of this class into the following 
methods (summary of method and its advantages and dis-
advantage in Table 3):

Visualisation Visualisation of a black-box model helps us 
dive deep into the hidden patterns and internal reasonings 
of the algorithm, which naturally enhances the understand-
ing related to its predictions. The flexible representation of 
the technique helps it to stand out among other methods of 
explanation. One of the most popular domains where visu-
alisation finds its application is supervised learning algo-
rithms. Some of the popularly implemented visualisation 
techniques are:
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Partial dependence plot (PDP) uses graph-based explana-
tions for visualising the relationship between one or more 
features (at maximum three features) and the prediction 
generated by the black-box model [130]. Being global in 
nature, it not only provides a comprehensive grasp of the 
model interpretations but also differentiates target-feature 
relations into linearity, monotonicity, or complexity accord-
ingly. To understand the associative effects of predictors on 
the conditional average treatment outcome derived from a 
voter mobilisation experiment, Green and Kern [131] Elith 
et al. [132] made major contributions outside of the research 
area by replacing stochastic gradient boosting with PDP to 
comprehend how different environmental factors affect the 
distribution of freshwater. Averaging the marginal effects 
hides their interactions with the data, according to some aca-
demics, who argue that this is bad for the black-box model. 
Therefore, a new interpretation technique had to be devel-
oped to address this issue.

Individual conditional expectation (ICE) plots are an 
extended version of partial dependence plots which reveal 
the heterogeneous effects hidden by PDPs. They can be 
considered the local equivalent model of PDP since they 
work by visualising a feature’s influence over the specified 
instance of the prediction under scrutiny. In other words, a 
PDP is an aggregation of all the resultant lines generated 
by an ICE plot. Due to the above-mentioned stress on indi-
viduality, ICE curves are naturally more comprehensive than 
PDP plots. Goldstein et al. supported the same [133]. ICE 
curves also undergo some severe problems. The presence of 
numerous instances at once creates overcrowding leaving the 
plot unclear. Casalicchio et al. [134]. were able to break the 
dilemma between PDP and ICE by proposing an approach 

that could use both of the visualisation tools as an aid to make 
black-box models transparent. An example of such tools is 
the “lossless visualisation methods,” which are techniques 
used to represent high-dimensional data generated by ML 
models in a way that preserves all of the information in the 
data. These methods aim to provide clear, easy-to-interpret 
visualisations that avoid the issue of “quasi-explanations,” 
which appear to be meaningful but are based on mislead-
ing or irrelevant features. Examples of lossless visualisation 
methods include dimensionality reduction techniques [135, 
136] (such as PCA or t-SNE), scatter plots, and heat maps. 
These methods play an important role in ensuring that the 
information in the data is not lost or distorted and that the 
resulting explanations are meaningful and accurate.

Accumulated Local Effects (ALE) Introduced by Apley and 
Zhu [137], ALE plots are always the forerunner when it 
comes to visualising features that are correlated. While par-
tial dependence plots result in a significantly biased com-
puted feature effect, ALEs provide a faster and unbiased 
substitute for visualisation [138, 139]. Now, both PDP and 
ALE share the common characteristic of reducing the com-
plex prediction function to a simpler one that deals with one 
or two features at a time. However, they mainly differ in the 
fact that whether they are utilising averages of predictions or 
differences in predictions. ALE goes with the latter one and 
aggregates them over the grid. Despite their faster computa-
tion, ALE plots are found to be complex in nature.

None of the above-discussed visualisation techniques was 
successfully able to interpret models with strong feature cor-
relation. But, with work being developed at a much faster 
pace, ALEs are as good as it gets.

Table 3  Comparing model 
agnostic methods

Method Advantages Disadvantages

PDP 1. Intuitive
2. Easy to implement
3. Interpretation is clear and causal

1. Valid for maximum
three features
2. Assumes absence of correlation 

between features
3. Heterogeneous
effects may be hidden

ICE 1. Intuitive
2. Specific
3. Reveal heterogeneous relationships

1. Overcrowding leads
to unreadability
2. Need PDP to see the average

ALE 1. Unbiased towards correlated features
2. Faster Computation

1. Unsteady with high
number of intervals
2. Comparatively much more complex
3. Not accompanied by
ICE plots

LIME 1. Inherently
interpretable
2. Widely acceptable especially in DNN’s
3. Human-Freindly
explanations

1. Unsatisfactory global approximation
2. Easily manipulated to hide biases
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Example‑Based Explanations Example-based interpretability 
represents a class of methods that elaborate the black-box 
model’s predictions using specific instances from the mod-
el’s training dataset. In layman’s terms, their approach can 
be simplified into “Since A is equivalent to B and B gener-
ated C, A will also generate C.” Example-based methods 
act on a specific instance of the ML model while model-
agnostic methods interpret the model by engaging with its 
features or performing alterations to it.

From a research point of view, some of the widely 
accepted example-based interpretability techniques are 
the following:

Prototypes and Criticisms Prototypes are a group of chosen 
examples that accurately depict all the data [140–142]. The 
selection of data instances that are poorly represented by 
the corresponding prototypes that must be made in order 
for the model’s output forecast to alter. These justifications 
are predicated on the idea that “If a certain thing X would 
have been done differently, its effect Y would likewise have 
been different.” Prototypes are representative examples 
taken directly from the data, whereas counterfactuals can 
be created by combining new input instances. But despite 
how human-friendly they may seem, counterfactuals never-
theless have certain drawbacks. The “Rashomon Effect” is 
a phenomenon in which users overwhelmed with too many 
options tend to choose inadequate counterfactual explana-
tions resulting in subpar performance. Thus, it inhibits users 
from fully utilising the potential of counterfactuals. Hasan 
et al. [146] realised the need to mitigate this effect and pro-
posed a game-theory perspective to make counterfactuals 
more intriguing. They were successful in narrowing down 
the counterfactual possibilities by optimising it to a more 
informed process.

Since counterfactual explanations do not need access to 
the model or dataset itself, their implementation for extract-
ing explanations seems to be in the best interests of the 
owner. Thus, they have recently been receiving growing 

attention from companies offering explanations without 
interfering with their model and data.

The selection of data instances that are poorly represented 
by the corresponding prototypes is criticised. They can be 
used to characterise the data (independently) or interpret a 
black-box model depending on their relationship (dependent). 
According to reviewed literature, there are many methods 
for locating prototypes in data (such as the k-medoids algo-
rithm), but very few for locating criticisms. We use the exam-
ple of Google’s image classifier mistaking black individuals 
for gorillas to demonstrate how important the existence of 
criticisms is. It was discovered that including black people’s 
photographs as complaints would have increased the data-
set’s diversity (Fig. 8) [143]. Kim et al. [144] provided the 
MMD-critic, a novel framework that provides the optimum 
number of prototypes and criticisms needed to describe the 
dataset as a whole.

Counterfactuals Counterfactual explanations were suggested 
by Wachter et al. [145]. as a way to explain predictions and 
choices made by enigmatic AI algorithms. Counterfactual 
explanations outline the minimal adjustments to the input 
feature values.

Adversarial Adversarial examples are basically instances 
accompanied by a minor perturbation with the intention to 
deceive an ML model [85, 147]. For instance, attackers were 
able to successfully fool a facial recognition AI system by 
introducing various patterns on glasses or hats. With the 
help of adversarial examples, one can gain insights into the 
internal structure of algorithms, find their vulnerabilities, 
and improve interpretability. Upon investigation, we find 
some of the techniques for designing adversarial examples.

In their study, Szegedy et al. [147]. suggested a gradient-
based method that may be utilised to provide adversarial 
instances for DNNs. The rapid gradient sign method for 
implementing adversarial pictures was created by Goodfellow  
et al., according to [81]. Su et al. [148] demonstrated how 

Fig. 8  Users found viewing 
prototypes and criticisms led to 
results being more accurate and 
efficient in comparison to view-
ing a random subset of data
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image classifiers may be tricked by altering just one input 
picture pixel. Athalye et al. [149] successfully fooled a DNN 
by creating a 3D-printed turtle that the DNN mistakenly 
thought was a weapon.

But how do these deceiving tools help in studying the 
interpretability of AI models? The answer lies in a recent 
effort to produce “robust” models which resist such adver-
sarial perturbations and also offer higher-quality explana-
tions [83, 150]. Ilyas et al. [151] classified features based 
on their robustness i.e., the ability to counter adversarial 
examples, and proved that robust models held a more plau-
sible explanation than non-robust models.

Influential Instances ML-based methods generate their pre-
dictions based on the learning of their training data. Even 
a small modification in a training instance could alter the 

resultant model significantly. An “influential” training 
instance is one which considerably influences the parameter 
determination and decisions of the model. These influential 
instances are crucial in debugging and examining the behavior 
of the model. One of the approaches to finding influential 
instances is called deletion diagnostics [152]. In this, we sim-
ply delete the concerned instance and analyse the difference 
in the predictions of the model with and without that instance.

Methods For Visualising and Interpretation Data visualisa-
tion can be defined as complex algorithms which use data 
to create images so that humans can understand and respond 
more effectively. AI development is a hunt for algorithms 
to be better and more responsive than humans. AI learning 
technique is based upon writing a model, but instead of a 
human using your model, the system takes some data as 

Fig. 9  Graphical representation 
of accuracy vs interpretability 
for widely used AI algorithms
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input and creates a new model (Fig. 9). Exploratory data 
analysis with the help of visualisation tools such as Tensor-
flow library or Microsoft Azure ML studio is done to make 
things sensible [107]. Using advanced data processing soft-
ware, developers can integrate multiple coordinated views 
to seamlessly explore large-scale deep learning models and 
predict results, as well as discover patterns [127, 153, 154]. 
Here are some new methods and approaches that AI software 
can use for data visualisation:

• Interactive visualisations: Using dynamic, interactive 
visualisations to allow users to explore data and model 
behavior in real-time.

• Augmented Reality (AR) and Virtual Reality (VR) 
visualisations: Using AR and VR technology to cre-
ate immersive visualisations that can help users better 
understand and interact with data.

• 3D and 4D visualisations: Using 3D and 4D visualisa-
tions to represent data in new and more informative 
ways, allowing users to better understand complex rela-
tionships and patterns.

• Automated visualisation generation: Using machine 
learning algorithms to automatically generate visuali-
sations based on the data and desired output.

• Real-time streaming visualisations: Creating visualisa-
tions that can be updated in real-time as new data is 
received, allowing users to monitor the data and model 
performance in real-time.

• Multi-view visualisations: Using multiple views or per-
spectives to represent data, allowing users to explore 
and understand the data from different angles.

With increasing efforts to feed quality data to AI models, 
developers are getting better at visualising data rather than 
just what is hidden in numbers; this concept holds immense 
significance in the AI world. To understand trends and spot 
anomalies, presented data can help AI visualise and under-
stand the context of the problem. A few examples include 
DGMTracker and GANViz, which focus on helping a devel-
oper understand training dynamics and train these complex 
models. Research in this area includes the creation of vari-
ous tools and frameworks for democratisation and interoper-
ability, but new work is immediately open-sourced without 
being published at a reputed conference. There may be many 
languages to perform data visualisation, but the much widely 
used are python and R. Which one would be best and has 
better scope? The answer is simple; it is purely the user’s 
choice. In this paper, our main goal is to understand the 
concepts, such as which conditions are optimal for visualis-
ing concepts, and deep dive into coding/implementation to 
help sample plots [155].

Data interpretation is one of the most arising innovations 
that joins techniques and fields from various fields of study. 

Enormous data are present, and a huge effort is required to 
organise all the data systematically. Humans simply can-
not read all data and organise them. The prominence of AI 
is real and cannot be ignored. In today’s time, such good 
PCs are available that even our grandmasters get defeated 
by them. Data analytics alongside AI are less labor-intensive 
and highly efficient. An AI automated bot is useful soft-
ware to interact with millions of users daily by gathering 
knowledge through ML. It stimulates human interaction and 
reduces workload. It interprets data and breaks down each 
sentence into individual words, and each word is used as 
data for ANN [156] (Fig. 10).

Another emerging topic that can help to interpret data is 
big data. It has been evolving in the field of AI in recent years 
and has been tackling almost all human challenges. Big data 
refers to a large number of instances (and maybe features) 
that traditional data processing software is unable to capture 
and process. With big data analysis, real-time problems such 
as fraud detection, financial risk analysis and price optimi-
sation can be done in fractions of seconds [157]. Have you 
ever noticed that fries ordered at McDonald’s or Carl’s Jr. 
are always on time or sometimes a bit early too? Well, the 
answer is simple, it is big data that monitors the number of 
customers, and if the waiting line is too long, it will reflect 
only those items which can be quickly prepared. At Univer-
sal Studios, they give us bands that are installed with RFID 
tags. Thousands of sensors are installed across the park, which 
gathers information about activities. Thus, big data helps us 
to enhance customer experience. According to a survey, big 
data has some demerits due to the lack of proper maintenance. 
At all times, there is a high risk of data piracy and leak, and 
businesses are at potential risk of cyber-attacks [158]. Also, 
a major issue rising these days is that there is a lack of aware-
ness about big data [159]. People who possess skills and can 
work on big data are few people who want to work on it.

Evaluating the Quality of Explanations and Error Mitigation In 
addition to providing the explanation for an AI decision, 
incorporating an evaluative approach under the XAI umbrella 
should be considered while the field is still in its early stages. 
By doing this, XAI will be able to cater to a wider spectrum of 
stakeholders. However, the subjective nature of explainability 
poses a strenuous challenge for researchers.

A rudimentary principle for benchmarking the quality of 
explanations would be if the evaluation is demonstrating the 
claimed contribution. Subsequently, other factors such as 

Fig. 10  Input–output model of recommendation
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optimal use of resources, minimal time consumption, and 
degree of explanation may embrace the benchmark process. 
Doshi-Velez and Kim [36] provided a paradigm which cat-
egorised evaluation techniques into (also shown in Fig. 11):

• Application grounded—This methodology deals with 
domain experts experimenting in real-life situations to 
validate the delivery of end-task. More specifically, it 
acknowledges any discovery of new facts, debugging of 
new errors and elimination of biases. For example, to 
diagnose a disease, the most suitable way is for a doctor 
to perform diagnosis [160].

• Human grounded—This methodology deals with lay 
humans performing general experiments to address a 
wider pool of evaluation concepts. This proves to be a 
cost-effective method of maintaining the crux of the tar-
get application. For example, humans are given a choice 

between two theories, and they need to choose the one 
with higher accuracy [161].

• Functionally Grounded—This methodology deals with a 
proxy measure for evaluating interpretability, and there-
fore additional research is needed. No requirement for 
human interaction and minimal cost are some appealing 
factors for its wide usage. For example, decision trees are 
considered interpretable in many situations [162].

Holzinger et al. [163] devised a notion of causability, 
which they later combined with a widely-accepted usabil-
ity scale to form the System Causability Scale (SCS). SCS 
measures the extent to which a certain explanation behind 
the AI model decision attains a causal understanding with 
the user. As a demonstration, SCS was utilised with the 
Framingham Risk Tool (FRT) by a medical doctor from the 
Ottawa Hospital [164].

Error mitigation via DL is referred to as the simple tech-
nique used to reduce specific errors in quantum computing 
algorithms. Many XAI methods produce saliency maps. 
These maps highlight and increase the pixel intensity of a 
particular image that has similar salient properties. Despite 
its success, its black-box nature is a serious hurdle in pivotal 
fields like medicine and autonomous driving. These maps 
fail if they are subjected to data poisoning or if the model 
hasn’t been trained sufficiently. Saliency maps assume that 
all features in the model are interpretable, but in some cases, 
the model may be making decisions based on features that 
are incoherent to humans. Figure 12 shows how when a 
dog’s image is subjected to a Grad-CAM heat map produces 
a lot of noise. To improve the accuracy of saliency maps, 
Ismail et al. [165] take a different approach by proposing a 
new training procedure called saliency-guided training. This 

Fig. 11  Taxonomy of explanation quality

Fig. 12  Saliency map of a dog 
clearly showing noise
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procedure presents outputs that are less noisy and clear and 
do not degrade the model’s performance.

In machine learning pipelines, the black box is not an 
option anymore, and there is a tradeoff between performance 
and interpretability. It is argued that many complex models 
are full of errors. To prove this, Aman et al. [166] gave a 
classic example by comparing laboratory testing and CDSS. 
With the availability of more datasets, there is an increased 
benefit that allows more complex functions to be approxi-
mated for future developments in XAI [21, 167].

In order for AI models to provide quality data in return, 
candidates need to train their models hard enough to pro-
cure quality results. Error analysis helps to investigate and 
diagnose error patterns. In conclusion, every model has 
its own unique set of errors and problems. If we follow a 
formal approach every time, we can avoid reinventing the 
wheel every time.

Depending on the specific application and context, the 
efficacy of XAI’s current models and strategies can vary. 
Some models and strategies have been demonstrated to 
be highly effective and efficient at providing interpretable 
explanations for AI systems, whereas others may still be 
in the early stages of development or encounter scaling or 
generalisability challenges.

Challenges For Enabling XAI

Human‑Machine Collaboration

Machine-Human collaboration is a system where humans 
collude with AI and other machines. Both have a symbi-
otic relationship with each other, where the human uses the 
machine’s intelligence and its superpower to compute mil-
lions of threads while the machine uses the human’s abil-
ity to interact with employees and customers to accumulate 
data. This type of collaboration allows humans to understand 
the decisions made by AI systems and to provide feedback 
and guidance to improve the performance of these systems 
over time. Building a successful human-AI collaboration 
will allow big IT companies to identify new strategies to 
overcome challenges humans face to foster a positive rela-
tionship between machines and humans in the workforce. 
According to Xiong et al. [168], machines will be helpful in 
gathering data and conveying key messages, while humans 
can obligate emotional influences and make an unbiased 
judgment. Damacharla et al. [169]. found that a combination 
of two non-expert chess players and three personal comput-
ers was more successful than either a group of supercomput-
ers or a group of grandmasters on their own.

A recent survey by Deloitte tells us that this technology 
is being extensively used in their organisation. The robotics 

section uses 22% AI automation, while the company’s patented 
cognitive technology uses around 43% [170, 171]. Such intel-
ligent automation hands off the workload and phases the era 
from manual execution to the tactical automation age era. This 
enables organisations to identify algorithmic analyses of the 
data to make predictions. Accenture’s Paul Daugherty, Chief 
Technology and Innovation Officer, and H. James Wilson, 
Managing Director of Information Technology and Business 
Research, claim that such collaborations could increase rev-
enue by 38% by 2022. More than 68% of businessmen agreed 
that this intersection would help them achieve strategic pri-
orities faster [172]. Figure 14 shows the benefit of AI in the 
workplace, according to the survey. They conclude uman col-
laboration based on four terms:

• Improved decision quality: By leveraging the strengths of 
both humans and machines, human–machine collaboration 
can result in improved decision quality compared to relying 
on either alone. This idea emerges because of the compul-
sive nature to improve the reliability of the system [173].

• Increased transparency: Human–machine collaboration 
can increase transparency and accountability in AI sys-
tems, as humans can understand the reasoning behind the 
decisions made by these systems. This will allow shared 
awareness and intent for optimal teamwork [174].

• Mitigation of bias: By incorporating human feedback 
and oversight, human–machine collaboration can help 
to mitigate bias and ensure that AI systems are fair and 
ethical. Using an end-to-end machine learning pipeline 
which includes pre-processing, in-processing, and post-
processing, data scientists can detect and eliminate any 
form of bias in their models.

• Better performance over time: Human–machine collabo-
ration allows AI systems to continuously improve over 
time, as human experts can provide feedback and guid-
ance to improve the performance of these systems.

Fig. 13  Benefit of AI in the workplace
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Of course, with time, there will be some human roles 
that will be eliminated due to technological evolution. For 
now, new talent who are proficient at developing AI mod-
els which are explainable needs to be recruited [175]. In 
the past 22 years, the people of the United States have lost 
five million jobs due to this revolution, but they have been 
re-recruited at job openings in the manufacturing sector. 
In the continuous circle of learning between humans and 
machines, there is a mutual transfer of knowledge [176]. 
The outcome of the decision is susceptible to unpredict-
ability. This refers to some risky decisions that are made 
using AI [177] (Fig. 13). Such decisions are made without 
knowing the exact consequence. These kinds of problems 
are omnipresent in technology, daily life, and several choices 
we make each day. With machines, emotional influences can 
be restrained, and empirical analysis can demonstrate the 
benefits of human-machine collaboration. These AI models 
are created with limited data and within a pre-defined scope. 
Although these machines can surpass humans in terms of 
data processing [178], they lack accountability and interpret-
ability and hence are referred to as “black boxes.”

Acceptance and Popularisation

Studies have shown that when people see AI technology as 
being simple to use, they are more likely to adopt and trust 
it. Therefore, it is necessary to make AI clear and under-
standable in order to improve its adoption in people’s lives. 
Consumer technologies have undergone extensive research 
and are constructed using a number of predetermined prin-
ciples, including justice, accountability, and transparency 
[179]. Future research will look into whether there is a sig-
nificant empirical requirement to understand what supports 
AI if the role of central trust is assumed.

Collaborating with industry, government, and academic 
stakeholders can help to promote XAI and educate the public 
on its potential benefits and limitations. For example, IBM 
[180] is working to develop technology that will enable the 
machine also to be able to explain to you what it is advising, 
which is likely to happen within the next five years, according 
to Rachel Bellamy, IBM research manager for human-agent 
collaboration. A technology’s level of human acceptance can 
be predicted using the well-known Technology Acceptance 
Model (TAM), which was created by Mr. Fred David [181] 
in the late 1980s. Perceived usability and perceived ease of 
use are the two criteria that affect this model.

The rising usage of AI, on the other hand, has raised 
ethical concerns and opposing arguments that directly chal-
lenge traditional approaches in XAI. According to a woman 
in her 60 s, she demonstrates how the excessive use of AI 
is displacing workers. She worries that soon humans will 
not be able to make decisions. “Too Much, Too Little, or 

Just Right?,” a work proposed by Kulesza et al. [182] pre-
sented their findings to reveal how explanations are impact-
ing end users’ mental models. Another encouraging area of 
research in literature is the economic perspective of XAI, 
which examines the cost requirements of integrating XAI 
into the mainstream.

Akyol et al. [183]. initially attempted a quantitative analy-
sis of the cost of transparency (PoT) in ML algorithms. The 
work of Igami [184] about the connections between machine 
learning and econometrics laid the foundation for “Structural 
Econometrics for XAI.”

It is crucial to realise that theory says very little about 
technology but a lot about our beliefs and how we inter-
pret it. Similar to how people adapt to new revolutionising 
technologies, people will gradually come to embrace XAI 
in their lives too.

Discussion and Reflection

Future Research Directions

The wide range of reviewed methodologies in this survey 
demonstrates how quickly XAI has advanced in the crea-
tion and application of open and accountable AI systems. 
Due to the infancy of this field, there are a number of areas 
where sophisticated ML and AI algorithms do not appear 
to benefit from conventional approaches. Therefore, it is 
advised to search for non-conventional sources of explana-
tions. We suggest some potential future directions that inter-
ested researchers could investigate in addition to the current 
initiatives, keeping in mind the long-term objective of XAI.

Responsible AI

The limitations of AI gave origin to the field of XAI. How-
ever, some researchers stressed the fact that if somehow the 
discussed limitations of AI could be eradicated, it could 
save precious resources as well as produce more efficient 
AI models. We move forward with our discussion from the 
XAI realm towards Responsible AI, a paradigm that is based 
on the principle of protecting societal values and interests 
of the stakeholders. With considerable weightage given to 
the ethical implications of the decisions made by such AI 
algorithms, not only does it guarantee transparency but also 
inherited responsibility makes the system truly intelligent.

To direct the development of Responsible AI, the follow-
ing factors should be kept in mind:

• Acceptance of responsibility will determine public atti-
tude towards the acceptance of responsible AI in society. 
Governments and citizens need to act together to resolve 
issues of reliability concerned with AI.
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• Self-justification will enable AI models to develop rea-
soning and a code of conduct based on human values 
and ethics. Current research shows that an adequate link 
between decisions and ethical context is missing.

• Participation involves the real-life application of AI in 
everyday life to develop the guidelines for responsible 
AI. Here, education plays a significant role in creating 
awareness among people that their input is crucial in 
shaping the societal character of responsible AI.

To ensure that the design and development of respon-
sible AI reflect the ethical concerns of humans, we pro-
pose to incorporate the above-discussed factors with the 
principles proposed by Dignum [185], i.e., accountabil-
ity, responsibility, and transparency (ART) as depicted 
in Fig. 14.

Presently, responsible AI does not hold any concrete 
approach to its design, due to which its theory seems to 
cease to exist. Also, responsible AI suffers from moral delib-
eration, which brings unnecessarily increased computation 
cost and complexity.

Universal Framework and Formalisation

We could see the gap between interdisciplinary research on 
how people explain and formalise patterns in algorithmic 
forms and XAI techniques and frameworks, which are con-
stantly evolving. A novel and unified framework should be 
aimed at the formalism of XAI, given the rise in research 
proposals in the field. This framework will be supported by 
the two pillars of XAI: “explanation” and “interpretation,” 
acting as an agent for addressing the growing heterogeneity 
and consolidating developed methods.

Potential Implications

Due to the wide-ranging approaches of XAI, it will be nearly 
impossible and highly tiring to survey all research papers 
about XAI. The papers surveyed are selectively chosen 
based on their content and impact on XAI. More prefer-
ence is given to fresh work to give an overview to interested 
researchers about recent trends. Until now, four main areas 
of focus have been identified: A way to explain complex 
black-box models, performance and analysis of neural net-
works, improving the popularity of white box models among 
developers, and methods to eliminate discrimination and 
improve fairness [186]. Exploring new concepts increases 
the meta information of a person and helps to evaluate 
individual class predictions by local algorithms [187]. By 
decomposing and breaking each explanation, the impor-
tance of each concept increases. With the ups and downs 
of life, there will be both positive and negative impacts of 
XAI on a person’s daily life. There are multiple impacts 

of this technology. Every organisation needs to apply it to 
their website, working algorithms, games, etc. The future 
revolves around ethics, new technologies, and governance. 
Top-tier organisations are continuously developing AI-
rooted.technology in technological rigor. The XAI market 
is growing ceaselessly at a high rate. Until now, there are 
very few companies that produce only XAI models. While 
there is a crunch of startups in the market, monitoring this 
growing field helps to stay on top of new mechanisations. 
Prioritizing today’s leaders will impact tomorrow’s future. 
XAI will enable federal leaders to make calculated invest-
ments to automate workflow.

Other Research Directions (Future GPT Models)

XAI, or explainable artificial intelligence, is gaining impor-
tance for GPTs (Generative Pretrained Transformers) as 
these models become more sophisticated and capable. GPTs 
are notorious for their lack of interpretability and transpar-
ency, despite achieving remarkable results in several applica-
tions. This makes it difficult to comprehend how they arrive 
at their predictions, making it challenging to identify and 
rectify errors, biases, and other problems. By providing clear 
and understandable explanations for GPTs, XAI can assist 
in overcoming these obstacles. This can assist users in com-
prehending the model’s decision-making process, identify-
ing potential biases or errors, and building confidence and 
accountability in the system.

Several XAI techniques, such as saliency maps, feature 
centrality scores, and counterfactual explanations, can be 

Fig. 14  Benefit of AI in the workplace
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applied to GPTs. These techniques can assist users in com-
prehending which aspects of the input data the GPT is focus-
ing on, which features are most crucial for its predictions, and 
how modifying the input data would affect the output. As the 
complexity and strength of GPTs continue to increase, XAI 
is becoming increasingly vital to their success. By providing 
transparent and interpretable explanations for these mod-
els, XAI can aid in ensuring that they are used ethically and 
responsibly and that their outputs are accurate and reliable.

There are initiatives to develop tools and techniques that 
can help explain why a model makes particular predictions 
or generates particular outputs. For instance, techniques such 
as attention visualisation can help determine which portions 
of the input text are most crucial to the output of the model.

Transformer models that have been pre-trained are fre-
quently fine-tuned for specific tasks such as query answer-
ing and sentiment analysis. During fine-tuning, the model 
is trained on task-specific data, which helps to identify any 
biases or errors in the output of the previously trained model.

Moreover, GPTs can be employed to explain and interpret 
black-box AI models. Training GPT on a large corpus of 
explanations for various types of models and problems is 
one method to use to explain black-box AI models. This can 
include explanations of the models’ fundamental algorithms 
and techniques, as well as the models’ inputs and outputs 
and how they are used in decision-making.

Once trained, the GPT model can generate explanations in 
natural language for specific black-box models based on their 
inputs and outputs [22]. These explanations can cast light on 
the inner workings of the black-box model and provide insight 
into how it arrived at its conclusions or predictions.

Notably, the quality and accuracy of the explanations pro-
duced by GPT may depend on the quality and accuracy of 
the training data, as well as the complexity and character of 
the black-box model being explained [188, 189]. Hence, it 
would be advisable to combine GPT-generated explanations 
with other techniques, such as model-agnostic methods and 
model-specific interpretability techniques, when attempting 
to explain black-box AI models.

Conclusion

Ethics issues and the requirement for control of the infa-
mous AI black box have drawn a lot of attention in the last 
10 years. XAI was introduced as a multidisciplinary field 
to make the “black box” transparent. By elaborating on a 
conceptual understanding of XAI taxonomy, diverse XAI 
applications, methodologies for explainability, as well as 
the limitations and challenges faced by XAI, in this survey, 
we aimed to create a unified framework that can navigate 
through this literature.

As far as we know, XAI’s constantly expanding field 
still requires a more formal approach to address the diverse 
range of user questions that can be influenced by various 
factors such as motivation, context, and individuality. Our 
research highlights the shortcomings of current XAI algo-
rithms and proposes opportunities for the human–computer 
interaction community. Despite the significant progress that 
has been made in XAI, it still faces challenges such as bal-
ancing transparency and privacy, addressing the diversity 
of user needs, and creating effective explanations for com-
plex models. Nonetheless, XAI has the potential to bring 
AI closer to the human domain, making it more accessible 
and trustworthy.
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